
T-NOVA | Deliverable D2.1 System Use Cases and Requirements

© T-NOVA Consortium

1

 NETWORK FUNCTIONS AS-A-SERVICE

OVER VIRTUALISED INFRASTRUCTURES
GRANT AGREEMENT NO.: 619520

Deliverable D6.3

Users Dashboard

Editor Evangelos K. Markakis (TEIC)

Contributors Evangelos Markakis, Athina Burdena, George Alexiou,
Evangelos Pallis, Anargyros Sideris (TEIC), Aurora Ramos,
Javier Melián (ATOS), Thomas Pliakas (CLDST),

Version 1.0

Date December 22nd, 2015

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
2

Executive Summary

The DoW describes this deliverable as: “D6.3: User Dashboard (M24) – Report+Prototype
– Design and implementation of the User Dashboard. Description of the implemented
interfaces to the T-NOVA management modules. Presentation of the GUI and
functionalities.”

The dashboard constitutes T-NOVA’s system front-end. It enables the Service Providers
(SPs) to create and publish their services, the Function Providers (FPs) to create and
publish their Virtual Network Functions (VNFs) and both of them to participate in
auctions for buying and selling, respectively, the published VNFs. In addition, the
Dashboard allows the customers to discover (exploiting various criteria) and consume
the offered services. Having in mind terminal neutrality and seamless upgradeability,
whenever a new version is available, a web-based implementation of the Dashboard
has been selected. Finally and towards maximising the users’ Quality of Experience, T-
NOVA’s Dashboard allows personalization for a variety of settings such as interface,
appearance and content according to each user’s profile configuration.

In this context, this document presents an overview of the current technologies related
to the development of a Dashboard. This includes the fronted (e.g. BootStrap),
middleware (e.g. Angular) and backend (e.g. Django) web development frameworks. In
the same direction, the existing web development and deployment approaches are
surveyed focussing in the ones adopting a client-side and modular logic, for reasons
of better scalability and interoperability—towards this, the notion of containerised
micro-services is proposed and adopted for the Dashboard’s implementation and
deployment. In addition, the document describes the interfacing between the Users’
Dashboard and the rest T-NOVA management modules, namely the Billing, UMAA
(User Management, Authentication and Access Control), SLA management, Brokerage,
Business Service Catalogue, Function Store and Orchestrator. Finally a step by step
presentation of how to use the realised Dashboard is given in a series of screenshots.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
3

Table of Contents

1. INTRODUCTION .. 8	

1.1. DELIVERABLE’S STRUCTURE ... 10	

2. USERS DASHBOARD DESIGN ... 11	

2.1. AVAILABLE WEB DEVELOPMENT FRAMEWORKS ... 11	
2.1.1. Frontend ... 11	
2.1.2. Middleware .. 12	
2.1.3. Back-End .. 13	
2.1.4. Summary .. 15	

2.2. DEVELOPMENT APPROACHES ... 15	
2.2.1. Server-Centric Web Application (SCWA) .. 15	
2.2.2. Browser-Centric Web Application (BCWA) .. 15	
2.2.3. Summary .. 16	

2.3. DEPLOYMENT ARCHITECTURES ... 16	
2.3.1. Monolithic .. 16	
2.3.2. Micro-services ... 17	
2.3.3. Containerized micro-services .. 18	
2.3.4. Summary .. 19	

3. USERS DASHBOARD IMPLEMENTATION ... 20	

3.1. ROUTING MODULE ... 20	
3.2. BOOTSTRAP AUTHENTICATION FUNCTION .. 20	
3.3. ROOT CONTROLLER .. 21	
3.4. LOGIN CONTROLLER ... 22	
3.5. REGISTER CONTROLLER .. 22	
3.6. USER MANAGEMENT CONTROLLER .. 23	
3.7. VNF MANAGEMENT CONTROLLER ... 24	
3.8. NFSTORE IMAGES MANAGEMENT CONTROLLER ... 24	
3.9. SERVICES MANAGEMENT CONTROLLER .. 25	
3.10. BROKER CONTROLLER ... 25	

4. USERS DASHBOARD INTERFACING WITH REST T-NOVA MARKETPLACE
MODULES ... 26	

4.1. APIS DEFINITION .. 26	
4.1.1. Billing .. 26	
4.1.2. User Management, Authentication and Access control Module 31	
4.1.3. SLA Management .. 39	
4.1.4. Billing .. 45	
4.1.5. Brokerage ... 49	
4.1.6. Function Store .. 51	
4.1.7. Business Service Catalogue ... 54	
4.1.8. Service Selection .. 58	
4.1.9. Orchestrator .. 59	

5. GRAPHICAL USER INTERFACE AND FUNCTIONALITIES 61	

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
4

5.1. USER REGISTRATION .. 61	
5.2. USER LOGIN .. 61	
5.3. VNF PROVIDER .. 62	

5.3.1. VNF Creation .. 62	
5.3.2. VNF Listing .. 66	
5.3.3. VNF Tools .. 67	
5.3.4. Images .. 69	

5.4. SERVICE PROVIDER ... 69	
5.4.1. Service/NSD Creation .. 70	
5.4.2. NSD Listing ... 74	
5.4.3. NSD Tools .. 74	

5.5. CUSTOMER .. 75	
5.5.1. Customer – Service Selection .. 75	
5.5.2. Customer - Service Purchase .. 76	
5.5.3. Customer Services ... 76	

5.6. ADMINISTRATOR .. 77	
5.6.1. User Management .. 77	

6. VALIDATION .. 80	

6.1. FUNCTIONAL VERIFICATION .. 80	
6.2. REQUIREMENTS FULFILLMENT ... 82	

7. CONCLUSIONS .. 84	

8. REFERENCES .. 85	

9. ANNEX A: ... 86	

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
5

Index of Figures

Figure 1-1 Dashboard views .. 8	
Figure 2-1 Single Page Application ... 16	
Figure 2-2 Dashboard in monolithic deployment ... 17	
Figure 2-3 Dashboard deployed as a micro-service ... 18	
Figure 2-4 Dashboard deployed as a containerised micro-service 19	
Figure 3-1 Routing module .. 20	
Figure 3-2 Bootstrap authentication function ... 21	
Figure 3-3 Root controller ... 21	
Figure 3-4 Login controller ... 22	
Figure 3-5 Register controller .. 23	
Figure 3-6 User management controller .. 23	
Figure 1-1 VNF management controller .. 24	
Figure 1-1 NFStore Images Management controller .. 24	
Figure 1-1 Service Management controller .. 25	
Figure 1-1 Broker controller ... 25	
Figure 1-1 User registration ... 61	
Figure 1-1 Dashboard's login page ... 62	
Figure 1-1 VNF Providers home page .. 62	
Figure 1-1 VNF Creation - Step 1: VNF Basic Information ... 63	
Figure 1-1 VNF Creation - Step 2: VNF Composition, SLA Flavors 64	
Figure 1-1 VNF Creation - Step 2: VNF Composition, Virtual Machines 64	
Figure 1-1 VNF Creation - Step 2: VNF Composition, Virtual Links 65	
Figure 1-1 VNF Creation - Step 3: SLA ... 65	
Figure 1-1 VNF Creation - Step 3: SLA, Assurance Parameters .. 66	
Figure 1-1 VNF Creation - Step 4: Billing ... 66	
Figure 1-1 VNF Listing ... 67	
Figure 1-1 Genereted VNFD Viewer .. 67	
Figure 1-1 VNFD YAML Editor .. 68	
Figure 1-1 VNF Diagram .. 68	
Figure 1-1 Function Provider VNF Images .. 69	
Figure 1-1 Service Provider ... 69	
Figure 1-1 NSD Creation - Step 1: VNF Selection .. 70	
Figure 1-1 NSD Creation - Step 1: VNF Selection, Trade Request 71	
Figure 1-1 NSD Creation - Step 1: VNF Selection, Pending Trade Request 71	
Figure 1-1 Trade Request FP View ... 71	
Figure 1-1 Accepted Trade Offer .. 71	
Figure 1-1 NSD Creation - Step 2: Basic Information .. 72	
Figure 1-1 NSD Creation - Step 3: Service Composition and SLA 73	
Figure 1-1 NSD Creation - Step 4: Assurance Parameters ... 73	
Figure 1-1 NSD Creation - Step 4: Assurance Parameters ... 74	
Figure 1-1 NSD Listing .. 74	
Figure 1-1 Generated NSD Viewer ... 75	
Figure 1-1 NSD YAML Editor .. 75	
Figure 1-1 Customer – Service Selection ... 76	
Figure 1-1 Customer - Service Purchase ... 76	

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
6

Figure 1-1 Customer Services ... 77	
Figure 1-1 Administrator ... 77	
Figure 1-1 User Management .. 78	
Figure 1-1 User Creation .. 78	
Figure 1-1 Edit User Profile ... 79	

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
7

Index of Tables

Table 1 SP dashboard view .. 9	
Table 2 FP dashboard view .. 9	
Table 3 Customer Dashboard view ... 9	
Table 6-1 Dashboard functional verification ... 82	
Table 6-2 Dashboard basic requirements ... 83	

	

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
8

1. INTRODUCTION

As already stated at D2.42, the Dashboard constitutes the T-NOVA system’s front-end
and hosts the three views for the three basic stakeholders that will access the T-NOVA
Marketplace: the Service Provider (SP), the Function Provider (FP) and the Customer.
The main features of the Dashboard are presented in Figure 1-1.

