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Executive Summary 

This deliverable reports the implementation of the seven Virtual Network Functions 

(VNFs) developed in T-NOVA. The VNF descriptions reported here must be 

considered the final ones, therefore they update and eventually correct the ones 

contained in the previous version of this Deliverable, namely [D5.31]. This document 

also discusses the final version of the VNF Descriptor (VNFD), thus updating the 

information reported in the previous Deliverable [5.31]. The T-NOVA VNFD was 

designed and adopted within the project in line with ETSI guidelines and is publicly 

released to be reused by the NFV community. 

The VNFs developed in T-NOVA are the following: 

• Security Appliance 

• Session Border Controller 

• Video Transcoding Unit 

• Traffic Classifier 

• Home gateway 

• Proxy as a Service 

• FPGA-based H.264 Decoder. 

Such VNFs span a very wide area of the Network Function domain, and can thus 

represent, from a developer’s perspective, a set of highly significant implementation 

use cases, in which many aspects related to network function virtualization have been 

effectively tackled. In the VNFs presented in this document different technologies 

have been adopted by developers. Most VNFs, in fact, take advantage of various 

contributions coming from the open source community, such as [SNORT], or exploit 

recent technological advances, such as [DPDK], SR-IOV [Walters], general purpose 

Graphical Processing Units [CUDA], or Field Programmable Gate Arrays (FPGAs).  

In addition, this final deliverable provides practical information useful to function 

developers, most of it related to the most significant implementation issues 

encountered in the development phase. The practical lessons learnt during 

implementation by T-NOVA developers have been summarized in a specific section. 

Also, a discussion about the scaling mechanism adopted in T-NOVA is included. 

Finally, this document provides guidelines for the VNF characterization, as a result of 

the activities carried out in Task 5.4. The results obtained in the VNF performance 

tests are reported and discussed. A thorough characterization of two specific VNFs, 

i.e. the vSBC and the vTU, is reported in details in Annex A and B, as meaningful and 

complete examples of application of the guidelines developed in Task 5.4.  
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1. INTRODUCTION 

This document contains the final description of the Virtual Network Functions (VNFs) 

developed in the T-NOVA project. In particular, seven different VNFs are discussed, 

covering a wide range of applications, which are:  

• Virtual Security Appliance; 

• Virtual Session Border Controller; 

• Virtual Transcoding Unit; 

• Traffic Classifier; 

• Virtual CDN/Virtual Home Gateway; 

• Proxy as a Service; 

• FPGA-based H.264 decoder. 

For each VNF, architectural and functional descriptions are provided, along with the 

technologies used and the internal/external interfaces. In addition, guidelines to 

characterize the VNF performance are given, as a result of the activities carried out in 

Task 5.4. The results obtained in the tests are summarized for every VNF. 

Function providers who want to develop new VNFs compatible with the T-NOVA 

framework can use them as guideline examples. To offer practical guidelines to 

developers, a specific section about the practical lessons learnt during the T-NOVA 

development phase has been introduced. The final versions of the specific VNFs 

developed in T-NOVA are described. 

The structure of the document is the following. 

Section 2 presents the T-NOVA VNF Descriptor in its final version.  

Section 3 presents the final version of the description of the seven VNFs developed in 

T-NOVA. Such descriptions should be considered the final versions, and therefore 

they update all the information contained in previous documents. 

Section 4 is focused on the scaling approach implemented in T-NOVA. A general 

description is first given in sub-section 3.1; then, in 3.2 and 3.3 the scaling procedures 

implemented by two different VNFs, namely the vSBC and the vHG/vCDN are 

presented and discussed. 

Section 5 reports the lessons learnt by developers during the various phases of the 

project, in particular related to the most innovative aspects considered in T-NOVA, 

such as the use of different types of HW accelerators and their impact on VNFs. 

Section 6 presents the guidelines for the performance characterization of VNF, 

developed in Task 5.4 of T-NOVA WP5. A thorough application of such guidelines is 

described in Annex A and B, which report the results obtained in the testing phase of 

two VNFs, namely the vSBC and the vTU. 

Finally, Section 7 draws the final conclusion and summarizes the main results 

reported in this document. 



T-NOVA | Deliverable D5.32   Network Functions Implementation and Testing - Final 

© T-NOVA Consortium 
9 

1.1. Dependency on previous documents 

This report contains the research, design and implementation results and ideas 

developed in the WP5 “Network Functions” work-package of the T-NOVA project. 

This work-package has mainly taken inputs from WP2, “System Specification” and in 

particular from T2.5 “Specification of Network Function framework”. The inputs to 

WP5 about Network Functions are summarized in the T-NOVA deliverable [D2.41]. 

The activities carried out within WP5 have been described in the previous deliverables 

[D5.01] and [D5.31]. Thus, the information reported in this deliverable updates and 

eventually corrects the one contained in the previous version of this deliverable, 

namely [D5.31]. This document also discusses the final version of the VNF Descriptor 

(VNFD), thus updating the information reported in [D5.31]. Other documents of 

interest for this deliverable are [D2.1], about T-NOVA use cases and requirements, 

[D2.21] for the information related to the overall T-NOVA architecture, [D4.01] and 

[D4.1], about infrastructure virtualization, and [D6.1], related to the T-NOVA 

Marketplace. 
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2. THE VNF DESCRIPTOR 

This section describes the VNF Descriptor, or simply the VNFD, designed and 

adopted in T-NOVA, in line with ETSI guidelines.  

2.1. VNF Descriptor (VNFD) 

The VNFD plays an important role in the proper deployment of a particular VNF in 

the NFVI by the NFVO, as well as in the portability of the VNF to NFVI variants. A 

preliminary description of the VNFD was given in D5.31. This section presents the 

final version of the T-NOVA VNFD (also available in the T-NOVA repository, at 

https://github.com/T-NOVA/NFVdescriptors). The figure below (Figure 1) presents 

the generic structure of the information model for the description of the VNF 

properties as is specified by ETSI and the currently supported model by T-NOVA.  

 

Figure 1 T-NOVA versus ETSI model 

As it can be observed T-NOVA adapted ETSI model by simplifying the VDU – VNFC 

mapping. In this view, the assumption that every VNFC (VNF component) equals to 

one and only one Virtual Deployment Unit (VDU - as well-known as Virtual Machine 

(VM) in the cloud terminology). This decision is justified by the current implemented 

VNFs from T-NOVA that are based on VMs and not on Containers (i.e. Docker). 

However, the model and the relevant mechanisms can be easily extended to support 

many VNFC to VDU models.  

The detailed structure of the VNFD is illustrated in the following (Figure 2). The figure 

presents the main classes used in the VNF descriptor information model. The classes 

are detailed furthermore in the following subsections.   
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Figure 2 VNF Descriptor model 
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2.1.1. VNFD Preamble 

The VNFD preamble provides the necessary information for the release, id, creation, 

provider etc. T-NOVA extents the information with Marketplace related information 

such as trading and billing.  

 

Listing 1 VNF Preamble 

VNFD Preamble 

field Description Example 

release 

Release Information, this field 

indicates the supported 

release scheme for the VNFD 

structure expected to be used 

from the parser 

“0.2” 

Id 

UUID of the VNFD file 

appended to the VNFD during 

the upload at the NFStore. 

Provides a unique 

identification the VNFD file 

624 

provider VNF Provider (FP) name   “PTL” 

provider_id 
ID of the FP as allocated by 

the T-NOVA Marketplace 

21 

name VNF Name “PXaaS” 

description 

VNF description "The function identifies, classifies and 

forwards network traffic according to 

policies" 

descriptor_version VNFD version 0.1 

version VNF version 0.2 

manifest_file_md5 
Calculated by the NFStore 

during upload 

fa8773350c4c236268f0bd7807c8a3b2 

type 
Signals the type of the VNF i.e. 

L2 or L3  

L2 

created_at Date VNFD was created 2015-12-18T21:15:47Z 

2.1.2. Virtual Deployment Unit (VDU)  

The VDU segment of the descriptor provides information about the required 

resources that will be utilised in order to instantiate the VNFC. The configuration of 
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this part may be extremely detailed and complex depending on the platform specific 

options that are provided by the developer. However, it should be noted that the 

more specific are the requirements stated here the less portable the VNF might be, 

depending on the NFVO policies and the SLA specifications. It is assumed that each 

VDU describes effectively the resources required for the virtualisation of one VNFC.  

The listing below (Erreur ! Source du renvoi introuvable.) presents the VDU section 

of the VNFD focusing on the IT resources and platform related information. Other 

fields may also be noted such as: i) Lifecycle events – where the drivers for interfacing 

with the VNF controller are defined as well as the appropriate commands allocated to 

each lifecycle event; ii) scaling – defining the thresholds for scaling in-out; and iii) 

VNFC related subsection where the networking and inter-VNFC Virtual Links are 

defined.   
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Listing 2 VDU Descriptor section 

vdu 

field Description Example 

Id 
VDU id  “vdu0” 

alias 
Alias used to refer to this vdu “tc_core_vm” 

vm_image 
Location of the vm image  "http://store.t-

nova.eu/NCSRDv/TC_ncsrd.v.022.qcow" 

vm_image_md5 VM image MD5 hash "a5e4533d63f71395bdc7debd0724f433" 

vm_image_format 

Image format. NFStore should store this (Allowed 

values: ami, ari, aki, vhd, vmdk, raw, qcow2, vdi, 

iso)  

“qcow2” 

resource_requirement {} Array of vdu resource requirements   

Hypervisor_parameters {} Hypervisor parameters array  

Version Hypervisor version 10002|12001|2.6.32-358.el6.x86_64 

Type Hypervisor type QEMU-KVM 

network_interface_bandwidth_unit Units used for the bandwidth Mbps 

network_interface_bandwidth Network interface bandwidth (10/100/1000) 100 
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check the QoS fields too 

network_interface_card_capabilities{} Array of network interface card capabilities  

SR-IOV True/False for SR-IOV usage True 

Mirroring 
True/False if mirroring on multiple ports is 

requested 

false  

Device_pass_through True/False if pass_through will be configures True 

Storage{} Storage resources array   

Size_unit Unit used to declare size GB 

Persistence True/false if persistence storage is used False 

Size Disk Size 32 

Vcpus Number of virtual CPU cores 1 

Vswitch_capabilities{} Vswitch capabilities array  

Version Vswitch version 2.0 

Type Vswitch type (e.g. OVS or Linux Bridge etc) Ovs 

Overlay_tunnel Tunneling used for the virtual networks GRE 

memory Memory size in GB 1 

Memory_parameters {} Memory parameters array   

Large_pages_required False/true for large page support False 
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Numa_allocation_policy NUMA allocation policy (VMA, Task/Process etc) None 

CPU_support_accelerator CPU acceleration support AES-NI 

data_processing_acceleration_library Acceleration library support DPDK 
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2.1.3. VNFC section 

This section of VNFD is related to the internal structure of the VNF and describes the 

connection points of the VDU (name id, type) and the virtual links where they are 

connected. The above information is illustrated in the provide VNFD listing below 

(Erreur ! Source du renvoi introuvable.).  

Listing 3 VNFC section of the VDU section 

VNFC  

id VNF component id Vdu0:vnfc0 

alias VNFC alias Proxy 

controller Check if this is the controlling VNFC True 

connection_points {} Array of connection points  

- vlink_ref 
Reference for the vlink where the connection 

point belongs 

vl0 

- id Connection point ID CPzc4j 

 

The above information is parsed and translated to HEAT template that the NFVI VIM 

based on Openstack (NOVA/Neutron Services) is able to parse and provide 

accordingly the required networks. 

2.1.4. Virtual Links (vlinks) section. 

This section is used to specify the internal to the VNF virtual links that are employed 

by the developer in order to create the internal networking topology among the 

components used to build the VNF. Although the Function Provider in T-NOVA is free 

to select his own internal structure to service the requirements of his VNF, T-NOVA 

additionally imposes a limited set of virtual segments mandatory for the proper 

deployment of the VNF in T-NOVA PoPs. Thus some of the vlinks that are specified 

here are actually connecting the VNFC to those mandatory networks. The virtual 

networks that should be defined by the FP are:  

- Management network, also used for the transfer of monitoring data 

- Data-in network (in case in/out is preferred to be done by different virtual 

interfaces) 

- Data-out network, the network used for the exit traffic from the VNF 

- Storage network, the network used for storage traffic (i.e. iscsi) 

The vlink section is illustrated in the following listing (Listing 4) 
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Listing 4 vlink section of VNFD 

Vlinks {} 

Id Virtual Link ID vl0 

Connectivity_type E-LINE/E-LAN/E-TREE  E-LINE 

Vdu_reference [] 

Reference the VDU ids (comma 

separated). Those VDU are 

connected via this vlink 

vdu0 

External_access 
Signal the access to public 

internet 

True 

Connection_points_reference Array of connection points  “CPv41w”,”CPv41w” 

Access Access to the internel false 

Dhcp DHCP allocated addresses False 

Qos {} QoS specific values (not used)  

Leaf_requirement 
Leaf rate (unlimited or a specific 

rate) 

unlimited 

Root_requirement 
Root rate (unlimited or a specific 

rate) 

unlimited 

 

For full review of the VNFD JSON format file, reader is welcomed to run through the 

Annexes included in this document. An annotated example is included.  
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3. T-NOVA VNFS 

In the following, the final description of the VNFs developed in T-NOVA is reported. 

3.1. Virtual Security Appliance 

3.1.1. Introduction 

A Security Appliance (SA) is a “device” designed to protect computer networks from 

unwanted traffic. This device can be active and block unwanted traffic. This is the case 

for instance of firewalls and content filters. A security Appliance can also be passive. 

Here, its role is simply detection and reporting. Intrusion Detection Systems are a 

good example. A virtual Security Appliance (vSA) is a SA that runs in a virtual 

environment.  

In the context of T-NOVA, we have suggested a virtual Security Appliance (vSA) 

composed of a firewall, an Intrusion Detection System (IDS) and a controller that links 

the activities of the firewall and the IDS. The vSA high level architecture was discussed 

in details in [D5.01].  

3.1.2. Architecture 

The idea behind the vSA is to let the IDS Analyze the traffic targeting the service and 

if some traffic looks suspicious, the controller takes a decision by, for instance, 

revising the rules in the firewall and block this traffic.  

The architecture of this appliance is depicted in Figure 3 and includes the following 

main components. 
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Figure 3. vSA high-level architecture 

3.1.3. Functional description 

The components of the architecture are the following: 

• Firewall: this component is in charge of filtering the traffic towards the 

service.  

• Intrusion Detection System (IDS): in order to improve attack detection, a 

combination of a packet filtering firewall and an intrusion detection system 

using both signatures and anomaly detection is considered. In fact, Anomaly 

detection IDS has the advantage over signature based IDS in detecting novel 

attacks for which signatures do not exist. Unfortunately, anomaly detection 

IDS suffer from high false-positive detection rate. It is expected that 

combining both arts of detection will improve detection and reduce the 

number of false alarms. In T-NOVA, the open source signature based IDS 

[SNORT] is being used and will be extended to support anomaly detection as 

well. The mode of operation of the IDS component was also discussed in 

deliverable [D5.01]; 

• FW Controller: this application looks into the IDS "alerts repository" and 

based on the related information, the rules of the firewall are revised. Figure 4  

depicts a part of the FW Controller code. 
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Figure 4. A sample of code of the FW Controller 

• Monitoring Agent: this is a script that reports to the monitoring server the 

status of the VNF through some metrics such as (Number of errors coming in/ 

going out of the wan/lan interface of pfsense, Number of bytes coming in/ 

going out of the wan/lan interface of pfsense, CPU usage of snort, Percent of 

the dropped packets, generate by snort, etc); 

• vSA controller: this is the application in charge of the vSA lifecycle. 

3.1.4. Interfaces 

The different components of the architecture interact in the following way,  

1. data packets are first of all filtered by the firewall (ingress interface) before 

being forwarded to the service (egress interface); 
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2. filtered data packets are sniffed by the IDS for further inspection (internal 

interface). The IDS will monitor and analyze all the services passing through 

the network; 

3. data packets go through a signature based procedure. This will help in 

detecting efficiently well know attacks such as port scan attacks and TCP SYN 

flood attacks; 

4. If an attack is detected at this stage, an alarm is generated and the firewall is 

instructed to revise its rules (internal interface); 

5. If no attack is detected, no further action is required. 

In addition to that, there are two extra interfaces: the first one is in charge of the vSA 

lifecycle management, and the second one monitors the status of the vSA and sends 

the related information to the monitoring server.  

3.1.5. Technologies 

As performance is one of the main issues when deploying software versions of 

security appliances, we started by providing a short evaluation of firewalls software 

that could run in virtual environments. The idea was not to go through all the 

relevant existing software but just the most popular ones that could be extended to 

fulfill the use case requirements. This evaluation was described in [D5.01]. It turns out 

that the open source firewalls that are richer and more complete are Vyatta VyOS and 

pfSense (please refer to [D5.01] for more details). In addition to that, VyOS seems to 

support REST APIs for configuration which are important in the integration with the 

rest of the T-NOVA framework. 

These two options were also evaluated from the performance point of view and the 

results are discussed in [D5.01]. Based on this assessment, the pfSense firewall 

seemed to be the best option to be used within the vSA.   

   

3.1.6. Dimensioning and Performance 

To study the performance of firewalls, appropriate metrics are needed. Although the 

activities in this area are very scarce, we described in D5.01, potential metrics that 

could be used. This includes, throughput, latency, jitter, and goodput.  

 Testbed setup  3.1.6.1. 

For simplicity reasons, we have used Iperf [IPERF] for generating IP traffic in our tests. 

In fact, other IP traffic generators such as [DITG], [Ostinato], and IPTraf [IPTR] could 

have also been utilized. Iperf mainly generates TCP and UDP traffic at different rates. 

Diverse loads (light, medium, heavy) and different packet sizes are also considered. 

For analyzing IP     traffic, we used “tcpdump” for capturing it and “tcptrace” to 

analyze it and generate statistics. The main difference with respect to the tests 

performed in [D5.01] is the fact that in this paper, the tests are performed on a 

cloud computing platform (not simply in VirtualBox) namely, Openstack. This 

also enables to test some networking functionalities of OpenStack as the latter does 
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not offer much freedom and flexibility on arbitrary traffic steering. Similarly, to 

[D5.01], the undertaken tests are based on three main scenarios, 

 

� Scenario one (No firewall): Here, we configure and check the connectivity 

between the Iperf client and the virtual proxy without a firewall in between. This 

enables us to test the capacity of the communication channel  

� Scenario two (TCP traffic with firewall and no rules): Here, we check whether the 

introduction of the vSA (in particular, the firewall in between) generates extra 

delay. We also test the capacity of the vSA in this context  

� Scenario three (with firewall and increasing number of rules): the objective of this 

scenario is to study the effect of introducing rules into the firewall of the vSA. To 

achieve this scenario, a script for the firewall is implemented in order to generate 

rules in an automatic way. The script is a shell script using specific API commands 

and generate blocking rules for random source IP addresses (excluding those 

used in the test setup) and the WAN interface. Here, the easyrule function of 

pfsense is extended. In this scenario, some tests are also performed using UDP 

instead of TCP 
 

 
 
 

Figure 5. vSA throughput  

 

 

When no firewall is used between the Iperf client and the virtual proxy, one can note 

that the throughput of the communication remains good (between 700 and 800 

Mbit/s) as long as the number of 60 parallel connections is not exceeded. When the 

vSA (in particular the firewall) is in between, the throughput varies between 700 and 

750 Mbit/s as long as the number of parallel connections does not exceed 20 
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connections. When the number of connections goes beyond the value 60, the 

throughput for the vSA without firewall rules decreases slowly to reach 580 Mbit/s 

when 100 connections are opened (Figure 5). This situation becomes worse when 

rules are configured on the firewall. Indeed, the throughput decreases to 480 Mbit/s 

when 3000 rules are configured and 100 connections are opened (Figure 5).   

 

These results were included in a paper that was recently submitted to the Wiley 

Security and Communication Networks Journal.  

 

3.2. Session Border Controller (SBC) 

3.2.1. Introduction 

A Session Border Controller (SBC) is typically a standalone device providing network 

interconnection and security services between two IP networks. It operates at the 

edge of these networks and is used whenever a multimedia session involves two 

different IP domains. It performs:  

• the session control on the “control” plane, adopting SIP as a signalling protocol; 

• several functions on the “media” plane (i.e: transcoding, transrating, NAT, etc), 

adopting Real time Transport Protocol (RTP) for the multimedia content delivery. 

The virtual SBC (vSBC) is the VNF implementing the SBC service in T-NOVA virtualized 

environment, and it is a prototyped version of the commercial product that Italtel is 

developing for the NFV market.  

General requirements for vSBC comprise both essential features such as IP to IP 

network interconnection, SIP signalling proxy, Media flow NAT, RTP media support, 

and also advanced requirements such as SIP signalling manipulation, real-time audio 

and/or video transcoding, Topology hiding, Security gateway, IPv4-IPv6 gateway, 

generation of metrics, … etc.. Since our goal in the T-NOVA project was to study the 

structure and the lifecycle of the vSBC by means of a meaningful prototype, we 

mainly focused on its essential features and on a subset of its advanced requirements 

(i.e: IPv4-IPv6 gateway; real-time audio and/or video transcoding for mobile and fixed 

network; metrics generation; ..… etc). 

3.2.2. Architecture 

The basic architecture of the virtualized SBC is depicted in Figure 6. 
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Figure 6 - Basic vSBC internal architecture 

The basic vSBC consists mainly of:  

• four Network Function: FE-LB, IBCF, BGF and O&M (described in detail below) 

• one Management interface (T-Ve-Vnfm). It transports the HTTP commands of 

T-NOVA lifecycle from the VNFM to the O&M component 

• one Monitoring Interface. The monitoring data produced by the internal 

VNFCs (i.e: IBCF and BGF), are collected by the O&M and are cyclically sent to 

the T-NOVA Monitoring Manager. See also Task 4.4 (Monitoring and 

Maintenance) for further details  

• one Signaling interface (based on SIP protocol)  

• one Media interface (based on RTP/RTCP protocols). 

3.2.3. Functional description 

1) Front End-Load Balancer (FE-LB): it is the front end of the vSBC and it balances the 

incoming SIP messages, forwarding them to the appropriate IBCF instance.  

2) Interconnection Border Control Function (IBCF): it implements the control function 

of the SBC. It analyzes the incoming SIP messages, and handles the 

communication between disparate SIP end-point applications. The IBCF extracts 

from incoming SIP messages the information about media streams associated to 

the SIP dialog, and instructs media plane components (BGF) to process them. It 

can also provide:  
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-  SIP message adaptation or modification, enabling in this way the 

interoperability between the interconnected domains 

-  topology hiding. The IBCF function hides all incoming topological information 

to the remote network 

-  monitoring data related to the SIP signalling (i.e: number of confirmed SIP 

sessions; … etc). The IBCF function can send this information to the T-NOVA 

Monitoring Agent 

-  other security features.  

3) Border Gateway Function (BGF): it processes media streams, applying transcoding 

and transrating algorithms when needed. The transcoding transforms the 

algorithm used for coding the media stream, while the transrating changes the 

sending rate of IP packets carrying media content. This feature is used whenever 

the endpoints of the media connection support different codecs, and it is an 

ancillary function for an SBC because, in common network deployments, only a 

limited subset of media streams processed by the SBC need to be transcoded. 

The BGF is controlled by the IBCF using the internal BG ctrl interface (see Figure 

6). The BGF component can also provide metrics to the T-NOVA Monitoring 

Agent related to the media flow, for example: number of incoming/outgoing  RTP 

packets or octects; latency (maximum and average value); jitter (maximum and 

average value); RTP frame loss; number of incoming/outgoing transcoding and 

transrating procedures;  ….. etc  

4) Operating and Maintenance (O&M): it supervises the operating and maintenance 

functions of the vSBC and interacts (via HTTP) with the VNF manager, using the T-

Ve-Vnfm interface depicted in Figure 6, for applying the T-NOVA lifecycle. 

3.2.4. Interfaces 

The most relevant internal and external interfaces depicted in Figure 6 are:  

1) Management Interface (T-Ve-Vnfm): it is used to transport the HTTP commands of 

the T-NOVA lifecycle (i.e: start, stop, destroy, scale in/out, etc). It’s supported by 

the O&M component; 

2) Monitoring Interface: the monitoring data produced by the internal VNFCs (i.e: 

IBCF and BGF) are collected by the O&M and cyclically sent to the T-NOVA 

Monitoring Manager; 

3) Signalling interface: it is based on SIP protocol. It carries also the SDP protocol 

containing the media information (i.e: Ip addresses/port, codecs, … etc) 

exchanged during the Offer/Answer negotiation; 

4) Media interface: it is based on RTP/RTCP protocol and it carries the audio/video 

packets of SIP sessions handled by the vSBC; 

5) BG ctrl: this internal interface instructs the Border Gateway Function (BGF) to 

perform media transcoding/transrating procedures. 
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3.2.5. Technologies 

The vSBC utilizes various technologies in order to offer a stable and high 

performance VNF, compliant to the high standards of legacy physical networks. 

The development of the vSBC is based on the use of:  

• Linux operating system  

• KVM hypervisor  

• C and Java language for its internal functions (i.e: IBCF, BGF, O&M, ….) 

• Collectd (it periodically collects generic performance statistics of the Virtual 

Machine, such as CPU and memory utilization) 

• FFMPEG libraries (for G.711 a/u, G.722 audio codecs) 

• FFMPEG + VISUALON libraries (for G722.2 audio codec) 

• INTEL-IPP libraries (for G.729 audio codec) 

• OPUS libraries (for OPUS audio codec) 

• FFMPEG + X.264 libraries (for H.264 video codec) 

• LIBVPX libraries (for VP8 video codec) 

These various technologies/libraries used generate a great variety of test case 

scenarios, as described in par. 10.5.1. 

3.2.6. Dimensioning and Performance 

The vSBC performances can be monitored using the metrics generated either by its 

internal components (i.e: IBCF or BGF) or by the Collectd daemon of each Virtual 

Machine. See also [D4.41] for further information. For example: 

 

 

1. monitoring data related to the control plane: total number of SIP 

sessions/transactions 

2. monitoring data related to the media plane: incoming/outgoing RTP data 

throughput, RTP frame loss, latency, inter-arrival jitter, number of 

transcoding/transrating procedures, … etc 

3. base monitoring data: percentage of memory consumption, percentage of CPU 

utilization, … etc  

These monitoring data are strongly affected by:  

• packet sizes; 

• kinds of call (i.e: audio or video calls); 

• audio/video codecs (i.e: H.264, VP8, …); 

• transport protocols (i.e: UDP or TCP).  

The vSBC performance are described in par. 10.6. The IBCF and BGF components 

provide market sensitive performances; for example the IBCF can support up to 1000 

simultaneous SIP sessions, while the BGF up to 20 simultaneous 
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transcoding/transrating operations. In the commercial product each component size 

will be associated to a license fee.  

3.2.7. vSBC testing  

These kind of tests have been carried out:  

• Creation of a VNF Descriptor (VNFD) for the vSBC using the Marketplace GUI 

• Creation of a HEAT template (Hot) for the vSBC 

• Instantiation of the vSBC 

• Support of the T-NOVA lifecycle, using a HTTP REST-based interface and a basic 

access authentication. These events were tested: 

-  Start (via http POST command) 

-  Stop (via http PUT command) 1 

-  Destroy (via http DELETE command)  

-  Scale-in (via http PUT command) 

-  Scale-out (via http PUT command). 

• Generation of basic audio sessions (without transcoding), using the most 

common audio codecs (i.e: G711, G729, …); 

• Generation of basic video sessions (without transcoding), using the most 

common video codecs (i.e: H248, VP8, …); 

• Generation of audio sessions with transcoding (for example G711 <-> G729); 

• Generation of video sessions with transcoding (for example H248 <-> VP8). The 

requested transcoding may be mono-directional (i.e: audio/video stream 

distribution) or bidirectional (i.e.: videoconferencing applications). The 

encoding/decoding procedures must be handled in a real-time way (at least 30 

fps) and with a fixed frame-rate during the whole video session. 

• Scale-in scenario; 

• Scale-out scenario. 

Some general guidelines to describe how to test the vSBC are described in par. 6.1. 

The methodology used to execute the Performance testing and to evaluate the 

obtained measurements by means of load curves are described in par. 10.5 and in 

par. 10.6. 

These vSBC performances may be further improved in a commercial product by 

means of : 

� the usage of HW accelerators (GPU). In fact the pure software implementation, in 

some scenarios such as the video transcoding, may be complemented by 

acceleration technologies able to guarantee a real time transcoding and a fixed 

                                                 

1  Note:  this lifecycle event will be handled in an immediate or graceful mode 

according to a specific vSBC internal data.  
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video-rate during the whole video session. Graphic Processing Units (GPU’s) 

represent a very appealing solution owing to their high computation performance 

(one or two order of magnitude faster than a general purpose CPU) and relatively 

low cost. Different types of commercial GPU board, hosted in a PCIe bay, are 

already available for this scope (i.e: Nvidia GPU). Further information about GPUs 

and the gain offered by them can be found in in par. Erreur ! Source du renvoi 

introuvable. and in par. 3.3 

� the implementation of a new front-end function based on DPDK acceleration 

technology (available in Intel x86 architectures), whose goal is to provide high 

speed in processing the addressing information in the header of the IP packet, 

leaving untouched the payload. This new function is instructed by the IBCF 

function, acting as an internal controller. Using a new internal interface it can:  

-  provide the packet forwarding towards the BGF function (in case of 

transcoding)  

-  apply a local Network Address Translation (NAT)/port translation. 

3.3. Video Transcoding Unit 

3.3.1. Introduction 

The vTU provides the transcoding function for the benefit of many other VNFs for 

creating enhanced services. 

3.3.2. Architecture 

 Functional description 3.3.2.1. 

The core task of the Video Transcoding Unit is to convert video streams from one 

video format to another. Depending on the applications, the source video stream 

could originate from a file within a storage facility, as well as coming in from of a 

packetized network stream from another VNF. Moreover, the requested transcoding 

could be mono-directional, as in applications like video stream distribution, or bi-

directional, like in videoconferencing applications.  
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Figure 7. Functional description of the vTU 

Having this kind of applications in mind, it is clear that the most convenient overall 

architecture for this Unit is a modular architecture, in which the necessary encoding 

and decoding functionalities are deployed as plug-in within a “container” Unit taking 

care for all the communication, synchronization and interfacing aspects. In order to 

find a convenient approach for the development of the vTU architecture, an 

investigation has been carried out, about the state of the art of any available software 

framework that could be usefully employed as starting point for this architecture. This 

investigation has identified avconv, the open-source audio-video library under Linux 

environments (https://libav.org/avconv.html), as the best choice for the basic 

platform for the vTU, as it is open-source, it is modular and customizable, and it 

contains most of the encoding/decoding plug-ins that this VNF could need. 

In order to define the functionalities that best fit to the needs of the target 

applications for the vTU, a survey has been carried out, searching for the most 

diffused video formats that should therefore be present as encoding/decoding 

facilities in the vTU. This analysis has shown that the following video formats should 

be primarily considered:  

• ITU-T H.264 (aka AVC)  

• Google’s VP8  

and the following ones would be also highly desirable, especially in the future:  

• ITU-T H.265 (aka HEVC)  

• Google’s VP9.  

Once the video formats of interest are defined, the whole panorama of the available 

codecs have been considered and evaluated, in order to identify tools which could be 

successfully employed in the Unit and those which could be possibly used as 

development basis. A synthesis of the available panorama is shown in the following 

table:  

 

The analysis evidenced that the choice of avconv as the starting development 

framework is most appropriate in terms of already-available codecs.  
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From the point of view of performance, however, avconv could be unable to fulfil the 

needs of the vTU, as all the endoders/decoders provided therein do not make any 

use of HW acceleration facilities. Performance, in terms of encoding/decoding speed, 

is actually of crucial importance in the vTU, as in all online applications, a fixed video 

frame-rate must be guaranteed during the whole video session.  

For this reason, a performance analysis of all available codecs has been carried out. 

Several of them, in fact, are able to exploit hardware acceleration facilities, like GPU’s 

or MMX/SSEx instructions, whenever they are available. The tests have been carried 

out considering a typical scenario for the underlying hardware infrastructure: a Xeon 

server with 8 cores (2 x 4-cores) Xeon E5-2620v3, equipped with GPU facility (1 

NVIDIA GeForce GTX 980). Several video test sequences have been considered, at the 

most common resolutions. The obtained results, in terms of achieved 

encoded/decoded frames per second, are summarized in the following tables, for PAL 

(576x720 pixel), 720p (1280x720), HD (1920x1080) and 4k (3840x2160) resolutions: 

 

 

Based on the obtained results, the following observations can be drawn:  

• As expected, encoding is much more time-consuming than decoding. On 

average, decoding is approximately 20 times faster than encoding, for the 

same format. The consequence is that encoders represent the bottleneck to 

performance in a vTU. For what decoding concerns, the tested tools have 
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performed faster than 30 fps in all situations, at least for H264 and VP8 

standards, which are those currently use; 

• Hardware-accelerated tools are not only providing much better performance 

than CPU-based ones, as visible in the tables for all resolutions, but is 

necessary in some cases, e.g. for 4k resolutions, where standard algorithms 

are not able to reach 30 fps encoding speed and therefore could not support 

a real-time transcoding session; 

• As highlighted in the first table, different hardware accelerators can be 

successfully exploited to speed-up the encoding process – not only GPU’s. In 

particular, X264 performs significantly better using Assembly-level 

optimizations which exploit SIMD instructions (MMX/SSE), than delegating 

computation to GPU cores. 

This is due to the fact that encoding/decoding algorithms cannot be massively 

parallelized, for two main reasons: a) there are strong sequential correlations and 

many spatial/temporal dependencies within the computation, and b) the limited 

extent of parallelism needed in all situations where data parallelism could be applied 

(e.g. computing DCT/IDCT for a macroblock). Nevertheless, the huge computing 

power of modern GPU’s makes it reasonable to focus the research effort towards the 

development of GPU-accelerated encoding algorithms, able to efficiently exploit the 

potential of all available cores. Therefore, as shown in the table above, the first goal 

on which we focus is the development of a GPU-accelerated encoder for the VP8 

standard video format. 

3.3.3. Interfaces 

As described in Section 2.4.2.1, the Virtual Transcoding Unit (vTU) is a VNF that, 

during its normal operation, receives an input video stream, transcodes it and 

generates an output video stream in the new format. For each transcoding job, the 

vTU also needs to receive a proper job description, in which all necessary information 

is provided, like, for instance, information on the video format of the input stream 

and on the desired video format for the output stream, the identification and 

definition of the input/output data channels (e.g. IP addresses and ports, in case of 

network streams, or file ID within a storage facility, for file-generated streams). 

For these reasons, the vTU needs, at its inner level, to communicate through three 

interfaces, as Figure 8 shows: 

• Input port, receiving the video stream to transcode; 

• Output port, producing the transcoded video stream; 

• Control port, receiving the job descriptor and, implicitly, the command to 

start the job. 
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Figure 8. vTU low level interfaces 

Through the Control interface, the vTU receives the job descriptor, which contains all 

necessary information to start the requested transcoding task. The starting command 

is implicit in the reception of the job description message: when such a message is 

received on the Control port, the vTU starts listening at the Input port and begins the 

transcoding task, according to the received description, as soon as the first stream 

packets are received. 

The format of the job description message is XML based. The general structure of the 

message is shown in Figure 9. This format allows to define all necessary parameters, 

such as the desired input and output video formats and the I/O stream channels 

(files, in this case, but they could as well identify network channels sending/receiving 

RTP packets).  

 

Figure 9. XML structure of the vTU job description message 

<vTU>
<in>

<local>
<stream> test.y4m </stream>

</local>
<rstp>

<ip/>
<port/>
<stream/>
<timeout/>

</rstp>
<codec>

<vcodec/>
<acodec/>

</codec>
</in>
<out>

<local>
<overwrite> y</overwrite>
<stream> out_test.h264 </stream>

</local>
<rstp>

<ip/>
<port/>
<stream/>
<timeout/>

</rstp>
<codec>

<vcodec> h264 </vcodec>
<acodec/>

</codec>
</out>

</vTU>
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3.3.4. Technologies 

In the virtualization context, the problem of virtualizing a GPU is now well-known, 

and can be stated as follows: a guest Virtual Machine (VM), running on a hardware 

platform provided with GPU-based accelerators, must be able to concurrently and 

independently access the GPU’s, without incurring in security issues 

[Walters],[Maurice]. Many techniques to achieve GPU virtualization have been 

presented. However, all the proposed methods can be divided in two main 

categories, which are usually referred to as API remoting [Walters] (also known as 

split driver model or driver paravirtualization) and PCI pass-through [Walters] (also 

known as direct device assignment [Maurice]), respectively. In the vTU, the 

passthrough approach has been adopted. For the sake of clarity, a brief review of this 

technology is shortly given in the next paragraph.  

Pass-through techniques are based on the pass-through mode made available by the 

PCI-Express channel [Walters], [Maurice]. To perform PCI pass-through, an 

Input/Output Memory Management Unit (IOMMU) is used. The IOMMU acts like a 

traditional Memory Management Unit, i.e. it maps the I/O address space into the CPU 

virtual memory space, so enabling the access of the CPU to peripheral devices 

through Direct Memory Access channels. The IOMMU is a hardware device which 

provides, besides I/O address translations, also device isolation functionalities, thus 

guaranteeing secure access to the external devices [Walters]. Currently, two IOMMU 

implementations exist, one by Intel (VT-d) and one by AMD (AMD-Vi). To adopt the 

pass-through approach, this technology must also be supported by the adopted 

hypervisor. Nonetheless, Xenserver, open source Xen, VMWare ESXi, KVM and also 

the Linux containers can support pass-through, thus allowing VMs accessing external 

devices such as accelerators in a secure way [Walter]. The performance that can be 

achieved by the pass-through approach are usually higher than the one offered by 

API-remoting [Walter], [Maurice]. Also, the pass-through method gives immediate 

access to the latest GPU drivers and development tools [Walter]. A comparison 

between the performance achievable using different hypervisors (including also Linux 

Containers) is given in [Walter], where it is shown that pass-through virtualization of 

GPU’s can be achieved at low overhead, with the performance of KVM and of Linux 

containers very closed to the one achievable without virtualization. One major 

drawback of pass-through is that it can only assign the entire physical GPU 

accelerator to one single VM. Thus, the only way to share the GPU is to assign it to 

the different VMs one after the other, in a sort of “time sharing” approach [Walters]. 

This limitation can be overcome by a technique also known as Direct Device 

Assignment with SR-IOV (Single Root I/O Virtualization) [Walters]. A single SR-IOV 

capable device can expose itself as multiple, independent devices, thus allowing 

concurrent hardware multiplexing of the physical resources. This way, the hypervisor 

can assign an isolated portion of the physical device to a VM; thus, the physical GPU 

resources can be concurrently shared among different tenants. However, to the best 

of the author’s knowledge, the only GPU enabled to this functionality belongs to the 

recently launched NVIDIA Grid family [Maurice], [Walters]; also, the only hypervisors 

which can currently support this type of hardware virtualization are VMWare Sphere 

and Citrix XenServer 6.2. However, since also KVM can now support SR-IOV, there is a 
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path towards the use of GPU hardware virtualization also with this hypervisor 

[Walters]. 

3.3.5. Dimensioning and Performance 

In order to obtain a realistic assessment of the performance of the vTU, as if it was 

embedded as a VNF in the T-NOVA framework, it is necessary to perform the tests on 

a virtualized platform resembling as much as possible the T-NOVA infrastructure. 

The performance results presented in the table of Section 3.3.2.1. were obtained by 

the vTU running natively on physical computation resources. For a VNF like the vTU, 

however, the actual performance achievable in the T-NOVA environment could be 

quite different from those obtained running on the physical infrastructure. This is 

mainly due to the following reasons: 

• CPU virtualization overheads (vCPU’s switching over physical CPU’s, at the 

hypervisor level); 

• GPU virtualization strategies (e.g. multiple vGPU’s associated to the same 

physical GPU); 

• vCPU-vGPU communication overheads (switching overheads in managing 

time-sharing policies on the PCI-Express bus). 

These reasons let one expect a possible performance loss, when running on a 

virtualized environment, especially in case of vTU running tasks which exploit the GPU 

resources. 

For this reason, in order to obtain a realistic evaluation of the encoding/decoding 

computation speeds in the actual T-NOVA environment, the performance tests 

presented in Section 3.3.2.1. have been carried out on a virtualized environment. In 

order to get a significant comparison, the VM running the vTU has been equipped 

with the same amount of CPU and GPU cores as in the native tests. The following 

table presents the obtained results, in terms of computation speed (frames/sec), 

compared to the speed obtained on physical resources, for the same task. 
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As the table shows, the obtained results show that, for almost all the considered 

tasks, there is no significant performance loss with respect to the same task running 

on physical resources, even in the tasks running mainly on GPU  (like H264 encoding 

using NVENC). This encouraging result is mainly due to the high efficiency of the 

adopted GPU virtualization strategy – GPU pass-through – which assigns a virtual 

GPU exclusively to a physical GPU, thus allowing to bypass any overhead in the GPU-

CPU communication. The cost for this efficiency, however, is paid in terms of difficulty 

to share a physical GPU resource among multiple VMs. 

3.3.6. Future Work 

Two main steps are foreseen for the vTU. A first activity will focus on scaling 

mechanism for this VNF. Also, the vTU will be combined with other VNFs developed 

within T-NOVA in order to create new service with a wider scope. 
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3.4. Traffic Classifier 

3.4.1. Introduction 

The Traffic Classifier (TC) VNF used comprises of two Virtual Network Function 

Components (VNFCs), namely the Traffic Inspection engine and Classification and 

Forwarding function. The two VNFCs are implemented in respective VMs. The 

proposed Traffic Classification solution is based upon a Deep Packet Inspection (DPI) 

approach, which is used to analyze a small number of initial packets from a flow in 

order to identify the flow type. After the flow identification step no further packets 

are inspected. The Traffic Classifier follows the Packet Based per Flow State (PBFS) in 

order to track the respective flows. This method uses a table to track each session 

based on the 5-tuples (source address, destination address, source port, destination 

port, and the transport protocol) that is maintained for each flow.  

3.4.2. Architecture 

Both VNFCs can run independently from one another, but in order for the VNF to 

have the expected behaviour and outcome, the 2 VNFCs are required to operate in a 

parallel manner.  

 

Figure 10. Virtual Traffic Classifier VNF internal VNFC topology 

Furthermore, in order to achieve the parallel processing of the 2 VNFCs it is required 

for the traffic to be mirrored towards the 2 VNFCs, so the 2 VNFCs receive identical 

traffic. The 2 VNFCs are inter-connected internally with an internal virtual link, which 

transfers the information extracted by the Traffic Inspection VNFC, and transmits it to 

the Traffic Forwarding VNFC in order to apply the pre-defined rules.  

3.4.3. Functional Description 

The Traffic Inspection VNFC is the most processing intense component of the VNF. It 

implements the filtering and packet matching algorithms in order to support the 

enhanced traffic forwarding capability of the VNF. The component supports a flow 
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table (exploiting hashing algorithms for fast indexing of flows) and an inspection 

engine for traffic classification.  

The Traffic Forwarding VNFC component is responsible for routing and packet 

forwarding. It accepts incoming network traffic, consults the Flow Table for 

classification information for each incoming flow and then applies pre-defined 

policies (i.e. TOS/DSCP (Type of Service/Differentiated Services Code Point) marking 

for prioritizing multimedia traffic) on the forwarded traffic. It is assumed that the 

traffic is forwarded using the default policy until it is identified and new policies are 

enforced. The expected response delay is considered to be negligible, as only a small 

number of packets are required to achieve the identification. In a scenario where the 

VNFCs are not deployed on the same compute node, traffic mirroring may introduce 

additional overhead. 

3.4.4. Interfaces 

The virtual Traffic classifier VNF is based upon the T-NOVA network architecture but 

from the advised set of network interfaces (management, datapath, monitoring and 

storage) uses the management, datapath and the monitoring. The storage interface is 

not particularly essential to the vTC, as all the computational and packet processing 

utilize mostly CPU and memory resources. The VNF requires intensive CPU tasks and 

a large number in memory I/Os for the traffic analysis, manipulation and forwarding. 

The storage interface would add an unnecessary overhead to the already intensive 

process, and it was decided to be excluded in favour of an optimal performance.  

3.4.5. Technologies 

The vTC utilizes various technologies in order to offer a stable and high performance 

VNF compliant to the high standards of legacy physical network functions. The 

implementation for the traffic inspection used for these experiments is based upon 

the open source nDPI library [REFnDPI]. The packet capturing mechanism is 

implemented using various technologies in order to investigate the trade-off 

between performance and modularity. The various packet handling/forwarding 

technologies are: 

• PF_RING: PF_RING is a set of library drivers and kernel modules, which enable 

high-throughput, packet capture and sampling. For the needs of the vTC the 

PF_RING kernel module library is used, which is polling the packets through 

the LINUX NAPI. The packets are copied from the kernel to the PF_RING 

buffer and then they are analyzed using the nDPI library. 

• Docker: Docker is a platform using container virtualization technology to run 

applications. In order to investigate the pros and cons of the container 

technology, the vTC is developed also as an independent container 

application. The forwarding and the inspecting of the traffic are also using 

PF_RING and nDPI as technologies, but they are modified to fit and function 

in a container environment. 

• DPDK: DPDK comprises of a set of libraries that support efficient 

implementations of network functions through access to the system’s network 

interface card (NIC). DPDK offers to network function developers a set of tools 
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to build high speed data plane applications. DPDK operates in polling mode 

for packet processing, instead of the default interrupt mode. The polling 

mode operation adopts the busy-wait technique, continuously checking for 

state changes in the network interface and libraries for packet manipulation 

across different cores. A novel DPDK-enabled vTC has been implemented in 

this test case in order to optimize the packet-handling and processing for the 

inspected and forwarded traffic, by bypassing the kernel space. The analyzing 

and forwarding functions are performed entirely on user-space which 

enhances the vTC performance. 