Figure 1-1 Dashboard views

In summary, the SPs’, FPs’ and Customers’ views of the dashboard will allow them to
provide the functionalities shown in Table 1, Table 2 and Table 3 respectively.

Functionality Short Explanation

AA Authorization and Authentication of the respective role
into the T-NOVA Dashboard.

Service composition Graphical wizard that will help the SP to compose a new
Network Service (NS) starting from the brokerage
among the FPs owing the available VNFs.

Service monitoring Graphical representation of all monitoring data for a
selected or "consumed" Service.

Billing information Graphical representation of the billing outcomes of
selected or "consumed" service. There will be two types
of billing information for the SP:

- Charges for the SP’s customers (BSS
functionality).

- Invoices on behalf of its own suppliers, the FPs.

SLA information Details of the selected or "consumed" service based on
how they respect the agreed SLA. The SP will have access
to two different kinds of SLA contract and SLA
monitoring information:

- SLA between SP and its customers (BSS)
- SLA agreed with his its suppliers, the FPs

AA

Service	
Composition

Service	
Monitoring

Billing	
Information

SLA	Information

AA
VNF	Upload

VNF	Publication
VNF	Modification
VNF	Withdraw
VNFs	monitoring
Billing	information	
SLA	information

AA

Service	request	

Service	selection	

Service	configuration

Service	monitoring

Billing	information

SLA	information	

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
9

Table 1 SP dashboard view

Functionality Short Explanation

AA Authorization and Authentication of the respective role
into the T-NOVA dashboard.

VNF Upload Graphical wizard that will help the FP to upload his VNF
with the necessary parameters.

VNF Publication Graphical representation for the FP to provide the last
check in order to publish the uploaded VNF

VNF Modification Small graphical wizard that provides the ability to the FP
to modify the uploaded VNF.

VNF Withdraw Graphical representation that gives to the FP the ability
to remove an already published or uploaded VNF

VNFs monitoring Graphical representation of all monitoring data for a
selected or “consumed” NF.

Billing information Graphical representation of the Billing outcomes for a
selected or “consumed” NF.

SLA information Information of the selected or "consumed" NFs based on
the agreed SLA and its fulfillment.
Table 2 FP dashboard view

Functionality Short Explanation

AA Authorization and Authentication of the respective role
into the T-NOVA Dashboard.

Service request Graphical representation of the Services/Functions
returned by the T-NOVA business service catalogue.

Service Selection Graphical representation assisted by a check box
providing the ability to the customer to select a service
for consumption.

Service configuration Small Graphical wizard providing to the customer
predefined parameters for defining the selected service.

Service monitoring Graphical representation of the data gathered from the
monitoring modules.

Billing information Graphical representation of the billing outcomes of
selected or "consumed" service.

SLA information Details of the selected or "consumed" Service based on
how they respect the agreed SLA.

Table 3 Customer Dashboard view

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
10

1.1. Deliverable’s structure

The rest of the document is composed by the following sections:

Section 1 Introduction: Here, we give a short overview of the Dashboard and describe
its functionalities.

Section 2 Requirements Overview: Here, we summarise the requirements the
Dashboard must meet.

Section 3 Users Dashboard Design: This section discusses in brief the available web
development frameworks and the existing software development and deployment
approaches focusing in the ones exhibiting better scalability and interoperability.

Section 4 Users Dashboard Implementation: The implementation of each distinct
functional part of the Users Dashboard is presented here.

Section 5 Users Dashboard Interfacing with T-NOVA Management Modules: In this
section, we describe the interfaces of the Users Dashboard with the T-NOVA’s
management modules.

Section 6 Graphical User Interface and Functionalities: This section gives a step by step
guide on how to use the implemented Dashboard.

Section 7 Conclusions: The conclusions of this document are given in this section.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
11

2. USERS DASHBOARD DESIGN

2.1. Available Web development frameworks

2.1.1. Frontend

2.1.1.1. Semantic-UI

Semantic-UI [1] is a new front-end development framework rich in features and with a
robust API. According to its development team, “Semantic is a UI component framework
based around useful principles from natural language.” To achieve this, Semantic-UI
exploits a semantic, descriptive language for naming its classes, favoring the use of
natural language words instead of abbreviations, as its counterparts mainly do.

This framework’s uniqueness consists in its structured form, and in the provision of
several components—namely the Feed, Comment, Shape and Sidebar—and a real-
time debug feature not available in other frontend frameworks. Semantic-UI builds its
structure around five descriptive categories (used for defining re-usable UI
components) namely the UI Element, UI Collection, UI View, UI Module and UI Behavior.
Additional advantages of Semantic UI are its minimal and neutral styling, leaving
customization open to the developer, its components portability, its very good
documentation and finally its website where many examples on how to use its different
components can be found.

2.1.1.2. Bootstrap

“Bootstrap is the most popular HTML, CSS, and JS framework for developing responsive,
mobile first projects on the web.” – Bootstrap [2]; a claim not far from truth. Bootstrap
is a powerful, open-source front-end framework developed by a Twitter team. It
combines HTML5/HTML, CSS3/CSS, and Javascript code towards enabling developers
to easily build user interface components. It comes with a free set of tools and data
APIs that allow the creation of flexible and responsive web layouts and common
interface components (e.g. Scrollspy, Typeaheads) without even writing a single line of
JavaScript code. Bootstrap’s popularity builds on the following advantages:

• Faster development cycle: There is a plethora of predefined design templates
and classes available to the developer.

• Responsiveness: Bootstrap’s responsive features enable for the proper display
of the web pages on heterogeneous devices and screen resolutions without any
change in markup.

• Consistency: The same design templates and styles are provided to all
Bootstrap components through a central library.

• User-friendly: A basic working knowledge of HTML and CSS suffices for starting
development with Bootstrap.

• Compatibility: Bootstrap is compatible with all modern browsers such as Mozilla
Firefox, Google Chrome, Safari, Internet Explorer, and Opera.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
12

• Open Source: It is completely free to download and use.

2.1.2. Middleware

2.1.2.1. AngularJS

AngularJS [3] is an open-source web application framework, adhering to the Model-
View-Controller (MVC) architecture, designed for creating single page web
applications. In this direction, it exploits declarative programming for creating user
interfaces and for connecting the software components to each other. AngularJS most
notably feature is the two-way data binding where changes in any model are
automatically reflected to the related views and, vice versa, any modification in the
views leads to the respective models update. This feature along with advantages like
the inherently support of MVC, the use of conventional HTML as the declarative
language for defining interfaces and the use of directives for bringing additional
functionality to HTML have made AngularJS a very popular choice amongst web
developers.

2.1.2.2. jQuery

jQuery [4] is a JavaScript library that simplifies operations like HTML document traversal
and manipulation (Document Object Model elements manipulation), event handling,
animation, and Ajax by offering an easy-to-use API that is compatible with a multitude
of browsers. Among its most notable features are the event assignment and the event
callback function definitions, both done once in the code. The main advantages of
using this library are:

• JavaScript and HTML separation: Javascript is use for adding event handlers to
DOM, rather than adding HTML event attributes to call JavaScript functions.

• Brevity and clarity: Features like chainable functions and shorthand function
names enable for brevity and clarity.

• Cross-browser compatible: jQuery provides one consistent interface that
handles the interoperability amongst the browsers’ different javaScript engines,

• Extensible: New events, elements, and methods can be easily added and then
reused as a plugin.

2.1.2.3. Ember.js

Ember.js [5] is an open source, javaScript application framework, adhering to the
Model-View-Controller (MVC) model, used for, as its developers’ state, “creating
ambitious web applications”. It follows the Convention over Configuration (CoC), and
the Don't Repeat Yourself (DRY) principles. Ember.js provides a series of tools and
incorporates common idioms and best practices into the framework for reducing the
amount of written code. Although it is a web framework, it is also possible to exploit it
for building desktop and mobile applications. Ember was designed around several key
ideas:

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
13

• Focus on ambitious web applications: Ember supports full MVC in contrast with
most of its counterparts focusing in the V (view) part of MVC.

• Production friendly: Enables the developer to be productive immediately. In this
direction, Ember utilises a pluggable architecture and offers a Command Line
Interface (CLI) that provides a standard application structure and build pipeline.

• Stability without stagnation: Assures backward compatibility while still
innovating and evolving the framework.

Ember 2.0 was released August 13, 2015 and the most important changes occur in the
view layer and include the one way data flow by default, the "Just refresh it" when
something changes, the introduction of standard lifecycle hooks for components and
the exploitation of Glimmer rendering engine aiming to improve re-render
performance.

2.1.2.4. React

React [6] is an open-source JavaScript library and is commonly exploited as the V in
MVC. The library in highly interoperable as it makes no assumptions about the rest of
the used technology stack. React abstracts the DOM, thus offering a simpler
programming model and better performance. Contrary to its counterparts, React can
also render on the server using Node. React aims to help developers building large
applications that use time varying data. Its main features are:

• Use of vanilla JavaScript: React uses JavaScript’s features for most of its
operations (this explains React’s lightweight API).

• One Way Data Flow: React utilises the simpler one way data flow than the more
complex two way data flow. In this context, when the properties on a React
component are updated, that component is re-rendered.

• Virtual DOM: React maintains its own virtual DOM, rather than using solely the
browser's DOM. This allows the library to determine more efficient which parts
of the browser's DOM need an update.

• Server-Side Rendering: Server-side rendering is a unique feature of React,
especially important for high-traffic websites where the user experience (e.g.
web page speed loading) must be excellent.

2.1.3. Back-End

2.1.3.1. Django

Django [7] is a free, open source, MVC aware, high-level Python Web framework
promoting rapid development and clean, pragmatic design. As its developer states
“Django makes it easier to build better Web apps more quickly and with less code.”
Django eases the creation of complex, database-driven websites and emphasizes
reusability and "pluggability" of components, adhering to the principle of DRY (Don’t
Repeat Yourself). It uses an object-relational mapper (ORM) that mediates between
data models (defined as Python classes) and a relational database ("Model"); a system

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
14

for processing HTTP requests with a web templating system ("View") and a regular-
expression-based URL dispatcher ("Controller"). Django is highly extensible and rich in
features, some of them are:

• a lightweight and standalone web server for development and testing
• a form serialization and validation system which can translate between HTML

forms and values
• a template system that utilises the concept of inheritance
• a caching framework
• support for middleware classes
• an internal dispatcher system
• an internationalization system
• a XML/JSON serialization system
• a system for extending the capabilities of the template engine
• an interface to Python's built in unit test framework
• an extensible authentication system
• a dynamic administrative interface
• tools for generating RSS and Atom syndication feeds and Google Sitemaps
• built-in mitigation for cross-site request forgery, cross-site scripting, SQL

injection, password cracking and other typical web attacks
• a framework for creating GIS applications

2.1.3.2. Flask

Flask [8] is a BSD licensed, Python micro web application framework built with a small
core and easy-to-extend philosophy. Flask is based on the Werkzeug WSGI (Web
Server Gateway Interface) toolkit and Jinja2 template engine but it does not because it
does not presume the use of a particular tool or library—It has no database abstraction
layer, form validation, or any other components where pre-existing third-party libraries
provide common functions. However, it is easy to add extensions to Flask and there
are already a number of them providing object-relational mappers, form validation,
upload handling, various open authentication technologies and several common
framework related tools. Some of its features include:

• Provision of a development server and debugger
• Integrated support for unit testing
• RESTful request dispatching
• Jinja2 templating
• Support for secure cookies
• 100% WSGI 1.0 compliant
• Unicode-based
• Extensive documentation
• Google App Engine compatibility
• Extensions available to enhance features desired

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
15

2.1.3.3. Symfony

According to its developers, “Symfony is a set of PHP Components, a Web Application
framework, a Philosophy, and a Community — all working together in harmony.”
Symfony [9], an open source project, relies on PHP, the largest web development and
has a vibrant and growing community (e.g. eZ Platform uses Symfony’s Full Stack,
Drupal 8 uses many Symfony Components). The framework introduces a truly unique
HTTP and HTTP cache handling system by being an HTTP-centric request/response
framework. In addition, it supports the use of advance features like ESI (Edge Side
Includes) for separating the different parts of the web application.

2.1.3.4. YII

Yii [10] is an open-source, MVC aware, PHP framework used for developing Web 2.0
applications, promoting clean, DRY (Don’t Repeat Yourself) design, and supporting
rapid development. It offers excellent documentation and has a supportive community.
Features like Database Access Objects (DAO), Active Record, and programmatic
Database migrations ease the effort for developing database-powered web
applications. In addition, it has built in support for form input, validation, Ajax, and
built-in authentication. Yii also provides a built-in code generation tool, named Gii,
speeding application development. It also integrates well with other frameworks (e.g.
Zend, PEAR)and supports I18N for providing localized versions of the developed
applications. Finally, Yii supports PSR-4 class auto-loading, provides a RESTful API
framework and a documentation generator.

2.1.4. Summary

Based on the factors, of maturity, community support, number of supported features,
extensibility and interoperability, we selected Bootstrap, Angular and Django as
frontend, middleware and backend Web development frameworks respectively.

2.2. Development Approaches

2.2.1. Server-Centric Web Application (SCWA)

Server-Centric Web Application (SCWA) uses a Server to collect data, process them and
serve the resulting HTML page to the client’s browser. The disadvantage of this
approach is that the page is posted back to the server; this introduces communication
and processing overhead that can decrease the overall performance as it forces the
user to wait for the page to be processed and recreated.

2.2.2. Browser-Centric Web Application (BCWA)

Browser-Centric Web Application (BCWA) approach embeds all the functional parts
(e.g. Scripts) on the client’s side and executes them on the client’s Internet browser.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
16

The advantage of BCWA architecture is the faster response time and less overhead (e.g.
Data, Processing Power) on the web server. Additionally, BSWA is ideal when the page
elements need to be changed without the need to contact the database.

A very popular technology belonging to the BCWA category is Single Page Application
(SPA). Essentially SPA is a web application that fits in a single page and loads on the
initial page request. SPA is suitable for web-centric applications that handle a large
amount of data by exploiting, when needed, asynchronous download of features
(HTML templates/JSON data) and by re-rendering locally any part of the interface
without requiring from the server to re-render the complete HTML page. Finally, SPA
allows web developers to give a “native-application” like experience to the end-user.

Figure 2-1 Single Page Application

2.2.3. Summary

For the Dashboard’s implementation, the Browser-Centric Web Application
architecture was chosen for the following two reasons: scalability and faster response
time (excluding the initial load time). For the former, BCWA is more suitable as it
diffuses the processing load from the server to the clients; in other words all the code
is downloaded, from the server, at the session’s beginning and then it runs inside the
clients’ browsers. For the latter, as all (or almost all) of the data are inside the browser
the time for getting, processing and displaying them is usually far less than the time
needed to request and get the data from the server (SCWA paradigm).

2.3. Deployment Architectures

2.3.1. Monolithic

A monolithic architecture is defined in the traditional client-server model. In this
architecture all the functionalities are contained into a single service, which is the most

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
17

common way to develop and package web applications. A monolithic web application
typically composed of the client, the server and the database. In this context, the Users’
Dashboard along with the other modules are developed as a single application,
exploiting one common web development framework (Django in Figure 2-2), and are
deployed in one virtual machine.

Figure 2-2 Dashboard in monolithic deployment

2.3.2. Micro-services

Micro-services architectural paradigm allows for the decomposition of one heavy
application in several smaller components, named micro-services, which can be
distributed across multiple locations. Each micro-service focuses in the execution of
one or a small set of tasks, is independently deployable and uses, usually, an HTTP API
for communicating with the rest micro-services. In this context, and as Figure 2-3
depicts, each T-NOVA module may be deployed as a distinct micro-service, exploiting
a different development framework. Moreover, and for avoiding library versioning
incompatibilities and conflicts, each micro-service can be deployed in a distinct virtual
machine.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
18

Figure 2-3 Dashboard deployed as a micro-service

2.3.3. Containerized micro-services

As Figure 2-4 depicts containerised micro-services refer to the deployment of each
distinct micro-service inside a docker. Docker [11] is a container that packages all the
software (e.g. code, libraries, third-party tools, etc.) needed to implement and run the
micro-service. This allows the deployment of the micro-service, on any computer, on
any infrastructure and in any cloud. In this context, each T-NOVA Marketplace module
may be deployed as a distinct micro-service, exploiting a different development
framework as in the “plain” micro-service case; however, with dockers there are no
library versioning incompatibilities and conflicts and therefore all micro-services can
be deployed in one virtual machine.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
19

Figure 2-4 Dashboard deployed as a containerised micro-service

2.3.4. Summary

For the Dashboard’s deployment, the containerised micro-service approach was
selected. This will enable each developer assigned with the task of building a T-NOVA
module to use its preferable development framework without having to take into
account the selections of the other modules’ developers (this may increase the
development speed). Furthermore, the exploitation of docker technology enables for
the deployment of all the modules in one virtual machine (VM) without having to worry
about libraries incompatibilities and conflicts thus reducing the managerial and
processing overhead needed to run a distinct VM for each micro-service.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
20

3. USERS DASHBOARD IMPLEMENTATION

This section presents the implementation of the users’ Dashboard in a series of code
snippets. Each code snippet provides a snapshot of the code written to realise the
Dashboard’s functionalities.