The various technologies used generate a great variety of test case scenarios and 

exhibit a rich VNF test case. The PF_RING and Docker cases have the capability of 

keeping the NIC driver, and so the VNFC maintains connectivity with the 

OpenStack network connected. On the contrary, in the case of DPDK the NIC is 

unloaded of the Linux-kernel driver and loaded the DPDK one. However, the 

DPDK driver causes the VNFC to lose network connectivity with the network 

attached, the compensation is the significantly higher performance as shown in 

the next section. 

3.4.6. Dimensioning and Performance 

Results include comparison of the traffic inspection and forwarding performance of 

the vTC using PF_RING, Docker and DPDK. 

 

 

Figure 11. vTC Performance comparison between DPDK, PF_RING and Docker 

As it can be seen from the evaluation results among the various approaches used for 

the vTC, the DPDK approach performs significantly better from the other 2 options. 

Especially in the case it is combined with SR-IOV connectivity it can achieve nearly 

8Gbps/s of throughput. However, the DPDK version as already mentioned has an 

impact on connectivity with the OpenStack network, as the kernel stack is removed 
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from the NIC. Although the PF_RING and Docker versions maintain connectivity with 

the network, their performance is clearly degraded compared to DPDK’s. 

The Dimensioning of the vTC due to its architecture is based on the infrastructure 

aspect. The vTC performance is dependent on whether there is SR-IOV available on 

the running infrastructure. 

3.4.7. Deployment Details 

The vTC was developed in order to be deployed and run in an OpenStack 

environment, the OS of the virtualized environment was Ubuntu 14.04 LTS. The 

selection of the OS version assures the maintenance and continuous development of 

the VNF. In order to conform to the T-NOVA framework a Rundeck job-oriented 

service functionality was implemented. 

The vTC lifecycle is performed via the Rundeck framework in order to facilitate the 

seamless functionality of the VNF. In Rundeck, we have created different Jobs to 

describe the different lifecycle events. Each event has a description and is part of a 

Workflow.  

An example workflow:  

If a step fails: Stop at the failed step. 
Strategy: Step-oriented 
We add a step of type “Command”. The command differ s according to the 
operation we want to implement. The operations we i mplemented are 
described below: 
* 1. VM Configuration – Command: “~/rundeck_jobs/bu ild.sh” 
* 2. Start Service – Command: “~/rundeck_jobs/start .sh” 
* 3. Stop Service – Command: “~/rundeck_jobs/stop.s h” 
 

In terms of the data traffic required to test the vTC, several changes and 

modifications had to be made in order to fit the desired traffic mirroring scenario it 

was tested. Detailed information about this subject is further discussed in the section 

below. 

 Traffic Mirroring – Normal Networking 3.4.7.1. 

In order to support direct traffic forwarding, meaning the virtual network interface of 

one Virtual Network Function Component (VNFC) be directly connected to another 

VNFC’s virtual network interface, a modification on Neutron’s OVS needs to be 

applied. Each virtual network interface of a VNFC is reflected upon one TAP-virtual 

network kernel device, a virtual port on Neutron’s OVS, and a virtual bridge 

connecting them. This way, packets travel from the VNFC to Neutron’s OVS through 

the Linux kernel. The virtual kernel bridges of the two VNFCs need to be shut down 

and removed, and then an OVSDB rule needs to be applied at the Neutron OVS, 

applying an all-forwarding policy between the OVS ports of the corresponding 

VNFCs. The OpenStack network detailed topology is shown in Fig. 15. 
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Figure 12. Example overview of the vTC OpenStack network topology. 

First Option unbind interfaces from the Openstack networking and connect them 

directly via OVS  

 * Remove from br-ex, the qvo virtual interfaces 
 * Remove from the qbr linux bridge, the qvb and th e tap virtual 
interfaces 
 * Add the tap-interfaces on the OVS directly and a dd a flow 
forwarding the traffic to them. 

This option has been tested and as shown in the results section for the cases of 

normal network setup.  

 Traffic Mirroring – SR-IOV 3.4.7.2. 

Single Root I/O virtualization (SR-IOV) in networking is a very useful and strong 

feature for virtualized network deployments. SRIOV is a specification that allows a PCI 

device, for example a NIC or a Graphic Card, to share access to its resources among 

various PCI hardware functions: 

Physical Function (PF) (meaning the real physical device), from it a number of one or 

more Virtual Functions (VF) are generated. Supposedly we have one NIC and we want 

to share its resources among various Virtual Machines, or in terms of NFV various 

VNFCs of a VNF. We can split the PF into numerous VFs and distribute each one to a 

different VM. The routing and forwarding of the packets is done through L2 routing 

where the packets are forwarded to the matching MAC VF. In order to perform our 

mirroring and send all traffic both ways we need to change the MAC address both on 

the VM and on the VF and disable the spoof check. 
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3.4.8. Future Steps 

Future steps include the implementation of automated way to apply the direct 

connection of the VNFCs. This step will be included in a HEAT deployment  

• Benchmarking all options and comparing them.  

Other options to be tested, is to add a TCP/IP stack on the DPDK and maintain the 

connectivity of the VNFCs. These alternatives include: 

• A kernel with tcp/ip stack on the userspace DPDK rump kernel –

https://github.com/rumpkernel/drv-netif-dpdk 

• DPDK FreeBSD TCP/IP Stack porting https://github.com/opendp/dpdk-odp 

3.5. Virtual CDN / Virtual Home Gateway (VIO) 

3.5.1. vHG 

Another VNF that T-NOVA aims to produce is currently known in the research and 

the industry world under various names, notably Virtual Home Gateway (VHG), Virtual 

Residential Gateway, Virtual Set-Top Box or Virtual Customer Premise Equipment. 

We will see how the initial need has been expanded to cover some aspects of the 

Content Delivery Network virtualization as well. 

The following sections aim to provide a brief description of the proposed virtual 

function along with the requirements, the architecture design, functional description, 

and technology. 

In T-NOVA, we will focus on the bottleneck points usually found in resource 

constrained physical gateway like media delivery, streaming and caching, media 

adaptation and context-awareness. In fact, some previous research proposals like 

[Nafaa2008] or [Chellouche2012] include the Home Gateways to assist the content 

distribution. By using a Peer-to-Peer approach, the idea in those approaches is to 

offload the main networks and provide an “Assisted Content Delivery” by using a mix 

of Server Delivery and Peer delivery. 

When virtualizing the Home Gateway, this approach can lead in some extent to the 

creation of a Virtual CDN or vCDN as a VNF. 

Particular attention will be given to real world deployment issues, like coexistence 

with legacy hardware and infrastructure, compatibility with existing user premise 

equipment and security aspects. 

3.5.2.  vCDN 

Content delivery networks (CDN) have been created to cope with the challenges 

encountered by of Content Providers to delivery huge amounts of static data through 
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best effort internet. Like traditional CDN operators and recently even Content 

Providers, ISP are interested in building these solution as they bring an interesting 

growth driver. 

 

Figure 13 The three main components of a CDN System   

In a traditional deployment show in Figure 13, CDN services are an aggregation of 

network function allowing the ingestion of the content, the provisioning in cache and 

finally the delivery to End Uses.  

More precisely, ingestors carry out transcoding operation allowing to decrease the 

size of the video as well as re-segmentation to optimize diffusion over IP. 

Provisioning modules deploy ingested content in caches, taking into account the 

local popularity of content. Finally the delivery modules perform End User – Server 

assignation and content delivery. 

Also described by ETSI as a virtualization use case, the vCDN complements our work 

on the VHG. Indeed, the VHG’s routing function is used in a vCDN use case to make 

the user-server assignation easier and more fine-grained.  

 High Level 3.5.2.1. 

Our proposal is developed around 4 main modules: 

Virtual Home Gateway: is a transit Network Function inspecting high-level HTTP 

traffic that can influence the IP routing decisions, based on the presence of the 

content in a nearby POP. Its configuration is provided by the caching orchestrator 

which has a complete vision on the system. 

Content Streamers: we integrated a distributed object storage engine that provides 

resiliency, horizontal scalability and geographical redundancy amongst POPs. 

Content Ingestors: are scalable workers that perform software transcoding to H264 

and H265 video compression standards as well as re-segmentation of videos using 

both DASH and HLS technology to provide adaptive HTTP Streaming capability.  

Ingestors receive content from the CP Servers (push model) or can be automatically 

provisioned from the most popular contents (pull model). Ingestor have been 

demonstrated being able to rely on hardware accelerators (Virtual Transcoding Units) 

for computer intensive tasks when available. 

Caching Orchestrator: is the module is charge of controlling the ingestion (by 

scheduling the job of the workers), the provisionning (by selecting which content is 
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cached in which streamer) and the delivery (by deploying configuration on the VHG) 

of content 

 

 

Figure 14  HIgh level architecture diagram for transcode/stream VNF 

Figure 14 shows a Virtual Home Gateway which acts as an HTTP proxy, notifying the 

content fronted when a video is consumed by the end user. Having this information 

allows the content frontend to trigger the download from the content provider’s 

network to the VNF. Once the video is entered on the VNF, it is transcoded and 

moved to a streamers. 

Once the video resource is available to the end user, the gateway routes the user’s 

request to the streamer. As the streamer is located within the ISP Network near the 

end user, hops and latency are limited, which increases QoE. 

3.5.3. Sequence diagrams 

The sequence diagram presented in Figure 15 is associated with the level architecture 

presented in the previous section. 
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Figure 15 Sequence diagram for the transcode/stream VNF example. 

 

3.5.4. Technology 

 Netty: a Java Non-Blocking Network Framework 3.5.4.1. 

Netty is an asynchronous event-driven network application framework [Netty] for rapid 

development of maintainable high performance protocol servers and clients. 

One of the most striking features of Netty is that it can access resources in a non-

blocking approach, meaning that some data is available as soon as it gets in the 

program. This avoids wasting system resources while waiting for the content to 

become available; instead a callback is triggered whenever data is available. This also 

saves system resources by having only 1 thread for resource monitoring. 

Netty is one of the building blocks used to implement the vHG network capabilities. 

 Restful architecture 3.5.4.2. 

End user applications, Gateways and Front-end need to interact though secured 

connection on the internet. 

A Java Restful architecture can be implemented for those reasons: 

• Architecture is stateless, which means that the servers that expose their 

resources do not need to store any session for the client. This greatly eases 

scaling up, since no real time session replication needs to be performed, 

therefore a new server will be deployed for load balancing purposes. 

• Architecture is standard and well supported by the industry, allowing us to 

leverage tools for service discovery and reconfiguration. 

• Authentication methods are well documented and widespread among web 

browsers and servers.  

Regarding the technical details, we will consider the standards of the Java SDK, by 

using JAX-RS and its reference implementation, Jersey.  This framework can be 
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integrated on any servlet container, JEE container or lightweight NIO HTTP server like 

Grizzly which is used on the vHG. 

 Transcoding workers 3.5.4.3. 

One of the key features of cloud computing is its ability to produce on-demand 

compute power at a small cost. To take advantage of this feature, we plan to 

implement the most computing intensive tasks as a network of workers using a 

Python framework called Celery. Celery is an asynchronous task queue/job queue 

based on distributed message passing. 

Every Celery worker is a stand-alone application being able to perform one or more 

tasks in a parallelized manner. To achieve this goal, a general transcoding workflow 

has been designed to be applied on a remote video file.  

Having a network of workers allows us to scale-up or scale-down the overall compute 

power simply by turning a virtual machine up or down. Once the worker is up, it 

connects to the message broker, and picks up the first task available on the queue. 

Frequent feedback messages are pushed to the message broker, allowing us to 

present the results on the gateway as soon as they are available on the storage.  

If the compute capacity is above the required level, active workers are 

decommissioned, leaving the pool as their host virtual machine turns off. 

Note that workers only carry out software transcoding, leaving room for optimization 

through the use of hardware. The virtual Transcoding Unit (vTU) is an excellent drop-

in replacement for the transcoding vNF. However, as hardware transcoding may not 

be available everywhere, we keep the slow software transcoding as a fall-back option. 

 Scalable Storage 3.5.4.4. 

We need to have caches able to store the massive amount of data needed by a CDN. 

These caches can be spread among several datacentres and must be tolerant to 

failure. They also need to scale, and must support adding or removing storage node 

as defined by the scaling policy. 

To implement that, we decided to deploy [Swiftstack] which proposes to create a 

cluster of storage node to support Scalable Object storage with High availability, 

Partition Tolerance and eventual consistency. 

Storage Nodes are accessed by external users using a Swift Proxy that handles the 

read and write operations. Swift has abstractions where nodes are stored inside zones 

and regions.  We detail the mapping between swift abstraction and T-NOVA in 

Erreur ! Source du renvoi introuvable.  

 

 

Swift T-NOVA Meaning 

Region NFVI-POP Parts of the cluster that 

are physically separated 
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Zone Compute Node Zones to be configured to 

isolate failure 

Node VNFC Server that run one or 

more swift process 

Table 3-A Mapping between Swift and T-NOVA abstraction 

 

Figure 16 swift stack Region/Zone/Node. 

We use swift abstraction to provide a reliable storage solution. For example, our 

vCDN spans over multiple datacentres to provide good connectivity. Each pop is 

associated to a region. With the same approach, we can have several compute nodes 

hosting our VNFC. For reliability reasons, we don’t want all our nodes hosted on the 

same compute node, so that if the compute node goes down, part of the service will 

be still available. Finally, each VNFC hosts a swift Node. 

Even if swift is an object storage, it allows users to access and push data over a 

standard HTTP API. It means that the streamer vNF feature can be implemented using 

swift as well. 

 Using Docker to provide safe, reliable and powerful application 3.5.4.5. 

deployment 

We decided to use [Docker] to support the implementation. Docker is an OS 

Virtualization technology that runs segregated applications and libraries on a 

common Linux kernel. 

Docker can be run on major Linux Distribution like Debian or Fedora, but it can also 

run on smaller, custom distribution that provide an execution environment for 

container. CoreOS produces, maintains and utilizes open source software for Linux 
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containers and distributed systems. Projects are designed to be composable and 

complementing each other in order to run container-ready infrastructure.2 

The applications we build are based on vendor technologies (for example, the Java 

Docker image maintained by Oracle) that are kept updated on a regular basis. We 

implemented continuous deployment, meaning that whenever an upstream 

dependency gets updated, we re-package our software with the new image and run 

test to discover potential regression. 

Our approach is safer. The traditional installation of a package on an OS since every 

container is walled from the other ones and the OS has the only responsibility of 

maintaining the container execution environment. Vendors usually provide a shorter 

delay to update their Docker images that the Linux Distribution.  

Our approach is reliable in the sense that if a T-NOVA virtual machine goes down 

(except the VNF Controller which is not highly available for the moment) we are able 

to redeploy containers on the cluster on another available machine. 

We also don’t have to upload a new vnfd + vnf images every time we have a security 

update. All we need to do is to push the new release on our Docker registry and the 

new image will be picked up automatically when configuring the VMs.   

 Orchestration and scaling 3.5.4.6. 

In order to ease the deployment of our vNFs, we use a configuration management 

tool named Salt Stack [Salt]. The necessity to use such a tool is developed in the next 

paragraphs; we then explain why we choose salt and finally conclude with an 

overview of the mechanisms we implemented. 

 

Figure 17 Software configuration Management for vHG+vCDN  

                                                 

2
 https://coreos.com/docs/ 
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 Why configuration management tool? 3.5.4.7. 

As mentioned in the VNF Controller section of Deliverable D5.31, only one VNFC is 

able to receive configuration commands from the Orchestration to support the whole 

VNF life cycle. This means that the information received on the configuration 

interface must be propagated to the other VNFCs. 

When the VNF starts, some configuration need to be carried out to initialize the 

software components. For example, the storage nodes must be initialized with the 

DHT from the proxy, some block storage must be allocated to the node and so one. 

This non trivial configuration tasks must be carried out after the VM has booted, but 

also when scaling out or in. These tasks may fail, but the consistency of the whole 

system should be kept intact. 

For those reasons, we decided to use an orchestration tool that create an abstraction 

level over the system to manage the software deployment, system configuration, 

middleware installation and service configuration with ease. 

 Why Salt? 3.5.4.8. 

SaltStack platform or Salt is a Python-based open source configuration management 

software and remote execution engine. Supporting the "infrastructure-as-code" 

approach to deployment and cloud management, it competes primarily with Puppet, 

Chef, and Ansible.3 

Salt Stack was preferred over other alternatives due to its scalability, ease of 

deployment, good support for Docker and python source code. We don’t claim that 

what we designed would not have been possible with other alternative, but Salt was 

the solution we felt the more comfortable with at the end. 

 Implementation of our configuration management 3.5.4.9. 

We implemented the configuration management as a two-phase process. It is 

illustrated in Figure 17. 

First during the bootstrap phase, each virtual machine is injected with cloud-init with 

the following data and programs. 

• IPaddress of the salt master 

• Certificates to assure a secure connection with the salt master 

• Its role in the system. 

• Salt-master or salt-minion service installed and launched. 

• The “recipes” or desired infrastructure code deployed on the salt master. 

Once the bootstrapping phase is over, we have a system comprised of VMs securely 

connected on the data network ready to take order from the master. Note that the 

OS could be pre-bundled with software in order to fasten the next phase, but this is 

not mandatory. 

                                                 

3
 https://en.wikipedia.org/wiki/Salt_%28software%29 
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The second phase is launched when the start lifecycle event from TeNOR is received 

through the middleware API. This processes the infrastructure code and verifies the 

compliance of each minion with the desired infrastructure.  

As we can see in Erreur ! Source du renvoi introuvable., the yaml DSL used with 

Salt describes how the infrastructure should be configured. Salt allows us to 

“synchronize” the code infrastructure in yaml with the real infrastructure simply by 

calling the Salt API. This synchronization process installs, copies, configures, 

downloads the required missing software components and can even configure more 

low level aspects. 

Providing the possibility for the system the scale-in is straightforward when having 

the infrastructure described as code. Installing, configuring and ramping up new VM 

is just a matter of “synching” the infrastructure state with the new resources available. 

Our implementation use the Debian Jessie for applications and containers. 

 

#here we make sure that the latest worker docker im age is present on the system 
nherbaut/worker: 
  #this command is equivalent to docker pull 
  docker.pulled:  
           #always use the latest version from our continus build system 
    - tag: latest  
    - require: 
             #make sure that docker is installed be fore pulling the image 
      - sls: docker  
             #make sure that docker daemon is runni ng 
      - service.running: docker 
 
# this set of jinja2 template file is here to provi de the broker's IP address 
{%- set minealias = salt['pillar.get']('hostsfile:a lias', 'network.ip_addrs') 
%} 
{%- set addrs = salt['mine.get']('roles:broker', mi nealias,"grain") %} 
{%- set broker_ip= addrs.items()[0][1][0] %} 
 
# this set of instruction is there to provide the t he swift proxy ip address 
{%- set addrs = salt['mine.get']('roles:swift_proxy ', minealias,"grain") %} 
{%- set swift_proxy_ip= addrs.items()[0][1][0] %} 
 
   
# now we are ready to cook our docker image 
core-worker-container: 
  docker.installed: 
    - name: core-worker-container 
    - image: nherbaut/worker:latest 
     # now we are ready to cook our docker image 
    - environment: 
      - "CELERY_BROKER_URL" : "amqp://guest@{{ broker_ip }}" 
      - "ST_AUTH" : "http://{{ swift_proxy_ip }}:8080/auth/v1.0" 
      - "ST_USER" : "admin:admin" 
      - "ST_KEY" : "admin" 
    - watch: 
      # trigger this event whenever the image is do ne being pulled 
      - docker: nherbaut/worker  

 
Code listing 1 an example of infrastructure code 
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3.5.5. Dimensioning and Performances 

For testing purposes, the vHG and vCDN can be seen as a chain of microservices 

working together to implement the function. Having several components interacting 

together complexifies the task of characterizing the bottlenecks of the solution. We 

also need to take into account the fact that absolute performance is not really 

meaningful for scalable applications, since adding additional resources increase the 

processing capacity and the state of the cloud environment hosting the solution can 

vary over time along with the performances. 

We carried out our experiments in a full-fledged NFV Infrastructure deployed within 

the T-NOVA project for a baseline configuration of 5 Virtual Machines. We only 

present high level performance results corresponding the 2 end-to-end scenarios: 

Ingestion-Provisionning and Delivery. 

 Testing vCDN Ingestion-Provisionning 3.5.5.1. 

Caching Orchestrator 

 

The first element that we need to test is the caching orchestrator. It receives requests 

from the VHG and from the CP to create message for Admission Control. 

We can see from Figure 18 that we didn’t manage to saturate this module, even at 40 

connections per minute, meaning that the admission control module will handle the 

request in real time. 

 

Figure 18 Caching Orchestrator performances 
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Here the admission control download the video and analyze it before sending 

message the transcoder and resegmenter to treatments. We can see from Erreur ! 

Source du renvoi introuvable. that the module saturate at around 28 videos per 

minutes.  

For test purposes, we used a 6.6 MB video corresponding to 10s of playback. 

 

Figure 19 Admission Control performances 

Transcode and Re-Segment 
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Figure 20 Transcode and Re-Segment Performance 

Configuration Deployment 

 

The User-Server POP assignment configuration is fetched by the VHG periodically. 

The Caching orchestrator offers a read API for “configuration deployment” that has 

the following performances for 1000 content. 

 

Figure 21 Configuration Deployment 
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From this figure we can see that the module can achieve 350 simultaneous query in 

less than 10s per query. Performances could be enhanced by using a caching 

mechanism instead of pure database access. 

 

End to End Test 
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The overall performance of the delivery part of the vHG/vCDN depends in a large 

extent on the network performances between the object storage nodes. Indeed, each 

content is chunked and spread on several nodes to provide redundancy and increase 

performance. Furthermore the Virtual Home Gateway is used to inspect HTTP 

Packets, which may also cause delay and reduced throughput. 

In Figure 18 we used apache2’s ab tool to compute the 95 percentile maximum time 

taken to download a 10s, 6 MB video file encoded as 600 KBps. We increased the 

number of concurrent connection to establish the threshold above which the video 

cannot be stream at its nominal bitrate for the 5VM baseline configuration. 

We can see two important results from the graph, first of all, there’s no significant 

difference between the performance of Storage with or without the VHG. It means 

that the storage is the bottleneck in this case, and the VHG need not to be scaled-up 

to increase performances. Next, the video can be stream by 250 simultaneous users. 

This value is strongly correlated to the underlying state of the network on our 

infrastructure and also on the storage technology used in the platform. For example, 

our object storage engine is designed to use SSD disks to boost the delivery of the 

most used files. This feature wasn’t available on our infrastructure, and could have 

dramatically increased performances, especially for internet content where only a 

small number of items is popular while the rest remain unknown. 

 

Figure 22 End to end Results for the vHG / vCDN delivery 
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3.5.6. Future Work 

The next step for vHG+vCDN in WP5 is to Integrate the scalability feature of T-NOVA 

to automatically create/destroy new VDU as demand vary. We also plane to fine tune 

performances accordingly. 

3.6. ProXy as a Service VNF (PXaaS) 

3.6.1. Introduction 

A Proxy server is a middleware between clients and servers. It handles requests, such 

as connecting to a website or service and fetching a file, sent from a client to a server. 

In the most cases a proxy acts as a web proxy allowing or restricting access to 

content on the World Wide Web. In addition, it allows clients to surf the Web 

anonymously by changing their IP address to the Proxy’s IP address.  

A proxy server can protect a network by filtering traffic. For instance, a company’s 

policies require that its employees are restricted to access some specific web sites, 

such as Facebook, during working hours but they are allowed to access them during 

break times or are restricted to access adult-content sites at all times. Furthermore, a 

proxy server can improve response times by caching frequently used web content 

and introduce bandwidth limitations to a group of users or individuals. Traditionally, 

proxy software resides inside users’ LANs (behind NAT or Gateway). It is deployed on 

a physical machine and all local devices can connect to the Internet through the 

proxy by changing their browser’s settings accordingly. However, a device can bypass 

the proxy. A stronger alternative deployment is to configure the proxy to act as a 

transparent proxy server so that all web requests are forced to go through the proxy. 

In this scenario the gateway/router should be configured to forward all web requests 

to the proxy server. 

The Proxy as a Service VNF (PXaaS VNF) aims to provide proxy services on demand to 

a Service Provider’s subscribers (either home users e.g. ADSL subscribers or corporate 

users such as company subscribers). The idea behind the PXaaS VNF is to move the 

proxy from the LAN to the cloud in order to be used “as a service”. Therefore, a 

subscriber (e.g. LAN administrator) will be able to configure the proxy from a web-

based user friendly dashboard and according to their needs so that it can be applied 

to the devices within the LAN.  

3.6.2. Requirements 

The table below provides the major requirements that the VNF will need to fulfill.  

  

Table 3-B: PxaaS VNF requirements 

Requirement 

ID  
Requirement 

name  
Description  Priority 

level  

1  Web caching  The PXaaS VNF should be able to High  
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cache web content.  

2  User anonymity  The PXaaS VNF should allow for 

hiding the user’s IP address when 

accessing web pages. The proxy 

VNF’s IP should be shown instead of 

the user’s real IP.  

High  

3  Bandwidth rate 

limitation per 

user  

The PXaaS VNF should allow for 

setting bandwidth rate limitations on 

a group of users or individual users 

by creating ACLs based on their 

account.  

High  

4  Bandwidth rate 

limitation per 

service  

The PXaaS VNF should allow for 

setting bandwidth rate limitations on 

a group of services or individual 

services. For example, the PXaaS VNF 

should limit the bandwidth used for 

torrents.  

Low  

5  Bandwidth 

throttling on 

huge downloads  

The PXaaS VNF should allow for 

reducing the bandwidth rate when 

huge downloads are detected. It 

could be applied to all users or a 

group of users or individuals.  

High  

6  Web access 

control  
The PXaaS VNF should allow for 

blocking specific websites by the 

users.  

High  

7  Web access 

control (time)  
The PXaaS VNF should allow for 

blocking or accessing specific 

websites by the users based on the 

current time.  

Medium  

8  User Control and 

Management  
The user should be able to configure 

the PXaaS VNF using a dashboard. 

The dashboard should be responsive 

in order to be accessible from 

multiple devices and easy to use.  

High  

9  Service 

availability  
The Proxy VNF should be available as 

soon as the user sets the 

configuration parameters on the 

dashboard. Each time a user changes 

configuration, the service should be 

available immediately.  

High  

10  Service accessibly  The connection with the proxy should 

be transparent (transparent proxy). 

Users do not need to set the proxy’s 

Low  
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IP on their browser. The traffic should 

be redirected from the user’s LAN to 

the proxy VNF.  

11  Service – user 

authentication  
Only subscribed PXaaS VNF users 

should be able to access the service.  
High  

12  Monitoring  The proxy VNF should provide 

metrics to the T-NOVA’s monitoring 

agent.  

High  

13  Service 

provisioning  
The proxy VNF should expose an API 

to be used by the T-NOVA’s 

middleware for service provisioning.  

High  

3.6.3. Architecture 

The PXaaS VNF consists of one VNFC. The VNFC implements both the proxy server 

software as well as the web server software. The figure below provides a high level 

topology of the PXaaS VNF. The VNFC is located at the PoP which is found between 

the user’s LAN and the Operator’s backbone. Once a user is subscribed with the 

PXaaS VNF the traffic from the user’s LAN is redirected to the PoP and then it passes 

through the PXaaS VNF. The traffic might pass through some other VNFs according 

to service function chaining policies. Finally, the proxy handles the requests 

accordingly and forwards the traffic to the Internet. The user is able to configure the 

proxy through an easy to use web-based dashboard which is served by the web 

server. The web server communicates with the proxy server in order to set up the 

configuration parameters which have been defined by the user.  

 

Figure 23. PXaaS high level architecture 
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3.6.4. Functional description 

 Squid Proxy server 3.6.4.1. 

Squid Proxy is a caching and a web proxy. Some of its major features include:  

• Web caching; 

• Anonymous Internet access; 

• Bandwidth control. It introduces bandwidth rate limitations or throttling to a 

group of users or individuals. For example it allows “normal users” to share 

some amount of traffic and on the other hand it allows “admin users” to use a 

dedicated amount of traffic; 

• Web access restrictions e.g. allow a company’s employees to access Facebook 

during lunch time only and deny access to some specific web sites. 

Bandwidth limitation examples 

a) Bandwidth restrictions based on IP  

The example below creates an Access Control List (ACL) with the name 

“regular_users” and is assigned a range of IP addresses. Requests coming from those 

IPs are restricted to 500KBps bandwidth.  

acl regular_users src 192.168.1.10 – 192.168.1.20/3 2 # acl list based 
on IPs 
delay_pools 1 
delay _class 1 1 
delay_parameters 1 500000/500000 # 500KBps 
delay_access 1 allow regular_users 
 

The limitation of this configuration is that Squid should be located inside the LAN in 

order to understand the private IP address space.  

b) Bandwidth restrictions based on user  

The following scenario performs the same bandwidth restrictions as the previous one 

except that the ACL is based on user accounts. Squid supports various authentication 

mechanisms such as LDAP, Radius and MySQL database. We consider MySQL 

database for authenticating with the PXaaS VNF.  

acl regular_users proxy_auth george savvas # acl li st based on 
usernames 
delay_pools 1 
delay _class 1 1 
delay_parameters 1 500000/500000 # 500KBps 
delay_access 1 allow regular_users 
 

The limitation of this configuration is that users must authenticate with the Proxy the 

first time they visit their browser. In this case the proxy is not considered as a 

transparent proxy. However, by using this scenario, Squid can be deployed on the 

cloud and can handle devices behind NAT as long as they authenticate with the 

proxy.  
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Figure 24. Proxy authentication 

 Apache Web Server 3.6.4.2. 

Apache web server is used to serve the dashboard to the clients. The dashboard is 

responsible to allow users to configure and manage the Squid proxy. Therefore, 

Apache should have write permissions on Squid’s configuration file. In addition, the 

LAN administrator is able to create user accounts which are stored in the MySQL 

database. The LAN administrator will be responsible to assign the user accounts to 

each device in order to achieve the limitations he envisions using the PXaaS.  

The figure below presents the first version of the dashboard (version 1). In particular, 

the home page of the dashboard is presented. The current version supports the 

following features: 

• User management: User accounts can be created with a username and 

password. Those accounts are used to access the proxy services; 

• Access control: Users must enter their credentials in their browsers in order 

to surf the web; 

• Bandwidth limitations: Group of users can be created with a shared amount 

of bandwidth. In this case bandwidth limitations can be introduced to a group 

of users; 

• Website filtering: Group of users can be created with restricted access to a 

list of websites. Pre-defined lists with urls are provided; 

• Web caching: Web caching can be enabled in order to cache web content 

and improve response time; 

• User Anonymity: Users can surf the web anonymously. 

 

Figure 25 - PXaaS Dashboard 
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 MySQL Database server 3.6.4.3. 

MySQL Database server maintains a list of user accounts that can be used for proxy 

authentication in the browser. In addition it stores all the required data needed by 

the dashboard.  

 SquidGuard 3.6.4.4. 

SquidGuard is used on top of Squid in order to block URLs for a group of users. It is 

used based on pre-defined black lists.  

 Monitoring Agent 3.6.4.5. 

The Monitoring Agent is responsible for collecting and sending monitoring metrics to 

the T-NOVA Monitoring component.  

3.6.5. Interfaces 

The figure below shows the VNFC in an OpenStack environment. It consists of 3 

interfaces connected to 3 networks.  

 

Figure 26. PXaaS in OpenStack 
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• eth0: This is the data interface. A floating IP is associated with this interface in 

order to send and receive data to/from the Public network.  

• eth1: This is the monitoring interface which will be used to send metrics 

periodically to the Monitoring component.  

• eth2: This is the management interface which will be used in order to 

communicate with the middleware API.  

3.6.6. Technologies 

The development environment used for the implementation and testing of the PxaaS 

is Vagrant with Virtualbox on an Ubuntu 14.04 Desktop machine. The VM itself runs 

Ubuntu 14.04 server OS.  

As described in the Functional description section, Squid Proxy, SquidGuard, Apache 

Web server and MySql Database server are used. Specifically, the exact versions are:  

• Squid Proxy 3.5.5  

• SquidGuard 1.5  

• Apache2 2.4.7  

• Mysql 5.5.44-0ubuntu0.14.04.1  

The Dashboard has been developed with the Yii framework (a PHP framework) for the 

server side and CSS, HTML, Jquery have been used for the client side.  

As regards the monitoring agent two different components have been used:  

1. Collectd. It collects system performance statistics periodically such as CPU and 

memory utilization.  

2. A python script which collects PxaaS VNF specific metrics such as the number 

of HTTP requests received by the proxy and the cache hits percentage. The 

script analyses the results received by the squidclient, a tool which provides 

Squid's statistics, and send them to the T-NOVA Monitoring component 

periodically.  

Mozilla Firefox is used for accessing Web through the proxy.  

3.6.7. Dimensioning and Performance 

Some preliminary tests were performed in order to verify whether the expected 

behavior is achieved. We assume that access to the PXaaS Dashboard is given to a 

user who acts as the administrator of his LAN in a home scenario. Therefore, the 

"administrator" sets up the Proxy service for his LAN via the dashboard and creates 

user accounts in order to allow other users/devices to access the Web via the Proxy. 

Specifically, the current version of the Dashboard was tested against the following 

test scenarios:  

a) Testing web access and bandwidth control. This scenario aims to test if a newly 

created user is able to access the Web using their credentials and bandwidth 

limitation is achieved.  
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Execution: The administrator creates a new user by providing a username and 

password. Then he adds the newly created user under “research” group (the group 

was previously created by the administrator) which is restricted to 512Kbps 

bandwidth. The new user authenticates with the proxy from the browser and 

downloads a big file.  

b) Testing web site filtering. The scenario tests whether a user is restricted to access 

some websites.  

Execution: The administrator adds the user to the group “social_networks” (the 

group was previously created by the administrator and a pre-defined list of social 

networking websites was assigned to that group) in which all social networking 

websites are denied.  

c) Testing web caching. This scenario tests whether web caching works properly.  

Execution: Two different users access the same websites from different computers. 

For example “user1” accesses www.primetel.com.cy and then “user2” accesses the 

same website.  

d) Testing user anonymity. This scenario checks whether a user is able to access the 

Web anonymously. In order to test this scenario and get meaningful results we 

deployed the PXaaS VNF on a server with public IP.  

Execution: The administrator enables the user anonymity feature for a user. 

http://ip.my-proxy.com/ website is used in order to check whether user's real IP is 

publicity visible.  

 Test results 3.6.7.1. 

Below the results by executing the test scenarios are presented.  

a) Once a user is authenticated with the Proxy he is able to access the Web. Then he 

starts to download an iso file. As we can see from the image below, the download 

speed is restricted to 61,8 KB/sec which is around to 500 Kb/sec (as we have 

expected). If another user starts to download a big file as well, then both users will 

share the 512Kb/sec bandwidth.  

 

Figure 27. Bandwidth limitation 

b) A user tries to access www.facebook.com with no success. The proxy denies access 

to the particular website.  
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Figure 28. Access denied to www.facebook.com 

c) The figure below shows the Squid's logs. In particular, it shows all the HTTP 

requests received by Squid from the clients and whether those requests result in 

cache hits. It can be observed that the particular requests were served from the 

Squid's cache. “TCP_MEM_HIT” shows that a request was served from Squid's 

Memory Cache (from the RAM).  

 

Figure 29. Squid's logs 

d)  Figure 30 shows the results from http://ip.my-proxy.com/ when a user accesses 

the Web without having the user anonymity featured enabled. The most important 

fields are:  

1. “HTTP_X_FORWARDED_FOR” . It shows the user's public IP (e.g. 217.27.32.7) 

address along with the Proxy's IP (e.g. 217.27.59.141)  

2. “HTTP_VIA”. It show the proxy's version (e.g. squid 3.5.5)  
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3. “HTTP_USER_AGENT”. It shows the user's browser information (e.g. Mozilla/5.0 

(X11; Ubuntu; Linux x86_64; rv:41.0) Gecko/20100101 Firefox/41.0).  

 

Figure 30. Results taken from http://ip.my-proxy.com/ without user anonymity 

Figure 31 shows the results while a user accesses the Web anonymously. It can be 

observed that the user's real IP is hidden and instead the Proxy's IP is shown. In 

addition the information about the proxy and the user's browser information are 

hidden.  

 

Figure 31. Results taken from http://ip.my-proxy.com/ with user anonymity 
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3.7. FPGA-based H264 Decoder 

3.7.1. Introduction 

H264 is currently one of the most widespread video formats and files encoded with it 

make up a significant part of internet traffic. As such there is significant need for 

accelerating both encoding and decoding of such videos to enabler quicker and 

more power efficient processing and delivery of such content. This implementation 

consists of a hardware circuit that can be deployed on programmable logic and 

decodes an H264 input stream provided at the input, providing raw frames at the 

output.  

This implementation was performed within the context of T-NOVA more as means to 

highlight the efficacy of the programmable logic-aware OpenStack implementation 

developed within WP4 and is described in D4.1 [D4.1]. It consists of a high-

performance, data-flow, pipeline architecture written in C++ and fine-tuned for 

synthesis using Xilinx’s Vivado HLS software. This is coupled with additional logic for 

monitoring performance and starting and stopping a VNF instance.  

3.7.2. Architecture 

The architecture of a VNF instance is shown on Figure 32. It consists of three main 

elements: 

The core processing components which receive and send frame data and decode 

them. 

A HW monitoring agent which taps the input and output lines and records the 

number of frames that are processed 

A VM control block which interfaces with the Orchestrator over the mAPI and is thus 

responsible for lifecycle management by starting and stopping the VM. Here it 

should be noted that since HW VMs are a novel concept only the most basic lifecycle 

events are supports. More advanced ones like scaling and migration will have to be 

deferred to future research.   

 

Figure 32 – FPGA-based H264 Decoder Architecture 
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3.7.3. Functional Description 

The VNF’s main processing components are: 

The AXI4 interface adapter, which converts the memory mapped interface used to 

communicate with the ARM A9 CPU to the streaming interface used internally by the 

VNF and back. 

The H264 decoding pipeline, that receives an input stream consisting of H264 

encoded frames and decodes them into raw frames. The pipeline is implemented as a 

feed-forward, data flow pipeline and consists of several stages in order to balance the 

processing overhead and ramp up the achieved clock  

frequency. The main steps in this pipeline are: 

Error Checking: Verifying that the current decoder context is not corrupted and that 

decoding can continue. 

State Initialization & Reset: Initialize internal decoder variables and reset buffer 

memories for decoding of the next frame. 

NAL Header Parsing & Decoding: H264 bitstreams are organized in packets called 

NALs. Each NAL is of variable length and contains a header with information 

regarding its contents. Parsing this information is mandatory to the successful 

decoding of the frames.   

Frame Decoding: This is the core of the accelerator’s functionality. It reads the frame 

data contained in the NAL and decodes them into raw frame bitstream, which is then 

passed to the output. 

A scratchpad buffer, where interim frame data which will be re-used in subsequent 

processing is being stored.  

3.7.4. Interfaces 

The VNF’s external interfaces comprise four logical network connections (the actual 

system on which the system is implemented has one physical network port), two of 

which serve to exchange data traffic to and from the data processing pipeline, one 

over which lifecycle management is performed, thus enabling the orchestrator to 

start and stop a VM and one which is used to send monitoring data to the SW 

monitoring agent which is executed on the ARM processor of the Zynq FPGA SoC 

(see D4.42 for a detailed description of the monitoring architecture of the FPGA-

based NVF). 

3.7.5. Technologies 

The VNF is designed in C++ and synthesized for the Zynq SoC using Xilinx’s Vivado 

HLS tool. This tool allows FPGA designers to develop and implement designs using a 

high-level language and thus achieve higher productivity than what would be feasible 

when using more traditional technologies like Verilog or VHDL.  

The VNF has been developed for use with the OpenStack FPGA-based platform 

developed within T-NOVA in WP4 which includes both means to interconnect the 
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VNF to the ARM A9 CPU on which OpenStack runs. The hardware side of the platform 

is based on standard chip interconnection technologies like ARM’s AMBA AXI buses 

which enable for high-speed communication between the ARM subsystem and the 

VNF. 
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4. SCALING 

Scalability is the capability of a system, network, or process to handle a growing 

amount of work and to be enlarged in order to accommodate that growth. 

There are two methods of adding resources for a particular application: horizontal 

and vertical scaling: 

� to scale horizontally (or scale out/in) means to add more nodes to (or remove 

nodes from) a system, such as adding a new resource to a distributed software 

application.  

� to scale vertically (or scale up/down) means to add resources to (or remove 

resources from) a single node in a system, typically involving the addition of CPUs 

or memory to a single function. 

In T-NOVA project only the scale out/in is supported. To support this the scale_in_out 

section is used in the VDU section of the VNF. The section specifies the max/min 

instances allowed per VDU defined (i.e VNFC).  

4.1. General description 

The scaling procedures can be applied to the following T-NOVA VNFs: 

1) vSBC (virtual Session Border Controller) 

2) vCDN/vHG (virtual CDN / virtual Home Gateway) 

This chapter contains a guideline for these procedures, whilst the specific VNF scaling 

features are described in par. Erreur ! Source du renvoi introuvable. (in case of 

vSBC) and par. Erreur ! Source du renvoi introuvable. (in case of vHG). 

The following description: 

• refers only to the VNF Scaling (ie. increasing the capacity of a VNF), since the 

Network Service Scaling (ie. Increasing the capacity of a Network service by 

adding new VNFs) is out of scope for this document 

• refers only to the “scale in/out” procedures (adding/removing VDU instances with 

the same deployment flavour), since the “scale up/down” (adding/removing 

resources inside a VDU instance) is out of scope of T-NOVA project [D2.41].  

• refers mainly to the “auto-scaling” use case, depending on the monitoring data 

generated by the VNF  

• consider that the “on-demand scaling” use case, from the VNF point of view, to be 

simply a subset of the “auto-scaling” use case. 

4.1.1. VNFD parameters for scale in/out 

The “auto-scaling” procedures are handled according to the following specific 

information configured inside the VNF Descriptor (VNFD): 

1. Allowed numbers of instances for scaling 
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This information is set using the “scale_in_out” attribute, and requires to specify 

the  “minimum” and the “maximum” number of allowed instances.  

Example 

Assuming that: 

-  the VNF is composed by two VDUs (VDU1 and VDU2)  

-  the first VDU mustn’t scale  

-  the second must scale up to 2 instances. 

 In this case the VNFD “scale-in-out” attribute will be configured in this way: 

VDU1 :   minimum=1  ,  maximum=1      �   (scaling not allowed) 

VDU2 :   minimum=1  ,  maximum=2 

 

2. Generic scale in/out information  

This information is set using the “assurance_parameters” of the VNFD. This 

attribute allows to define (for the scale-in and for the scale-out): 

-  the kind of parameters used for applying the scaling (param_id) 

-  the formula for applying the scaling (formula) 

-  the monitoring interval (interval)   

-  the threshold for the scaling procedures (value) 

-  the kind of threshold (unit)  

-  the number of occurrences requested during the monitoring interval 

(breaches_count). 

Example of scale-out  

Note: we are assuming to apply the scale-out procedure only if, during the monitoring 

period (60 sec), the cpu usage exceeds the percentage threshold (80%) for at 

least 2 times. In this case the VNFD must be initialized in this way: 

param_id = “cpu usage” 

value: 80 

unit : “percentage” 

formula: “CPU consumption greater than 80%”  

violation:      

breaches_count: 2 

interval : 60 

 

Example of scale-in  

Note:  we are assuming to apply the scale-in procedure only if, during the monitoring 

period (60 sec), the cpu usage exceeds the percentage threshold (30%) for at 

least 2 times. In this case the VNFD must be initialized in this way: 

param_id = “cpu usage” 

value: 30 

unit : “percentage” 

formula: “CPU consumption less than 30%”  

violation:      

breaches_count: 2 

interval : 60 

 

3. Type of requested scaling 
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Two new scale in/out requests (scale-in and scale-out) were added in the 

“vnf_lifecycle_events” attribute of the VNFD. 

Each scaling request must specify also the “VDU-instance ID” that must scale. 

4.1.2. Dependencies and impact in T-NOVA subsystems 

The implementation of scale in/out procedures needs also the following new 

developments in charge of WP3/WP4/WP5/WP6, as described in the following 

chapters. 

  Marketplace (WP6) 4.1.2.1. 

1) VNF creation (step 2 of the dashboard) : the GUI must allow the definition of the 

minimum and the maximum number of VDU instances for scaling (since now this 

operation wasn’t possible;  minimum and maximum values were always set to  “1” 

by default). 

Moreover the VNFD generated by the Marketplace doesn’t contain the “generic” 

monitoring parameters specified by the GUI. 

2) Lifecycle Events (step 3 of the dashboard): the GUI must allow  the configuration 

of the new “scale-in” and “scale-out” events  

3) SLA (step 4 of the dashboard): since now only the “specific” parameters are shown 

inside the monitoring parameter section, while the “generic” monitoring 

parameters are missing.  The request is to add also this kind of parameter inside 

the GUI. 

  Orchestrator/VNFM, VIM, VNF (WP3/WP4/WP5) 4.1.2.2. 

The Orchestration/Infrastructure level (WP3/WP4) must implement the following 

scaling procedures: 

1) Scale-out procedure 

-  The Orchestrator/VIM, on the basis of the collected monitoring data, must 

verify if they exceed the upper threshold configured inside the VNFD 

-  The Orchestrator/VIM, after having  created a new VDU instance, must wait 

until its initialization is finished.  