3.1. Routing module

This module routes the users’ requests (e.g. login, register) to the controller responsible
for handling them.

Figure 3-1 Routing module

3.2. Bootstrap authentication function

This function checks if a token exists in the cookies of the HTTP session and if yes it
uses it for authenticating the user during the ongoing HTTP session; if not it redirects
the user to the login page.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
21

Figure 3-2 Bootstrap authentication function

3.3. Root controller

This controller contacts the UMAA module for checking the requesting user’s privileges
and based on them renders only the authorised content.

Figure 3-3 Root controller

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
22

3.4. Login controller

This controller contacts the UMAA module for authenticating the users.

Figure 3-4 Login controller

3.5. Register controller

This controller contacts the UMAA module for registering the new Dashboard’s users,
namely the new Customers, Service and Function Providers.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
23

Figure 3-5 Register controller

3.6. User management controller

This controller allows the Dashboard’s administrator to manage (create, modify, delete)
the user accounts.

Figure 3-6 User management controller

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
24

3.7. VNF management controller

This controller interacts with the NFStore towards allowing Function Providers to create
their functions.

Figure 3-7 VNF management controller

3.8. NFStore Images Management controller

This controller interacts with the NFStore towards allowing Function Providers to
manage the images of their implemented functions.

Figure 3-8 NFStore Images Management controller

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
25

3.9. Services Management controller

This	controller	interacts	with	the	Service	Catalogue	towards	allowing	Service	Providers	to	
manage	their	services	(e.g.	composite	a	service	from	one	or	more	network	functions).	
	

Figure 3-9 Service Management controller

3.10. Broker Controller

This	controller	interacts	with	the	Brokerage	module	towards	allowing	Service	Providers	and	
Customers	to	participate	in	the	trading	operation.		

	
Figure 3-10 Broker controller

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
26

4. USERS DASHBOARD INTERFACING WITH REST T-
NOVA MARKETPLACE MODULES

This section presents the interface between the users’ Dashboard and the rest t-NOVA
marketplace modules, namely the Billing, UMAA (User Management, Authentication
and Access Control), SLA management, Accounting, Brokerage, Business Service
Catalogue, Function Store and Orchestrator.

4.1. APIs Definition

4.1.1. Billing

The billing API for the dashboard manages the following information between the
dashboard and the billing module:

- Bills charged per user and per service (SP and customer).
- Charges done to SP’s customers (BSS functionality to the SP).
- Charges done to FP’s customers, which is the SP.

Queries

Usage query API for getting user’s data

URL http://localhost:8080/udr/usage/users/{user_id}

Type GET

Headers x-auth-token : String

Parameters from : Date

to : Date

Response Code 200 : Success

Request None

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
27

Response {

 "userid": "49588f5cea984040bc05d871eff67d2f",

 "time": {

 "to": "2015-01-12 01:10:00",

 "from": "2015-01-12 01:01:00"

 },

 "usage": {

 "openstack": [

 {

 "name": "cpu_util",

 "columns": [

 "time",

 "sequence_number",

 "avg"

],

 "points": [

 [

 1421024460734,

 124666640001,

 74.31932

],

 [

 1421024460734,

 124666550001,

 0.7899716

]

]

 }

]

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
28

 }

}

Usage query API for particular resource / service id

URL http://localhost:8080/udr/usage/resources/{resource_id}

Type GET

Headers x-auth-token : String

Parameters from : Date

to : Date

Response Code 200 : Success

Request None

Response {

 "resourceid": "49588f5cea984040bc05d871eff67d2f",

 "time": {

 "to": "2015-01-12 01:10:00",

 "from": "2015-01-12 01:01:00"

 },

 "column": [

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
29

 "time",

 "mean",

 "userid"

],

 "usage": [

 [

 0,

 0,

 "46fe4a610a8b44948a5b61427b0b5ecd"

],

 [

 0,

 0,

 "49588f5cea984040bc05d871eff67d2f"

],

 [

 0,

 2.950836399999999,

 "99909daae8924e7a9b96cd964e9d64e3"

],

]

}

Bill generation API for a particular customer

URL http://localhost:8080/billing/invoice

Type GET

Headers x-auth-token : String

Parameters Customerid: String

from : Date

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
30

to : Date

Response Code 200 : Success

Request None

Response {

 "time": {

 "to": "2015-06-15 23:59",

 "from": "2015-06-15 00:00"

 },

 "charge": {

 "columns": [

 "time",

 "sequence_number",

 "userid",

 "usage",

 "price",

 "resource"

],

 "points": [

 [

 1434361731726,

 413986240001,

 "f83aa92bc3c64a3497b334cc712b0491",

 5,

 15.84,

 "service-id-aaab-hg1562711-ahsbba"

],

 [

 1434361731726,

 413986230001,

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
31

 "f83aa92bc3c64a3497b334cc712b0491",

 37,

 124.4,

 "service-id-aaac-hg1562711-ahsbbs"

]

]

 }

}

4.1.2. User Management, Authentication and Access control
Module

UMMA’s API collects all the information necessary to manage and authenticate the T-
NOVA users or stakeholders. The root prefixes for this micro-service are /user-
management/ for the user/profile management and /auth/ for the authentication.
The micro-service uses these YAML files to initialize the permissions, groups and users:

• init_users.yml
• init_groups.yml
• init_permissions.yml

4.1.2.1. Authentication

Methods

• POST /auth/

User authentication request

POST /auth/

Request Body:

{"username":"admin", "password":"123456"}

Response Body:

{"token":" eyJhbGciOiJIUzI1N….iIsInR5cCI6IkpXV "}

Request Example with JWT authentication

GET /user-management/users/

Content-Type: application/json

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
32

Authentication: JWT eyJhbGciOiJIUzI1N….iIsInR5cCI6IkpXV

Token Metadata

{

 'username': 'admin',

 'user_id': 1,

 'email': 'g.alexiou@pasiphae.eu',

 'company_name': 'TEIC',

 'exp': 1436620914

}

4.1.2.2. User Management

Methods

• GET /user-management/users/
• POST /user-management/users/
• GET /user-management/users/{pk}/
• PUT /user-management/users/{pk}/
• PATCH /user-management/users/{pk}/
• DELETE /user-management/users/{pk}/
• GET /user-management/users/{pk}/groups/
• GET /user-management/users/{pk}/permissions/
• GET /user-management/profile/
• PUT /user-management/profile/
• PATCH /user-management/profile/
• GET /user-management/profile/groups/
• GET /user-management/profile/permissions/
• GET /user-management/groups/
• GET /user-management/countries/

Listing all Users

This method returns the user's list.

GET /user-management/users/

Response Body:

[

		{	
				"id":	1,	
				"username":	"admin",	
				"groups":	[
						3	

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
33

],	
				"company_name":	"TEIC",	
				"first_name":	"",	
				"last_name":	"",	
				"email":	"g.alexiou@pasiphae.eu",	
				"country":	"GR",	
				"city":	"",	
				"address":	""	
		},	
		{	
				"id":	2,	
				"username":	"customer1",	
				"groups":	[
						1	
],	
				"company_name":	"TEIC",	
				"first_name":	"",	
				"last_name":	"",	
				"email":	"customer1@t-nova.eu",	
				"country":	"GR",	
				"city":	"",	
				"address":	""	
		}	
]	

Create New User

This method creates a new user.

POST /user-management/users/

Request Body:

{

 "username": "new_user",

 "password": "123456",

 "groups": [

 3

],

 "company_name": "TEIC",

 "first_name": "",

 "last_name": "",

 "email": "g.alexiou@pasiphae.eu",

 "country": "GR",

 "city": "",

 "address": ""

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
34

}

Response Body:

{

 "id": 10,

 "username": "new_user",

 "groups": [

 3

],

 "company_name": "TEIC",

 "first_name": "",

 "last_name": "",

 "email": "g.alexiou@pasiphae.eu",

 "country": "GR",

 "city": "",

 "address": ""

}

Get User's info

This method returns the user info.

GET /user-management/users/10/

Response Body:

{

 "id": 10,

 "username": "new_user",

 "groups": [

 3

],

 "company_name": "TEIC",

 "first_name": "",

 "last_name": "",

 "email": "g.alexiou@pasiphae.eu",

 "country": "GR",

 "city": "",

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
35

 "address": ""

}

Edit User's info

This method changes user's info (PUT Method)

PUT /user-management/users/10/

Request Body:

{

 "id": 10,

 "username": "new_user",

 "groups": [

 3

],

 "company_name": "TEIC",

 "first_name": "George",

 "last_name": "Alexiou",

 "email": "g.alexiou@pasiphae.eu",

 "country": "GR",

 "city": "Heraklion",

 "address": "Estaurmenos"

}

This method changes user's info partially (PATCH Method)

PATCH /user-management/users/10/

Request Body:

{

 "first_name": "George",

 "last_name": "Alexiou",

 "city": "Heraklion",

 "address": "Estaurmenos"

}

Delete User

This method deletes a user

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
36

DELETE /user-management/users/10/

Get User's groups

This method returns the user groups.

GET /user-management/users/10/groups/

Response Body:

[

 {

 "id": 10,

 "name": "Customer",

 "permissions": [

 "umaa.edit_own_profile",

 "umaa.view_own_profile"

]

 }

]

Get User's permissions

This method returns the user permissions.

GET /user-management/users/10/permissions/

Response Body:

[

 "umaa.edit_own_profile",

 "umaa.view_own_profile"

]

Get User's profile

This method returns the user's profile.

GET /user-management/profile/

Response Body:

{

 "id": 10,

 "username": "new_user",

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
37

 "groups": [

 3

],

 "company_name": "TEIC",

 "first_name": "George",

 "last_name": "Alexiou",

 "email": "g.alexiou@pasiphae.eu",

 "country": "GR",

 "city": "Heraklion",

 "address": "Estaurmenos"

}

Edit User's profile

This method changes user's profile info (PUT Method)

PUT /user-management/profile/

Request Body:

{

 "id": 10,

 "username": "new_user",

 "groups": [

 3

],

 "company_name": "TEIC",

 "first_name": "George",

 "last_name": "Alexiou",

 "email": "g.alexiou@pasiphae.eu",

 "country": "GR",

 "city": "Heraklion",

 "address": "Estaurmenos"

}

This method changes user's profile info partially (PATCH Method)

PATCH /user-management/profile/

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
38

Request Body:

{

 "first_name": "George",

 "last_name": "Alexiou",

 "city": "Heraklion",

 "address": "Estaurmenos"

}

Get User's profile groups

This method returns the user groups.

GET /user-management/profile/groups/

Response Body:

[

 {

 "id": 10,

 "name": "Customer",

 "permissions": [

 "umaa.edit_own_profile",

 "umaa.view_own_profile"

]

 }

]

Get User's profile permissions

This method returns the user permissions.

GET /user-management/profile/permissions/

Response Body:

[

 "umaa.edit_own_profile",

 "umaa.view_own_profile"

]

Get Available Groups

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
39

This method returns the available groups.

GET /user-management/groups/

Response Body:

[

 {"id":3,"name":"Administrator"},

 {"id":1,"name":"Customer"},

 {"id":4,"name":"Function Provider"},

 {"id":2,"name":"Service Provider"}

]

Get Available Countries

This method returns the available countries.

GET /user-management/countries/

Response Body:

[

 {code":"AF","name":"Afghanistan"},

 ...

 {"code":"ZM","name":"Zambia"},

 {"code":"ZW","name":"Zimbabwe"}

]

4.1.3. SLA Management

This API’s goal is to show the users the following information coming from the SLA
management module:

- SLA template specification to be filled by the SP and FPs.
- SLA offering to the customer and associated to each service.
- SLA monitoring by all the stakeholders.
- SLA penalties for each network service and VNF.

§ Providers

POST Creates a provider. The uuid is in the request

URL /providers

Type POST

Headers Accept: application/json

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
40

Content-type: application/json

Parameters

Response
code

409: The uuid or name already exists in the database.

201: Created.

Request
example

POST /providers/ HTTP/1.1

POST item
example

{

 "uuid":"fc923960-03fe-41eb-8a21-a56709f9370f",

 "name":"provider-prueba"

}

§ Templates:

POST Creates a new template. The file might include a Template Id or not. In case of
not being included, a uuid is assigned.

URL /templates

Type POST

Headers Accept: application/json

Content-type: application/json

Parameters

Response
code

§ 409: The uuid already exists in the database.

§ 409: The provider uuid specified in the template doesn't exist in the
database.

§ 500: Incorrect data has been suplied.

§ 201: Created.

Request
example

POST /templates/ HTTP/1.1

POST item
example

SLA template (see annex section 2).

UPDATE Updates the template identified by TemplateId. The body might include a
TemplateId or not. In case of including a TemplateId in the file, it must match with the
one from the url.

URL /templates/{templateId}

Type PUT

Headers Accept: application/json

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
41

Content-type: application/json

Parameters § TemplateId: Id of the template we want to modify.

Response
code

§ 409: The templateId from the url doesn't match with the one from
the file.

§ 409: Template has agreements associated.

§ 409: Provider doesn't exist

§ 500: Incorrect data has been suplied

§ 200: OK

Request
example

PUT /templates/vnfvnf5gold HTTP/1.1

PUT item
example

SLA template (see annex section 2).

GET Retrieves a template identified by templateId.

URL /templates/{templatetId}

Type GET

Headers Accept: application/json

Content-type: application/json

Parameters § templateId: Id of the template we want to retrieve.

Response
code

§ 404: The templateId doesn't exist in the database.

§ 200: OK.

Request
example

GET /templates/vnfvnf5gold HTTP/1.1

Response
example

SLA template in JSON form (see annex section 2)

§ Agreements

GET Retrieves an agreement identified by agreementId.

URL /agreements/{agreementId}

Type GET

Headers Accept: application/json

Content-type: application/json

Parameters § agreementId: Id of the agreement we want to retrieve.

Response
code

§ 404: The uuid doesn't exist in the database.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
42

§ 200: OK.

Request
example

GET /agreements/vnfidf51 HTTP/1.1

Response
example

SLA agreement in JSON form (see annex section 3)

The AgreementId matches the AgreementId attribute of wsag:Agreement element when
the agreement is created.

§ SLA Information

Retrieve SLA related information to show in the dashboard given the userId and the
wheter you want to retrieve VNFs or network services.

URL /sla-info/?clientId={clientId}&kind={ns|vnf}

Type GET

Headers Accept: application/json

Content-type: application/json

Parameters clientId: Id of the user that is using the network service or the VNF.

kind: It can take 2 values: ns | vnf.

Response
code

400 - Bad request: when the body in the request is not well formed.

500: There is a connection problem between the Accounting and the SLA
modules.

200: OK.

Request
example

GET /sla-info/?clientId=c1&kind=ns HTTP/1.1

Response
example

[

 {

 "productId": "service6",

 "productType": "ns",

 "clientId": "c1",

 "providerId": "p6",

 "SLAPenalties": 35,

 "agreementId": "serviceids101",

 "dateCreated": "2015-10-08T07:31:37Z",

 "dateTerminated": "2015-12-15T17:26:45.071444"

 }

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
43

]

Retrieves the list of all running services the user (customer) is using.

URL /servicelist/{userId}/

Type GET

Headers Accept: application/json

Content-type: application/json

Parameters userId: Id of the user for whom we want to retrieve the service list.

Response
code

400 - Bad request: when the body in the request is not well formed.

200: OK.

Request
example

GET /servicelist/c1 HTTP/1.1

Response
example

[

 {

 "id": 2,

 "instanceId": "id02",

 "productId": "s1",

 "agreementId": "s1vnf2_4",

 "relatives": "id01, id03",

 "productType": "ns",

 "flavour": null,

 "startDate": "2015-06-11T00:00:00Z",

 "lastBillDate": "2015-06-11T00:00:00Z",

 "providerId": "p1",

 "clientId": "c1",

 "status": "running",

 "billingModel": "PAYG",

 "period": "P1D",

 "priceUnit": "EUR",

 "periodCost": 1.0,

 "setupCost": 1.0,

 "renew": true,

 "dateCreated": "2015-06-11T13:29:16Z",

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
44

 "dateModified": "2015-12-10T09:29:41Z"

 },

]

Retrieves the list of all running VNFs the user (service provider) is using.

URL /vnflist/{userId}/

Type GET

Headers Accept: application/json

Content-type: application/json

Parameters userId: Id of the user for whom we want to retrieve the service list.

Response
code

400 - Bad request: when the body in the request is not well formed.

200: OK.

Request
example

GET /vnflist/p5 HTTP/1.1

Response
example

[

 {

 "id": 24,

 "instanceId": "idf50",

 "productId": "vnf5",

 "agreementId": "s1vnf2_4",

 "relatives": "ids100",

 "productType": "vnf",

 "flavour": null,

 "startDate": "2015-10-08T07:07:43Z",

 "lastBillDate": "2015-10-08T07:07:43Z",

 "providerId": "f5",

 "clientId": "p5",

 "status": "running",

 "billingModel": "PAYG",

 "period": "P1D",

 "priceUnit": "EUR",

 "periodCost": 1.0,

 "setupCost": 2.0,

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
45

 "renew": false,

 "dateCreated": "2015-10-08T07:07:43Z",

 "dateModified": "2015-10-08T07:07:43Z"

 }

]

4.1.4. Billing

§ Bill Report

Returns all the CDRs for a user within a specified date.