-  The Orchestrator/VNFM sends the VNF Controller a specific scaling event (for 

example a http command) containing both the type of the requested scaling 

(scale-out in this case) and the identifier of the VDU instance to be scaled, and 

waits for the reply. 

-  This response is sent by the VNF Controller (O&M) only when the scale-out is 

finished. 

 

2) Scale-in procedure 

-  The Orchestrator/VIM, on the basis of the collected monitoring data, must 

verify if they exceed the lower threshold configured inside the VNFD 

-  The Orchestrator/VNFM sends the VNF Controller a specific scaling event (for 

example a http command) containing containing both the type of the 
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requested scaling (scale-in in this case) and the identifier of the VDU instance 

to be scaled, and waits for the reply. 

-  The VNF Controller stops the instance that must be scaled.  When the instance 

is fully stopped, the VNF Controller informs the infrastructure 

(VNFM/Orchestrator). 

-  Finally, the Orchestrator/VIM can now release all the resources linked to the 

VNF instance. 

4.2. vSBC scaling 

4.2.1. Assumptions 

• The vSBC scaling procedure is applied only to the “media” stream (not to the 

“signalling” stream) 

• The ”CPU usage” was chosen as parameter for handling the scale in/out 

procedures. Each Virtual Machine of the vSBC contains a “collectd” daemon that is 

able to send this generic data to the T-NOVA Monitoring Manager 

• the vSBC scale-out procedure is obtained by instantiating a new VM and putting 

it behind a load balancer belonging to the IBCF function of (see par. Erreur ! 

Source du renvoi introuvable. for further details) 

• the T-NOVA lifecycle is handled by means of the http protocol. The scale in and 

scale-out events are mapped into the PUT http command. 

4.2.2. vSBC architecture for scaling 

The vSBC  (scaling) architecture is composed by 2 VDUs (VDU1 and VDU2), as 

depicted in the following Figure. 
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Figure 33 – vSBC architecture for scaling 

• VDU1: 

it consists of one scale (1 VM) and performs the following functions:  

-  Front-end/Load Balancer function (FE-LB). This functions sends the incoming 

SIP signalling to the IBCF function 

-  Interconnection Border Control Function (IBCF). This function manages the SIP 

signalling from the initial SIP Request (i.e: INVITE) to the final SIP Request (i.e: 

BYE), covering all the typical call phases (i.e: setup, renegotiation,  tear down, 

… etc) 

-  Operation & Maintenance Function (O&M): it’s the VNF Controller for the 

management of the T-NOVA lifecycle (based on http protocol). 

 

• VDU2:  

it consists of two instances (2 VM) and performs the following functions:  

-  Border Gateway Function (BGF). This function handles NAT and/or 

Transcoding of RTP packets. 

The “generic” metrics are sent directly to the Monitoring Manager by the local 

“Collectd” of each of the two VM hosting the VDU2 instances (BGF1 and BGF2).  
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4.2.3. Activation of the vSBC scaling procedures 

Since the transcoding procedures require a high CPU load, especially in case of video 

calls, the BGF is the most critical component of the vSBC.  So it needs to scale from 1 

to “x” instances  (for sake of simplicity we have supposed x=2 in Figure 33. The 

scaling operations have no impact on the configuration of the SIP endpoints, because 

media ip address and port are exchanged by the SDP Offer/Answer negotiation 

(typically during the call setup).  

The only parameter monitored for the scaling activation is the CPU utilisation.  

Referring to Figure 33, the first VDU2 instance (BGF1) can handle the incoming media 

packets at the start of the VNF and, from now on, it is always active and doesn’t scale.  

The second VDU2 instance (BGF2) can scale according to the “formula” configured 

inside the VNFD. 

The best scaling algorithm could be: 

-  collect the generic parameter “CPU utilisation” data coming from all the BGF 

instances  

-  compute the average value 

-  compare this value with the VNFD thresholds and the “breaches_count” 

configured inside the VNFD 

These operations should be applied by the WP3/WP4, since each VM send the «CPU 

utilization” data directly to the Monitoring Manager. 

If this algorithm can’t be applied, a simpler alternative could be the following: 

-  the second VDU2 instance (BGF2) scales out when the CPU load of the first VDU2 

instance (BGF1) exceeds an upper threshold  

-  the second VDU2 instance (BGF2) scales in when the “CPU load” of the second 

VDU2 instance (BGF2) goes below a lower threshold. 

Once the scale-out procedure is finished, the IBCF function of VDU1 applies an 

internal load balancing towards the two BGF instances (BGF1 and BGF2), using a 

round-robin algorithm, unless the BGF instance has already reached an internal 

threshold of maximum traffic.  

 vSBC scale-out flow chart 4.2.3.1. 
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The following Figure depicts the scale-out flow chart. 

 

Figure 34 – vSBC “Scale-out” flow chart 

Cyclically the BGF1 instance, by means of its local Collectd daemon, sends the “CPU 

utilisation” metric to the Monitoring Manager. These data are sent to the VIM and 

then to the VNFO. 

If the collected metrics satisfy the VNFD scale-out rules described in par. Erreur ! 

Source du renvoi introuvable. , the VNFO requires a new VDU2 instance (BGF2), and 

waits the acknowledge coming from the VNF at the end of its initialization phase. 

The scale-out request must be sent to the VNF Controller (O&M) of the VDU1 

through the Management Network. This request is a http PUT method, different from 

the “Start” PUT request (i.e: on the basis of a different URL), and must contain the 
identifier of the new VDU2 instance (BGF2).  

A Scale-out request is like a “start” request for the new VDU2 instance (BGF2) since it 

enables, from now on, the handling of the media stream. 

At the receipt of the scale-out command, the VNF Controller (O&M) of the VDU1 sets 

to “enable” the administration status of the BGF2 instance. From now on the IBCF 

function starts to balance the media stream on BGF1 and BGF2. 
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 vSBC Scale-in flow chart 4.2.3.2. 

 

  Figure 35 – vSBC “scale-in” flow chart 

Cyclically both BGF1 and BGF2 instances, by means of their local “Collectd” daemon, 

send the “CPU utilisation” metric to the Monitoring Manager. These data are sent to 

the VIM and then to the VNFO. 

If the collected metrics satisfy the VNFD scale-in rules described in par. Erreur ! 

Source du renvoi introuvable., the VNFO/VNFM requires the VNF to stop the usage 

of the VDU2 instance (BGF2), and waits the acknowledge coming from the VNF at the 

end of this operation. 

The scale-in request must be sent from the VNFO/VNFM to the VNF Controller 

(O&M) of the VDU1, through the Management Network.  This request is a http PUT 

method, different from the “Start” request (i.e: on the basis of a different URL), and 

must contain the identifier of the VDU2 instance that must be removed (BGF2).  

A scale-in request is like a “Stop” request for the VNF, since the VNF Controller (OEM) 

stops, in a graceful way, all the active media sessions of BGF2. The administrative 

status of BGF2 is set to “disable”, so that the IBCF, from now on, can use only the first 

BGF instance (BGF1) to handle new calls. 
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During the scale-in procedure no media calls are moved from the BGF2 instance to 

the BGF1 instance.  Only when all active BGF2 calls are finished, then all the resources 

linked to the BGF2 can be released. Anyways there is a maximum time interval after 

which all the active sessions are stopped. 

Finally the VNF controller (O&M) of the VDU1 notifies the VNFM/VNFO the end of 

the scale-in operation, so that the VNFO can request the VIM to release all resources 

linked to the BGF2 instance. 

4.2.4. Summary of the vSBC scaling procedures 

The following Figure summarizes the vSBC “scale-out” procedure previously 

described in par. Erreur ! Source du renvoi introuvable. 

 

 

Figure 36 - vSBC “scale out” procedure 

 

The following Figure summarizes the vSBC “scale-in” procedure previously described 

in par. Erreur ! Source du renvoi introuvable. 
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Figure 37 -  vSBC “scale-in” procedure 
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4.3. vHG/ vCDN scaling 

Thanks to the use of SaltStack and the Infrastructure as a Service Approach, scaling is 

made quite easy for the vHG/vCDN. In this section, we briefly describe how we 

implemented scaling. We followed the antifragile pattern, allowing each micro service 

to operate in autonomy so that the whole VNF can be resilient and easily scalable. 

4.3.1. Scaling out  

First, the monitoring agent reports that the storage is running low, or that the 

ingestion procedure cannot cope with the ingestion demand, thanks to application-

specific metrics. 

Then, the VNFM launches a new VM (storage node or worker node depending on 

which metric is breached) and this node is provided with the IP address of the VNF 

controller. The new VM connects to the controller so that it can be part of the 

infrastructure under its supervision. 

When the VNFM send the scale-up lifecycle event, the controller re-synchronize the 

infrastructure with all the connected VMs. It’s important to note that the exact same 

procedure is used when scaling the VM and when starting them: software is 

downloaded (swiftstack or docker + custom made-images), the VM is configured 

(configuration files are written and services are launched) according to its “role” as a 

storage node or as a worker. 

Once a new worker joins the pool, it is ready to take orders from the caching 

orchestrator and starts consuming messages on the broker queue. Similarly, once a 

new storage nodes arrive, swiftstack proxy node re-balance the load amongst the 

nodes automatically. 

4.3.2. Scaling in 

Scaling in can occur easily, as workers can be shut instantaneously: killed tasks will 

not be acknowledged by the workers and will be automatically relaunched after a 

timeout. For storage nodes, when the node proxy detects that the integrity of the 

Distributed Hash Table is compromised (when a node terminates), load is rebalanced 

on existing nodes, automatically in background task. 
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5. T-NOVA VNFS: LESSONS LEARNT 

In this section, some practical information collected during the development phase of 

T-NOVA VNFs is reported. In particular, in the following subsections, the most 

relevant difficulties encountered during the project are reported and briefly 

discussed, so as to provide guidelines to new developers who wish to develop new 

VNFs and/or make them available in the T-NOVA framework. Some novel aspects are 

also considered, such as the use of various types of HW accelerators to enhance the 

performance of VNFs. 

5.1. Architecture 

When it comes to the architecture of the various VNFs developed in T-NOVA, all VNF 

developers planned to have a typical VNF composed of several VNF components 

reflecting the different functionalities required for the operation of the VNF. Although 

this distributed architecture works fine with VMs running on hosts, it does not, 

unfortunately, work in a seamless way when OpenStack is being used. In fact, 

OpenStack does not really count as a complete NFV infrastructure and raised several 

networking issues in terms of automated VNF deployment, Service Function Chaining 

(SFC), traffic forwarding and inter-VM communication, required for VNFs such as the 

vSA and the Traffic Classifier (vTC) to function properly. The automated and 

functional integration of the vSA and vTC to OpenStack’s networking environment, 

and more specifically to Neutron service, is non-trivial and remains to be 

substantiated and implemented as Neutron at the moment does not offer much 

freedom and flexibility on arbitrary traffic steering.  

In order to support direct traffic forwarding, meaning the virtual network interface of 

one Virtual Network Function Component (VNFC) to be directly connected to another 

VNFC’s virtual network interface, a modification on Neutron’s OVS needs to be 

applied. Each virtual network interface of a VNFC is reflected upon one TAP-virtual 

network kernel device, a virtual port on Neutron’s OVS and a virtual bridge 

connecting them. This way, packets travel from the VNFC to Neutron’s OVS through 

the Linux kernel. The virtual kernel bridges of the two VNFCs need to be shut down 

and removed. Then an OVSDB rule needs to be applied at the Neutron OVS, applying 

an all-forwarding policy between the OVS ports of the corresponding VNFCs. 

5.2. Descriptors 

The original input for creation of the descriptors for the T-NOVA VNFs was from the 

early works of ETSI NFV ISG. As the information model used by ETSI ISG NFV is a 

subject to change, our efforts focused in producing a T-NOVA derivative that would 

efficiently support the Marketplace imposed rules for Function Developers in 

delivering their VNFs. Rules as such focus on the the following main sections 

- Trading and brokerage support 

- SLA assurance 

- Networking (via mandatory specified virtual networks) 
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- QoS not fully supported yes, only BW limiting 

- VNFC collapse to single VDU mapping. Due to focusing in VMs rather than 

containers.  

The decided descriptors used by TeNOR when a NS is composed by a number of 

VNFs and decomposed when the the service is to be deployed according to the PoP 

selected for the instantiation of each VNF. Internally the system is translating the 

previously presented descriptor into HOT template (HEAT) assuming that the it is 

assumed that the PoPs are supporting Openstack. The mapping of the T-NOVA 

descriptor to HEAT templates is not one to one, additionally for the enforcement of 

the graph VNF Forwarding Graph information has to pass through the SDN Controller 

as the integration of the OpenDayLight SDN controller is still not supported by both 

Openstack and ODL.  

5.3. Networking 

The network acceleration in a NFV environment is an ever-evolving important aspect 

of the virtualized network environment under-test. The mitigation of physical network 

functions to a virtualized environment, improves portability and flexibilty, but also 

limits and penalizes the performance. This is why several mechanisms have been 

developed in order to accelerate the packet processing performance in a virtualized 

environment, such as DPDK and SRIOV. 

The Data Plane Development Kit (DPDK) framework succeeds in maximizing packet 

throughput in a virtualized environment. A novel DPDK-enabled version of the vTC 

has been in order to optimize the packet-handling and processing for the inspected 

and forwarded traffic, by bypassing the kernel space. The analyzing and forwarding 

functions are performed entirely on user-space which enhances the vTC performance. 

Performance evaluation results showed that with and without DPDK, a significantly 

higher performance can be achieved compared to packet processing with the Linux 

kernel network stack. However, during the experimentation process various issues 

ascended, regarding the DPDK deployment. Firstly, the DPDK compilation with nDPI 

libraries was not possible in any Linux VM, functional version under-test is a Ubuntu 

14.04 VM.  

The second issue, was connectivity issues caused by the loading of the DPDK drivers, 

as they remove the TCP-IP stack of the virtual NICs, by default. The external access 

was resolved by adding multiple interfaces to the VM, in order not to lose 

connectivity. The second most important issue was the packet routing issue inside an 

Openstack network environment, which functions over a series of linux bridges and 

OVS ports. An overview of the Openstack networking has been presented in detail at 

the vTC section. The main purpose of this architecture scheme is to demonstrate that 

network functions, such as port mirroring and traffic forwarding cannot work properly 

under a clean Openstack network environment. 

In order to support direct traffic forwarding, meaning the virtual network interface of 

one VNFC be directly connected to another VNFC’s virtual network interface, a 

modification on Neutron’s OVS needs to be applied. Each virtual network interface of 

a VNFC is reflected upon one TAP-virtual network kernel device, a virtual port on 

Neutron’s OVS, and a virtual bridge connecting them. This way packets travel from 
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the VNFC to Neutron’s OVS through the Linux kernel. The virtual kernel bridges of 

the 2 VNFCs need to be shut down and removed, then an OVSDB rule needs to be 

applied at the Neutron OVS, applying an all-forwarding policy between the OVS ports 

of the corresponding VNFCs. NCSRD has developped this method in order to tackle 

traffic steering issues. 

Another major issue solved by this implementation was the traffic mirroring feature 

provided by the vTC VNF. As the vTC VNF consisted of 2 VNFCs, which received 

duplicated traffic at the same time, the concept of traffic mirroring was realized. 

Further on, it was implemented in an Openstack environment using the above 

method described. 

Single Root I/O virtualization (SR-IOV) in networking is a very useful and strong 

feature for virtualized network deployments. SRIOV is a specification that allows a PCI 

device, for example a NIC or a Graphic Card, to share access to its resources among 

various PCI hardware functions: Physical Function (PF) (meaning the real physical 

device), from it a number of one or more Virtual Functions (VF) are generated. 

Supposedly we have one NIC and we want to share its resources among various 

Virtual Machines, or in terms of NFV various VNFCs of a VNF. We can split the PF into 

numerous VFs and distribute each one to a different VM. The routing and forwarding 

of the packets is done through L2 routing where the packets are forwarded to the 

matching MAC VF. The purpose of this section is to share a few tips and hacks we 

came across during our general activities related to SRIOV. 

First of all, the SR-IOV enablement in an Openstack environment is by itself a lesson, 

as SR-IOV networking operates in an independent separate manner than the rest of 

the standard Openstack networking. It is in a sense a parallel high-speed road to the 

Neutron-OVS service. SR-IOV uses VLANs by default for packet routing and path 

selection, which was caused an extra strain in order for the packet to reach the VNF. 

However, a different approach was also built using a no-VLAN SR-IOV network, which 

worked properly and facilitated the experimental process of the vTC VNF. 

As already mentioned, in an Openstack environment traffic mirroring is not 

something trivial, this applies also to the parallel SR-IOV path. In order to tackle this, 

a live modification was performed at the SR-IOV VFs of the port, in order to achieve 

traffic mirroring. The detailed actions in order to achieve this, are enlisted below. 

Let’s say you want to send the same flows and packets to 2 VMs simultaneously. 

if you enter the ip link show you should see something like this: 

p2p1: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT 

group default qlen 1000 

link/ether a0:36:9f:68:fc:f4 brd ff:ff:ff:ff:ff:ff 

vf 0 MAC 00:00:00:00:00:00, spoof checking on, link-state auto 

vf 1 MAC fa:16:3e:c0:d8:11, spoof checking on, link-state auto 

vf 2 MAC fa:16:3e:a1:43:57, spoof checking on, link-state auto 

vf 3 MAC fa:16:3e:aa:33:59, spoof checking on, link-state auto 

p2p1: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT 

group default qlen 1000 
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link/ether a0:36:9f:68:fc:f4 brd ff:ff:ff:ff:ff:ff 

vf 0 MAC 00:00:00:00:00:00, spoof checking on, link-state auto 

vf 1 MAC fa:16:3e:c0:d8:11, spoof checking on, link-state auto 

vf 2 MAC fa:16:3e:a1:43:57, spoof checking on, link-state auto 

vf 3 MAC fa:16:3e:aa:33:59, spoof checking on, link-state auto 

In order to perform mirroring and send all traffic both ways we need to change the 

MAC address both on the VM and on the VF and disable the spoof check. 

Let’s change vf2 -> vf3 

On the VM: 

ifconfig eth0 down 

ifconfig eth0 hw ether fa:16:3e:aa:33:59 

ifconfig eth0 up 

ifconfig eth0 down 

ifconfig eth0 hw ether fa:16:3e:aa:33:59 

ifconfig eth0 up 

On the host – VF: 

ip link set eth0 down 

ip link set eth0 vf 2 mac fa:16:3e:aa:33:59 

ip link set eth0 vf 2 spoofchk off 

ip link set eth0 up 

ip link set eth0 down 

ip link set eth0 vf 2 mac fa:16:3e:aa:33:59 

ip link set eth0 vf 2 spoofchk off 

ip link set eth0 up 

After that we have 2 VFs with the same MAC. 

But it will still not work. What you have to do is, change again the vf 2 to something 

resembling the latest MAC 

ip link set eth0 vf 2 mac fa:16:3e:aa:33:58 

ip link set eth0 vf 2 mac fa:16:3e:aa:33:58 

After these changes through the experiments we performed we managed to mirror 

the traffic on 2 different VFs. 

5.4. Acceleration support 

5.4.1. FPGA 

Designing a VNF for a programmable logic based device harbours completely 

different challenges from its software counterparts. The fact that this VNF was 

designed for a specific programmable logic based platform imposed one more layer 

of constraints. The most important such constraint from a T-NOVA perspective is the 

limited scaling options available to the VNF. Since the platform used in T-NOVA is 

single-tenant and the hardware of the VNF is fixed, scaling up by dedicating more 

resources to this instances is not possible. This means that the VNF should be 

designed with meaningful performance and resource use goals in mind thus 

minimizing the need for scaling up (and thus occupying a different device) but also 

optimize use of the device already in use.  
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One more critical element is to ensure that all platform components work together 

harmoniously without causing bottlenecks and thus allowing the hardware VNF 

instance to reach the maximum possible performance. This pertains to both the 

OpenStack agent running on the ARM A9 CPUs but also on the software and 

hardware platform that moves data from OpenStack to the HW VNF and back. While 

the hardware side of the infrastructure provides ample bandwidth for this, the 

software component remains unpredictable and outstanding interrupts and excessive 

buffer copying can easily get the best of any implementation. The effect of this was 

minimized by extensive testing and performance benchmarking at various location in 

both the hardware and the software.  

5.4.2. Graphical Processing Units (GPU) 

Hard parallelization of video coding: In spite of the common thought, typical in the 

HPC research community, that digital image and video processing algorithms can be 

greatly accelerated when ported on GPU’s as they are well-suited for massive 

parallelization, in the GPU-accelerated algorithms for video encoding/decoding 

developed in T-NOVA no simple massive parallelization was possible, and much more 

effort than expected was needed in order to obtain satisfying (but not impressive) 

speed-ups with respect to the standard CPU-based algorithms, significantly 

contradicting this common expectation. This is mainly due to the strict and recursive 

correlation between adjacent data, both in coded and decoded video streams (each 

coded/decoded unit – the macroblock – refers to several previously coded/decoded 

units, thereby imposing a fine-grained sequentially (and therefore no chance for 

parallelism) in the encoding/decoding algorithms. Finally, a performance 

improvement, in terms of speed-up with respect to CPU-based algorithms, has been 

obtained exploiting the GPU; this was achieved by adopting a cooperative CPU-GPU 

approach, in which some computationally-intensive tasks (such as Motion Estimation) 

that could run autonomously (i.e. in parallel with the main algorithm) have been 

delegated to GPU, while the CPU is executing the main computation threads and 

then “picks” the already computed results from the GPU when needed, thus saving 

the time necessary for computing them [hwAcc]. 

GPU virtualization: In order to exploit GPU’s in the T-NOVA virtualized infrastructure, 

it was necessary to “see” the GPU as an available virtual resource. GPU virtualization is 

not a straightforward issue: GPU manufacturers have developed some solutions 

providing virtual resources (like NVIDIA’s GRID architecture and PCI-pass-through 

enabled on GPU boards, for instance) but they are not so stable and robust against 

any combination of hardware platform, virtualization environment, and operating 

system. At the end, satisfying results have been achieved by adopting kvm as 

virtualization infrastructure, running VMs using Linux Ubuntu 14. Several different 

GPU platforms from NVIDIA have been successfully virtualized exploiting the PCI-

pass-through. This architectural approach has proven to be very efficient, since the 

virtualized GPU could deliver substantially the same performance as the same 

physical GPU device in a native environment, in terms of both computation speed 

and load capabilities. 
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5.5. VNF initialization 

The VNF initialization may require the usage of the “Cloud Init” library  at the boot 

time of the virtual machine, with a specific installation script 4.  In other words, during 

the bootstrapping phase of a VNF, some information regarding the networking (i.e: 

Management IP address) can be collected by means of Cloud Init and a specific 

installation script.  

The vSBC initialization is a typical example of this kind of collecting data. 

The installation script can be configured using the GUI of the Marketplace, and it 

covers two main aspects: 

1) The first is how to get the networking information (i.e: the IP address of the 

Management interface), available only after TeNOR has allocated resources for a 

specific VNF instance. This info can be obtained by means of the "get_attr" 

function, that allows the retrieval of a resource attribute value at runtime. In our 

case a User-Data Script is written inside the installation script, beginning 

typically with "#!", as depicted in the following example. 

Example 

… 

resources: 

server_init: 

  type: OS::Heat::SoftwareConfig 

  properties: 

    config: 

      str_replace: 

        template: | 

          #!/bin/bash  

:       

       params: 

               mng_ip_par: {get_attr: [instance_port, fixed_ips, 0, ip_address]} 

                                                 

4  Cloud init is a UNIX package, supported by multiple cloud providers, that allows 

developers to initialize cloud instance at boot time. It is installed in the Ubuntu Cloud 

Images, and also in the official Ubuntu images available on EC2. It is needed in arch 

“Linux” images that are built with the intention of being launched in cloud 

(like OpenStack). 
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: 

         get_resource: server_init 

 

The “get_attr” function is then copied by Tenor inside the Heat Orchestration 

Template (HOT). 

The VIM provides the information through the Openstack Metadata API, which is 

collected by the Virtual Machine after its Boot and is sent, via the mAPI, to the 

VNF controller. 

 

2) Once the on-boarding phase is terminated, TeNor must send the “Start” event to 

the all the VNF instances composing the service that was purchased.  

This event must be received when all VNFs have completed their booting process. 

Only in this way they are available to receive and handle the mAPI lifecycle events. 

Heat can only provide information whether the requested resources are allocated 

or not, but can’t know if theVNF is still in a booting phase. For this reason the 

VNF must notify this condition to Heat. This aim can be achieved through a 

“wc_notify” line in the installation script, as depicted in the following example. 

Example 

… 

resources: 

server_init: 

  type: OS::Heat::SoftwareConfig 

  properties: 

    config: 

      str_replace: 

        template: | 

          #!/bin/bash  

:    

              ... 

          wc_notify --data-binary '{"status": "SUCCESS"}' 

                      

:         

        params: 

 

The “wc_notify” line gets replaced by a “curl” line like that one of the following 

example. 

Example 
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curl -i -X POST -H 'X-Auth-Token: 58b96bd5ac50409999bcf20491e8e7fb' -H 

'Content-Type: application/json' -H 'Accept: application/json' 

http://10.10.1.2:8004/v1/70e1ff61ab0947558833196e4d94f06b/stacks/admin/

5e980984-ab37-449f-9f2c-c3d06d152255/resources/wait_handle1/signal --

data-binary '{"status": "SUCCESS"}' 

 

This curl line is executed only at the end of the booting phase and it is used to 

get the Wait Condition resource defined in Heat. This resource will change the 

VNF stack status to “completed” only after receiving a signal (a http POST in the 

previous example) through the procedure already described.  

The VNF Controller component (the O&M component in case of vSBC), once 

received the Start event from the Middleware API, spreads the initialization event 

to the other VNFC thanks to a specific configuration software.   

With this approach the VNF itself is responsible for applying the configuration and 
the starting of signalling and media flows. The same approach must be used also in 
case of scale-out procedures, so that the new scaling instance receives the Start event 
when its bootstrap phase is terminated. 
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6. VNF CHARACTERIZATION 

6.1. Scope 

This chapter provides some general guidelines to describe how the Virtual Network 

Functions (VNFs) of T-NOVA framework perform under a particular workload, as 

required in the task 5.4 of WP5.  

The main scope is to suggest a common methodology to execute the Performance 

testing and to evaluate the obtained measurements by means of load curves, based 

on the following parameters:  

• Cpu Load - represents the average system CPU load over a period of time 

• Memory Usage - represents the amount of system memory used over a period of 

time 

• Network Throughput - rate of network message delivery over a communication 

channel. 

Each VNF developer needs to identify the most significant key scenarios, so to derive 

the load curves related to the generic parameters previously described.     

The analysis of the load curves could be useful to the Orchestrator/VIM in order to: 

-  estimate the configuration resources required during the phase of instantiation  

-  check, during the live traffic, the compliance with the declared VNF’s load curves, 

in order to recognize some bugs inside the VNF. 

The steps for obtaining the load curves and testing the performances are described in 

par. 6.2. 

The final annexes (i.e: Annex A) contain, for each of these steps, some examples 

related to the T-NOVA VNFs. 
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6.2. Core Activities of Performance Testing 

The performance testing consists of the following six steps: 

 

 

 

 

 

 

 

 

 

 

Figure 38 – Steps of Performance Testing 

 

The following chapters will describe in detail each of these steps. 

 

6.2.1. Identify the Test Environment 

This step requires the knowledge of the physical environment in which the 

performance tests will be executed, along with the tools and the hardware required 

to execute these tests (i.e: load-generation tools and resource monitoring tools). It is 

requested the knowledge of all details of the hardware, software and network 

configurations before beginning the testing process. 

It is important to have a very high degree of similarity between the hardware, 

software, and network configuration of the VNF under test in the local laboratory and 

in the TNOVA testbed.    

Some examples related to this testing step can be found in the final Annexes of this 

document (i.e: Annex A). 

 

6.2.2. Identify the Performance Acceptance Criteria   

This step includes goals and constraints for the network throughput, the response 

times and the resources allocation. 

It is very important to start identifying, or at least estimating, both the desired 

performance and the most common parameters of the VNFs, such as the CPU load, 

the memory usage and the network throughput (defined in part. 6).   

Identify the Test Environment 

Identify the Performance Acceptance Criteria 

Plan and Design the Performance Tests 

Configure the Test Environment 

Execute the Tests 

Analyze the obtained Results  
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For each of these generic parameters it makes sense to define some reference values, 

for example the CPU Load not over 85% when the VNF load curve is at its maximum 

value. 

Some examples related to this testing step can be found in the final Annexes of this 

document (i.e: Annex A). 

6.2.3. Plan and Design the Performance Tests   

This step identifies the main use cases to be tested and it defines also the metrics to 

be collected.  

These basic parameters, once identified, captured, and correctly reported, can help to 

identify problems and bottlenecks within the VNF, and this could be helpful also to 

the T-NOVA Orchestrator/VIM for choosing the VNFs able to manage a specific 

service. 

They could also be useful to identify the most critical scenarios for the basic 

parameters previously described (CPU load, memory usage and network throughput). 

Some examples related to this testing step can be found in the final Annexes of this 

document (i.e: Annex A). 

6.2.4. Configure the Test Environment 

This step requires to prepare the test environment in laboratory, composed by the 

VNF, the Measurement tools and the Load generator. 

The test environment must be able to monitor the resources, if necessary. 

Normally, it is important to consider some key points when configuring the test 

environment: 

• install in your VNF the same version of software already existing in the T-NOVA 

testbed 

• make a complete configuration of your VNF for all kind of scenarios that you are 

going to test 

• make sure that the test environment is reserved only for these tests 

• determine how much load you can generate before the system reaches a 

bottleneck. 

Some examples related to this testing step can be found in the final Annexes of this 

document (i.e: Annex A). 

6.2.5. Execute the Tests 

This step executes all tests, and then validates the obtained results.  

The test execution can be viewed as a combination of the following sub-tasks: 

1. Reset the system. 

2. Coordinate the test execution with the other colleagues that could use the VNF. 

3. Check the configurations and the state of the environments and data.    

4. Begin the test execution, that normally must run for some hours (in this way any 

peaks will be averaged). 
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5. While the tests are running, monitor and validate the scripts, the system, and the 

received data. 

6. Upon the test completion, quickly review the results in case of obvious indications 

that the test was not correctly handled (for example the restart of a VNF 

component). 

7. Archive the tests, the test data, the results, and other information. 

8. Rerun the tests by changing the amount of emulated traffic, so to obtain new 

points of the load curve. 

Some examples related to this testing step can be found in the final Annexes of this 

document (i.e: Annex A). 

6.2.6. Analyze the obtained Results 

This step analyzes the test results in order to highlight some critical issues while using 

the VNF, or to obtain input data for applying special services (for example the scaling 

procedures). 

For this goal it is important to analyze the final load curve: its minimum point will be 

the one with no traffic, while its maximum point will be the one where the traffic 

cannot be increased because of the overuse of the CPU or memory, a too high 

network throughput, or a high number of service failures. 

Some examples related to this testing step can be found in the final Annexes of this 

document (i.e: Annex A). 
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7. CONCLUSIONS 

This document provides the final versions of the description of the VNFs developed 

in T-NOVA. Those VNFs demonstrate, with real-life applications, the capabilities 

offered by the overall T-NOVA framework. 

The developed VNFs cover a wide range of applications, and thus demonstrate the 

versatility of the overall T-NOVA system to offer commercially attractive appliances 

and services to real users. 

The use of HW acceleration in a virtualized infrastructure has also been addressed: 

different types of hw accelerators have been used in T-NOVA VNFs – GPU, FPGA and 

networking accelerators such as SRIOV. 

Many performance tests have been carried out, and general guidelines for developers 

have been provided.  
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9. LIST OF ACRONYMS 

Acronym Explanation 

3GPP Third Generation Partnership Project 

API Application Programming Interface 

BGF Border Gateway Function 

CAPEX Capital Expenditures 

CLI Command Line Interface 

CRUD Create, Read, Update, Delete 

DDoS Distributed Denial of Service 

DFA Deterministic Finite Automaton 

DHCP  Dynamic Host Configuration Protocol 

DoS Denial of Service 

DPDK Data Plane Development Kit 

DPI Deep Packet Inspection 

DPS Data Plane Switch 

DSP Digital Signal Processor 

DUT Device Under Test 

EMS Element Management System 

ETSI European Telecommunications Institute 

FW Firewall 

HGI Home Gateway Initiative 

HPC High Performance Computing 

HTTP Hyper Text Transport Protocol 

IBCF Interconnection Border Control Function 

IDS Intrusion Detection System 

IETF  Internet Engineering Task Force 

IOMMU I/O Memory Management Unit 

ITU-T International Telecommunication Union – 

Telecommunication Standardization Bureau 

JSON JavaScript Object Notation 

KVM Kernel-based Virtual Machine 
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Acronym Explanation 

LB Load Balancer 

MANO Management and Orchestration 

MIB Management Information Base 

NAT Network Address Translation 

NDVR Network Digital Video Recorder 

NETCONF Network Configuration Protocol 

NF Network Function 

NFaaS Network Function as a Service 

NFVI Network Function Virtualization Infrastructure 

NIO  Non Blockio I/O 

NN Neural Network 

NPU Network Processor Unit 

NSIS Next Steps In Signaling 

O&M Operating and Maintenance 

OPEX Operational Expenditures 

OSGI Open Service Gateway Initiative 

OTT over-the-top 

PCI Peripheral Component Interconnect 

PCIe Peripheral Component Interconnect Express 

POC Proof of Concept 

PSNR Peak Signal-to-Noise Ratio  

QoE  Quality of Experience 

RAID Redundant Array of Independent Disks 

REST Representational State Transfer 

RFC Request For Comments 

RGW Residential Gateway 

RTP Real-time Transport Protocol 

SA Security Appliance 

SBC Session Border Controller 

SIMCO Simple Middlebox Configuration 

SIP Session Initiation Protocol 

SNMP Simple Network Management Protocol 



T-NOVA | Deliverable D5.32   Network Functions Implementation and Testing - Final 

© T-NOVA Consortium 
101 

Acronym Explanation 

SOM Self Organizing Maps 

SQL Structured Query Language 

SR-IOV Single Root I/O Virtualization 

SSH Secure Shell 

STB Set Top Box 

TSTV Time Shifted TV 

UTM Unified Threat Management 

vCPE virtualized customer premises equipment 

VF Virtual Firewall 

vHG Virtual Home Gateway 

VIM Virtual Infrastructure Manager 

VM Virtual Machine 

VNF Virtual Network Function 

VOD Video On Demand 

VQM Video Quality Metric  

vSA Virtual Security Appliance 

vSBC Virtual Session Border Controller 

XML Extensible Markup Language 

 

 



T-NOVA | Deliverable D5.32   Network Functions Implementation and Testing - Final 

© T-NOVA Consortium 
102 

10. ANNEX A: VSBC PERFORMANCE CHARACTERIZATION  

10.1. Identify the Test Environment 

10.1.1. vSBC scenario 

The scenario in which the vSBC operates is briefly summarized and discussed in the 

following sections. 

 vSBC – Architecture 10.1.1.1. 

The basic architecture of the virtualized SBC is depicted in the following figure. 

 
 

Figure 39 – Basic vSBC architecture 

 

The vSBC consists mainly of two VDUs:  

1. VDU1 performs the following functions: 

• Front-end/Load Balancer function (FE-LB): this function sends the incoming 

SIP signaling to the IBCF function 

• Interconnection Border Control Function (IBCF): this function manages the SIP 

signaling from the initial SIP Request (i.e: INVITE) to the final SIP Request (i.e: 
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BYE), covering all the typical call phases (i.e: setup, renegotiation, teardown, … 

etc) 

• Operating and Maintenance (O&M): it supervises the operating and 

maintenance functions of the VNF. The O&M component interacts (via HTTP) 

with the VNF manager for applying the T-NOVA lifecycle. 

2. VDU2 performs the following functions:  

• Border Gateway Function (BGF): this function handles NAT and/or 

Transcoding of RTP packets. 

 

 vSBC - Installation Server 10.1.1.2. 

The testbed is composed of: 

• Server HP ProLiant DL380 G5, single server equipped with 2 Processors Quad-

Core (8 CPU) Intel® Xeon® Processor E5335 (2.00 GHz, 80 Watts, 1333 FSB), 

Memory 32 GB. 

• CentOS (version 7.2) 

• Openstack (Liberty) 

 

 vSBC- Resource Utilization 10.1.1.3. 

The sizing of each single node (virtual machine), in terms of vCPU, RAM and HDD, is 

described below: 

VIRTUAL DEPLOYMENT UNIT RAM (Gb) vCPU HDD (Gb) 

VDU1  

(VM1:  FE-LB+ IBCF+ OEM) 

16 6 70 

VDU2  

(VM2: BGF1) 

4 8 64 

VDU2  

(VM3 : BGF2) 

4 8 64 

Table 3 – Sizing of each vSBC VDUs 

 

 vSBC - Traffic Generator 10.1.1.4. 

The Traffic Generators used to emulate SIP and Media flows towards the vSBC are: 

• Catapult (up to about 1500 sip and media concurrent calls)  

• SIPP (up to about 240 sip and media concurrent calls) 

• NeTracker (up to about 360 sip and media concurrent calls) 
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 vSBC - Network Connections 10.1.1.5. 

In the testbed each network connection can handle up to 1Gb/sec.  

The basic architecture of the network is depicted in the following figure. 

 

 

Figure 40 – vSBC network connections 

 

  vSBC - Traffic Generator Environment 10.1.1.6. 

The basic architecture of the test plan between the vSBC and the Traffic Generators 

(Catapult, or Sipp, or Netracker) is depicted in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41 – Test environment plan 
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10.2. Identify the Performance Acceptance Criteria 

10.2.1. vSBC scenario 

The estimated values of the CPU load, the memory usage and the network 

throughput at its maximum value, during the key usage scenarios, are shown in the 

following table: 

TRAFFIC TYPE TOTAL 

ACTIVE 

SESSIONS 

CHT 

[sec] 

CPS FE-LB+ 

IBCF+ 

OEM 

CPU 

LOAD  

[%] 

FELB+ 

IBCF+ 

OEM 

MEM. 

USAGE 

[GB] 

BGF  

CPU LOAD  

[%] 

BGF 

MEM. 

USAGE 

[GB] 

THR 

[bits/sec] 

SIP + 

NAT AUDIO 

g711-g711 

1000 120 8,33 15 14 35 3,5 45000 

SIP + 

TU AUDIO  

g711-g729 

360 120 3 10 14 55 3,5 11000 

SIP + 

TU VIDEO  

VP8-AVG 

10 30 5 

every 

30 

sec. 

5 14 90 3,5 8400 

SIP + NAT +  

TU AUDIO +  

TU VIDEO 

1000 

(847 NAT + 

150 TU AUDIO 

+ 3 TU VIDEO) 

120/3

0 

8,33 15 14 90 3,5 45000 

 Table 4 – vSBC estimated values of cpu load, memory usage and network 

throughput 
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10.3. Plan And Design of The Performance Tests 

10.3.1. vSBC scenario 

The key usage scenarios of the T-NOVA project are summarized in the following 

table. 

TRAFFIC 

TYPE 

TOT. 

SESS 

CHT 

[sec] 

CPS NUMBER 

OF SIP 

MSG 

TRANSPORT MEDIA 

CODEC 

PACK. 

PERIOD 

SIP FAILURE 

RATE 

TO 

COLLECT 

NONE  0 0 0 0 // // // // cpu load, 

memory 

usage, 

throughput 

SIP +  

NAT AUDIO  

1000 120 8,33 7 + 7 UDP g711-g711 20 ms <1*10-4 cpu load, 

memory 

usage, 

throughput 

SIP + 

 NAT AUDIO  

500 120 4,16 7 + 7 UDP g711-g711 20 ms <1*10-4 cpu load, 

memory 

usage, 

throughput 

SIP + 

 NAT AUDIO  

120 120 1 7 + 7 UDP g711-g711 20 ms <1*10-4 cpu load, 

memory 

usage, 

throughput 

TRAFFIC 

TYPE 

TOT. 

SESS 

CHT 

[sec] 

CPS NUMBER 

OF SIP 

MSG 

TRANSPORT MEDIA 

CODEC 

PACK. 

PERIOD 

SIP FAILURE 

RATE 

TO 

COLLECT 

SIP +  

TU AUDIO  

360 120 3 7 + 7 UDP g711-g729 20 ms <1*10-4 cpu load, 

memory 

usage, 

throughput 

SIP +  

TU AUDIO  

240 120 2 7 + 7 UDP g711-g729 20 ms <1*10-4 cpu load, 

memory 

usage, 

throughput 

SIP +  

TU AUDIO  

120 120 1 7 + 7 UDP g711-g729 20 ms <1*10-4 cpu load, 

memory 

usage, 

throughput 

TRAFFIC 

TYPE 

TOT. 

SESS 

CHT 

[sec] 

CPS NUMBER

OF SIP 

MSG 

TRANSPORT MEDIA 

CODEC 

PACK. 

PERIOD 

SIP FAILURE 

RATE 

TO 

COLLECT 

SIP + 

 TU VIDEO  

10 30 5 

every 

30 

sec. 

7 + 7 UDP VP8-AVC 20 ms <1*10-4 cpu load, 

memory 

usage, 

throughput 
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SIP +  

TU VIDEO  

5 30 5 

every 

30 

sec. 

7 + 7 UDP VP8-AVC 20 ms <1*10-4 cpu load, 

memory 

usage, 

throughput 

SIP +  

TU VIDEO  

1 30 5 

every 

30 

sec. 

7 + 7 UDP VP8-AVC 20 ms <1*10-4 cpu load, 

memory 

usage, 

throughput 

TRAFFIC 

TYPE 

TOT. 

SESS 

CHT 

[sec] 

CPS NUM. OF 

SIP MSG 

TRANSPORT MEDIA 

CODEC 

PACK. 

PERIOD 

SIP FAILURE 

RATE 

TO 

COLLECT 

SIP + NAT +  

TU AUDIO +  

TU VIDEO 

1000 

(620 

NAT + 

360 TU 

AUDIO 

+ 20 TU 

VIDEO) 

120/3

0 

8,33 7 + 7 UDP g711-g711 

+ 

g711-g729 

+ 

VP8-AVC 

20 ms <1*10-4 cpu load, 

memory 

usage, 

throughput 

SIP + NAT+  

TU AUDIO  

+ TU VIDEO 

500 

(398 

NAT+1

00 TU 

AUDIO 

+2 TU 

VIDEO) 

120/3

0 

4,16 7 + 7 UDP g711-g711 

+ 

g711-g729 

+ 

VP8-AVC 

20 ms <1*10-4 cpu load, 

memory 

usage, 

throughput 

SIP + NAT + 

TU AUDIO + 

TU VIDEO  

250 

(200 

NAT+5

0 TU 

AUDIO 

+1 TU 

VIDEO) 

120/3

0 

2,08 7 + 7 UDP g711-g711 

+ 

g711-g729 

+ 

VP8-AVC 

20 ms <1*10-4 cpu load, 

memory 

usage, 

throughput 

Table 5 -  vSBC - Key usage scenarios 
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10.4. Configure The Test Environment 

10.4.1. vSBC scenario 

Information about the test environment in Italtel’s laboratory is described below. 

1. vSBC sw info:  

 

• Test plant internal name p33i13a 

• Software version  (derived from product version of NM-S 2.8-00) 

• Patch list   

(CollectD: net-snmp-libs-5.5-54.el6_7.1.x86_64.rpm, libcollectdclient-5.4.1-

1.el6.x86_64.rpm, collectd-5.4.1-1.el6.x86_64.rpm, collectd.conf, types.db, 

types.db.custom, collectd-BGW.conf, send_data.sh) 

 

(Middleware API: NMS-VNF-MiddlewareApi.zip) 
 

(Cloud Init: cloud-init-0.7.4-2.el6.noarch.rpm, heat-cfntools-1.2.6-

2.el6.noarch.rpm, libyaml-0.1.5-1.el6.x86_64.rpm, python-argparse-1.2.1-

2.el6.noarch.rpm, python-backports-1.0-3.el6.x86_64.rpm, python-backports-

ssl_match_hostname-3.4.0.2-1.el6.noarch.rpm, python-boto-2.27.0-

1.el6.noarch.rpm, python-chardet-2.0.1-1.el6.noarch.rpm, python-cheetah-

2.4.1-1.el6.x86_64.rpm, python-configobj-4.6.0-3.el6.noarch.rpm, python-

jsonpatch-1.2-2.el6.noarch.rpm, python-jsonpointer-1.0-3.el6.noarch.rpm, 

python-ordereddict-1.1-2.el6.noarch.rpm, python-prettytable-0.7.2-

1.el6.noarch.rpm, python-psutil-0.6.1-1.el6.x86_64.rpm, python-requests-

1.1.0-4.el6.noarch.rpm, python-six-1.4.1-1.el6.noarch.rpm, python-urllib3-1.5-

7.el6.noarch.rpm, PyYAML-3.10-3.el6.x86_64.rpm)  

 

2. vSBC internal logical configuration 

 

 
 

Figure 42 - Internal Overview of logical configuration 

 

3. vSBC SIP Interfaces 
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Figure 43 - SIP Interfaces (address and port) 

 

4. vSBC Media Interfaces 

 

 
 

Figure 44 – Media Interfaces (address and port) 

 

5. vSBC SIP Peers 

 

  
Figure 45 – vSBC SIP Peers 
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Example of SIP Peers 

  

 

 
Figure 46 – Example of SIP Peer 

 

6. vSBC Domains 

  

 
Figure 47 – vSBC Domains 
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Example of vSBC Domain: 

 
 

Figure 48 – Example of vSBC Domains 

 

7. vSBC interconnection  

 

 
 

Figure 49 – vSBC interconnection 

Example of vSBC interconnection: 
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Figure 50 – Example of vSBC interconnection 

 

8. vSBC codec setting 
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Figure 51 – vSBC codec setting 

 

9. Load Generators info:  

• Catapult IP address  138.132.110.16:7 
-  Catapult scenario  /home/catapult/scenari/CI/NM-S-MLE-p33i13a 

-  Catapult traffic Type NAT-TU 

 

• SIPP IP address  138.132.110.16:7 
-  SIPP scenario    (./sipp -sf uac_scenario.xml -r 1 -bind_local -i 

172.22.103.12 -p 5060 172.26.46.66:5060 

-  ./sipp -sf uas_scenario.xml -rtp_echo -bind_local -i 172.22.225.12 -p 5060) 

-  SIPP traffic type  NAT-TU 

 

• Netracker IP address  138.132.110.223 
-  Netracker scenario  NMS-NAT-TU-p33i13a 

-  Netracker traffic type NAT-TU 

 

 

10. Measurement tools info: 
• pclServer tool Internal vSBC tool used to collect CPU and 

MEMORY usage and THR values 

• Load Generators Call failure rate, signalling message counters, 

media counters 
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10.5. Execute The Test 

10.5.1. vSBC scenario 

This chapter contains the reports of vSBC test in some typical network scenarios.   

 vSBC-Without-Traffic 10.5.1.1. 