GET /billing/invoice?userId={userId}&from={from_date}&to={to_date}

Response Body:

{

 "name": "charge",

 "from": "2015-12-03 00:00:00",

 "to": "2015-12-09 23:59:59",

 "charges": [

 {

 "priceUnit": "EUR",

 "setupCost": 0,

 "resource": "id02",

 "providerId": "p1",

 "price": 0.003472222222222222,

 "usage": "300",

 "time": "2015-12-09T08:10:52Z",

 "userId": "c1",

 "periodCost": 1

 },

 {

 "priceUnit": "EUR",

 "setupCost": 0,

 "resource": "id02",

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
46

 "providerId": "p1",

 "price": 0.003472222222222222,

 "usage": "300",

 "time": "2015-12-09T08:10:52Z",

 "userId": "c1",

 "periodCost": 1

 }

]

}

§ Revenue Sharing Report

Returns the revenues that a specified Service Provider owes to a VNF Provider

GET
/billing/revenue/report?vfpId={fpId}&spId={spId}&from={from_date}&to={to_date}

Response Body:

{

 "VNFProvider": "f1",

 "from": "2015-12-07 00:00:00",

 "to": "2015-12-09 23:59:59",

 "revenues": [

 {

 "priceUnit": "EUR",

 "instanceId": "id01",

 "price": 0.003472222222222222,

 "VNFProvider": "f1",

 "name": "tnova_revenue_sharing",

 "SProvider": "p1",

 "time": "2015-12-09T08:10:52Z"

 },

 {

 "priceUnit": "EUR",

 "instanceId": "id03",

 "price": 0.003472222222222222,

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
47

 "VNFProvider": "f1",

 "name": "tnova_revenue_sharing",

 "SProvider": "p1",

 "time": "2015-12-09T08:10:52Z"

 }

]

}

Returns the revenues that a NON specified Service Provider owes to a VNF Provider

GET /billing/revenue/report?vfpId={fpId}&from={from_date}&to={to_date}

Response Body:

{

 "VNFProvider": "f1",

 "from": "2015-12-07 00:00:00",

 "to": "2015-12-09 23:59:59",

 "revenues": [

 {

 "priceUnit": "EUR",

 "instanceId": "id01",

 "price": 0.003472222222222222,

 "VNFProvider": "f1",

 "name": "tnova_revenue_sharing",

 "SProvider": "p2",

 "time": "2015-12-09T08:10:52Z"

 },

 {

 "priceUnit": "EUR",

 "instanceId": "id03",

 "price": 0.003472222222222222,

 "VNFProvider": "f1",

 "name": "tnova_revenue_sharing",

 "SProvider": "p1",

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
48

 "time": "2015-12-09T08:10:52Z"

 }

]

}

§ Usage Data Records

Return usage data records

GET udr/usage/users/{customerId}?from={from_date}&to={to_date}

Response Body:

{

 "name": "UDR",

 "from": "2015-12-10 00:00",

 "to": "2015-12-10 14:56",

 "instanceId": "id02",

 "usages": [

 {

 "time": "2015-12-10T07:36:27Z",

 "usage": 300

 },

 {

 "time": "2015-12-10T07:36:27Z",

 "usage": 300

 },

 {

 "time": "2015-12-10T07:36:27Z",

 "usage": 300

 }

]

}

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
49

4.1.5. Brokerage

This interface is exploited for trading issues, among the T-NOVA users (i.e. Service
Providers and Function Providers) and the brokerage module. The information that will
go through this API will be related to:

- Service composition/VNF request: this functionality enables the SP to request
network functions or compose a new service.

- Advertise VNF: this functionality is exploited for the communication between
FP and the brokerage module, as the latter perform the intermediate
communication, this is trading.

Get Available VNFs

Returns the available VNFs

GET /broker/vnfs/?<filters>

Response Body:

[

{

provider: "TEIC",

release: "T-NOVA",

type: "FW",

id: 562,

description: "PFSense is a firewall…"

…

},{

provider: "TEIC",

release: "T-NOVA",

type: "FW",

id: 563,

description: "UNTagle is a firewall…"

…

}

]

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
50

New Trade Request

This method creates a new trade request

POST /broker/vnfs/trade/

Request Body:

{

provider_id: 6,

vnf_id: 563,

price_override: 12.0

}

Get Trade Request

This method returns trade request

GET /broker/vnfs/trade/4

Response Body:

{

created_at: %Y-%m-%dT%H:%M:%SZ,

modified_at: %Y-%m-%dT%H:%M:%SZ,

provider_id: 6,

vnf_id: 563,

price_override: 12.0,

status:”pending”,

id:4

}

Get Trades Requests

This method returns a list of trade requests

GET /broker/vnfs/trade/

Response Body:

[

{

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
51

created_at: %Y-%m-%dT%H:%M:%SZ,

modified_at: %Y-%m-%dT%H:%M:%SZ,

provider_id: 6,

vnf_id: 563,

price_override: 12.0,

status:”pending”,

id:4

}

{

created_at: %Y-%m-%dT%H:%M:%SZ,

modified_at: %Y-%m-%dT%H:%M:%SZ,

provider_id: 6,

vnf_id: 564,

price_override: 6.0,

status:”accepted”,

id:5

}

]

Accept Trade Requests

This method accepts a trade request offer

GET /broker/vnfs/trade/5/accept/

Reject Trade Requests

This method rejects a trade request offer

GET /broker/vnfs/trade/5/reject/

4.1.6. Function Store

This interface allows the FPs to publish and manage their VNFs into the NF Store. The
publication consists in uploading the VNF image, registering the VNF and its metadata

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
52

into the function store. The VNFs are versioned allowing the FPs to provide further
upgrades. Finally, the FPs can remove their VNFs. In summary, the information
managed with this interface is:

- VNF image and VNF metadata descriptor.
- VNF version.
- Upload, upgrade and delete the VNF package.

Methods

• GET /vnfs/
• POST /vnfs/
• GET /internal/vnfs/
• GET /vnfs/{pk}/
• PUT /vnfs/{pk}/
• DELETE /vnfs/{pk}/
• GET /vnfs/{pk}/yaml/
• PUT /vnfs/{pk}/yaml/

Listing all VNFs

This method return VNF list.

GET /vnfs/

GET /internal/vnfs/ (for module to module communication only)

Response Body:

[

{

provider:	"TEIC",	
release:	"T-NOVA",	
type:	"FW",	
id:	562,	
description:	"PFSense	is	a	firewall…"	
…	
},{

provider:	"TEIC",	
release:	"T-NOVA",	
type:	"FW",	
id:	563,	
description:	"UNTagle	is	a	firewall…"	
…	
}	
]	

Create New VNF

This method creates a new VNF.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
53

POST /vnfs/

Request Body:

{

provider:	"TEIC",	
release:	"T-NOVA",	
type:	"FW",	
id:	562,	
description:	"PFSense	is	a	firewall…"	
…	
}

Get VNFD

This method returns a vnfd

GET /vnfs/562/

Response Body:

{

provider:	"TEIC",	
release:	"T-NOVA",	
type:	"FW",	
id:	562,	
description:	"PFSense	is	a	firewall…"	
…	
}

Update VNFD

This method updates a vnfd

PUT /vnfs/562/

Request Body:

{

provider:	"TEIC",	
release:	"T-NOVA",	
type:	"FW",	
id:	562,	
description:	"PFSense	is	a	firewall…"	
…	
}

Delete VNFD

This method deletes a vnfd

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
54

DELETE /vnfs/562/

Get YAML VNFD

This method returns a vnfd file in YAML format

GET /vnfs/562/yaml/

Response Body:

id: 562

modified_at: '2015-10-18T17:50:09Z'

name: pfSense Firewall

provider: TEIC

provider_id: 4

release: T-NOVA

….

Update YAML VNFD

This method updates a vnfd file in YAML format

PUT /vnfs/562/yaml/

Request Body:

id: 562

modified_at: '2015-10-18T17:50:09Z'

name: pfSense Firewall

provider: TEIC

provider_id: 4

release: T-NOVA

….

4.1.7. Business Service Catalogue

Get available services

GET /service/catalog

Response Body:

[

 {

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
55

 "nsd": {

 "id": "56931f5de4b0c74fd56e890d",

 "name": "network-service-0",

 "vendor": "T-NOVA",

 "version": "1.0",

 "manifest_file_md5": "fa8773350c4c236268f0bd7807c8a3b2",

 "vnfds": [

 "52439e7c-c85c-4bae-88c4-8ee8da4c5485"

],

...

],

 "auto_scale_policy": {

 "criteria": [

 {

 "end-to-end bandwidth": "10Mbps"

 },

 {

 "test": "test"

 }

],

 "action": "upgrade"

 },

 "connection_points": [

 {

 "connection_point_id": "mgnt0",

 "type": "ip"

 },

 {

 "connection_point_id": "data0",

 "type": "bridge"

 },

 {

 "connection_point_id": "stor0",

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
56

 "type": "bridge"

 }

]

 }

 }

]

Create new Service

POST /service/catalog

Request Body:

{

 "nsd": {

 "auto_scale_policy": {

 "action": "string",

 "criteria": [

 {

 "end-to-end bandwidth": "string",

 "test": "string"

 }

]

 },

 "connection_points": [

 {

 "connection_point_id": "string",

 "type": "string"

 }

],

 "id": "string",

 …

 "constituent_vnfs": [

 "string"

],

 "graph": [

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
57

 "string"

],

 "nfp_id": "string"

 }

],

 "number_of_endpoints": 0,

 "number_of_virtual_links": 0,

 "vnffg_id": "string"

 }

]

 }

 }

}

Get service information

GET /service/catalog/{serviceId}

Response Body:

{

 "nsd": {

 "auto_scale_policy": {

 "action": "string",

 "criteria": [

 {

 "end-to-end bandwidth": "string",

 "test": "string"

 }

]

 },

 …

 "graph": [

 "string"

],

 "nfp_id": "string"

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
58

 }

],

 "number_of_endpoints": 0,

 "number_of_virtual_links": 0,

 "vnffg_id": "string"

 }

]

 }

 }

}

Delete service

DELETE /service/catalog/{serviceId}

4.1.8. Service Selection

Service instantiation

POST /service/selection

Request Body:

{

 "created_at": "string",

 "id": 0,

 "nsd_id": "string",

 "status": "string",

 "updated_at": "string",

 "vnfs": [

 {

 "id": 0,

 "vnfd_id": "string",

 "vnfi_id": "string"

 }

]

}

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
59

Response Body:

{

 "callbackUrl": "string",

 "customer_id": "string",

 "nap_id": "string",

 "ns_id": "string"

}

Service termination

DELETE /service/selection/{service_instance_id}

4.1.9. Orchestrator

Get Monitoring Information

Dashboard use this interface to the orchestrator in order to retrieve monitoring
information.

GET orchestrator/instances/{instanceId}/monitoring-
data/?instance_type={instance_type}&metric={metric}

Response Body:

[

 {

 “metricname”: “packets_per_second”,

 “value”: 100,

 “date: "2015-01-21T18:49:00CET",

 }

]

Parameters:

• instanceType: it can be “ns” or “vnf”
• instanceId: instance ID of the service or function
• metric: name of the metric we want to obtain the monitoring data

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
60

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
61

5. GRAPHICAL USER INTERFACE AND FUNCTIONALITIES

5.1. User Registration

The Customers or the Function Providers can register to the dashboard from this page.

Figure 5-1 User registration

5.2. User Login

This the Dashboard’s login page.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
62

Figure 5-2 Dashboard's login page

5.3. VNF Provider

This is the VNF Providers’ Home Page.

	

Figure 5-3 VNF Providers home page

5.3.1. VNF Creation

Here the function provider can create new VNFs.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
63

5.3.1.1. Step 1 – VNF Basic Information

The First step of the VNF creation is to give basic information about the Network
Function

• The	name	of	the	VNF	
• A	Description	
• VNF	Version	
• Descriptor	Version	
• VNF	Type	(Traffic	Classifier,	Firewall,	etc.)	

Figure 5-4 VNF Creation - Step 1: VNF Basic Information

5.3.1.2. Step 2 - VNF Composition

The second step of the VNF Creation is the VNF composition, here the provider can
select the flavor that prefers (gold/silver/bronze) and create a composition of every
flavor. Then the function provider can add a Virtual Machine (i.e. VDU) to the flavor, in
this step the provider can define the required resources for the virtual machine as long
as the image, the monitoring parameters and the lifecycle events. The last step is to
define the virtual links that will be available in the composition in order to link individual
virtual machines or give them external access.

	
	

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
64

Figure 5-5 VNF Creation - Step 2: VNF Composition, SLA Flavors

Figure 5-6 VNF Creation - Step 2: VNF Composition, Virtual Machines

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
65

Figure 5-7 VNF Creation - Step 2: VNF Composition, Virtual Links

5.3.1.3. Step 3 – SLA

Here the provider defines the assurance parameters for every selected flavor. For
example, the provider can apply a discount, if there is an SLA violation.

Figure 5-8 VNF Creation - Step 3: SLA

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
66

Figure 5-9 VNF Creation - Step 3: SLA, Assurance Parameters

5.3.1.4. Step 4 – Billing

In this final step, the provider can define the billing model, price, currency and to enable
the trading (for the broker module).

Figure 5-10 VNF Creation - Step 4: Billing

5.3.2. VNF Listing

Here the providers are able to manage their VNFs, view the generated VNFD file, edit
the NFD with the YAML editor, view the composed VNF (vnf diagram) and delete a
VNF.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
67

Figure 5-11 VNF Listing

5.3.3. VNF Tools

5.3.3.1. Generated VNFD Viewer

ETSI compliant Generated VNFD.

Figure 5-12 Genereted VNFD Viewer

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
68

5.3.3.2. VNFD YAML Editor

The provider can edit the generated VNFD with the YAML editor.

Figure 5-13 VNFD YAML Editor

5.3.3.3. VNFD Diagram

The provider can (visualize the VNFD compositions) view the diagram of the generated
VNFD.

Figure 5-14 VNF Diagram

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
69

5.3.4. Images

From this page the function provider can manage the VNF images.

	

Figure 5-15 Function Provider VNF Images

5.4. Service Provider

This is the Service Provider’s home page.

	

Figure 5-16 Service Provider

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
70

5.4.1. Service/NSD Creation

In the below pages, the service provide can compose/create a new service

5.4.1.1. Step 1 - VNF Selection

The first step of the NSD/service composition is the VNF Selection. The service provider
selects the VNFs that would like to apply/add on this service.

Figure 5-17 NSD Creation - Step 1: VNF Selection

5.4.1.2. Step 1 - VNF Trading

The service provider is able to negotiate with the function provider requesting a better
price (Figure 5-18 Figure 5-19). The function provider can accept this request/offer or
to reject it Figure 5-20). In Error! Reference source not found., the Function provider
accepts the request, so the new price will override the old price.

	

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
71

Figure 5-18 NSD Creation - Step 1: VNF Selection, Trade Request

Figure 5-19 NSD Creation - Step 1: VNF Selection, Pending Trade Request

Figure 5-20 Trade Request FP View

Figure 5-21 Accepted Trade Offer

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
72

5.4.1.3. Step 2 –Basic Information

The next step is the basic information of the Network service

• Service	name	
• A	description	
• NSD	version	
• Descriptor	Version	

Figure 5-22 NSD Creation - Step 2: Basic Information

5.4.1.4. Step 3 – Service Composition and SLA

The next step is the service composition and the SLA specification. The Service Provider
should specify SLA and add the constituent VNFs with the price and the billing model.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
73

Figure 5-23 NSD Creation - Step 3: Service Composition and SLA

5.4.1.5. Step 4 – Assurance Parameters

The final step is to define the assurance parameters for the service for every available
flavour; the provider can apply discount policies, if there is any SLA violation.

Figure 5-24 NSD Creation - Step 4: Assurance Parameters

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
74

Figure 5-25 NSD Creation - Step 4: Assurance Parameters

5.4.2. NSD Listing

The Service provider can view and manage the created services, view the generated
NSD or edit it with the NSD YAML editor or delete it.

Figure 5-26 NSD Listing

5.4.3. NSD Tools

5.4.3.1. Generated NSD Viewer

The SP can view the generated NSD.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
75

Figure 5-27 Generated NSD Viewer

5.4.3.2. NSD YAML Editor

The SP can edit the generated NSD with the NSD YAML Editor

Figure 5-28 NSD YAML Editor

5.5. Customer

5.5.1. Customer – Service Selection

The Customer can browse the available services.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
76

Figure 5-29 Customer – Service Selection

5.5.2. Customer - Service Purchase

The Customer can select the flavor of the service and purchase it.

	

Figure 5-30 Customer - Service Purchase

5.5.3. Customer Services

The customer can view the running services.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
77

Figure 5-31 Customer Services

5.6. Administrator

This is the Dashboard’s administrator home page.

	

Figure 5-32 Administrator

5.6.1. User Management

The administrator can manage the user accounts.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
78

Figure 5-33 User Management

5.6.1.1. User Creation

Administrator can create a new user.

	

Figure 5-34 User Creation

5.6.1.2. Edit User Profile

The administrator can edit a user account.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
79

Figure 5-35 Edit User Profile

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
80

6. VALIDATION

6.1. Functional verification

To test the functionality of the Dashboard we have created some sample VNFs and
Network Services with real data to make it as close to a real scenario as possible, trying
to cover all the functionalities with one example. 	