Target: 

Measurement of the basic parameters (cpu load, memory usage and network throughput) of 

the vSBC without traffic. 

 

Further data:  

• Test Duration about 2 hours 

 

Results:    

NODE 

TYPE 

TOTAL 

ACTIVE 

SESSIONS 

CHT 

[sec] 

CPS CPU 

LOAD  

[%] 

MEM 

USAGE 

[GB] 

THR TX+RX 

ALL ETH 

[kB/s] 

TOTAL 

CALLS 

FAILED 

CALLS 

FAILURE 

RATE 

VM1: 

 FE-LB+ 

IBCF+OEM 

0 0 0 3,93 9,9 0 0 0 0 

VM2: 

 (VDU2 - 

BGF1) 

0 0 0 0,51 2,2 0 0 0 0 

Table 6 – vSBC Without-Traffic Results 

 

 vSBC-NAT-Traffic-1000-Active Calls 10.5.1.2. 

Target: 

Measurement of the basic parameters (cpu load, memory usage and network throughput) of 

the vSBC with traffic SIP calls and Media NAT traffic with 1000 Active Calls. 

 

Further data:  

• Test Duration about 2 hours 

• Traffic Type  NAT 

• Codec   G711-G711 

• Pack Period  20 msec 
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Results:   

NODE 

TYPE 

TOTAL 

ACTIVE 

SESSIONS 

CHT 

[sec.] 

CPS CPU 

LOAD  

[%] 

MEM. 

USAGE 

[GB] 

THR TX+RX 

ALL ETH 

[kB/s] 

TOTAL 

CALLS 

FAILED 

CALLS 

FAILURE 

RATE 

VM1: 

FE.LB + 

IBCF+OEM 

1000 120 8,33 7,08 9,9 66 40024 0 0 

VM2:  

(VDU2 - 

BGF1) 

1000 120 8,33 32,11 2,5 44800 40024 0 0 

Table 7 – vSBC NAT-Traffic-1000-Active-Calls Results 

 

 vSBC-NAT-Traffic-500-Active Calls 10.5.1.3. 

Target: 

Measurement of the basic parameters (cpu load, memory usage and network throughput) of 

the vSBC with traffic SIP calls and Media NAT traffic with 500 Active Calls. 

 

Further data:  

• Test Duration about 1 hour 

• Traffic Type  NAT 

• Codec   G711-G711 

• Pack Period  20 msec. 

 

Results:   

NODE 

TYPE 

TOTAL 

ACTIVE 

SESSIONS 

CHT 

[sec] 

CPS CPU 

LOAD  

[%] 

MEM 

USAGE 

[GB] 

THR TX+RX 

ALL ETH 

[kB/s] 

TOTAL 

CALLS 

FAILED 

CALLS 

FAILURE 

RATE 

VM1: 

 FE-LB+ 

IBCF+OEM 

500 120 4,16 5,35 9,5 33 14317 0 0 

VM2: 

(VDU2 -  

BGF1) 

500 120 4,16 15,31 1 22400 14317 0 0 

Table 8 – vSBC NAT-Traffic-500-Active Call Results 

 

 vSBC-NAT-Traffic-120-Active Calls 10.5.1.4. 

Target: 

Measurement of the basic parameters (cpu load, memory usage and network throughput) of 

the vSBC with traffic SIP calls and Media NAT traffic with 120 Active Calls. 

 

Further data:  
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• Test Duration about 1 hour 

• Traffic Type  NAT 

• Codec   G711-G711 

• Pack Period  20 msec 

 

Results:   

NODE 

TYPE 

TOTAL 

ACTIVE 

SESSIONS 

CHT 

[sec] 

CPS CPU 

LOAD  

[%] 

MEM 

USAGE 

[GB] 

THR TX+RX 

ALL ETH 

[kB/s] 

TOTAL 

CALLS 

FAILED 

CALLS 

FAILURE 

RATE 

VM1: 

FE-LB+ 

IBCF+OEM 

120 120 1 4,73 9,9 8 3971 0 0 

VM2:  

(VDU2 - 

BGF1) 

120 120 1 3,76 2,3 5200 3971 0 0 

Table 9- vSBC NAT-Traffic-120-Active Calls  Results 

 

 vSBC-TU-Audio-Traffic-360-Active Calls 10.5.1.5. 

Target: 

Measurement of the basic parameters (cpu load, memory usage and network throughput) of 

the vSBC with traffic SIP calls and Media TU Audio traffic with 360 Active Calls. 

 

Further data:  

• Test Duration about 2 hours 

• Traffic Type  TU AUDIO 

• Codec   G711-G729 

• Pack Period  20 msec 

 

Results:  

NODE 

TYPE 

TOTAL 

ACTIVE 

SESSIONS 

CHT 

[sec] 

CPS CPU 

LOAD  

[%] 

MEM. 

USAGE 

[GB] 

THR TX+RX 

ALL ETH 

[kB/s] 

TOTAL 

CALLS 

FAILED 

CALLS 

FAILURE 

RATE 

VM1: 

 FE-LB+ 

IBCF+OEM  

360 120 3 6,00 9,9 24 11314 0 0 

VM2: 

(VDU2 -  

BGF1) 

360 120 3 53,88 2,4 10500 11314 0 0 

   Table 10 - vSBC TU-Audio-Traffic-360-Active Calls  Results 

 

 vSBC-TU-Audio-Traffic-240-Active Calls 10.5.1.6. 

Target: 
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Measurement of the basic parameters (cpu load, memory usage and network throughput) of 

the vSBC with traffic SIP calls and Media TU Audio traffic with 240 Active Calls. 

 

Further data:  

• Test Duration about 2 hours 

• Traffic Type  TU AUDIO 

• Codec   G711-G729 

• Pack Period  20 msec 

 

Results:  

NODE 

TYPE 

TOTAL 

ACTIVE 

SESSIONS 

CHT 

[sec] 

CPS CPU 

LOAD  

[%] 

MEM 

USAGE 

[GB] 

THR TX+RX 

ALL ETH 

[kB/s] 

TOTAL 

CALLS 

FAILED 

CALLS 

FAILURE 

RATE 

VM1: 

FE-LB+ 

IBCF+OEM  

240 120 2 5,26 9,9 16 14769 0 0 

VM2:  

(VDU2 - 

BGF1) 

240 120 2 35,81 2,3 7000 14769 0 0 

Table 11 – vSBC TU-Audio-Traffic-240-Active Calls Results 

 

 vSBC-TU-Audio-Traffic-120- Active Calls 10.5.1.7. 

Target: 

Measurement of the basic parameters (cpu load, memory usage and network throughput) of 

the vSBC with traffic SIP calls and Media TU Audio traffic with 120 Active Calls. 

 

Further data:  

• Test Duration about 1 hours 

• Traffic Type  TU AUDIO 

• Codec      G711-G729 

• Pack Period     20 msec 

 

Results:   

NODE 

TYPE 

TOTAL 

ACTIVE 

SESSIONS 

CHT 

[sec] 

CPS CPU 

LOAD  

[%] 

MEM 

USAGE 

[GB] 

THR TX+RX 

ALL ETH 

[kB/s] 

TOTAL 

CALLS 

FAILED 

CALLS 

FAILURE 

RATE 

VM1: 

FE-LB+ 

IBCF+OEM 

120 120 1 4,54 9,9 8 3609 0 0 

VM2:  

(VDU2 - 

BGF1) 

120 120 1 16,58 2,2 3500 3609 0 0 

Table 12 – vSBC TU-Audio-Traffic-120-Active-Calls Results 
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 vSBC-TU-Video-Traffic-10-Active Calls 10.5.1.8. 

Target: 

Measurement of the basic parameters (cpu load, memory usage and network throughput) of 

the vSBC with traffic SIP calls and Media TU Video traffic with 10 Active Calls. 

 

Further data:  

• Test Duration about 1 hour 

• Traffic Type  TU VIDEO 

• Codec   VP8(VGA)-AVC(VGA) 

• Pack Period  20 msec 

• FPS   30 

 

Results:    

NODE 

TYPE 

TOTAL 

ACTIVE 

SESSIONS 

CHT 

[sec] 

CPS CPU 

LOA

D  

[%] 

MEM. 

USAGE 

[GB] 

THR 

[bits/sec] 

TOTAL 

CALLS 

FAILED 

CALLS 

FAILURE 

RATE 

VM1: 

 FE-LB+ 

IBCF+OEM 

10 30 

5 

every 

30 sec. 

5,02 10 3,5 1164 0 0 

VM2: 

 (VDU2 - 

BGF1) 

10 30 

5 

every 

30 sec. 

90,7

8 
2,5 8350 1164 0 0 

Table 13 – vSBC TU-Video-Traffic-10-Active-Calls Results 

 

 vSBC-TU-Video-Traffic-5-Active Calls 10.5.1.9. 

Target: 

Measurement of the basic parameters (cpu load, memory usage and network throughput) of 

the vSBC with traffic SIP calls and Media TU Video traffic with 5 Active Calls. 

 

Further data:  

• Test Duration about 2 hours 10 minutes 

• Traffic Type  TU VIDEO 

• Codec   VP8(VGA)-AVC(VGA) 

• Pack Period  20 msec 

• FPS   30 

 

 

Results:   

NODE 

TYPE 

TOTAL 

ACTIVE 

CHT 

[sec] 

CPS CPU 

LOA

MEM. 

USAGE 

THR 

[bits/sec] 

TOTAL 

CALLS 

FAILED 

CALLS 

FAILURE 

RATE 
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SESSIONS D  

[%] 

[GB] 

VM1:  

FE-LB+ 

IBCF+OEM 

5 30 

5 

every 

30 sec. 

5,02 10 1,8 1285 0 0 

VM2:  

(VDU2 - 

BGF1) 

5 30 

5 

every 

30 sec. 

48,2

4 
2,4 4200 1285 0 0 

Table 14 – vSBC TU-Video-Traffic-5-Active Calls Results 

 

 

 vSBC-TU-Video-Traffic-1-Active Calls 10.5.1.10. 

Target: 

Measurement of the basic parameters (cpu load, memory usage and network throughput) of 

the vSBC with traffic SIP calls and Media TU Video traffic with 1 Active Calls. 

 

Further data:  

• Test Duration about 1 hour 

• Traffic Type  TU VIDEO 

• Codec   VP8(VGA)-AVC(VGA) 

• Pack Period  20 msec 

• FPS   30 

 

 

Results:   

NODE 

TYPE 

TOTAL 

ACTIVE 

SESSIONS 

CHT 

[sec] 

CPS CPU 

LOA

D  

[%] 

MEM. 

USAGE 

[GB] 

THR 

[bits/sec] 

TOTAL 

CALLS 

FAILED 

CALLS 

FAILURE 

RATE 

VM1:  

FE-LB+ 

IBCF+OEM 

1 30 

5 

every 

30 sec. 

5,01 10 0,36 123 0 0 

VM2:  

(VDU2 - 

BGF1) 

1 30 

5 

every 

30 sec. 

9,64 2,4 850 123 0 0 

Table 15 – vSBC TU-Video-Traffic-1-Active Calls Results 

 

 

 vSBC-NAT-TU-Audio-TU Video-Traffic-1000-Active Calls 10.5.1.11. 

Target: 
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Measurement of the basic parameters (cpu load, memory usage and network throughput) of 

the vSBC with traffic SIP calls and Media NAT, TU Audio, TU Video traffic with 1000 Active 

Calls. 

 

Further data:  

• Test Duration about 3 hours 

• Traffic Type  TU AUDIO 

• Codec NAT  G711-G711 

• Codec TU AUDIO G711-G729 

• Codec TU VIDEO VP8(VGA)-AVC(VGA) 

• Pack Period  20 msec 

• FPS   30 

 

Results:   

NODE 

TYPE 

TOTAL 

ACTIVE 

SESSIONS 

CHT 

[sec] 

CPS CPU 

LOA

D  

[%] 

MEM 

USAGE 

[GB] 

THR 

[bits/sec] 

TOTAL 

CALLS 

FAILED 

CALLS 

FAILURE 

RATE 

VM1: 

FE-LB+ 

IBCF+OEM  

1000 (847 

NAT+150 TU 

AUDIO +3 TU 

VIDEO) 

120 

(NAT 

and 

TU 

AUDIO

) 30 

(TU 

VIDEO

) 

8,33 (7 

NAT + 

1,2 TU 

AUDI

O +1 

every 

30 sec. 

TU 

VIDEO 

7,71 10 64 83204 14 
1,68 * 10-

4 

VM2: 

 (VDU2 - 

BGF1) 

1000 (847 

NAT+150 TU 

AUDIO +3 TU 

VIDEO) 

120 

8,33 (7 

NAT + 

1,2 TU 

AUDI

O +1 

every 

30 sec. 

TU 

VIDEO 

84,3

2 
2,5 42000 83204 14 

1,68 * 10-

4 

Table 16 – vSBC NAT-TU Audio-TU-Video-Traffic-1000-Active Calls  Results 

 

 vSBC-NAT-TU-Audio-TU Video-Traffic-500-Active Calls 10.5.1.12. 

Target: 

Measurement of the basic parameters (cpu load, memory usage and network throughput) of 

the vSBC with traffic SIP calls and Media NAT, TU Audio, TU Video traffic with 500 Active Calls. 

Further data:  

• Test Duration about 1 hour and 30 minutes 

• Traffic Type  TU AUDIO 

• Codec NAT  G711-G711 

• Codec TU AUDIO G711-G729 

• Codec TU VIDEO VP8(VGA)-AVC(VGA) 

• Pack Period  20 msec 
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• FPS   30 

 

Results:   

NODE 

TYPE 

TOTAL 

ACTIVE 

SESSIONS 

CHT 

[sec] 

CPS CPU 

LOAD  

[%] 

MEM 

USAGE 

[GB] 

THR 

[bits/sec] 

TOTAL 

CALLS 

FAILED 

CALLS 

FAILURE 

RATE 

VM1: 

FE-LB+ 

IBCF+OEM  

500 (398 

NAT+100 TU 

AUDIO +2 TU 

VIDEO) 

120 

(NAT 

and 

TU 

AUDIO

) 30 

(TU 

VIDEO

) 

4,16 

(3,31 

NAT + 

0,83 TU 

AUDIO 

+1 every 

30 sec. 

TU 

VIDEO 

6,22 10 32 22883 0 0 

VM2: 

 (VDU2 - 

BGF1) 

500 (398 

NAT+100 TU 

AUDIO +2 TU 

VIDEO) 

120 

4,16 

(3,31 

NAT + 

0,83 TU 

AUDIO 

+1 every 

30 sec. 

TU 

VIDEO 

48,88 2,4 21500 22883 0 0 

Table 17 – vSBC NAT-TU-Audio-TU-Video-Traffic-500 Active Calls Results 

 

 vSBC-NAT-TU-Audio-TU Video-Traffic-250-Active Calls 10.5.1.13. 

Target: 

Measurement of the basic parameters (cpu load, memory usage and network throughput) of 

the vSBC with traffic SIP calls and Media NAT, TU Audio, TU Video traffic with 250 Active Calls. 

 

Further data:  

• Test Duration about 1 hour 30 minutes 

• Traffic Type  TU AUDIO 

• Codec NAT  G711-G711 

• Codec TU AUDIO G711-G729 

• Codec TU VIDEO VP8(VGA)-AVC(VGA) 

• Pack Period  20 msec 

• FPS   30 

 

Results:   

NODE 

TYPE 

TOTAL 

ACTIVE 

SESSIONS 

CHT 

[sec] 

CPS CPU 

LOA

D  

[%] 

MEM 

USAGE 

[GB] 

THR 

[bits/sec] 

TOTAL 

CALLS 

FAILED 

CALLS 

FAILURE 

RATE 

VM1: 

FE-LB+ 

250 (200 

NAT+50 TU 

AUDIO +1 TU 

120 

(NAT 

and 

TU 

2,08 

(1,66 

NAT + 

0,41 

5,03 10 16 11827 0 0 
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IBCF+OEM  VIDEO) AUDIO

) 30 

(TU 

VIDEO

) 

TU 

AUDI

O +1 

every 

30 sec. 

TU 

VIDEO 

VM2: 

 (VDU2 - 

BGF1) 

250 (200 

NAT+50 TU 

AUDIO +1 TU 

VIDEO) 

120 

2,08 

(1,66 

NAT + 

0,41 

TU 

AUDI

O +1 

every 

30 sec. 

TU 

VIDEO 

24,8

0 
2,4 10800 11827 0 0 

Table 18 – vSBC NAT-TU-Audio-TU-Video-Traffic-250-Active-Calls Results 
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10.6. Analyze The Obtained Results 

10.6.1. vSBC scenarios 

This paragraph contains some examples of load curves related to the CPU and 

Memory Usage and Network Throughput of the vSBC described in par. 3.2. 

 vSBC - CPU Load Curves 10.6.1.1. 

 

Figure 52 – CPU Load Curve (audio traffic with NAT) 

 

 

OEM-IBCF-LB (VDU1) BGW (VDU2)
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Figure 53 – CPU Load Curve (audio traffic with Trascoding) 

 

Figure 54 – CPU Load Curve (video traffic with Trascoding) 

 

 

Figure 55 – CPU Load Curve (audio traffic with NAT, audio and video traffic with Trascoding) 
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 vSBC - Memory Usage Load Curves 10.6.1.2. 

 

Figure 56 – Memory Usage Load Curve (audio traffic with NAT) 

 

 

Figure 57 – Memory Usage Load Curve (audio traffic with Transcoding) 
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Figure 58 – Memory Usage Load Curve (video traffic with Transcoding) 

 

 

Figure 59 – Memory Usage Load Curve (audio traffic with NAT ,video and audio traffic with 

Transcoding) 
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 vSBC - Network Throughput Load Curves 10.6.1.3. 

 

Figure 60 – Network Throughput Load Curve (audio traffic with NAT) 

 

 

Figure 61 –  Network Throughput Load Curve (audio traffic with Transcoding) 
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Figure 62 –  Network Throughput Load Curve (video traffic with Transcoding) 

 

 

Figure 63 –  Network Throughput Load Curve (audio traffic with NAT, video and audio traffic 

with Transcoding) 
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11. ANNEX B: VTU PERFORMANCE CHARACTERIZATION 

11.1. vTU Test Environment 

11.1.1. vTU Architecture 

The basic architecture of the virtual Transcoding Unit is depicted in the following 

picture: 

 

The vTU consist of a single vdu running: 

- the web interface, which exposes the user accessible folders and all the 

monitoring parameters (via Graphana interface); 

- the vTUdaemon, which manages the transcoding tasks; 

- one or more instances of libav’s avconv, the actual transcoder 

11.1.2. vTU installation server 

The testbed is composed by a single custom made server having the following 

specifications: 

- motherboard Intel S2600 CW 

- dual Intel Xeon CPU E5-2620 v3 hex-core running at 2.40GHz 

- 64GB DDR3 ram 

- NVidia GeForce GTX980 (2480 CUDA cores, 4GB GDDR5 memory) 

- Ubuntu Linux 14.04 LTS 
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11.1.3. vTU resource utilization 

Reference tests have been run without the virtualization layer, in order to fully 

evaluate the speed-up given by the GPU hardware acceleration. That means that this 

instance of the vTU has access to all the 12 cores, 64 GB of RAM and gains exclusive 

access to the only GPU card. 

The lack of the virtualization layer does not void the validity of the tests, since it has 

been proved that performance loss in virtualized environment having KVM as 

hypervisor is negligible, even for GPU-passthrough configurations. 

 

11.2. vTU Acceptance Criteria 

Despite being used as basic evaluation parameters for the acceptance criteria in most 

of the VNFs, it makes little to no sense using cpu load and network throughput as 

estimators for the vTU performances. 

Being video transcoding a quite cpu intensive task, while evaluating the vTU 

performances in non-virtualized environment it has been reported that CPU load 

rarely went below 100%, even for low resolution and low-bitrate video streams. 

Also, network throughput is not a good estimator since transcoding tasks are often 

performed keeping a constant bitrate which is user-definable, therefore bandwidth 

requirements may be estimated and known in advance by the user. 

Also, memory requirements do not vary between virtualized and non-virtualized 

environment, since each transcoding task uses a well-defined amount of memory for 

storing the required framebuffers. The required amount of memory is allocated at the 

beginning of each transcoding task and does not change while the task is running; 

moreover, the total amount of required memory is only dependent by the input and 

output file resolution, therefore may be estimated and known in advance. 

Instead, in real-time video encoding and transcoding, the peak and/or average 

number of processed frames per second is more meaningful regarding the 

performance of the task. 

 

In order to evaluate the vTU performance and identify an acceptance ratio for the 

average processed frames per second, several encodings have been made over 

increasing number concurrent sessions. We considered the most CPU demanding 

encoding which also supports the GPU hardware acceleration, that is VP8 encoding 

from raw YUV to webm (VP8 encoded). 

The avconv used in the vTU is based on version 11, and it is slightly modified in order 

to exploit the GPU accelerated libvpx VP8/9 encoding / decoding libraries. 

Source files were locally stored in order not to introduce latencies due to high 

bandwidth usage. Also, all the encoding sessions were targeted to obtain the best 

quality. 

 



T-NOVA | Deliverable D5.32   Network Functions Implementation and Testing - Final 

© T-NOVA Consortium 
131 

The following table summarizes the achieved FPS for 7 different encodings; all the 

concurrent session were single-treaded and pinned on a single core; values in the 

“total FPS” column are calculated as #frames * “total concurrent sessions” / encoding 

time. Since only one core performs the concurrent encodings, constant framerate is 

expected. 

 

Filename and 

resolution 

TOTAL 

CONCURRENT 

SESSIONS 

Total FPS 

(CPU only) 

Total FPS 

(CPU and GPU) 

Old Town Cross 

FullHD 

(1920 x 1080) 

100 frames 

1 

2 

3 

4 

6 

8 

10 

12 

14 

0.89 

0.89 

0.89 

0.89 

0.88 

0.87 

0.87 

0.87 

0.86 

1.03 

1.03 

1.03 

1.03 

1.03 

1.05 

1.03 

1.02 

1.02 

Pedestrian 

FullHD 

(1920 x 1080)  

100 frames 

1 

2 

3 

4 

6 

8 

10 

12 

14 

1.81 

1.80 

1.80 

1.80 

1.78 

1.76 

1.75 

174 

1.73 

2.03 

2.07 

2.08 

2.03 

2.15 

2.09 

2.08 

2.04 

2.05 

Rush Hour 

FullHD 

(1920 x 1080)  

100 frames 

1 

2 

3 

4 

6 

8 

10 

12 

14 

2.06 

2.06 

2.06 

2.06 

2.04 

2.02 

2.00 

1.99 

1.99 

2.31 

2.36 

2.36 

2.34 

2.35 

2.34 

2.33 

2.35 

2.33 

Tractor 

FullHD 

(1920 x 1080)  

100 frames 

1 

2 

3 

4 

6 

8 

10 

12 

14 

1.52 

1.52 

1.51 

1.49 

1.48 

1.47 

1.47 

1.46 

1.46 

1.99 

1.95 

2.01 

1.93 

1.86 

1.90 

1.89 

1.89 

1.89 

Crowd Run 

4K 

(3860 x 2140) 

50 frames 

1 

2 

3 

4 

6 

8 

10 

0.59 

0.59 

0.58 

0.58 

0.57 

0.56 

0.56 

0.67 

0.69 

0.67 

0.67 

0.66 

0.66 

0.66 
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12 

14 

0.56 

0.56. 

0.66 

0.65 

Ducks Take Off 

4K 

(3860 x 2140) 

50 frames 

1 

2 

3 

4 

6 

8 

10 

12 

14 

0.80 

0.80 

0.80 

0.79 

0.77 

0.76 

0.76 

0.76 

0.76 

0.97 

0.98 

0.98 

0.98 

0.96 

0.96 

0.95 

0.95 

0.95 

In To Tree 

4K 

(3860 x 2140) 

50 frames 

1 

2 

3 

4 

6 

8 

10 

12 

14 

0.82 

0.82 

0.82 

0.81 

0.80 

0.79 

0.79 

0.79 

0.79 

1.05 

1.08 

1.07 

1.07 

1.07 

1.07 

1.07 

1.06 

1.06 

 

 

The following table summarizes the achieved FPS for same encodings of the previous 

table; this time, all the concurrent session were single-treaded, but each thread were 

pinned to a different core, except for the 14 concurrent sessions, due to lack of free 

cores (tests were run on a dual hex-core system); again, values in the “total FPS” 

column are calculated as #frames * “total concurrent sessions” / encoding time. 

 

Filename and 

resolution 

TOTAL 

CONCURRENT 

SESSIONS 

Total FPS 

(CPU only) 

Total FPS 

(CPU and GPU) 

Old Town Cross 

FullHD 

(1920 x 1080) 

1 

2 

3 

4 

6 

8 

10 

12 

14 

0,89 

1,76 

2,56 

3,29 

4,94 

6,61 

7,71 

9,25 

6,51 

1,03 

2,01 

2,66 

3,51 

5,30 

6,97 

8,23 

9,66 

7,34 

Pedestrian 

FullHD 

(1920 x 1080) 

1 

2 

3 

4 

6 

8 

10 

12 

14 

1,81 

3,58 

5,19 

6,65 

10,03 

13,36 

15,56 

18,67 

13,41 

2,04 

3,98 

5,26 

6,90 

10,46 

13,27 

16,35 

18,82 

15,01 

Rush Hour 1 2,07 2,31 
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FullHD 

(1920 x 1080) 

2 

3 

4 

6 

8 

10 

12 

14 

4,08 

5,92 

7,60 

11,43 

15,28 

17,75 

21,17 

15,64 

4,54 

6,20 

8,10 

11,96 

15,74 

18,20 

21,97 

16,98 

Tractor 

FullHD 

(1920 x 1080) 

1 

2 

3 

4 

6 

8 

10 

12 

14 

1,53 

3,02 

4,35 

5,61 

8,46 

11,27 

13,13 

15,72 

11,42 

1,99 

3,87 

4,78 

6,27 

9,12 

12,01 

13,99 

16,72 

13,13 

Crowd Run 

4K 

(3860 x 2140) 

1 

2 

3 

4 

6 

8 

10 

12 

14 

0,59 

1,16 

1,67 

2,13 

3,22 

4,30 

4,99 

5,99 

4,38 

0,67 

1,31 

1,74 

2,23 

3,32 

4,36 

5,03 

5,98 

4,62 

Ducks Take Off 

4K 

(3860 x 2140) 

1 

2 

3 

4 

6 

8 

10 

12 

14 

0,80 

1,58 

2,26 

2,89 

4,36 

5,73 

6,72 

8,04 

5,81 

0,97 

1,88 

2,55 

3,25 

4,89 

6,35 

7,36 

8,72 

6,52 

In To Tree 

4K 

(3860 x 2140) 

1 

2 

3 

4 

6 

8 

10 

12 

14 

0,41 

0,81 

1,17 

1,49 

2,25 

3,00 

3,49 

4,18 

3,03 

0,52 

1,03 

1,41 

1,80 

2,70 

3,56 

4,02 

4,81 

3,74 

 

The acceptance rate will be the 90% of minimum FPS per core achieved on the tests. 

 

11.3. vTU Plan and Design Test 

Test in virtualized environment were designed to match at the best of our possibility 

the non-virtualized experiment run on non-virtualized machine. The same version of 
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the vTU and os (including the same NVidia video driver version) were used, as well as 

the same batch of input video files. 

The following table summarizes the test performed in the Demokritos testbed: 

Filename and 

resolution 

Assigned 

VCPUs 

TOTAL CONCURRENT 

SESSIONS 

Total FPS 

(CPU only) 

Total FPS 

(CPU + GPU) 

All of the above 1 1 

2 

3 

4 

 

To be collected To be collected 

All of the above 2 1 

2 

3 

4 

 

To be collected To be collected 

All of the above 3 1 

2 

3 

4 

 

To be collected To be collected 

All of the above 4 1 

2 

3 

4 

 

To be collected To be collected 

 

11.4. vTU Test Enviroments 

Hardware configuration of the host machine in the Demokritos testbed is slightly 

different than the server used in the first experiments: 

- Intel i7-4790 quad-core running at 3.60GHz 

- 16GB DDR3 memory 

- NVidia Quadro M4000 (1664 CUDA cores, 8GB GDDR5 memory) 

- Ubuntu Linux 14.05 LTS 

- KVM Hypervisor 

- Openstack 

- VM: variable number of vCPU, 4GB RAM, 20GB Hdd, PCI pass-through 

enabled for bypassing the virtualization layer while accessing the graphic 

accelerator 

 

11.5. vTU Test Execution 

Below, the summary of the test execution: 
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Filename and 

resolution 

Assigned 

VCPUs 

TOTAL 

CONCURRENT 

SESSIONS 

Total FPS 

(CPU only) 

Total FPS 

(CPU and GPU) 

Old Town Cross 

FullHD 

(1920 x 1080) 

1 1 

2 

3 

4 

1.14 

1.16 

1.15 

1.16 

1.23 

1.30 

1.29 

1.28 

Pedestrian 

FullHD 

(1920 x 1080) 

1 1 

2 

3 

4 

2.19 

2.22 

2.33 

2.30 

2.57 

2.58 

2.58 

2.64 

Rush Hour 

FullHD 

(1920 x 1080) 

1 1 

2 

3 

4 

2.48 

2.65 

2.64 

2.64 

2.72 

2.86 

2.97 

2.84 

Tractor 

FullHD 

(1920 x 1080) 

1 1 

2 

3 

4 

1.88 

2.00 

1.93 

1.95 

2.21 

2.43 

2.32 

2.32 

Crowd Run 

4K 

(3860 x 2140) 

1 1 

2 

3 

4 

0.70 

0.72 

0.72 

0.63 

0.75 

0.79 

0.80 

0.81 

Ducks Take Off 

4K 

(3860 x 2140) 

1 1 

2 

3 

4 

0.91 

0.95 

0.90 

0.95 

1.10 

1.15 

1.12 

1.18 

In To Tree 

4K 

(3860 x 2140) 

1 1 

2 

3 

4 

0.50 

0.52 

0.52 

0.51 

0.60 

0.64 

0.65 

0.66 

 

Filename and 

resolution 

Assigned 

VCPUs 

TOTAL 

CONCURRENT 

SESSIONS 

Total FPS 

(CPU only) 

Total FPS 

(CPU and GPU) 

Old Town Cross 

FullHD 

(1920 x 1080) 

2 1 

2 

3 

4 

1.14 

2.24 

2.04 

2.10 

1.23 

2.35 

2.42 

2.41 

Pedestrian 

FullHD 

(1920 x 1080) 

2 1 

2 

3 

4 

2.19 

4.01 

4.37 

4.44 

2.57 

4.81 

4.83 

4.93 

Rush Hour 

FullHD 

(1920 x 1080) 

2 1 

2 

3 

4 

2.48 

4.97 

5.13 

4.93 

2.72 

5.41 

5.52 

5.76 

Tractor 

FullHD 

2 1 

2 

3 

1.88 

3.47 

3.43 

2.21 

4.20 

4.38 
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(1920 x 1080) 4 3.66 4.09 

Crowd Run 

4K 

(3860 x 2140) 

2 1 

2 

3 

4 

0.70 

1.39 

1.39 

1.38 

0.75 

1.40 

1.42 

1.47 

Ducks Take Off 

4K 

(3860 x 2140) 

2 1 

2 

3 

4 

0.91 

1.92 

1.81 

1.81 

1.10 

2.05 

2.12 

2.17 

In To Tree 

4K 

(3860 x 2140) 

2 1 

2 

3 

4 

0.50 

1.00 

0.99 

0.99 

0.60 

0.64 

1.11 

1.21 

 

Filename and 

resolution 

Assigned 

VCPUs 

TOTAL 

CONCURRENT 

SESSIONS 

Total FPS 

(CPU only) 

Total FPS 

(CPU and GPU) 

Old Town Cross 

FullHD 

(1920 x 1080) 

3 1 

2 

3 

4 

1.14 

2.24 

3.12 

2.19 

1.23 

2.35 

3.20 

2.44 

Pedestrian 

FullHD 

(1920 x 1080) 

3 1 

2 

3 

4 

2.19 

4.01 

5.89 

4.31 

2.57 

4.81 

6.15 

4.61 

Rush Hour 

FullHD 

(1920 x 1080) 

3 1 

2 

3 

4 

2.48 

4.97 

6.85 

4.89 

2.72 

5.41 

7.60 

5.89 

Tractor 

FullHD 

(1920 x 1080) 

3 1 

2 

3 

4 

1.88 

3.47 

5.14 

3.81 

2.21 

4.20 

5.95 

4.56 

Crowd Run 

4K 

(3860 x 2140) 

3 1 

2 

3 

4 

0.70 

1.39 

1.73 

1.39 

0.75 

1.40 

1.90 

2.19 

Ducks Take Off 

4K 

(3860 x 2140) 

3 1 

2 

3 

4 

0.91 

1.92 

2.28 

1.87 

1.10 

2.05 

2.88 

2.08 

In To Tree 

4K 

(3860 x 2140) 

3 1 

2 

3 

4 

0.50 

1.00 

1.40 

0.95 

0.60 

0.64 

1.56 

1.18 

 

Filename and 

resolution 

Assigned 

VCPUs 

TOTAL 

CONCURRENT 

SESSIONS 

Total FPS 

(CPU only) 

Total FPS 

(CPU and GPU) 
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Old Town Cross 

FullHD 

(1920 x 1080) 

4 1 

2 

3 

4 

1.14 

2.24 

3.12 

3.04 

1.23 

2.35 

3.20 

3.73 

Pedestrian 

FullHD 

(1920 x 1080) 

4 1 

2 

3 

4 

2.19 

4.01 

5.89 

6.78 

2.57 

4.81 

6.15 

7.92 

Rush Hour 

FullHD 

(1920 x 1080) 

4 1 

2 

3 

4 

2.48 

4.97 

6.85 

7.76 

2.72 

5.41 

7.60 

9.09 

Tractor 

FullHD 

(1920 x 1080) 

4 1 

2 

3 

4 

1.88 

3.47 

5.14 

5.99 

2.21 

4.20 

5.95 

6.27 

Crowd Run 

4K 

(3860 x 2140) 

4 1 

2 

3 

4 

0.70 

1.39 

1.73 

1.85 

0.75 

1.40 

1.90 

2.02 

Ducks Take Off 

4K 

(3860 x 2140) 

4 1 

2 

3 

4 

0.91 

1.92 

2.28 

2.91 

1.10 

2.05 

2.88 

3.13 

In To Tree 

4K 

(3860 x 2140) 

4 1 

2 

3 

4 

0.50 

1.00 

1.40 

1.67 

0.60 

0.64 

1.56 

1.71 

 

11.6. vTU Results 

Below the curve of the average achievable FPS per core for each video resolution: 
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12. VNF DESCRIPTOR EXAMPLES  

The example below provides the case of a single VNF, composed of one VNFC(VDU). 

The VNF functionality is basically a PROXY server with content filtering and user 

groups support.  

{ 

  "provider_id": 4, 

  "vdu": [ 

    { 

      "resource_requirements": { 

        "network_interface_bandwidth_unit": "", 

        "hypervisor_parameters": { 

          "version": "10002|12001|2.6.32-358.el6.x86_64", 

          "type": "QEMU-KVM" 

        }, 

        "memory_unit": "GB", 

        "network_interface_card_capabilities": { 

          "SR-IOV": true, 

          "mirroring": false 

        }, 

        "storage": { 

          "size_unit": "GB", 

          "persistence": false, 

          "size": 32 

        }, 

        "network_interface_bandwidth": "", 

        "platform_pcie_parameters": { 

          "SR-IOV": true, 

          "device_pass_through": true 

        }, 

        "vcpus": 1, 

        "vswitch_capabilities": { 

          "version": "2.0", 

          "type": "ovs", 

          "overlay_tunnel": "GRE" 

        }, 

        "data_processing_acceleration_library": "", 

        "memory": 1, 

        "memory_parameters": { 

          "large_pages_required": false, 

          "numa_allocation_policy": "" 

        }, 

        "cpu_support_accelerator": "AES-NI" 

      }, 

      "vm_image": "http://10.10.1.167:8080/NFS/files/PXaaS-180216.qcow2", 
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      "vm_image_format": "qcow2", 

      "networking_resources": "", 

      "monitoring_parameters_specific": [ 

        { 

          "metric": "httpnum", 

          "unit": "INT", 

          "desc": "Number of HTTP requests received by Squid" 

        }, 

        { 

          "metric": "hits", 

          "unit": "%", 

          "desc": "Cache hits percentage of all requests for the last 5 minutes" 

        }, 

        { 

          "metric": "hits_bytes", 

          "unit": "%", 

          "desc": "Cache hits percentage of bytes sent for the last 5 minutes" 

        }, 

        { 

          "metric": "memoryhits", 

          "unit": "%", 

          "desc": "Memory hits percentage for the last 5 minutes (hits that are logged as 

TCP_MEM_HIT)" 

        }, 

        { 

          "metric": "diskhits", 

          "unit": "%", 

          "desc": "Disk hits percentage for the last 5 minutes (hits that are logged as 

TCP_HIT)" 

        }, 

        { 

          "metric": "cachediskutilization", 

          "unit": "%", 

          "desc": "Cache disk utilization" 

        }, 

        { 

          "metric": "cachememkutilization", 

          "unit": "%", 

          "desc": "Cache memory utilization" 

        }, 

        { 

          "metric": "usernum", 

          "unit": "INT", 

          "desc": "Number of users accessing the proxy" 

        }, 

        { 

          "metric": "cpuusage", 
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          "unit": "%", 

          "desc": "CPU consumed by Squid for the last 5 minutes" 

        } 

      ], 

      "id": "vdu0", 

      "alias": "proxy", 

      "controller": true, 

      "connection_points": [ 

        { 

          "vlink_ref": "vl0", 

          "id": "CPzc4j" 

        }, 

        { 

          "vlink_ref": "vl1", 

          "id": "CPv41w" 

        }, 

        { 

          "vlink_ref": "vl2", 

          "id": "CP796o" 

        } 

      ], 

      "monitoring_parameters": [ 

        { 

          "metric": "httpnum", 

          "unit": "INT", 

          "desc": "Number of HTTP requests received by Squid" 

        }, 

        { 

          "metric": "hits", 

          "unit": "%", 

          "desc": "Cache hits percentage of all requests for the last 5 minutes" 

        }, 

        { 

          "metric": "hits_bytes", 

          "unit": "%", 

          "desc": "Cache hits percentage of bytes sent for the last 5 minutes" 

        }, 

        { 

          "metric": "memoryhits", 

          "unit": "%", 

          "desc": "Memory hits percentage for the last 5 minutes (hits that are logged as 

TCP_MEM_HIT)" 

        }, 

        { 

          "metric": "diskhits", 

          "unit": "%", 
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          "desc": "Disk hits percentage for the last 5 minutes (hits that are logged as 

TCP_HIT)" 

        }, 

        { 

          "metric": "cachediskutilization", 

          "unit": "%", 

          "desc": "Cache disk utilization" 

        }, 

        { 

          "metric": "cachememkutilization", 

          "unit": "%", 

          "desc": "Cache memory utilization" 

        }, 

        { 

          "metric": "usernum", 

          "unit": "INT", 

          "desc": "Number of users accessing the proxy" 

        }, 

        { 

          "metric": "cpuusage", 

          "unit": "%", 

          "desc": "CPU consumed by Squid for the last 5 minutes" 

        }, 

        { 

          "metric": "processes_blocked", 

          "unit": "INT", 

          "desc": "Blocked Processes" 

        }, 

        { 

          "metric": "processes_paging", 

          "unit": "INT", 

          "desc": "Paging Processes" 

        }, 

        { 

          "metric": "processes_running", 

          "unit": "INT", 

          "desc": "Running Processes" 

        }, 

        { 

          "metric": "processes_sleeping", 

          "unit": "INT", 

          "desc": "Sleeping Processes" 

        }, 

        { 

          "metric": "processes_stopped", 

          "unit": "INT", 

          "desc": "Stopped Processes" 
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        }, 

        { 

          "metric": "processes_zombie", 

          "unit": "INT", 

          "desc": "Zombie Processes" 

        } 

      ], 

      "vm_image_md5": "90f23ff2b1146e0a6a088ac1a96b7975", 

      "scale_in_out": { 

        "minimum": 1, 

        "maximum": 1 

      } 

    } 

  ], 

  "name": "PXaaS", 

  "created_at": "2016-03-09T09:55:14Z", 

  "modified_at": "2016-03-09T09:55:14Z", 

  "vlinks": [ 

    { 

      "leaf_requirement": "Unlimited", 

      "connectivity_type": "E-LAN", 

      "vdu_reference": [ 

        "vdu0" 

      ], 

      "external_access": true, 

      "connection_points_reference": [ 

        "CPzc4j", 

        "CPzc4j" 

      ], 

      "access": true, 

      "alias": "management", 

      "root_requirement": "Unlimited", 

      "dhcp": true, 

      "id": "vl0", 

      "qos": "" 

    }, 

    { 

      "leaf_requirement": "Unlimited", 

      "connectivity_type": "E-LINE", 

      "vdu_reference": [ 

        "vdu0" 

      ], 

      "external_access": true, 

      "connection_points_reference": [ 

        "CPv41w", 

        "CPv41w" 

      ], 
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      "access": false, 

      "alias": "data_in", 

      "root_requirement": "Unlimited", 

      "dhcp": false, 

      "id": "vl1", 

      "qos": "" 

    }, 

    { 

      "leaf_requirement": "Unlimited", 

      "connectivity_type": "E-LINE", 

      "vdu_reference": [ 

        "vdu0" 

      ], 

      "external_access": true, 

      "connection_points_reference": [ 

        "CP796o", 

        "CP796o" 

      ], 

      "access": false, 

      "alias": "data_out", 

      "root_requirement": "Unlimited", 

      "dhcp": false, 

      "id": "vl2", 

      "qos": "" 

    } 

  ], 

  "trade": true, 

  "descriptor_version": "1", 

  "deployment_flavours": [ 

    { 

      "vdu_reference": [ 

        "vdu0" 

      ], 

      "constraint": "", 

      "flavour_key": "gold", 

      "vlink_reference": [ 

        "vl0", 

        "vl1", 

        "vl2" 

      ], 

      "id": "flavor0", 

      "assurance_parameters": [ 

        { 

          "violation": [ 

            { 

              "interval": 360, 

              "breaches_count": 2 
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            } 

          ], 

          "value": 100, 

          "penalty": { 

            "type": "Discount", 

            "expression": 20, 

            "validity": "P1D", 

            "unit": "INT" 

          }, 

          "formula": "httpnum GT 100", 

          "rel_id": "param0", 

          "id": "httpnum", 

          "unit": "INT" 

        } 

      ] 

    } 

  ], 

  "version": "1", 

  "vnf_lifecycle_events": [ 

    { 

      "authentication_username": "root", 

      "authentication": 

"AAAAB3NzaC1yc2EAAAABIwAAAQEAklOUpkDHrfHY17SbrmTIpNLTGK9Tjom/BWDS

U\nGPl+nafzlHDTYW7hdI4yZ5ew18JH4JW9jbhUFrviQzM7xlELEVf4h9lFX5QVkbPppSw

g0cda3\nPbv7kOdJ/MTyBlWXFCR+HAo3FXRitBqxiX1nKhXpHAZsMciLq8V6RjsNAQwd

sdMFvSlVK/7XA\nt3FaoJoAsncM1Q9x5+3V0Ww68/eIFmb1zuUFljQJKprrX88XypNDvjY

Nby6vw/Pb0rwert/En\nmZ+AW4OZPnTPI89ZPmVMLuayrD2cE86Z/il8b+gw3r3+1nKa

tmIkjn2so1d01QraTlMqVSsbx\nNrRFi9wrf+M7Q==", 

      "authentication_port": 22, 

      "vnf_container": "/opt/proxy", 

      "events": { 

        "start": { 

          "command": "service proxy start", 

          "template_file": "{}", 

          "template_file_format": "JSON" 

        }, 

        "stop": { 

          "command": "service proxy stop", 

          "template_file": "{}", 

          "template_file_format": "JSON" 

        } 

      }, 

      "flavor_id_ref": "flavor0" 

    } 

  ], 

  "billing_model": { 

    "price": { 
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      "min_per_period": 10, 

      "max_per_period": 20, 

      "setup": 20, 

      "unit": "EUR" 

    }, 

    "model": "PAYG", 

    "period": "P7D" 

  }, 

  "provider": "TEIC", 

  "release": "T-NOVA", 

  "type": "vPXAAS", 

  "id": 1004, 

  "description": "PXaaS Desc" 

} 

 