Functionality Action Call from Requ
est to

Verification Ok?

1 NSD storing Store the
recently created
NSD in the BSC.

Dashboard BSC Verify the new NSD is
present in the BSC
database. Return
code CREATED with
the body including
the autogenerated id
after the call for NSD
storage

Yes

2 Network
services listing

List all available
network services

Dashboard BSC Click on the NS
catalogue and see
the complete list on
screen.

Yes

3 Filtered NS
listing

List all available
network services
under a certain
price

Dashboard BSC Set a maximum price,
retrieve the filtered
list of services and
see all the network
services in the list are
below that price.

Yes

4 NSD
modification

Select a NS from
the BSC, modify
any field

Dashboard BSC Verify the NSD has
been updated in the
BSC database.

Yes

5 NS deletion Mark a NS for
deletion from
the BSC

Dashboard BSC Verify it has been
deleted by retrieving
again the complete
list of services.

Yes

6 Providers
registration

Register FP, SP
and customer

Dashboard SLA
mgmt.

Verify the introduced
providers are in the
SLA management
module database

Yes

7 VNF Templates
introduction

Create VNF
template based
on the VNFD
and send it to
the SLA
management
module

Dashboard SLA
mgmt.

Check the SLA
module database for
the template and the
logs to see there has
not been errors in the
process

Yes

8 Request bill Request a bill
generation for
some user for a

Dashboard Billing The response
contains the amount
due for the customer.

Yes

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
81

given time
frame

The charge data
records can be
verified in the
InfluxDB series.

9 Request
revenues report

Make a call to
the billing
module with the
function
provider ID and
the time frame

Dashboard Billing The response
contains the revenue
share report along
with any penalties for
SLA violations. The
periodic reports can
be verified in the
InfluxDB series.

Yes

10 Show SLA
statistics

Request SLA
statistics for a
given NS or VNF,
running or
stopped

Dashboard Accou
nting

See the charts drawn
on the screen

Yes

Table 6-1 collects the results for this verification tests.

Functionality Action Call from Requ
est to

Verification Ok?

1 NSD storing Store the
recently created
NSD in the BSC.

Dashboard BSC Verify the new NSD is
present in the BSC
database. Return
code CREATED with
the body including
the autogenerated id
after the call for NSD
storage

Yes

2 Network
services listing

List all available
network services

Dashboard BSC Click on the NS
catalogue and see
the complete list on
screen.

Yes

3 Filtered NS
listing

List all available
network services
under a certain
price

Dashboard BSC Set a maximum price,
retrieve the filtered
list of services and
see all the network
services in the list are
below that price.

Yes

4 NSD
modification

Select a NS from
the BSC, modify
any field

Dashboard BSC Verify the NSD has
been updated in the
BSC database.

Yes

5 NS deletion Mark a NS for
deletion from
the BSC

Dashboard BSC Verify it has been
deleted by retrieving
again the complete
list of services.

Yes

6 Providers
registration

Register FP, SP
and customer

Dashboard SLA
mgmt.

Verify the introduced
providers are in the
SLA management
module database

Yes

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
82

7 VNF Templates
introduction

Create VNF
template based
on the VNFD
and send it to
the SLA
management
module

Dashboard SLA
mgmt.

Check the SLA
module database for
the template and the
logs to see there has
not been errors in the
process

Yes

8 Request bill Request a bill
generation for
some user for a
given time
frame

Dashboard Billing The response
contains the amount
due for the customer.
The charge data
records can be
verified in the
InfluxDB series.

Yes

9 Request
revenues report

Make a call to
the billing
module with the
function
provider ID and
the time frame

Dashboard Billing The response
contains the revenue
share report along
with any penalties for
SLA violations. The
periodic reports can
be verified in the
InfluxDB series.

Yes

10 Show SLA
statistics

Request SLA
statistics for a
given NS or VNF,
running or
stopped

Dashboard Accou
nting

See the charts drawn
on the screen

Yes

Table 6-1 Dashboard functional verification

6.2. Requirements fulfillment

The main design decision, derived from the requirements in D2.42, has been to provide
a common dashboard with different customized views based on different roles. In this
context, Table 6-2 holds the Dashboard’s requirements that are common for the
Service Providers, the Function Providers and the Customers, as well as its
implementation status.

Req.
id

Requirement
Description

Justification of
Requirement

Implementation
Status

Implementation
Justification

D.1

The dashboard SHALL
provide a “login in“ page
for the different
stakeholders to be
authenticated

Stakeholders interacting with
the T-NOVA system should
be authenticated and
authorised in order to be
able to browse the Business
Service Catalog, issue SLA
requests, or upload NFVs

YES
All three Roles identified
are implemented

D.2

The “login” page in the
SHALL offer to the
different stakeholders
means to use (username,
password, OpenID,
Google API) for
authentication

Stakeholders interacting with
the T-NOVA system should
be able to use different
authentication techniques to
access T-NOVA

Partially

Google API and OpenID
are simple to implement
and not needed for the
Proof of Concept
Implementation

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
83

Req.
id

Requirement
Description

Justification of
Requirement

Implementation
Status

Implementation
Justification

D.3

The “login” page in the
SHALL offer to the
different stakeholders
means to remember
credentials when logging
on

Stakeholders interacting with
the T-NOVA system should
not be obliged to insert
credentials when accessing
again the system

Yes
This is done through the
Browser

D.4

The Dashboard SHALL
be accessible to
authorized users via the
Internet

The Dashboard will provide
the necessary interface in
order to be viewed over the
Internet

YES
The Dashboard is
available on a public IP

D.5
The Dashboard SHOULD
provide multiple users
login and no less than 10

The Parallel access will
provide the necessary tools
for every user to be able to
provide his content

YES
The dashboard supports
multiple login from
multiple roles

D.6
The Dashboard SHOULD
be available 24/7 365
days per year

The Dashboard must be
always on in order to control
every part of the T-NOVA
infrastructure.

Partially

This is an
implementation
guideline for the real
environment

D.7
The Dashboard MUST be
as light way as possible
in the Server side

The Dashboard must be able
to take into account the
processing power of the
stakeholder accessing it.

YES

The use of the
technologies identified
in this deliverable
constitutes the
Dashboard a Ultra-Light
Web page.

D.8
The Dashboard MUST be
Open source

The Dashboard must be
Open source

YES

Dashboard will be
provided open source
with a Open license that
needs to be defined

Table 6-2 Dashboard basic requirements

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
84

7. CONCLUSIONS

This deliverable presented the design, implementation and operation of T-NOVA’s
users Dashboard. More specifically, it provided an overview of the available web
development frameworks used in frontend, middleware and backend deployments of
web applications. Based on factors such as community support, maturity and
extensibility, Bootstrap, AngularJS and Django were chosen as frontend, middleware
and backend web development frameworks respectively. In addition it, discussed the
existing software development approaches for developing a web application, namely
the Server-Centric Web Application (SCWA) and Browser-Centric Web Application
(SCWA), focusing on the latter because of its advantages in scalability. In the same
context, it examined the monolithic and micro-services deployment approaches and
proposed the adoption of micro-services architecture enhanced with the Docker
paradigm; this innovative approach allowed for faster development cycles,
interoperability between different software development frameworks and, most
important, seamless-transparent deployment and execution of the Dashboard in any
physical or virtual OS, without having to worry about libraries and third party tools
incompatibilities. Following this, the implementation of the Dashboard was presented
in the form of code-snippets screenshots. Finally, a detailed description of the APIs
between the users’ Dashboard and the rest T-NOVA management modules was given
followed by the demonstration of the Dashboard’s operation.

7.1.

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
85

8. REFERENCES

[1] Semantic-UI, http://semantic-ui.com/introduction/new.html, Last Access 10/2015

[2] BootStrap, http://getbootstrap.com/, Last Access 10/2015

[3] AngularJS, https://angularjs.org/, Last Access 10/2015

[4] JQuery, https://jquery.com/, Last Access 10/2015

[5] Ember, http://emberjs.com/, Last Access 10/2015

[6] React, http://facebook.github.io/react/, Last Access 10/2015

[7] Django: The Web framework for perfectionists with deadlines,
https://www.djangoproject.com/, Last Access 10/2015

[8] Flask (A Python Microframework), http://flask.pocoo.org/, Last Access 10/2015

[9] Symfony, High Performance PHP Framework for Web Development,
https://symfony.com/, Last Access 10/2015

[10] Yii PHP Framework: Best for Web 2.0 Development, http://www.yiiframework.com/,
Last Access 10/2015

[11] Docker – Build, Ship, and Run Any App, Anywhere, https://www.docker.com/, Last
Access 11/2015

T-NOVA | Deliverable D6.1 Service Description Framework

© T-NOVA Consortium
86

9. ANNEX A:

