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Executive Summary

This deliverable reports the implementation of the seven Virtual Network Functions
(VNFs) developed in T-NOVA. The VNF descriptions reported here must be
considered the final ones, therefore they update and eventually correct the ones
contained in the previous version of this Deliverable, namely [D5.31]. This document
also discusses the final version of the VNF Descriptor (VNFD), thus updating the
information reported in the previous Deliverable [5.31]. The T-NOVA VNFD was
designed and adopted within the project in line with ETSI guidelines and is publicly
released to be reused by the NFV community.

The VNFs developed in T-NOVA are the following:

» Security Appliance

» Session Border Controller

* Video Transcoding Unit

e Traffic Classifier

* Home gateway

* Proxy as a Service

* FPGA-based H.264 Decoder.

Such VNFs span a very wide area of the Network Function domain, and can thus
represent, from a developer's perspective, a set of highly significant implementation
use cases, in which many aspects related to network function virtualization have been
effectively tackled. In the VNFs presented in this document different technologies
have been adopted by developers. Most VNFs, in fact, take advantage of various
contributions coming from the open source community, such as [SNORT], or exploit
recent technological advances, such as [DPDK], SR-IOV [Walters], general purpose
Graphical Processing Units [CUDA], or Field Programmable Gate Arrays (FPGAs).

In addition, this final deliverable provides practical information useful to function
developers, most of it related to the most significant implementation issues
encountered in the development phase. The practical lessons learnt during
implementation by T-NOVA developers have been summarized in a specific section.
Also, a discussion about the scaling mechanism adopted in T-NOVA is included.
Finally, this document provides guidelines for the VNF characterization, as a result of
the activities carried out in Task 5.4. The results obtained in the VNF performance
tests are reported and discussed. A thorough characterization of two specific VNFs,
i.e. the vSBC and the vTU, is reported in details in Annex A and B, as meaningful and
complete examples of application of the guidelines developed in Task 5.4.
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1. INTRODUCTION

This document contains the final description of the Virtual Network Functions (VNFs)
developed in the T-NOVA project. In particular, seven different VNFs are discussed,
covering a wide range of applications, which are:

» Virtual Security Appliance;

* Virtual Session Border Controller;

* Virtual Transcoding Unit;

» Traffic Classifier;

» Virtual CDN/Virtual Home Gateway;
* Proxy as a Service;

* FPGA-based H.264 decoder.

For each VNF, architectural and functional descriptions are provided, along with the
technologies used and the internal/external interfaces. In addition, guidelines to
characterize the VNF performance are given, as a result of the activities carried out in
Task 5.4. The results obtained in the tests are summarized for every VNF.

Function providers who want to develop new VNFs compatible with the T-NOVA
framework can use them as guideline examples. To offer practical guidelines to
developers, a specific section about the practical lessons learnt during the T-NOVA
development phase has been introduced. The final versions of the specific VNFs
developed in T-NOVA are described.

The structure of the document is the following.
Section 2 presents the T-NOVA VNF Descriptor in its final version.

Section 3 presents the final version of the description of the seven VNFs developed in
T-NOVA. Such descriptions should be considered the final versions, and therefore
they update all the information contained in previous documents.

Section 4 is focused on the scaling approach implemented in T-NOVA. A general
description is first given in sub-section 3.1; then, in 3.2 and 3.3 the scaling procedures
implemented by two different VNFs, namely the vSBC and the vHG/vCDN are
presented and discussed.

Section 5 reports the lessons learnt by developers during the various phases of the
project, in particular related to the most innovative aspects considered in T-NOVA,
such as the use of different types of HW accelerators and their impact on VNFs.

Section 6 presents the guidelines for the performance characterization of VNF,
developed in Task 5.4 of T-NOVA WP5. A thorough application of such guidelines is
described in Annex A and B, which report the results obtained in the testing phase of
two VNFs, namely the vSBC and the vTU.

Finally, Section 7 draws the final conclusion and summarizes the main results
reported in this document.
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1.1. Dependency on previous documents

This report contains the research, design and implementation results and ideas
developed in the WP5 “Network Functions” work-package of the T-NOVA project.
This work-package has mainly taken inputs from WP2, “System Specification” and in
particular from T2.5 “Specification of Network Function framework”. The inputs to
WP5 about Network Functions are summarized in the T-NOVA deliverable [D2.41].
The activities carried out within WP5 have been described in the previous deliverables
[D5.01] and [D5.31]. Thus, the information reported in this deliverable updates and
eventually corrects the one contained in the previous version of this deliverable,
namely [D5.31]. This document also discusses the final version of the VNF Descriptor
(VNFD), thus updating the information reported in [D5.31]. Other documents of
interest for this deliverable are [D2.1], about T-NOVA use cases and requirements,
[D2.21] for the information related to the overall T-NOVA architecture, [D4.01] and
[D4.1], about infrastructure virtualization, and [D6.1], related to the T-NOVA
Marketplace.

© T-NOVA Consortium
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2. THE VNF DESCRIPTOR

This section describes the VNF Descriptor, or simply the VNFD, designed and
adopted in T-NOVA, in line with ETSI guidelines.

2.1. VNF Descriptor (VNFD)

The VNFD plays an important role in the proper deployment of a particular VNF in
the NFVI by the NFVO, as well as in the portability of the VNF to NFVI variants. A
preliminary description of the VNFD was given in D5.31. This section presents the
final version of the T-NOVA VNFD (also available in the T-NOVA repository, at
https://github.com/T-NOVA/NFVdescriptors). The figure below (Figure 1) presents
the generic structure of the information model for the description of the VNF
properties as is specified by ETSI and the currently supported model by T-NOVA.
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©VNF @ForwardingGraph @VirtuaILinks ©VNF @ForwardingGraph ©\ﬁrtualLinks

1 1
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@\NFC ©VNFC

Figure 1 T-NOVA versus ETSI model

As it can be observed T-NOVA adapted ETSI model by simplifying the VDU — VNFC
mapping. In this view, the assumption that every VNFC (VNF component) equals to
one and only one Virtual Deployment Unit (VDU - as well-known as Virtual Machine
(VM) in the cloud terminology). This decision is justified by the current implemented
VNFs from T-NOVA that are based on VMs and not on Containers (i.e. Docker).
However, the model and the relevant mechanisms can be easily extended to support
many VNFC to VDU models.

The detailed structure of the VNFD is illustrated in the following (Figure 2). The figure
presents the main classes used in the VNF descriptor information model. The classes
are detailed furthermore in the following subsections.
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2.1.1. VNFD Preamble

The VNFD preamble provides the necessary information for the release, id, creation,
provider etc. T-NOVA extents the information with Marketplace related information
such as trading and billing.

Listing 1 VNF Preamble

VNFD Preamble

field Description Example

Release Information, this field “0.2"

indicates  the  supported
release release scheme for the VNFD

structure expected to be used

from the parser

UUID of the VNFD file 624
appended to the VNFD during

Id the upload at the NFStore.
Provides a unique
identification the VNFD file

provider VNF Provider (FP) name "PTL"

ID of the FP as allocated by 21

provider_id the T-NOVA Marketplace
name VNF Name “PXaaS”
VNF description "The function identifies, classifies and
description forwards network traffic according to
policies”
descriptor_version VNFD version 0.1
version VNF version 0.2

Calculated by the NFStore fa8773350c4c236268f0bd7807c8a3b2
during upload

N, Signals the type of the VNF i.e. L2
P L2 or L3

created_at Date VNFD was created 2015-12-18T21:15:477

manifest_file_md5

2.1.2. Virtual Deployment Unit (VDU)

The VDU segment of the descriptor provides information about the required
resources that will be utilised in order to instantiate the VNFC. The configuration of
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this part may be extremely detailed and complex depending on the platform specific
options that are provided by the developer. However, it should be noted that the
more specific are the requirements stated here the less portable the VNF might be,
depending on the NFVO policies and the SLA specifications. It is assumed that each
VDU describes effectively the resources required for the virtualisation of one VNFC.

The listing below (Erreur ! Source du renvoi introuvable.) presents the VDU section
of the VNFD focusing on the IT resources and platform related information. Other
fields may also be noted such as: i) Lifecycle events — where the drivers for interfacing
with the VNF controller are defined as well as the appropriate commands allocated to
each lifecycle event; ii) scaling — defining the thresholds for scaling in-out; and iii)
VNFC related subsection where the networking and inter-VNFC Virtual Links are
defined.

© T-NOVA Consortium
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Listing 2 VDU Descriptor section

vdu
field Description Example
VDU id "vdu0”
Id
) Alias used to refer to this vdu “tc_core_vm”
alias
vm image Location of the vm image "http://store.t-
-mag nova.eu/NCSRDv/TC_ncsrd.v.022.qcow"
vm_image_md5 VM image MD5 hash "a5e4533d63f71395bdc7debd0724f433"
Image format. NFStore should store this (Allowed “gqcow?2”
vm_image_format values: ami, ari, aki, vhd, vmdk, raw, qcow2, vdi,
iso)
resource_requirement {} Array of vdu resource requirements
Hypervisor_parameters {} Hypervisor parameters array
Version Hypervisor version 10002|12001|2.6.32-358.el6.x86_64
Type Hypervisor type QEMU-KVM
network_interface_bandwidth_unit ~ Units used for the bandwidth Mbps
network_interface_bandwidth Network interface bandwidth (10/100/1000) 100
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network_interface_card_capabilities{}

SR-IOV
Mirroring

Device_pass_through
Storage{}

Size_unit

Persistence

Size

Vcpus
Vswitch_capabilities{}
Version

Type

Overlay_tunnel
memory
Memory_parameters {}

Large_pages_required

© T-NOVA Consortium

check the QoS fields too
Array of network interface card capabilities

True/False for SR-IOV usage

True/False if mirroring on multiple ports is

requested

True/False if pass_through will be configures

Storage resources array

Unit used to declare size

True/false if persistence storage is used
Disk Size

Number of virtual CPU cores

Vswitch capabilities array

Vswitch version

Vswitch type (e.g. OVS or Linux Bridge etc)
Tunneling used for the virtual networks
Memory size in GB

Memory parameters array

False/true for large page support

True

false

True

GB
False

32

2.0
Ovs
GRE

False
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Numa_allocation_policy NUMA allocation policy (VMA, Task/Process etc)
CPU_support_accelerator CPU acceleration support

data_processing_acceleration_library Acceleration library support

© T-NOVA Consortium

None
AES-NI
DPDK
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2.1.3. VNFC section

This section of VNFD is related to the internal structure of the VNF and describes the
connection points of the VDU (name id, type) and the virtual links where they are
connected. The above information is illustrated in the provide VNFD listing below
(Erreur ! Source du renvoi introuvable.).

Listing 3 VNFC section of the VDU section

VNFC

id VNF component id VduO:vnfcO
alias VNFC alias Proxy
controller Check if this is the controlling VNFC True

connection_points {}  Array of connection points

Reference for the vlink where the connection vl0

- vlink_ref point belongs

- id Connection point ID CPzc4j

The above information is parsed and translated to HEAT template that the NFVI VIM
based on Openstack (NOVA/Neutron Services) is able to parse and provide
accordingly the required networks.

2.1.4. Virtual Links (vlinks) section.

This section is used to specify the internal to the VNF virtual links that are employed
by the developer in order to create the internal networking topology among the
components used to build the VNF. Although the Function Provider in T-NOVA is free
to select his own internal structure to service the requirements of his VNF, T-NOVA
additionally imposes a limited set of virtual segments mandatory for the proper
deployment of the VNF in T-NOVA PoPs. Thus some of the vlinks that are specified
here are actually connecting the VNFC to those mandatory networks. The virtual
networks that should be defined by the FP are:

- Management network, also used for the transfer of monitoring data

- Data-in network (in case in/out is preferred to be done by different virtual
interfaces)

- Data-out network, the network used for the exit traffic from the VNF

- Storage network, the network used for storage traffic (i.e. iscsi)

The vlink section is illustrated in the following listing (Listing 4)
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Listing 4 vlink section of VNFD

Vlinks {}
Id Virtual Link ID vIO
Connectivity_type E-LINE/E-LAN/E-TREE E-LINE

Reference the VDU ids (comma vduO
Vdu_reference [] separated). Those VDU are
connected via this vlink

Signal the access to ublic True
External_access 9 P

internet
Connection_points_reference Array of connection points “CPv41w","CPv41w"
Access Access to the internel false
Dhcp DHCP allocated addresses False
Qos {} QoS specific values (not used)

Leaf rate (unlimited or a specific unlimited

Leaf_requirement
rate)

Root rate (unlimited or a specific unlimited

Root_requirement
-feq rate)

For full review of the VNFD JSON format file, reader is welcomed to run through the
Annexes included in this document. An annotated example is included.
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3. T-NOVA VNFs

In the following, the final description of the VNFs developed in T-NOVA is reported.

3.1. Virtual Security Appliance

3.1.1. Introduction

A Security Appliance (SA) is a “device” designed to protect computer networks from
unwanted traffic. This device can be active and block unwanted traffic. This is the case
for instance of firewalls and content filters. A security Appliance can also be passive.
Here, its role is simply detection and reporting. Intrusion Detection Systems are a
good example. A virtual Security Appliance (vSA) is a SA that runs in a virtual
environment.

In the context of T-NOVA, we have suggested a virtual Security Appliance (vSA)
composed of a firewall, an Intrusion Detection System (IDS) and a controller that links
the activities of the firewall and the IDS. The vSA high level architecture was discussed
in details in [D5.01].

3.1.2. Architecture

The idea behind the vSA is to let the IDS Analyze the traffic targeting the service and
if some traffic looks suspicious, the controller takes a decision by, for instance,
revising the rules in the firewall and block this traffic.

The architecture of this appliance is depicted in Figure 3 and includes the following
main components.

Management
Network
virtual Security VSA Monitoring Monitoring
Appliance (vSA) Controller Agent Server

Internal FW
A Controller

N

Public Network

ssa83

Ingregs
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Figure 3. vSA high-level architecture

3.1.3. Functional description

The components of the architecture are the following:

Firewall: this component is in charge of filtering the traffic towards the
service.

Intrusion Detection System (IDS): in order to improve attack detection, a
combination of a packet filtering firewall and an intrusion detection system
using both signatures and anomaly detection is considered. In fact, Anomaly
detection IDS has the advantage over signature based IDS in detecting novel
attacks for which signatures do not exist. Unfortunately, anomaly detection
IDS suffer from high false-positive detection rate. It is expected that
combining both arts of detection will improve detection and reduce the
number of false alarms. In T-NOVA, the open source signature based IDS
[SNORT] is being used and will be extended to support anomaly detection as
well. The mode of operation of the IDS component was also discussed in
deliverable [D5.01];

FW Controller: this application looks into the IDS "alerts repository" and
based on the related information, the rules of the firewall are revised. Figure 4
depicts a part of the FW Controller code.

© T-NOVA Consortium
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CONTROLLER_LOG_FILE = */var/log/vsa-controller"
LOGGER_NAME = “vsa-comtroller”
LOG_FORMAT = "u{asctime)s | %(name)s | %{levelpame)s: %(message)s"

Ficlass Controller(object):

é—. def _ init_ (self, logger, snort_log_dir=""/var/log/snort™, snort_classification_conf="/usr/Local /etc/snort/classification.config”, interface='wan'):
&

£
# get th t log file
log_file : dir{snort_log_dir), reverse=True)[0]
logger.info('Using snort log file: %s' % log_file)
self.event_reader = unified2. SpoolEventReader(snort_log_dir, Tog_file, follow=True)
self.classification_map = maps.ClassificationMap (open(snort_classification_conf, "r*))

4] self.interface = interface

CE—I def create_fw_rule(self, interface, ip_to_block):

=
a' to hlock traffic from 'ip to block
hould be blocked
=]
self.logger.info ("Blocking {0:s} on imterface {1:s}".format(ip_to block, interface))
ret_code = subprocess.call(["easyrule', *block’, interface, ip_to_block])
if ret_code = 1:
=] self,logger.error('Failed to create blocking rule')
E‘ def monitor_events(self):
for event in self.event_reader:
if event['priority'] <= 2:
] self.create_fw_rule(self interface, event['source-ip']})

Sidef main():

# 1¢
logger = logging.getLogger (LOGGER_NAME)

file_log = logging.FileHandler (CONTROLLER_LOG FILE)
log_level = logging.DEBUG

logger.setlevel (log_level)
file_log.setlevel({log_level)

formatter = logging.Formatter(LOG_FORMAT)
file_log.setFormatter(formatter)

logger. addHandler{file_log)

controller = Controller(logger)

(2] controller.monitor_events()
if _ name_ == "_main_":
main() !

Figure 4. A sample of code of the FW Controller

* Monitoring Agent: this is a script that reports to the monitoring server the
status of the VNF through some metrics such as (Number of errors coming in/
going out of the wan/lan interface of pfsense, Number of bytes coming in/
going out of the wan/lan interface of pfsense, CPU usage of snort, Percent of
the dropped packets, generate by snort, etc);

* VSA controller: this is the application in charge of the vSA lifecycle.

3.1.4. Interfaces

The different components of the architecture interact in the following way,

1. data packets are first of all filtered by the firewall (ingress interface) before
being forwarded to the service (egress interface);
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2. filtered data packets are sniffed by the IDS for further inspection (internal
interface). The IDS will monitor and analyze all the services passing through
the network;

3. data packets go through a signature based procedure. This will help in
detecting efficiently well know attacks such as port scan attacks and TCP SYN
flood attacks;

4. If an attack is detected at this stage, an alarm is generated and the firewall is
instructed to revise its rules (internal interface);

5. If no attack is detected, no further action is required.

In addition to that, there are two extra interfaces: the first one is in charge of the vSA
lifecycle management, and the second one monitors the status of the vSA and sends
the related information to the monitoring server.

3.1.5. Technologies

As performance is one of the main issues when deploying software versions of
security appliances, we started by providing a short evaluation of firewalls software
that could run in virtual environments. The idea was not to go through all the
relevant existing software but just the most popular ones that could be extended to
fulfill the use case requirements. This evaluation was described in [D5.01]. It turns out
that the open source firewalls that are richer and more complete are Vyatta VyOS and
pfSense (please refer to [D5.01] for more details). In addition to that, VyOS seems to
support REST APIs for configuration which are important in the integration with the
rest of the T-NOVA framework.

These two options were also evaluated from the performance point of view and the
results are discussed in [D5.01]. Based on this assessment, the pfSense firewall
seemed to be the best option to be used within the vSA.

3.1.6. Dimensioning and Performance

To study the performance of firewalls, appropriate metrics are needed. Although the
activities in this area are very scarce, we described in D5.01, potential metrics that
could be used. This includes, throughput, latency, jitter, and goodput.

3.1.6.1. Testbed setup

For simplicity reasons, we have used Iperf [IPERF] for generating IP traffic in our tests.
In fact, other IP traffic generators such as [DITG], [Ostinato], and IPTraf [IPTR] could
have also been utilized. Iperf mainly generates TCP and UDP traffic at different rates.
Diverse loads (light, medium, heavy) and different packet sizes are also considered.
For analyzing IP traffic, we used "tcpdump” for capturing it and “tcptrace” to
analyze it and generate statistics. The main difference with respect to the tests
performed in [D5.01] is the fact that in this paper, the tests are performed on a
cloud computing platform (not simply in VirtualBox) namely, Openstack. This
also enables to test some networking functionalities of OpenStack as the latter does

© T-NOVA Consortium
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not offer much freedom and flexibility on arbitrary traffic steering. Similarly, to
[D5.01], the undertaken tests are based on three main scenarios,

» Scenario one (No firewall): Here, we configure and check the connectivity
between the Iperf client and the virtual proxy without a firewall in between. This
enables us to test the capacity of the communication channel

= Scenario two (TCP traffic with firewall and no rules): Here, we check whether the
introduction of the vSA (in particular, the firewall in between) generates extra
delay. We also test the capacity of the vSA in this context

» Scenario three (with firewall and increasing number of rules): the objective of this
scenario is to study the effect of introducing rules into the firewall of the vSA. To
achieve this scenario, a script for the firewall is implemented in order to generate
rules in an automatic way. The script is a shell script using specific API commands
and generate blocking rules for random source IP addresses (excluding those
used in the test setup) and the WAN interface. Here, the easyrule function of
pfsense is extended. In this scenario, some tests are also performed using UDP
instead of TCP

Banwidth (PFSense + Pxaas on Openstack)

900
800
=
OO
B
a
o B0OO0
d
w
i 500
d
t
h 400
i
n 300
M
E 200
1
t
S 100
0
o 20 40 &0 B0 100 120

# Parallel connections

—— PFSense + no fur rules + Pxaas xb
—— PFSense +3000 fw rules + Pxaas x5
Only Pxaas Firewall disabled x5

Figure 5. vSA throughput

When no firewall is used between the Iperf client and the virtual proxy, one can note
that the throughput of the communication remains good (between 700 and 800
Mbit/s) as long as the number of 60 parallel connections is not exceeded. When the
VSA (in particular the firewall) is in between, the throughput varies between 700 and
750 Mbit/s as long as the number of parallel connections does not exceed 20
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connections. When the number of connections goes beyond the value 60, the
throughput for the vSA without firewall rules decreases slowly to reach 580 Mbit/s
when 100 connections are opened (Figure 5). This situation becomes worse when
rules are configured on the firewall. Indeed, the throughput decreases to 480 Mbit/s
when 3000 rules are configured and 100 connections are opened (Figure 5).

These results were included in a paper that was recently submitted to the Wiley
Security and Communication Networks Journal.

3.2. Session Border Controller (SBC)

3.2.1. Introduction

A Session Border Controller (SBC) is typically a standalone device providing network
interconnection and security services between two IP networks. It operates at the
edge of these networks and is used whenever a multimedia session involves two
different IP domains. It performs:

» the session control on the “control” plane, adopting SIP as a signalling protocol;
» several functions on the "media” plane (i.e: transcoding, transrating, NAT, etc),
adopting Real time Transport Protocol (RTP) for the multimedia content delivery.

The virtual SBC (vSBC) is the VNF implementing the SBC service in T-NOVA virtualized
environment, and it is a prototyped version of the commercial product that Italtel is
developing for the NFV market.

General requirements for vSBC comprise both essential features such as IP to IP
network interconnection, SIP signalling proxy, Media flow NAT, RTP media support,
and also advanced requirements such as SIP signalling manipulation, real-time audio
and/or video transcoding, Topology hiding, Security gateway, IPv4-IPv6 gateway,
generation of metrics, ... etc.. Since our goal in the T-NOVA project was to study the
structure and the lifecycle of the vSBC by means of a meaningful prototype, we
mainly focused on its essential features and on a subset of its advanced requirements
(i.e: IPv4-IPv6 gateway; real-time audio and/or video transcoding for mobile and fixed
network; metrics generation; ..... etc).

3.2.2. Architecture

The basic architecture of the virtualized SBC is depicted in Figure 6.

© T-NOVA Consortium
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Figure 6 - Basic vSBC internal architecture

The basic vSBC consists mainly of:

» four Network Function: FE-LB, IBCF, BGF and O&M (described in detail below)

« one Management interface (T-Ve-Vnfm). It transports the HTTP commands of
T-NOVA lifecycle from the VNFM to the O&M component

« one Monitoring Interface. The monitoring data produced by the internal
VNFCs (i.e: IBCF and BGF), are collected by the O&M and are cyclically sent to
the T-NOVA Monitoring Manager. See also Task 4.4 (Monitoring and
Maintenance) for further details

« one Signaling interface (based on SIP protocol)

« one Media interface (based on RTP/RTCP protocols).

3.2.3. Functional description

1) Front End-Load Balancer (FE-LB): it is the front end of the vSBC and it balances the
incoming SIP messages, forwarding them to the appropriate IBCF instance.

2) Interconnection Border Control Function (IBCF): it implements the control function
of the SBC. It analyzes the incoming SIP messages, and handles the
communication between disparate SIP end-point applications. The IBCF extracts
from incoming SIP messages the information about media streams associated to
the SIP dialog, and instructs media plane components (BGF) to process them. It
can also provide:
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- SIP message adaptation or modification, enabling in this way the
interoperability between the interconnected domains

- topology hiding. The IBCF function hides all incoming topological information
to the remote network

- monitoring data related to the SIP signalling (i.e: number of confirmed SIP
sessions; ... etc). The IBCF function can send this information to the T-NOVA
Monitoring Agent

- other security features.

3) Border Gateway Function (BGF): it processes media streams, applying transcoding
and transrating algorithms when needed. The transcoding transforms the
algorithm used for coding the media stream, while the transrating changes the
sending rate of IP packets carrying media content. This feature is used whenever
the endpoints of the media connection support different codecs, and it is an
ancillary function for an SBC because, in common network deployments, only a
limited subset of media streams processed by the SBC need to be transcoded.
The BGF is controlled by the IBCF using the internal BG ctrl interface (see Figure
6). The BGF component can also provide metrics to the T-NOVA Monitoring
Agent related to the media flow, for example: number of incoming/outgoing RTP
packets or octects; latency (maximum and average value); jitter (maximum and
average value); RTP frame loss; number of incoming/outgoing transcoding and
transrating procedures; ..... etc

4) Operating and Maintenance (O&M): it supervises the operating and maintenance
functions of the vSBC and interacts (via HTTP) with the VNF manager, using the T-
Ve-Vnfm interface depicted in Figure 6, for applying the T-NOVA lifecycle.

3.2.4. Interfaces

The most relevant internal and external interfaces depicted in Figure 6 are:

1) Management Interface (T-Ve-Vnfm): it is used to transport the HTTP commands of
the T-NOVA lifecycle (i.e: start, stop, destroy, scale in/out, etc). It's supported by
the O&M component;

2) Monitoring Interface: the monitoring data produced by the internal VNFCs (i.e:
IBCF and BGF) are collected by the O&M and cyclically sent to the T-NOVA
Monitoring Manager;

3) Signalling interface: it is based on SIP protocol. It carries also the SDP protocol
containing the media information (i.e: Ip addresses/port, codecs, ... etc)
exchanged during the Offer/Answer negotiation;

4) Media interface: it is based on RTP/RTCP protocol and it carries the audio/video
packets of SIP sessions handled by the vSBC;

5) BG ctrl: this internal interface instructs the Border Gateway Function (BGF) to
perform media transcoding/transrating procedures.
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3.2.5. Technologies

The vSBC utilizes various technologies in order to offer a stable and high
performance VNF, compliant to the high standards of legacy physical networks.

The development of the vSBC is based on the use of:

* Linux operating system
* KVM hypervisor

» Cand Java language for its internal functions (i.e: IBCF, BGF, O&M, ....)

» Collectd (it periodically collects generic performance statistics of the Virtual
Machine, such as CPU and memory utilization)

»  FFMPEG libraries (for G.711 a/u, G.722 audio codecs)

e  FFMPEG + VISUALON libraries (for G722.2 audio codec)

e INTEL-IPP libraries (for G.729 audio codec)

e OPUS libraries (for OPUS audio codec)

»  FFMPEG + X.264 libraries (for H.264 video codec)

o LIBVPX libraries (for VP8 video codec)

These various technologies/libraries used generate a great variety of test case
scenarios, as described in par. 10.5.1.

3.2.6. Dimensioning and Performance

The vSBC performances can be monitored using the metrics generated either by its
internal components (i.e: IBCF or BGF) or by the Collectd daemon of each Virtual
Machine. See also [D4.41] for further information. For example:

1. monitoring data related to the control plane: total number of SIP
sessions/transactions

2. monitoring data related to the media plane: incoming/outgoing RTP data
throughput, RTP frame loss, latency, inter-arrival jitter, number of
transcoding/transrating procedures, ... etc

3. base monitoring data: percentage of memory consumption, percentage of CPU
utilization, ... etc

These monitoring data are strongly affected by:

* packet sizes;

» kinds of call (i.e: audio or video calls);

» audio/video codecs (i.e: H.264, VP8, ...);
* transport protocols (i.e: UDP or TCP).

The vSBC performance are described in par. 10.6. The IBCF and BGF components
provide market sensitive performances; for example the IBCF can support up to 1000
simultaneous SIP  sessions, while the BGF up to 20 simultaneous
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transcoding/transrating operations. In the commercial product each component size
will be associated to a license fee.

3.2.7. vSBC testing

These kind of tests have been carried out:

» Creation of a VNF Descriptor (VNFD) for the vSBC using the Marketplace GUI

* Creation of a HEAT template (Hot) for the vSBC

» Instantiation of the vSBC

* Support of the T-NOVA lifecycle, using a HTTP REST-based interface and a basic
access authentication. These events were tested:

- Start (via http POST command)

- Stop (via http PUT command) *

- Destroy (via http DELETE command)
- Scale-in (via http PUT command)

- Scale-out (via http PUT command).

« Generation of basic audio sessions (without transcoding), using the most
common audio codecs (i.e: G711, G729, ...);

« Generation of basic video sessions (without transcoding), using the most
common video codecs (i.e: H248, VPS8, ...);

« Generation of audio sessions with transcoding (for example G711 <-> G729);

« Generation of video sessions with transcoding (for example H248 <-> VP8). The
requested transcoding may be mono-directional (i.e: audio/video stream
distribution) or bidirectional (i.e.: videoconferencing applications). The
encoding/decoding procedures must be handled in a real-time way (at least 30
fps) and with a fixed frame-rate during the whole video session.

« Scale-in scenario;
« Scale-out scenario.

Some general guidelines to describe how to test the vSBC are described in par. 6.1.

The methodology used to execute the Performance testing and to evaluate the
obtained measurements by means of load curves are described in par. 10.5 and in
par. 10.6.

These vSBC performances may be further improved in a commercial product by
means of :

» the usage of HW accelerators (GPU). In fact the pure software implementation, in
some scenarios such as the video transcoding, may be complemented by
acceleration technologies able to guarantee a real time transcoding and a fixed

! Note: this lifecycle event will be handled in an immediate or graceful mode
according to a specific vSBC internal data.
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video-rate during the whole video session. Graphic Processing Units (GPU's)
represent a very appealing solution owing to their high computation performance
(one or two order of magnitude faster than a general purpose CPU) and relatively
low cost. Different types of commercial GPU board, hosted in a PCle bay, are
already available for this scope (i.e: Nvidia GPU). Further information about GPUs
and the gain offered by them can be found in in par. Erreur ! Source du renvoi
introuvable. and in par. 3.3

» the implementation of a new front-end function based on DPDK acceleration
technology (available in Intel x86 architectures), whose goal is to provide high
speed in processing the addressing information in the header of the IP packet,
leaving untouched the payload. This new function is instructed by the IBCF
function, acting as an internal controller. Using a new internal interface it can:

- provide the packet forwarding towards the BGF function (in case of
transcoding)
- apply a local Network Address Translation (NAT)/port translation.

3.3. Video Transcoding Unit

3.3.1. Introduction

The vTU provides the transcoding function for the benefit of many other VNFs for
creating enhanced services.

3.3.2. Architecture

3.3.2.1. Functional description

The core task of the Video Transcoding Unit is to convert video streams from one
video format to another. Depending on the applications, the source video stream
could originate from a file within a storage facility, as well as coming in from of a
packetized network stream from another VNF. Moreover, the requested transcoding
could be mono-directional, as in applications like video stream distribution, or bi-
directional, like in videoconferencing applications.

Video > 2 < —
source J CODER

S@E—ES—aa g
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Figure 7. Functional description of the vTU

Having this kind of applications in mind, it is clear that the most convenient overall
architecture for this Unit is a modular architecture, in which the necessary encoding
and decoding functionalities are deployed as plug-in within a “container” Unit taking
care for all the communication, synchronization and interfacing aspects. In order to
find a convenient approach for the development of the vTU architecture, an
investigation has been carried out, about the state of the art of any available software
framework that could be usefully employed as starting point for this architecture. This
investigation has identified avconv, the open-source audio-video library under Linux
environments (https://libav.org/avconv.html), as the best choice for the basic
platform for the vTU, as it is open-source, it is modular and customizable, and it
contains most of the encoding/decoding plug-ins that this VNF could need.

In order to define the functionalities that best fit to the needs of the target
applications for the vTU, a survey has been carried out, searching for the most
diffused video formats that should therefore be present as encoding/decoding
facilities in the vTU. This analysis has shown that the following video formats should
be primarily considered:

« ITU-T H.264 (aka AVC)
+ Google's VP8

and the following ones would be also highly desirable, especially in the future:

« ITU-T H.265 (aka HEVC)
« Google's VP9.

Once the video formats of interest are defined, the whole panorama of the available
codecs have been considered and evaluated, in order to identify tools which could be
successfully employed in the Unit and those which could be possibly used as
development basis. A synthesis of the available panorama is shown in the following
table:

Encode Decode
H264 VP8 H265 VPg

avconv (libav.org) ED ED ED ED -
openh264 (CISCO) ED =

X264 | X265 (videolan.org) E E GPU/ MMX [ SSEx
JM (Fraunhofer — HHI) ED ED =

NVenc (NVIDIA) E E GPU + ad-hoc HW
cuVid (NVIDIA) D GPU

The analysis evidenced that the choice of avconv as the starting development
framework is most appropriate in terms of already-available codecs.
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From the point of view of performance, however, avconv could be unable to fulfil the
needs of the vTU, as all the endoders/decoders provided therein do not make any
use of HW acceleration facilities. Performance, in terms of encoding/decoding speed,
is actually of crucial importance in the vTU, as in all online applications, a fixed video
frame-rate must be guaranteed during the whole video session.

For this reason, a performance analysis of all available codecs has been carried out.
Several of them, in fact, are able to exploit hardware acceleration facilities, like GPU's
or MMX/SSEx instructions, whenever they are available. The tests have been carried
out considering a typical scenario for the underlying hardware infrastructure: a Xeon
server with 8 cores (2 x 4-cores) Xeon E5-2620v3, equipped with GPU facility (1
NVIDIA GeForce GTX 980). Several video test sequences have been considered, at the
most common resolutions. The obtained results, in terms of achieved
encoded/decoded frames per second, are summarized in the following tables, for PAL
(576x720 pixel), 720p (1280x720), HD (1920x1080) and 4k (3840x2160) resolutions:

PAL Fncooen Pecooen HD 720p Fucooea recooea
T20x576 : fps 1280x720 fps fps
264 CPU IWCONVFFMPEG 500 5 VCONVFFMPEG 143
H.264 .
GPU @

H264 b26s CPUSGPU

264 CPU+ASM
264 CPU+ASM«+

149
852

VP9 px (webm) 1 CPY 2 pefix (wobm) 1 CPU 0
px (wobm) 4 CPU bvpx (webm) 4 CPU P 101
px (webm) 8 CPU bvpx (webm) 8 CPU

HEVC 5 CPU+ASM 65 CPU+ASM

NC NC

best performance using MMX/SSE more efficient than
ad-hoc GPU resources (traditionally used) GPU
Full HDO ENCODER DECODER 4k ENCODER DECODER
1920x1080 fps fps 38402160 fps fps
n2es |X284CPU 13 |AveONY 5 264 |X2s4cCPU AVCONY 68
X264 CPU+GPU X264 CPUGPU :
X264 CPU+ASM 63 X264 CPU+ASM
X264 CPUTASM+GPU 66 X264 CPU*ASM+GPU
Fraunhofer Fraunholer ! Fraunholer Fraurtofer
NVENC @ Cuvio 4 NVENC CuviD

82 P Rvpx (webm) 1 CPU Wvpe (wedem) ]
55 Rvpx (webm) 4 CPU

Rvpx (webm) 8 CPU

Rvpx (webm) 8 CPU

vPE Rvpx (webm) 1 CPU
Rvpx (webm) 4 CPU

ovpn (webem) 12

vPe Rvpx (wobm) 1 CPU 2
4 Mvpx 15

Rvpx (webm) 4 CPU
Rrvpx (webm) 8 CPU Kl

HEVC | X265 CPU+ASM

We need a HW-accelerated VP8 encoder GPU is necessary

Based on the obtained results, the following observations can be drawn:

« As expected, encoding is much more time-consuming than decoding. On
average, decoding is approximately 20 times faster than encoding, for the
same format. The consequence is that encoders represent the bottleneck to
performance in a vTU. For what decoding concerns, the tested tools have
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performed faster than 30 fps in all situations, at least for H264 and VP8
standards, which are those currently use;

« Hardware-accelerated tools are not only providing much better performance
than CPU-based ones, as visible in the tables for all resolutions, but is
necessary in some cases, e.g. for 4k resolutions, where standard algorithms
are not able to reach 30 fps encoding speed and therefore could not support
a real-time transcoding session;

« As highlighted in the first table, different hardware accelerators can be
successfully exploited to speed-up the encoding process — not only GPU’s. In
particular, X264 performs significantly better using Assembly-level
optimizations which exploit SIMD instructions (MMX/SSE), than delegating
computation to GPU cores.

This is due to the fact that encoding/decoding algorithms cannot be massively
parallelized, for two main reasons: a) there are strong sequential correlations and
many spatial/temporal dependencies within the computation, and b) the limited
extent of parallelism needed in all situations where data parallelism could be applied
(e.g. computing DCT/IDCT for a macroblock). Nevertheless, the huge computing
power of modern GPU’s makes it reasonable to focus the research effort towards the
development of GPU-accelerated encoding algorithms, able to efficiently exploit the
potential of all available cores. Therefore, as shown in the table above, the first goal
on which we focus is the development of a GPU-accelerated encoder for the VP8
standard video format.

3.3.3. Interfaces

As described in Section 2.4.2.1, the Virtual Transcoding Unit (vTU) is a VNF that,
during its normal operation, receives an input video stream, transcodes it and
generates an output video stream in the new format. For each transcoding job, the
vTU also needs to receive a proper job description, in which all necessary information
is provided, like, for instance, information on the video format of the input stream
and on the desired video format for the output stream, the identification and
definition of the input/output data channels (e.g. IP addresses and ports, in case of
network streams, or file ID within a storage facility, for file-generated streams).

For these reasons, the vTU needs, at its inner level, to communicate through three
interfaces, as Figure 8 shows:

» Input port, receiving the video stream to transcode;

* Output port, producing the transcoded video stream;

» Control port, receiving the job descriptor and, implicitly, the command to
start the job.
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Job description
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Figure 8. vTU low level interfaces

Through the Control interface, the vTU receives the job descriptor, which contains all
necessary information to start the requested transcoding task. The starting command
is implicit in the reception of the job description message: when such a message is
received on the Control port, the vTU starts listening at the Input port and begins the
transcoding task, according to the received description, as soon as the first stream
packets are received.

The format of the job description message is XML based. The general structure of the
message is shown in Figure 9. This format allows to define all necessary parameters,
such as the desired input and output video formats and the I/O stream channels
(files, in this case, but they could as well identify network channels sending/receiving
RTP packets).

<vTU>
<in>
<local>
<stream> test.y4dm </stream>
</local>
<rstp>
<ip/>
<port/>
<stream/>
<timeout/>
<[rstp>
<codec>
<vcodec/>
<acodec/>
</codec>
</in>
<out>
<local>
<overwrite>  y</overwrite>
<stream> out_test.h264  </stream>
</local>
<rstp>
<ip/>
<port/>
<stream/>
<timeout/>
<[rstp>
<codec>
<vcodec> h264 </vcodec>
<acodec/>
</codec>
</out>
<NNTU>

Figure 9. XML structure of the vTU job description message
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3.3.4. Technologies

In the virtualization context, the problem of virtualizing a GPU is now well-known,
and can be stated as follows: a guest Virtual Machine (VM), running on a hardware
platform provided with GPU-based accelerators, must be able to concurrently and
independently access the GPU's, without incurring in security issues
[Walters],[Maurice]. Many techniques to achieve GPU virtualization have been
presented. However, all the proposed methods can be divided in two main
categories, which are usually referred to as API remoting [Walters] (also known as
split driver model or driver paravirtualization) and PCI pass-through [Walters] (also
known as direct device assignment [Maurice]), respectively. In the vTU, the
passthrough approach has been adopted. For the sake of clarity, a brief review of this
technology is shortly given in the next paragraph.

Pass-through techniques are based on the pass-through mode made available by the
PCI-Express channel [Walters], [Maurice]. To perform PCI pass-through, an
Input/Output Memory Management Unit IOMMU) is used. The IOMMU acts like a
traditional Memory Management Unit, i.e. it maps the I/O address space into the CPU
virtual memory space, so enabling the access of the CPU to peripheral devices
through Direct Memory Access channels. The IOMMU is a hardware device which
provides, besides I/O address translations, also device isolation functionalities, thus
guaranteeing secure access to the external devices [Walters]. Currently, two IOMMU
implementations exist, one by Intel (VT-d) and one by AMD (AMD-Vi). To adopt the
pass-through approach, this technology must also be supported by the adopted
hypervisor. Nonetheless, Xenserver, open source Xen, VMWare ESXi, KVM and also
the Linux containers can support pass-through, thus allowing VMs accessing external
devices such as accelerators in a secure way [Walter]. The performance that can be
achieved by the pass-through approach are usually higher than the one offered by
API-remoting [Walter], [Maurice]. Also, the pass-through method gives immediate
access to the latest GPU drivers and development tools [Walter]. A comparison
between the performance achievable using different hypervisors (including also Linux
Containers) is given in [Walter], where it is shown that pass-through virtualization of
GPU'’s can be achieved at low overhead, with the performance of KVM and of Linux
containers very closed to the one achievable without virtualization. One major
drawback of pass-through is that it can only assign the entire physical GPU
accelerator to one single VM. Thus, the only way to share the GPU is to assign it to
the different VMs one after the other, in a sort of “time sharing” approach [Walters].
This limitation can be overcome by a technique also known as Direct Device
Assignment with SR-IOV (Single Root I/O Virtualization) [Walters]. A single SR-IOV
capable device can expose itself as multiple, independent devices, thus allowing
concurrent hardware multiplexing of the physical resources. This way, the hypervisor
can assign an isolated portion of the physical device to a VM; thus, the physical GPU
resources can be concurrently shared among different tenants. However, to the best
of the author's knowledge, the only GPU enabled to this functionality belongs to the
recently launched NVIDIA Grid family [Maurice], [Walters]; also, the only hypervisors
which can currently support this type of hardware virtualization are VMWare Sphere
and Citrix XenServer 6.2. However, since also KVM can now support SR-IOV, there is a
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path towards the use of GPU hardware virtualization also with this hypervisor
[Walters].

3.3.5. Dimensioning and Performance

In order to obtain a realistic assessment of the performance of the vTU, as if it was
embedded as a VNF in the T-NOVA framework, it is necessary to perform the tests on
a virtualized platform resembling as much as possible the T-NOVA infrastructure.

The performance results presented in the table of Section 3.3.2.1. were obtained by
the vTU running natively on physical computation resources. For a VNF like the vTU,
however, the actual performance achievable in the T-NOVA environment could be
quite different from those obtained running on the physical infrastructure. This is
mainly due to the following reasons:

e CPU virtualization overheads (vCPU's switching over physical CPU’s, at the
hypervisor level);

* GPU virtualization strategies (e.g. multiple vGPU's associated to the same
physical GPU);

* VvCPU-vGPU communication overheads (switching overheads in managing
time-sharing policies on the PCI-Express bus).

These reasons let one expect a possible performance loss, when running on a
virtualized environment, especially in case of vTU running tasks which exploit the GPU
resources.

For this reason, in order to obtain a realistic evaluation of the encoding/decoding
computation speeds in the actual T-NOVA environment, the performance tests
presented in Section 3.3.2.1. have been carried out on a virtualized environment. In
order to get a significant comparison, the VM running the vTU has been equipped
with the same amount of CPU and GPU cores as in the native tests. The following
table presents the obtained results, in terms of computation speed (frames/sec),
compared to the speed obtained on physical resources, for the same task.
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FullHD |ENCODER Native Virtualized ||[DECODER Native Virtualized
(1920x1080) time (s) time (s) time (s) time (s)
H.264 X264 CPU 6,97 7,26 AVCONV/FFMPEG 0,39 0,6
X264 CPU+GPU 7,78 10,08
X264 CPU+ASM 1,55 1,85
X264 CPU+ASM+GPU 5,81 4,23
Fraunhofer 846 869 Fraunhofer 6,85 6,7
NVENC 1,64 2,57 CuVID 1,53 2,24
NVENC (AvConv) 24 2,64
VP8 libvpx (webm) 1 thread 26,64 27,79 libvpx (webm) 0,37 4,21
libvpx (webm) 4 thread 10,14 13,56 fivpx 1,15 0,42
libvpx (webm) 8 thread 8,33 7.2
VP9 libvpx (webm) 1 thread 46,23 50,77 libvpx (webm) 2,23 1,94
libvpx (webm) 4 thread 23,35 26,64 ffvpx 1,75 2,22
libvpx (webm) 8 thread 18,87 26,21
HEVC X265 CPU+ASM 6,29 6,52 AVCONV/FFMPEG 1,19
NVENC 2,9 1,71
4k ENCODER Native Virtualized | [ DECODER Native Virtualized
(3840x2160) time (s) time (s) time (s) time (s)
H.264 X264 CPU 25,91 30,72 AVCONV/FFMPEG 1,38 1,74
X264 CPU+GPU 22,21 24,36
X264 CPU+ASM 5,18 6,71
X264 CPU+ASM+GPU 5,89 9,81
Fraunhofer 3117 4714 Fraunhofer 22,37 24,49
NVENC 2,72 8,63
NVENC (AvConv) 5,24 7,03
VP8 libvpx (webm) 1 thread 78,63 76,4 libvpx (webm) 1,21 4,26
libvpx (webm) 4 thread 32,44 36,78 ffvpx 4,37 1,54
libvpx (webm) 8 thread 25,83 22,78
VPS libvpx (webm) 1 thread 146,19 155,2 libvpx (webm) 7,31 9,54
libvpx (webm) 4 thread 60,7 75,23 ffvpx 5,43 9,16
libvpx (webm) 8 thread 63,21 53,94
HEVC X265 CPU+ASM 6,29 17,88 AVCONV/FFMPEG 20,94 3,03
NVENC 8,11 5,16

As the table shows, the obtained results show that, for almost all the considered
tasks, there is no significant performance loss with respect to the same task running
on physical resources, even in the tasks running mainly on GPU (like H264 encoding
using NVENC). This encouraging result is mainly due to the high efficiency of the
adopted GPU virtualization strategy — GPU pass-through — which assigns a virtual
GPU exclusively to a physical GPU, thus allowing to bypass any overhead in the GPU-
CPU communication. The cost for this efficiency, however, is paid in terms of difficulty
to share a physical GPU resource among multiple VMs.

3.3.6. Future Work

Two main steps are foreseen for the vTU. A first activity will focus on scaling
mechanism for this VNF. Also, the vTU will be combined with other VNFs developed
within T-NOVA in order to create new service with a wider scope.

© T-NOVA Consortium



T-NOVA | Deliverable D5.32 Network Functions Implementation and Testing - Final

3.4. Traffic Classifier

3.4.1. Introduction

The Traffic Classifier (TC) VNF used comprises of two Virtual Network Function
Components (VNFCs), namely the Traffic Inspection engine and Classification and
Forwarding function. The two VNFCs are implemented in respective VMs. The
proposed Traffic Classification solution is based upon a Deep Packet Inspection (DPI)
approach, which is used to analyze a small number of initial packets from a flow in
order to identify the flow type. After the flow identification step no further packets
are inspected. The Traffic Classifier follows the Packet Based per Flow State (PBFS) in
order to track the respective flows. This method uses a table to track each session
based on the 5-tuples (source address, destination address, source port, destination
port, and the transport protocol) that is maintained for each flow.

3.4.2. Architecture

Both VNFCs can run independently from one another, but in order for the VNF to
have the expected behaviour and outcome, the 2 VNFCs are required to operate in a
parallel manner.

4 VNF - VDU )

Traffic internal Traffic
Inspection Forwarding
(VNFC,) (VNFC,)

N\ |
Ingress Ingress ggress

Public Network

Figure 10. Virtual Traffic Classifier VNF internal VNFC topology

Furthermore, in order to achieve the parallel processing of the 2 VNFCs it is required
for the traffic to be mirrored towards the 2 VNFCs, so the 2 VNFCs receive identical
traffic. The 2 VNFCs are inter-connected internally with an internal virtual link, which
transfers the information extracted by the Traffic Inspection VNFC, and transmits it to
the Traffic Forwarding VNFC in order to apply the pre-defined rules.

3.4.3. Functional Description
The Traffic Inspection VNFC is the most processing intense component of the VNF. It

implements the filtering and packet matching algorithms in order to support the
enhanced traffic forwarding capability of the VNF. The component supports a flow
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table (exploiting hashing algorithms for fast indexing of flows) and an inspection
engine for traffic classification.

The Traffic Forwarding VNFC component is responsible for routing and packet
forwarding. It accepts incoming network traffic, consults the Flow Table for
classification information for each incoming flow and then applies pre-defined
policies (i.e. TOS/DSCP (Type of Service/Differentiated Services Code Point) marking
for prioritizing multimedia traffic) on the forwarded traffic. It is assumed that the
traffic is forwarded using the default policy until it is identified and new policies are
enforced. The expected response delay is considered to be negligible, as only a small
number of packets are required to achieve the identification. In a scenario where the
VNFCs are not deployed on the same compute node, traffic mirroring may introduce
additional overhead.

3.4.4. Interfaces

The virtual Traffic classifier VNF is based upon the T-NOVA network architecture but
from the advised set of network interfaces (management, datapath, monitoring and
storage) uses the management, datapath and the monitoring. The storage interface is
not particularly essential to the vTC, as all the computational and packet processing
utilize mostly CPU and memory resources. The VNF requires intensive CPU tasks and
a large number in memory I/Os for the traffic analysis, manipulation and forwarding.
The storage interface would add an unnecessary overhead to the already intensive
process, and it was decided to be excluded in favour of an optimal performance.

3.4.5. Technologies

The VvTC utilizes various technologies in order to offer a stable and high performance
VNF compliant to the high standards of legacy physical network functions. The
implementation for the traffic inspection used for these experiments is based upon
the open source nDPI library [REFNDPI]. The packet capturing mechanism is
implemented using various technologies in order to investigate the trade-off
between performance and modularity. The various packet handling/forwarding
technologies are:

* PF_RING: PF_RING is a set of library drivers and kernel modules, which enable
high-throughput, packet capture and sampling. For the needs of the vTC the
PF_RING kernel module library is used, which is polling the packets through
the LINUX NAPL The packets are copied from the kernel to the PF_RING
buffer and then they are analyzed using the nDPI library.

» Docker: Docker is a platform using container virtualization technology to run
applications. In order to investigate the pros and cons of the container
technology, the VvTC is developed also as an independent container
application. The forwarding and the inspecting of the traffic are also using
PF_RING and nDPI as technologies, but they are modified to fit and function
in a container environment.

« DPDK: DPDK comprises of a set of libraries that support efficient
implementations of network functions through access to the system’s network
interface card (NIC). DPDK offers to network function developers a set of tools

© T-NOVA Consortium

38



T-NOVA | Deliverable D5.32 Network Functions Implementation and Testing - Final

to build high speed data plane applications. DPDK operates in polling mode
for packet processing, instead of the default interrupt mode. The polling
mode operation adopts the busy-wait technique, continuously checking for
state changes in the network interface and libraries for packet manipulation
across different cores. A novel DPDK-enabled vTC has been implemented in
this test case in order to optimize the packet-handling and processing for the
inspected and forwarded traffic, by bypassing the kernel space. The analyzing
and forwarding functions are performed entirely on user-space which
enhances the vTC performance.

The various technologies used generate a great variety of test case scenarios and
exhibit a rich VNF test case. The PF_RING and Docker cases have the capability of
keeping the NIC driver, and so the VNFC maintains connectivity with the
OpenStack network connected. On the contrary, in the case of DPDK the NIC is
unloaded of the Linux-kernel driver and loaded the DPDK one. However, the
DPDK driver causes the VNFC to lose network connectivity with the network
attached, the compensation is the significantly higher performance as shown in
the next section.

3.4.6. Dimensioning and Performance

Results include comparison of the traffic inspection and forwarding performance of
the vTC using PF_RING, Docker and DPDK.

9000
8000
7000
6000
5000

& SR-I0V

4000

Mbits/s
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3000

2000

- _

DPDK PFRING Docker

Figure 11. vTC Performance comparison between DPDK, PF_RING and Docker

As it can be seen from the evaluation results among the various approaches used for
the vTC, the DPDK approach performs significantly better from the other 2 options.
Especially in the case it is combined with SR-IOV connectivity it can achieve nearly
8Gbps/s of throughput. However, the DPDK version as already mentioned has an
impact on connectivity with the OpenStack network, as the kernel stack is removed
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from the NIC. Although the PF_RING and Docker versions maintain connectivity with
the network, their performance is clearly degraded compared to DPDK's.

The Dimensioning of the vIC due to its architecture is based on the infrastructure
aspect. The vTC performance is dependent on whether there is SR-IOV available on
the running infrastructure.

3.4.7. Deployment Details

The vTC was developed in order to be deployed and run in an OpenStack
environment, the OS of the virtualized environment was Ubuntu 14.04 LTS. The
selection of the OS version assures the maintenance and continuous development of
the VNF. In order to conform to the T-NOVA framework a Rundeck job-oriented
service functionality was implemented.

The vTC lifecycle is performed via the Rundeck framework in order to facilitate the
seamless functionality of the VNF. In Rundeck, we have created different Jobs to
describe the different lifecycle events. Each event has a description and is part of a
Workflow.

An example workflow:

If a step fails: Stop at the failed step.
Strategy: Step-oriented

We add a step of type “Command”. The command differ s according to the
operation we want to implement. The operations we i mplemented are
described below:

* 1. VM Configuration — Command: “~/rundeck_jobs/bu ild.sh”

* 2. Start Service — Command: “~/rundeck_jobs/start .sh”

* 3. Stop Service — Command: “~/rundeck_jobs/stop.s h”

In terms of the data traffic required to test the vTC, several changes and
modifications had to be made in order to fit the desired traffic mirroring scenario it
was tested. Detailed information about this subject is further discussed in the section
below.

3.4.7.1. Traffic Mirroring — Normal Networking

In order to support direct traffic forwarding, meaning the virtual network interface of
one Virtual Network Function Component (VNFC) be directly connected to another
VNFC's virtual network interface, a modification on Neutron's OVS needs to be
applied. Each virtual network interface of a VNFC is reflected upon one TAP-virtual
network kernel device, a virtual port on Neutron’'s OVS, and a virtual bridge
connecting them. This way, packets travel from the VNFC to Neutron’'s OVS through
the Linux kernel. The virtual kernel bridges of the two VNFCs need to be shut down
and removed, and then an OVSDB rule needs to be applied at the Neutron OVS,
applying an all-forwarding policy between the OVS ports of the corresponding
VNFCs. The OpenStack network detailed topology is shown in Fig. 15.
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Figure 12. Example overview of the vTC OpenStack network topology.

First Option unbind interfaces from the Openstack networking and connect them
directly via OVS

* Remove from br-ex, the gvo virtual interfaces

* Remove from the gbr linux bridge, the qvb and th e tap virtual
interfaces
* Add the tap-interfaces on the OVS directly and a dd a flow

forwarding the traffic to them.

This option has been tested and as shown in the results section for the cases of
normal network setup.

3.4.7.2. Traffic Mirroring — SR-IOV

Single Root I/O virtualization (SR-IOV) in networking is a very useful and strong
feature for virtualized network deployments. SRIOV is a specification that allows a PCI
device, for example a NIC or a Graphic Card, to share access to its resources among
various PCI hardware functions:

Physical Function (PF) (meaning the real physical device), from it a number of one or
more Virtual Functions (VF) are generated. Supposedly we have one NIC and we want
to share its resources among various Virtual Machines, or in terms of NFV various
VNFCs of a VNF. We can split the PF into numerous VFs and distribute each one to a
different VM. The routing and forwarding of the packets is done through L2 routing
where the packets are forwarded to the matching MAC VF. In order to perform our
mirroring and send all traffic both ways we need to change the MAC address both on
the VM and on the VF and disable the spoof check.
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3.4.8. Future Steps

Future steps include the implementation of automated way to apply the direct
connection of the VNFCs. This step will be included in a HEAT deployment

« Benchmarking all options and comparing them.

Other options to be tested, is to add a TCP/IP stack on the DPDK and maintain the
connectivity of the VNFCs. These alternatives include:

« A kernel with tcp/ip stack on the userspace DPDK rump kernel -
https://github.com/rumpkernel/drv-netif-dpdk
« DPDK FreeBSD TCP/IP Stack porting https://github.com/opendp/dpdk-odp

3.5. Virtual CDN / Virtual Home Gateway (VIO)

3.5.1. vHG

Another VNF that T-NOVA aims to produce is currently known in the research and
the industry world under various names, notably Virtual Home Gateway (VHG), Virtual
Residential Gateway, Virtual Set-Top Box or Virtual Customer Premise Equipment.

We will see how the initial need has been expanded to cover some aspects of the
Content Delivery Network virtualization as well.

The following sections aim to provide a brief description of the proposed virtual
function along with the requirements, the architecture design, functional description,
and technology.

In T-NOVA, we will focus on the bottleneck points usually found in resource
constrained physical gateway like media delivery, streaming and caching, media
adaptation and context-awareness. In fact, some previous research proposals like
[Nafaa2008] or [Chellouche2012] include the Home Gateways to assist the content
distribution. By using a Peer-to-Peer approach, the idea in those approaches is to
offload the main networks and provide an “Assisted Content Delivery” by using a mix
of Server Delivery and Peer delivery.

When virtualizing the Home Gateway, this approach can lead in some extent to the
creation of a Virtual CDN or vCDN as a VNF.

Particular attention will be given to real world deployment issues, like coexistence
with legacy hardware and infrastructure, compatibility with existing user premise
equipment and security aspects.

3.5.2. vCDN

Content delivery networks (CDN) have been created to cope with the challenges
encountered by of Content Providers to delivery huge amounts of static data through
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best effort internet. Like traditional CDN operators and recently even Content
Providers, ISP are interested in building these solution as they bring an interesting
growth driver.

* Receive ¢ Deploying ¢ Dispatch
content Content to users to
from CP cache cache

¢ Transcode e Collecting e Stream
and adapt usage content to
content statistics user

Figure 13 The three main components of a CDN System

In a traditional deployment show in Figure 13, CDN services are an aggregation of
network function allowing the ingestion of the content, the provisioning in cache and
finally the delivery to End Uses.

More precisely, ingestors carry out transcoding operation allowing to decrease the
size of the video as well as re-segmentation to optimize diffusion over IP.
Provisioning modules deploy ingested content in caches, taking into account the
local popularity of content. Finally the delivery modules perform End User — Server
assignation and content delivery.

Also described by ETSI as a virtualization use case, the vCDN complements our work
on the VHG. Indeed, the VHG's routing function is used in a vCDN use case to make
the user-server assignation easier and more fine-grained.

3.5.2.1. High Level

Our proposal is developed around 4 main modules:

Virtual Home Gateway: is a transit Network Function inspecting high-level HTTP
traffic that can influence the IP routing decisions, based on the presence of the
content in a nearby POP. Its configuration is provided by the caching orchestrator
which has a complete vision on the system.

Content Streamers: we integrated a distributed object storage engine that provides
resiliency, horizontal scalability and geographical redundancy amongst POPs.

Content Ingestors: are scalable workers that perform software transcoding to H264
and H265 video compression standards as well as re-segmentation of videos using
both DASH and HLS technology to provide adaptive HTTP Streaming capability.
Ingestors receive content from the CP Servers (push model) or can be automatically
provisioned from the most popular contents (pull model). Ingestor have been
demonstrated being able to rely on hardware accelerators (Virtual Transcoding Units)
for computer intensive tasks when available.

Caching Orchestrator: is the module is charge of controlling the ingestion (by
scheduling the job of the workers), the provisionning (by selecting which content is
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cached in which streamer) and the delivery (by deploying configuration on the VHG)
of content

CONTENT

CONTENT

END-USER MRt el INGESTOR

HOME 5
~ 7 GATEWAY S
% P*S
tre 9

CP MS

Figure 14 HIgh level architecture diagram for transcode/stream VNF

Figure 14 shows a Virtual Home Gateway which acts as an HTTP proxy, notifying the
content fronted when a video is consumed by the end user. Having this information
allows the content frontend to trigger the download from the content provider's
network to the VNF. Once the video is entered on the VNF, it is transcoded and
moved to a streamers.

Once the video resource is available to the end user, the gateway routes the user’s
request to the streamer. As the streamer is located within the ISP Network near the
end user, hops and latency are limited, which increases QoE.

3.5.3. Sequence diagrams

The sequence diagram presented in Figure 15 is associated with the level architecture
presented in the previous section.
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CP Server Content Ingestor Caching Orchestrator Content Streamer Virtual Home Gateway End User
alt [Content Ingestion)

push content >
provide repurposed content.
provision content >

configure user/server assignation »
[Content Delivery]

< Request Content
Lookup Content Location :]

Stream Content >
Stream Content >

CP Server = Contentingestor | Caching Orchestrator | Content Streamer | Virtual Home Gateway @ End User

Figure 15 Sequence diagram for the transcode/stream VNF example.

3.5.4. Technology

3.5.4.1. Netty: a Java Non-Blocking Network Framework

Netty is an asynchronous event-driven network application framework [Netty] for rapid
development of maintainable high performance protocol servers and clients.

One of the most striking features of Netty is that it can access resources in a non-
blocking approach, meaning that some data is available as soon as it gets in the
program. This avoids wasting system resources while waiting for the content to
become available; instead a callback is triggered whenever data is available. This also
saves system resources by having only 1 thread for resource monitoring.

Netty is one of the building blocks used to implement the vHG network capabilities.
3.5.4.2. Restful architecture

End user applications, Gateways and Front-end need to interact though secured
connection on the internet.

A Java Restful architecture can be implemented for those reasons:

» Architecture is stateless, which means that the servers that expose their
resources do not need to store any session for the client. This greatly eases
scaling up, since no real time session replication needs to be performed,
therefore a new server will be deployed for load balancing purposes.

» Architecture is standard and well supported by the industry, allowing us to
leverage tools for service discovery and reconfiguration.

» Authentication methods are well documented and widespread among web
browsers and servers.

Regarding the technical details, we will consider the standards of the Java SDK, by
using JAX-RS and its reference implementation, Jersey. This framework can be
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integrated on any servlet container, JEE container or lightweight NIO HTTP server like
Grizzly which is used on the vHG.

3.5.4.3. Transcoding workers

One of the key features of cloud computing is its ability to produce on-demand
compute power at a small cost. To take advantage of this feature, we plan to
implement the most computing intensive tasks as a network of workers using a
Python framework called Celery. Celery is an asynchronous task queue/job queue
based on distributed message passing.

Every Celery worker is a stand-alone application being able to perform one or more
tasks in a parallelized manner. To achieve this goal, a general transcoding workflow
has been designed to be applied on a remote video file.

Having a network of workers allows us to scale-up or scale-down the overall compute
power simply by turning a virtual machine up or down. Once the worker is up, it
connects to the message broker, and picks up the first task available on the queue.
Frequent feedback messages are pushed to the message broker, allowing us to
present the results on the gateway as soon as they are available on the storage.

If the compute capacity is above the required level, active workers are
decommissioned, leaving the pool as their host virtual machine turns off.

Note that workers only carry out software transcoding, leaving room for optimization
through the use of hardware. The virtual Transcoding Unit (vTU) is an excellent drop-
in replacement for the transcoding vNF. However, as hardware transcoding may not
be available everywhere, we keep the slow software transcoding as a fall-back option.

3.5.4.4. Scalable Storage

We need to have caches able to store the massive amount of data needed by a CDN.
These caches can be spread among several datacentres and must be tolerant to
failure. They also need to scale, and must support adding or removing storage node
as defined by the scaling policy.

To implement that, we decided to deploy [Swiftstack] which proposes to create a
cluster of storage node to support Scalable Object storage with High availability,
Partition Tolerance and eventual consistency.

Storage Nodes are accessed by external users using a Swift Proxy that handles the
read and write operations. Swift has abstractions where nodes are stored inside zones
and regions. We detail the mapping between swift abstraction and T-NOVA in
Erreur ! Source du renvoi introuvable.

Swift T-NOVA Meaning

Region NFVI-POP Parts of the cluster that
are physically separated
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Zone Compute Node Zones to be configured to
isolate failure

Node VNFC Server that run one or
more swift process

Table 3-A Mapping between Swift and T-NOVA abstraction

/ Region A \ / Region B \

Zone A

Zone B

Node 40

Node 10

Node 11 Node 21

Node 31

Node 42

/

Node 32

N

Figure 16 swift stack Region/Zone/Node.

We use swift abstraction to provide a reliable storage solution. For example, our
vCDN spans over multiple datacentres to provide good connectivity. Each pop is
associated to a region. With the same approach, we can have several compute nodes
hosting our VNFC. For reliability reasons, we don’t want all our nodes hosted on the
same compute node, so that if the compute node goes down, part of the service will
be still available. Finally, each VNFC hosts a swift Node.

Even if swift is an object storage, it allows users to access and push data over a
standard HTTP APL It means that the streamer vNF feature can be implemented using
swift as well.

3.5.4.5. Using Docker to provide safe, reliable and powerful application
deployment

We decided to use [Docker] to support the implementation. Docker is an OS
Virtualization technology that runs segregated applications and libraries on a
common Linux kernel.

Docker can be run on major Linux Distribution like Debian or Fedora, but it can also
run on smaller, custom distribution that provide an execution environment for
container. CoreOS produces, maintains and utilizes open source software for Linux
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containers and distributed systems. Projects are designed to be composable and
complementing each other in order to run container-ready infrastructure.’

The applications we build are based on vendor technologies (for example, the Java
Docker image maintained by Oracle) that are kept updated on a regular basis. We
implemented continuous deployment, meaning that whenever an upstream
dependency gets updated, we re-package our software with the new image and run
test to discover potential regression.

Our approach is safer. The traditional installation of a package on an OS since every
container is walled from the other ones and the OS has the only responsibility of
maintaining the container execution environment. Vendors usually provide a shorter
delay to update their Docker images that the Linux Distribution.

Our approach is reliable in the sense that if a T-NOVA virtual machine goes down
(except the VNF Controller which is not highly available for the moment) we are able
to redeploy containers on the cluster on another available machine.

We also don't have to upload a new vnfd + vnf images every time we have a security
update. All we need to do is to push the new release on our Docker registry and the
new image will be picked up automatically when configuring the VMs.

3.5.4.6. Orchestration and scaling

In order to ease the deployment of our vNFs, we use a configuration management
tool named Salt Stack [Salt]. The necessity to use such a tool is developed in the next
paragraphs; we then explain why we choose salt and finally conclude with an
overview of the mechanisms we implemented.

Configuration Network

>

aseyd uonesn3diyuo)

Data Network

Salt Salt

v o Salt Minion Salt Minion Salt Minion
Minion Minion

ve)
o
o
p=t
1%
-
=
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=
QU
7
0]

frontend

Figure 17 Software configuration Management for vHG+vCDN

? https://coreos.com/docs/
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3.5.4.7. Why configuration management tool?

As mentioned in the VNF Controller section of Deliverable D5.31, only one VNFC is
able to receive configuration commands from the Orchestration to support the whole
VNF life cycle. This means that the information received on the configuration
interface must be propagated to the other VNFCs.

When the VNF starts, some configuration need to be carried out to initialize the
software components. For example, the storage nodes must be initialized with the
DHT from the proxy, some block storage must be allocated to the node and so one.
This non trivial configuration tasks must be carried out after the VM has booted, but
also when scaling out or in. These tasks may fail, but the consistency of the whole
system should be kept intact.

For those reasons, we decided to use an orchestration tool that create an abstraction
level over the system to manage the software deployment, system configuration,
middleware installation and service configuration with ease.

3.5.4.8. Why Salt?

SaltStack platform or Salt is a Python-based open source configuration management
software and remote execution engine. Supporting the "infrastructure-as-code"
approach to deployment and cloud management, it competes primarily with Puppet,
Chef, and Ansible.?

Salt Stack was preferred over other alternatives due to its scalability, ease of
deployment, good support for Docker and python source code. We don't claim that
what we designed would not have been possible with other alternative, but Salt was
the solution we felt the more comfortable with at the end.

3.5.4.9. Implementation of our configuration management

We implemented the configuration management as a two-phase process. It is
illustrated in Figure 17.

First during the bootstrap phase, each virtual machine is injected with cloud-init with
the following data and programs.

» [Paddress of the salt master

» Certificates to assure a secure connection with the salt master

* Itsrole in the system.

» Salt-master or salt-minion service installed and launched.

* The "recipes” or desired infrastructure code deployed on the salt master.

Once the bootstrapping phase is over, we have a system comprised of VMs securely
connected on the data network ready to take order from the master. Note that the
OS could be pre-bundled with software in order to fasten the next phase, but this is
not mandatory.

? https://en.wikipedia.org/wiki/Salt_%28software%29
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The second phase is launched when the start lifecycle event from TeNOR is received
through the middleware APL This processes the infrastructure code and verifies the
compliance of each minion with the desired infrastructure.

As we can see in Erreur! Source du renvoi introuvable., the yaml DSL used with
Salt describes how the infrastructure should be configured. Salt allows us to
“synchronize” the code infrastructure in yaml with the real infrastructure simply by
calling the Salt APL This synchronization process installs, copies, configures,
downloads the required missing software components and can even configure more
low level aspects.

Providing the possibility for the system the scale-in is straightforward when having
the infrastructure described as code. Installing, configuring and ramping up new VM
is just a matter of “synching” the infrastructure state with the new resources available.

Our implementation use the Debian Jessie for applications and containers.

#here we make sure that the latest worker docker im age is present on the system
nher baut / wor ker :
#this command is equivalent to docker pull
docker . pul | ed:

#always use the latest version from our continus build system
- tag: latest
- require:
#make sure that docker is installed be fore pulling the image
- sl s: docker
#make sure that docker daemon is runni ng

- servi ce. runni ng: docker

# this set of jinja2 template file is here to provi de the broker's IP address
{%- set minealias = salt['pillar.get’](‘hostsfile:a lias', 'network.ip_addrs")
%6}

{%- set addrs = salt['mine.get’]('roles:broker’, mi nealias,"grain") %]}

{%- set broker_ip= addrs.items()[0][1][0] %o}

# this set of instruction is there to provide the t he swift proxy ip address
{%- set addrs = salt['mine.get’]('roles:swift_proxy ', minealias,"grain") %}
{%- set swift_proxy_ip= addrs.items()[0][1][0] %}

# now we are ready to cook our docker image
cor e-wor ker - cont ai ner:
docker.install ed:
- name: core-worker-container
- i mage: nherbaut/worker:latest
# now we are ready to cook our docker image
- environment:
- "CELERY_BROKER_URL" :"amgqp://guest@{{ broker_ip }}"
- "ST_AUTH"' : "http:/[{{ swift_proxy_ip }}:8080/auth/v1.0"
- "ST_USER' :"admin:admin"
- "ST_KEY" :"admin"
- wat ch:
# trigger this event whenever the image is do ne being pulled
- docker : nherbaut/worker

Code listing 1 an example of infrastructure code
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3.5.5. Dimensioning and Performances

For testing purposes, the vHG and vCDN can be seen as a chain of microservices
working together to implement the function. Having several components interacting
together complexifies the task of characterizing the bottlenecks of the solution. We
also need to take into account the fact that absolute performance is not really
meaningful for scalable applications, since adding additional resources increase the
processing capacity and the state of the cloud environment hosting the solution can
vary over time along with the performances.

We carried out our experiments in a full-fledged NFV Infrastructure deployed within
the T-NOVA project for a baseline configuration of 5 Virtual Machines. We only
present high level performance results corresponding the 2 end-to-end scenarios:
Ingestion-Provisionning and Delivery.

3.5.5.1. Testing vCDN Ingestion-Provisionning

Caching Orchestrator

Caching Admission Transcode Configuration
. . Storage . . Storage . Deployment

The first element that we need to test is the caching orchestrator. It receives requests
from the VHG and from the CP to create message for Admission Control.

We can see from Figure 18 that we didn’t manage to saturate this module, even at 40
connections per minute, meaning that the admission control module will handle the
request in real time.

250
Cumulated Ingestion Requests Ingestion Requests

E 200 Handled Requests ]
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Figure 18 Caching Orchestrator performances

Admission Control
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Caching Admission Transcode Configuration
Orchestrator . . SIEIEE . Re-segment . SR . Deployment

Here the admission control download the video and analyze it before sending
message the transcoder and resegmenter to treatments. We can see from Erreur !
Source du renvoi introuvable. that the module saturate at around 28 videos per
minutes.

For test purposes, we used a 6.6 MB video corresponding to 10s of playback.
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Figure 19 Admission Control performances

Transcode and Re-Segment

Caching Admission Transcode Configuration
. . Storage . . Storage . Deployment

For the vCDN, ingestion means deploying the original content in the object store,
analyzing this content, deciding which the optimal format for the content is and
producing the adapted content. It is a very CPU and memory intensive task that can
be easily scaled with the adjunction of a “worker” VM. Figure 19 shows a setting
where we let the system ingest 200 videos of 20 MB at an average arrival rate of 30
videos per minutes. We compare the number of “pending” video jobs that are
queued by the system for several settings. We scaled our VNF out and allowed the
number of ingestion VM to vary.

We can see that the configuration with only 1 VM doesn’t cope with the load, as it
accumulates more than 120 pending videos and it depletes its video stock in more
than 900 s. On the contrary, the 3 VM setting manage to finish nearly on time (420s).

Thanks to this design, the number of ingestion-Provisionning VM can be adjusted
based on the characteristics of the videos, and on the tolerance to delay of the
customer.
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Figure 20 Transcode and Re-Segment Performance

Configuration Deployment

Caching Admission Transcode Configuration
Orchestrator . . SRS ’ . SHEEEE . Deployment

The User-Server POP assignment configuration is fetched by the VHG periodically.
The Caching orchestrator offers a read API for “configuration deployment” that has
the following performances for 1000 content.
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Figure 21 Configuration Deployment
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From this figure we can see that the module can achieve 350 simultaneous query in
less than 10s per query. Performances could be enhanced by using a caching
mechanism instead of pure database access.

End to End Test

Caching Admission Transcode Configuration
Orchestrator . . SHEEEE . . SHETEES . Deployment

END TO END TEST FOR 2 WORKERS VM
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This end to end test has been carried out 2 worker VMS. We launched the ingestion
of 200 videos (of 6.6MB) on 2 worker nodes and we pushed the results on 2 storage
nodes.

With those settings, the system can absorb up to 12 video/minutes. Increasing the
number of worker or using hardware acceleration could dramatically increase
performances.

3.5.5.2. Testing Delivery with the vHG

The other side of the vCDN/VHG VNF is the actual delivery of the content to the end
users. In this section we present the corresponding results.

End to End test
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Virtual Home
Gateway

Storage

The overall performance of the delivery part of the vHG/VCDN depends in a large
extent on the network performances between the object storage nodes. Indeed, each
content is chunked and spread on several nodes to provide redundancy and increase
performance. Furthermore the Virtual Home Gateway is used to inspect HTTP
Packets, which may also cause delay and reduced throughput.

In Figure 18 we used apache2’s ab tool to compute the 95 percentile maximum time
taken to download a 10s, 6 MB video file encoded as 600 KBps. We increased the
number of concurrent connection to establish the threshold above which the video
cannot be stream at its nominal bitrate for the 5VM baseline configuration.

We can see two important results from the graph, first of all, there’s no significant
difference between the performance of Storage with or without the VHG. It means
that the storage is the bottleneck in this case, and the VHG need not to be scaled-up
to increase performances. Next, the video can be stream by 250 simultaneous users.
This value is strongly correlated to the underlying state of the network on our
infrastructure and also on the storage technology used in the platform. For example,
our object storage engine is designed to use SSD disks to boost the delivery of the
most used files. This feature wasn't available on our infrastructure, and could have
dramatically increased performances, especially for internet content where only a
small number of items is popular while the rest remain unknown.
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Figure 22 End to end Results for the vHG / vCDN delivery
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3.5.6. Future Work

The next step for vHG+vCDN in WPS5 is to Integrate the scalability feature of T-NOVA
to automatically create/destroy new VDU as demand vary. We also plane to fine tune
performances accordingly.

3.6. ProXy as a Service VNF (PXaaS)

3.6.1. Introduction

A Proxy server is a middleware between clients and servers. It handles requests, such
as connecting to a website or service and fetching a file, sent from a client to a server.
In the most cases a proxy acts as a web proxy allowing or restricting access to
content on the World Wide Web. In addition, it allows clients to surf the Web
anonymously by changing their IP address to the Proxy's IP address.

A proxy server can protect a network by filtering traffic. For instance, a company’s
policies require that its employees are restricted to access some specific web sites,
such as Facebook, during working hours but they are allowed to access them during
break times or are restricted to access adult-content sites at all times. Furthermore, a
proxy server can improve response times by caching frequently used web content
and introduce bandwidth limitations to a group of users or individuals. Traditionally,
proxy software resides inside users’ LANs (behind NAT or Gateway). It is deployed on
a physical machine and all local devices can connect to the Internet through the
proxy by changing their browser’s settings accordingly. However, a device can bypass
the proxy. A stronger alternative deployment is to configure the proxy to act as a
transparent proxy server so that all web requests are forced to go through the proxy.
In this scenario the gateway/router should be configured to forward all web requests
to the proxy server.

The Proxy as a Service VNF (PXaaS VNF) aims to provide proxy services on demand to
a Service Provider's subscribers (either home users e.g. ADSL subscribers or corporate
users such as company subscribers). The idea behind the PXaaS VNF is to move the
proxy from the LAN to the cloud in order to be used “as a service”. Therefore, a
subscriber (e.g. LAN administrator) will be able to configure the proxy from a web-
based user friendly dashboard and according to their needs so that it can be applied
to the devices within the LAN.

3.6.2. Requirements

The table below provides the major requirements that the VNF will need to fulfill.

Table 3-B: PxaaS VNF requirements

Requirement Requirement Description Priority

ID name level

1 Web caching The PXaaS VNF should be able to High
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2 User anonymity

3 Bandwidth  rate
limitation per
user

4 Bandwidth  rate
limitation per
service

5 Bandwidth
throttling on

huge downloads

6 Web access
control
7 Web access

control (time)

8 User Control and
Management

9 Service
availability

10 Service accessibly

© T-NOVA Consortium

cache web content.

The PXaaS VNF should allow for
hiding the user’'s IP address when
accessing web pages. The proxy
VNF's IP should be shown instead of
the user’s real IP.

The PXaaS VNF should allow for
setting bandwidth rate limitations on
a group of users or individual users
by creating ACLs based on their
account.

The PXaaS VNF should allow for
setting bandwidth rate limitations on
a group of services or individual
services. For example, the PXaaS VNF
should limit the bandwidth used for
torrents.

The PXaaS VNF should allow for
reducing the bandwidth rate when
huge downloads are detected. It
could be applied to all users or a
group of users or individuals.

The PXaaS VNF should allow for
blocking specific websites by the
users.

The PXaaS VNF should allow for
blocking or accessing specific
websites by the users based on the
current time.

The user should be able to configure
the PXaaS VNF using a dashboard.
The dashboard should be responsive
in order to be accessible from
multiple devices and easy to use.

The Proxy VNF should be available as
soon as the user sets the
configuration parameters on the
dashboard. Each time a user changes
configuration, the service should be
available immediately.

The connection with the proxy should
be transparent (transparent proxy).
Users do not need to set the proxy’s

High

High

Low

High

High

Medium

High

High

Low
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IP on their browser. The traffic should
be redirected from the user's LAN to
the proxy VNF.

11 Service - user Only subscribed PXaaS VNF users High

authentication should be able to access the service.

12 Monitoring The proxy VNF should provide High
metrics to the T-NOVA's monitoring
agent.

13 Service The proxy VNF should expose an API High

provisioning to be used by the T-NOVA's

middleware for service provisioning.

3.6.3. Architecture

The PXaaS VNF consists of one VNFC. The VNFC implements both the proxy server
software as well as the web server software. The figure below provides a high level
topology of the PXaaS VNF. The VNFC is located at the PoP which is found between
the user's LAN and the Operator's backbone. Once a user is subscribed with the
PXaaS VNF the traffic from the user’s LAN is redirected to the PoP and then it passes
through the PXaaS VNF. The traffic might pass through some other VNFs according
to service function chaining policies. Finally, the proxy handles the requests
accordingly and forwards the traffic to the Internet. The user is able to configure the
proxy through an easy to use web-based dashboard which is served by the web
server. The web server communicates with the proxy server in order to set up the
configuration parameters which have been defined by the user.

B

p-
~ )

& A €

(\ User’s LAN ., ﬂ 6 Operator’s backbone

o

Squid proxy

dashboard ,‘\ MySQL database
Apache web server
( NFVI-PoP
uidGuard

e

Figure 23. PXaaS high level architecture
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3.6.4. Functional description
3.6.4.1. Squid Proxy server
Squid Proxy is a caching and a web proxy. Some of its major features include:

«  Web caching;

« Anonymous Internet access;

« Bandwidth control. It introduces bandwidth rate limitations or throttling to a
group of users or individuals. For example it allows “normal users” to share
some amount of traffic and on the other hand it allows “admin users” to use a
dedicated amount of traffic;

« Web access restrictions e.g. allow a company's employees to access Facebook
during lunch time only and deny access to some specific web sites.

Bandwidth limitation examples
a) Bandwidth restrictions based on IP

The example below creates an Access Control List (ACL) with the name
“regular_users” and is assigned a range of IP addresses. Requests coming from those
IPs are restricted to 500KBps bandwidth.

acl regular_users src 192.168.1.10 — 192.168.1.20/3 2 # acl list based

on IPs

delay_pools 1

delay class11

delay_parameters 1 500000/500000 # 500KBps
delay_access 1 allow regular_users

The limitation of this configuration is that Squid should be located inside the LAN in
order to understand the private IP address space.

b) Bandwidth restrictions based on user

The following scenario performs the same bandwidth restrictions as the previous one
except that the ACL is based on user accounts. Squid supports various authentication
mechanisms such as LDAP, Radius and MySQL database. We consider MySQL
database for authenticating with the PXaaS VNF.

acl regular_users proxy_auth george savvas # acl i st based on

usernames

delay_pools 1

delay class11

delay_parameters 1 500000/500000 # 500KBps
delay_access 1 allow regular_users

The limitation of this configuration is that users must authenticate with the Proxy the
first time they visit their browser. In this case the proxy is not considered as a
transparent proxy. However, by using this scenario, Squid can be deployed on the
cloud and can handle devices behind NAT as long as they authenticate with the

proxy.
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x Authentication Required

The proxy moz-proxy.//217.27.59.141:3128 is requesting a username and password. The site says:
"Proxy Authentication.”

User Name: ||

Password:

Cancel OK

Figure 24. Proxy authentication
3.6.4.2. Apache Web Server

Apache web server is used to serve the dashboard to the clients. The dashboard is
responsible to allow users to configure and manage the Squid proxy. Therefore,
Apache should have write permissions on Squid’s configuration file. In addition, the
LAN administrator is able to create user accounts which are stored in the MySQL
database. The LAN administrator will be responsible to assign the user accounts to
each device in order to achieve the limitations he envisions using the PXaaS.

The figure below presents the first version of the dashboard (version 1). In particular,
the home page of the dashboard is presented. The current version supports the
following features:

« User management: User accounts can be created with a username and
password. Those accounts are used to access the proxy services;

« Access control: Users must enter their credentials in their browsers in order
to surf the web;

« Bandwidth limitations: Group of users can be created with a shared amount
of bandwidth. In this case bandwidth limitations can be introduced to a group
of users;

« Website filtering: Group of users can be created with restricted access to a
list of websites. Pre-defined lists with urls are provided;

« Web caching: Web caching can be enabled in order to cache web content
and improve response time;

« User Anonymity: Users can surf the web anonymously.

1
K
]
T,
B
2
3

PXaa$S vNF

ad:ninr PXaaS vNF oasnboard & Home

ACCOUNTS WEBACCESS WEB FILTERING BLACKLISTS
3 2 groups Y 2 groups 12

PROXY STATUS

* Proxy is Running

Proxy Actions

B> Start Proxy Il Stop Proxy ’ ‘

CACHING STATUS
J Caching is Enabled

Figure 25 - PXaaS Dashboard
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3.6.4.3. MySQL Database server

MySQL Database server maintains a list of user accounts that can be used for proxy

authentication in the browser. In addition it stores all the required data needed by
the dashboard.

3.6.4.4. SquidGuard

SquidGuard is used on top of Squid in order to block URLs for a group of users. It is
used based on pre-defined black lists.

3.6.4.5. Monitoring Agent

The Monitoring Agent is responsible for collecting and sending monitoring metrics to
the T-NOVA Monitoring component.

3.6.5. Interfaces

The figure below shows the VNFC in an OpenStack environment. It consists of 3
interfaces connected to 3 networks.

Management network

C

Ingress
Egress

Public network

Figure 26. PXaa$S in OpenStack
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« ethO: This is the data interface. A floating IP is associated with this interface in
order to send and receive data to/from the Public network.

» ethl: This is the monitoring interface which will be used to send metrics
periodically to the Monitoring component.

» eth2: This is the management interface which will be used in order to
communicate with the middleware APL

3.6.6. Technologies

The development environment used for the implementation and testing of the PxaaS
is Vagrant with Virtualbox on an Ubuntu 14.04 Desktop machine. The VM itself runs
Ubuntu 14.04 server OS.

As described in the Functional description section, Squid Proxy, SquidGuard, Apache
Web server and MySql Database server are used. Specifically, the exact versions are:

« Squid Proxy 3.5.5

« SquidGuard 1.5

« Apache2 24.7

«  Mysql 5.5.44-0ubuntu0.14.04.1

The Dashboard has been developed with the Yii framework (a PHP framework) for the
server side and CSS, HTML, Jquery have been used for the client side.

As regards the monitoring agent two different components have been used:

1. Collectd. It collects system performance statistics periodically such as CPU and
memory utilization.

2. A python script which collects PxaaS VNF specific metrics such as the number
of HTTP requests received by the proxy and the cache hits percentage. The
script analyses the results received by the squidclient, a tool which provides
Squid's statistics, and send them to the T-NOVA Monitoring component
periodically.

Mozilla Firefox is used for accessing Web through the proxy.
3.6.7. Dimensioning and Performance

Some preliminary tests were performed in order to verify whether the expected
behavior is achieved. We assume that access to the PXaaS Dashboard is given to a
user who acts as the administrator of his LAN in a home scenario. Therefore, the
"administrator" sets up the Proxy service for his LAN via the dashboard and creates
user accounts in order to allow other users/devices to access the Web via the Proxy.
Specifically, the current version of the Dashboard was tested against the following
test scenarios:

a) Testing web access and bandwidth control. This scenario aims to test if a newly
created user is able to access the Web using their credentials and bandwidth
limitation is achieved.
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Execution: The administrator creates a new user by providing a username and
password. Then he adds the newly created user under “research” group (the group
was previously created by the administrator) which is restricted to 512Kbps
bandwidth. The new user authenticates with the proxy from the browser and
downloads a big file.

b) Testing web site filtering. The scenario tests whether a user is restricted to access
some websites.

Execution: The administrator adds the user to the group “social_networks” (the
group was previously created by the administrator and a pre-defined list of social
networking websites was assigned to that group) in which all social networking
websites are denied.

c) Testing web caching. This scenario tests whether web caching works properly.

Execution: Two different users access the same websites from different computers.
For example “userl” accesses www.primetel.com.cy and then “user2” accesses the
same website.

d) Testing user anonymity. This scenario checks whether a user is able to access the
Web anonymously. In order to test this scenario and get meaningful results we
deployed the PXaaS VNF on a server with public IP.

Execution: The administrator enables the user anonymity feature for a user.
http://ip.my-proxy.com/ website is used in order to check whether user's real IP is
publicity visible.

3.6.7.1. Test results

Below the results by executing the test scenarios are presented.

a) Once a user is authenticated with the Proxy he is able to access the Web. Then he
starts to download an iso file. As we can see from the image below, the download
speed is restricted to 61,8 KB/sec which is around to 500 Kb/sec (as we have
expected). If another user starts to download a big file as well, then both users will
share the 512Kb/sec bandwidth.

Qrganize v Q ‘
» © History {

Downloads B —————————
> Tags 4 hours, 35 minutes remaining — 5,1 M8 of 1,0 GB (61,8 KB/sed)
» [ All Bookmarks

Figure 27. Bandwidth limitation

b) A user tries to access www.facebook.com with no success. The proxy denies access
to the particular website.
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(D Unable to connect

Firefox can't establish a connection to the server at www.facebook.com.

¢ Thesite could be temporarily unavailable or too busy. Try again in a few
moments.

* Ifyou are unable to load any pages, check your computer's network
connection.

 If your computer or network is protected by a firewall or proxy, make
sure that Firefox is permitted to access the Web.

Try Again

Figure 28. Access denied to www.facebook.com

c) The figure below shows the Squid's logs. In particular, it shows all the HTTP
requests received by Squid from the clients and whether those requests result in
cache hits. It can be observed that the particular requests were served from the
Squid's cache. "TCP_MEM_HIT" shows that a request was served from Squid's
Memory Cache (from the RAM).

01/Dec/2015:07:59:34 +0000 29 192.168.56.1 TCP_MEM HIT/200 63401 GET http://primetel.com.cy/wp-co
ntent/uploads/2015/10/MiFi_1200x300_gr.png admin HIER_NONE/- image/png

01/Dec/2015:07:59:34 +0000 45 192.168.56.1 TCP_MEM HIT/200 152076 GET http://primetel.com.cy/wp-c
ontent/uploads/2015/08/B2S_1120x300_grR.png admin HIER NONE/- image/png

01/Dec/2015:07:59:34 +0000 53 192.168.56.1 TCP_MEM HIT/200 210076 GET http://primetel.com.cy/wp-c
ontent/uploads/2015/10/Ninja2_2000x300_Gr.png admin HIER NONE/- image/png

01/Dec/2015:07:59:34 +0000 58 192.168.56.1 TCP_MEM HIT/200 294737 GET http://primetel.com.cy/wp-c
ontent/uploads/2015/11/Xmas_slider_2000x300_gr.png admin HIER _NONE/- image/png

01/Dec/2015:07:59:34 +0000 22 192.168.56.1 TCP_CLIENT REFRESH MISS/200 84134 GET http://primetel.
com.cy/wp-content/plugins/ubermenu/assets/css/fontawesome/fonts/fontawesome-webfont.woff? admin HIER
DIRECT/primetel.com.cy text/plain

01/Dec/2015:07:59:34 +0000 2 192.168.56.1 TCP _MEM HIT/200 17600 GET http://primetel.com.cy/wp-co
ntent/uploads/2015/11/0nline0ffer 228x136-A.png admin HIER NONE/- image/png

01/Dec/2015:07:59:34 +0000 1 192.168.56.1 TCP MEM HIT/200 6323 GET http://primetel.com.cy/wp-con

tent/uploads/2015/09/228x136 red.png admin HIER NONE/- image/png

01/Dec/2015:07:59:34 +0000 270 192.168.56.1 TCP MISS/200 44495 GET http://static.hotjar.com/c/hotj
ar-68446.js? admin HIER DIRECT/static.hotjar.com application/javascript

01/Dec/2015:07:59:34 +0000 155 192.168.56.1 TCP CLIENT REFRESH MISS/200 506242 GET http://primetel
.com.cy/wp-content/uploads/fonts/PFDinDisplayPro-Thin.ttf admin HIER DIRECT/primetel.com.cy text/plai
n

01/Dec/2015:07:59:35 +0000 77 192.168.56.1 TCP MISS/204 430 GET http://csi.gstatic.com/csi? admin
HIER DIRECT/csi.gstatic.com image/gif

01/Dec/2015:07:59:35 +0000 1 192.168.56.1 TCP MEM HIT/200 5820 GET http://primetel.com.cy/wp-con

tent/plugins/revslider/public/assets/js/extensions/revolution.extension.slideanims.min.js admin HIER_
NONE/- text/javascript

01/Dec/2015:07:59:35 +0000 0 192.168.56.1 TCP_MEM HIT/200 1722 GET http://primetel.com.cy/wp-con

Figure 29. Squid's logs

d) Figure 30 shows the results from http://ip.my-proxy.com/ when a user accesses
the Web without having the user anonymity featured enabled. The most important
fields are:

1. "HTTP_X_FORWARDED_FOR" . It shows the user's public IP (e.g. 217.27.32.7)
address along with the Proxy's IP (e.g. 217.27.59.141)
2. "HTTP_VIA". It show the proxy's version (e.g. squid 3.5.5)
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3. "HTTP_USER_AGENT". It shows the user's browser information (e.g. Mozilla/5.0
(X11; Ubuntu; Linux x86_64; rv:i41.0) Gecko/20100101 Firefox/41.0).

HTTP Header Value

HTTP_ACCEPT text/html,application
/xhtml+xml,application/xml; q=0.9,*/*; q=0.8

HTTP_ACCEPT_ENCODING gzip

HTTP_ACCEPT_LANGUAGE en-US,en; q=0.5

HTTP_CONNECTION Keep-Alive

HTTP_HOST ip.my-proxy.com

HTTP_USER_AGENT Mozilla/5.0 (X11; Ubuntu; Linux x86_64;
rv:41.0) Gecko/20100101 Firefox/41.0

REMOTE_ADDR 162.158.38.165

REMOTE_PORT 45374

HTTP_CACHE_CONTROL max-age=0

HTTP_X_FORWARDED_FOR 217.27.32.7,217.27.59.141 (Dubious)
HTTP_VIA 1.1 proxy-vnf (squid/3.5.5) (Dubious)

Figure 30. Results taken from http://ip.my-proxy.com/ without user anonymity

Figure 31 shows the results while a user accesses the Web anonymously. It can be
observed that the user's real IP is hidden and instead the Proxy's IP is shown. In
addition the information about the proxy and the user's browser information are
hidden.

HTTP Header Value

HTTP_ACCEPT text/html,application
/xhtml+xml,application/xml; q=0.9,*/*; q=0.8

HTTP_ACCEPT_ENCODING gzip

HTTP_ACCEPT_LANGUAGE en-US,en; q=0.5

HTTP_CONNECTION Keep-Alive

HTTP_HOST ip.my-proxy.com

HTTP_USER_AGENT

REMOTE_ADDR 162.158.38.165
REMOTE_PORT 24729
HTTP_CACHE_CONTROL max-age=259200

HTTP_X_FORWARDED_FOR 217.27.59.141 (Dubious)

Figure 31. Results taken from http://ip.my-proxy.com/ with user anonymity
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3.7. FPGA-based H264 Decoder

3.7.1. Introduction

H264 is currently one of the most widespread video formats and files encoded with it
make up a significant part of internet traffic. As such there is significant need for
accelerating both encoding and decoding of such videos to enabler quicker and
more power efficient processing and delivery of such content. This implementation
consists of a hardware circuit that can be deployed on programmable logic and
decodes an H264 input stream provided at the input, providing raw frames at the
output.

This implementation was performed within the context of T-NOVA more as means to
highlight the efficacy of the programmable logic-aware OpenStack implementation
developed within WP4 and is described in D4.1 [D4.1]. It consists of a high-
performance, data-flow, pipeline architecture written in C++ and fine-tuned for
synthesis using Xilinx's Vivado HLS software. This is coupled with additional logic for
monitoring performance and starting and stopping a VNF instance.

3.7.2. Architecture

The architecture of a VNF instance is shown on Figure 32. It consists of three main
elements:

The core processing components which receive and send frame data and decode
them.

A HW monitoring agent which taps the input and output lines and records the
number of frames that are processed

A VM control block which interfaces with the Orchestrator over the mAPI and is thus
responsible for lifecycle management by starting and stopping the VM. Here it
should be noted that since HW VMs are a novel concept only the most basic lifecycle
events are supports. More advanced ones like scaling and migration will have to be

deferred to future research.
Monitoring Management
Server Network

N
Eﬂonitorng Agenﬂ ( VM Control J
Scratchpad
.

H264 Decoder
Pipeline

AX|4 Interface -
Adapter

Ingrdss
ssalf3

Public Network

Figure 32 — FPGA-based H264 Decoder Architecture
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3.7.3. Functional Description

The VNF's main processing components are:

The AXH4 interface adapter, which converts the memory mapped interface used to
communicate with the ARM A9 CPU to the streaming interface used internally by the
VNF and back.

The H264 decoding pipeline, that receives an input stream consisting of H264
encoded frames and decodes them into raw frames. The pipeline is implemented as a
feed-forward, data flow pipeline and consists of several stages in order to balance the
processing overhead and ramp up the achieved clock

frequency. The main steps in this pipeline are:

Error Checking: Verifying that the current decoder context is not corrupted and that
decoding can continue.

State Initialization & Reset: Initialize internal decoder variables and reset buffer
memories for decoding of the next frame.

NAL Header Parsing & Decoding: H264 bitstreams are organized in packets called
NALs. Each NAL is of variable length and contains a header with information
regarding its contents. Parsing this information is mandatory to the successful
decoding of the frames.

Frame Decoding: This is the core of the accelerator’s functionality. It reads the frame
data contained in the NAL and decodes them into raw frame bitstream, which is then
passed to the output.

A scratchpad buffer, where interim frame data which will be re-used in subsequent
processing is being stored.

3.7.4. Interfaces

The VNF's external interfaces comprise four logical network connections (the actual
system on which the system is implemented has one physical network port), two of
which serve to exchange data traffic to and from the data processing pipeline, one
over which lifecycle management is performed, thus enabling the orchestrator to
start and stop a VM and one which is used to send monitoring data to the SW
monitoring agent which is executed on the ARM processor of the Zyng FPGA SoC
(see D4.42 for a detailed description of the monitoring architecture of the FPGA-
based NVF).

3.7.5. Technologies

The VNF is designed in C++ and synthesized for the Zyng SoC using Xilinx's Vivado
HLS tool. This tool allows FPGA designers to develop and implement designs using a
high-level language and thus achieve higher productivity than what would be feasible
when using more traditional technologies like Verilog or VHDL.

The VNF has been developed for use with the OpenStack FPGA-based platform
developed within T-NOVA in WP4 which includes both means to interconnect the
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VNF to the ARM A9 CPU on which OpenStack runs. The hardware side of the platform
is based on standard chip interconnection technologies like ARM’s AMBA AXI buses
which enable for high-speed communication between the ARM subsystem and the
VNF.
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4. SCALING

Scalability is the capability of a system, network, or process to handle a growing
amount of work and to be enlarged in order to accommodate that growth.

There are two methods of adding resources for a particular application: horizontal
and vertical scaling:

= to scale horizontally (or scale out/in) means to add more nodes to (or remove
nodes from) a system, such as adding a new resource to a distributed software
application.

= toscale vertically (or scale up/down) means to add resources to (or remove
resources from) a single node in a system, typically involving the addition of CPUs
or memory to a single function.

In T-NOVA project only the scale out/in is supported. To support this the scale_in_out
section is used in the VDU section of the VNF. The section specifies the max/min
instances allowed per VDU defined (i.e VNFC).

4.1. General description

The scaling procedures can be applied to the following T-NOVA VNFs:

1) vSBC (virtual Session Border Controller)
2) vCDN/VHG (virtual CDN / virtual Home Gateway)

This chapter contains a guideline for these procedures, whilst the specific VNF scaling
features are described in par. Erreur! Source du renvoi introuvable. (in case of
vSBC) and par. Erreur ! Source du renvoi introuvable. (in case of VHG).

The following description:

» refers only to the VNF Scaling (ie. increasing the capacity of a VNF), since the
Network Service Scaling (ie. Increasing the capacity of a Network service by
adding new VNFs) is out of scope for this document

» refers only to the "scale in/out” procedures (adding/removing VDU instances with
the same deployment flavour), since the “scale up/down” (adding/removing
resources inside a VDU instance) is out of scope of T-NOVA project [D2.41].

» refers mainly to the "auto-scaling” use case, depending on the monitoring data
generated by the VNF

» consider that the "on-demand scaling” use case, from the VNF point of view, to be
simply a subset of the "auto-scaling” use case.

4.1.1. VNFD parameters for scale in/out

The "auto-scaling” procedures are handled according to the following specific
information configured inside the VNF Descriptor (VNFD):

1. Allowed numbers of instances for scaling
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This information is set using the “scale_in_out” attribute, and requires to specify
the “minimum” and the “maximum” number of allowed instances.

Example
Assuming that:
the VNF is composed by two VDUs (VDU1 and VDU2)
the first VDU mustn’t scale
the second must scale up to 2 instances.
In this case the VNFD “scale-in-out” attribute will be configured in this way:
VDUl : minimum=1 , maximum=1 - (scaling not allowed)
VDU2: minimum=1 , maximum=2

2. Generic scale in/out information
This information is set using the "assurance_parameters” of the VNFD. This
attribute allows to define (for the scale-in and for the scale-out):

the kind of parameters used for applying the scaling (param_id)

the formula for applying the scaling (formula)

the monitoring interval (interval)

the threshold for the scaling procedures (value)

the kind of threshold (unit)

the number of occurrences requested during the monitoring interval
(breaches_count).

Example of scale-out

Note: we are assuming to apply the scale-out procedure only if, during the monitoring

period (60 sec), the cpu usage exceeds the percentage threshold (80%) for at
least 2 times. In this case the VNFD must be initialized in this way:

param_id = “cpu usage”

value: 80

unit : “percentage”

formula: "CPU consumption greater than 80%"

violation:
breaches_count: 2
interval : 60

Example of scale-in

Note: we are assuming to apply the scale-in procedure only if, during the monitoring

period (60 sec), the cpu usage exceeds the percentage threshold (30%) for at
least 2 times. In this case the VNFD must be initialized in this way:

param_id = “cpu usage”

value: 30

unit : “percentage”

formula: “CPU consumption less than 30%"

violation:
breaches_count: 2
interval : 60

3. Type of requested scaling
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Two new scale in/out requests (scale-in and scale-out) were added in the
"vnf_lifecycle_events" attribute of the VNFD.

Each scaling request must specify also the "VDU-instance ID" that must scale.
4.1.2. Dependencies and impact in T-NOVA subsystems

The implementation of scale in/out procedures needs also the following new
developments in charge of WP3/WP4/WP5/WP6, as described in the following
chapters.

4.1.2.1. Marketplace (WP6)

1) VNF creation (step 2 of the dashboard) : the GUI must allow the definition of the
minimum and the maximum number of VDU instances for scaling (since now this
operation wasn't possible; minimum and maximum values were always set to “1"
by default).

Moreover the VNFD generated by the Marketplace doesn’t contain the “generic”
monitoring parameters specified by the GUL

2) Lifecycle Events (step 3 of the dashboard): the GUI must allow the configuration

of the new “scale-in” and "scale-out” events

3) SLA (step 4 of the dashboard): since now only the “specific” parameters are shown
inside the monitoring parameter section, while the “generic” monitoring
parameters are missing. The request is to add also this kind of parameter inside
the GUL

4.1.2.2. Orchestrator/VNFM, VIM, VNF (WP3/WP4/WP5)

The Orchestration/Infrastructure level (WP3/WP4) must implement the following
scaling procedures:

1) Scale-out procedure

- The Orchestrator/VIM, on the basis of the collected monitoring data, must
verify if they exceed the upper threshold configured inside the VNFD

- The Orchestrator/VIM, after having created a new VDU instance, must wait
until its initialization is finished.

- The Orchestrator/VNFM sends the VNF Controller a specific scaling event (for
example a http command) containing both the type of the requested scaling
(scale-out in this case) and the identifier of the VDU instance to be scaled, and
waits for the reply.

- This response is sent by the VNF Controller (O&M) only when the scale-out is
finished.

2) Scale-in procedure
- The Orchestrator/VIM, on the basis of the collected monitoring data, must
verify if they exceed the lower threshold configured inside the VNFD
- The Orchestrator/VNFM sends the VNF Controller a specific scaling event (for
example a http command) containing containing both the type of the
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requested scaling (scale-in in this case) and the identifier of the VDU instance
to be scaled, and waits for the reply.

- The VNF Controller stops the instance that must be scaled. When the instance

is fully stopped, the VNF Controller informs the infrastructure
(VNFM/Orchestrator).

- Finally, the Orchestrator/VIM can now release all the resources linked to the

VNF instance.

4.2. vSBC scaling

4.2.1. Assumptions

The vSBC scaling procedure is applied only to the “media” stream (not to the
“signalling” stream)

The "CPU usage” was chosen as parameter for handling the scale in/out
procedures. Each Virtual Machine of the vSBC contains a “collectd” daemon that is
able to send this generic data to the T-NOVA Monitoring Manager

the vSBC scale-out procedure is obtained by instantiating a new VM and putting
it behind a load balancer belonging to the IBCF function of (see par. Erreur !
Source du renvoi introuvable. for further details)

the T-NOVA lifecycle is handled by means of the http protocol. The scale in and
scale-out events are mapped into the PUT http command.

4.2.2. vSBC architecture for scaling

The vSBC (scaling) architecture is composed by 2 VDUs (VDUl and VDU2), as
depicted in the following Figure.
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Figure 33 — vSBC architecture for scaling
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 VDUL:
it consists of one scale (1 VM) and performs the following functions:

- Front-end/Load Balancer function (FE-LB). This functions sends the incoming
SIP signalling to the IBCF function

- Interconnection Border Control Function (IBCF). This function manages the SIP
signalling from the initial SIP Request (i.e: INVITE) to the final SIP Request (i.e:
BYE), covering all the typical call phases (i.e: setup, renegotiation, tear down,
... etc)

- Operation & Maintenance Function (O&M): it's the VNF Controller for the
management of the T-NOVA lifecycle (based on http protocol).

 VDU2Z:
it consists of two instances (2 VM) and performs the following functions:

- Border Gateway Function (BGF). This function handles NAT and/or
Transcoding of RTP packets.

The “generic” metrics are sent directly to the Monitoring Manager by the local
“Collectd” of each of the two VM hosting the VDU?2 instances (BGF1 and BGF2).
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4.2.3. Activation of the vSBC scaling procedures

Since the transcoding procedures require a high CPU load, especially in case of video
calls, the BGF is the most critical component of the vSBC. So it needs to scale from 1

"u_,n

to “x” instances (for sake of simplicity we have supposed x=2 in Figure 33. The
scaling operations have no impact on the configuration of the SIP endpoints, because
media ip address and port are exchanged by the SDP Offer/Answer negotiation
(typically during the call setup).

The only parameter monitored for the scaling activation is the CPU utilisation.

Referring to Figure 33, the first VDU2 instance (BGF1) can handle the incoming media
packets at the start of the VNF and, from now on, it is always active and doesn't scale.

The second VDU2 instance (BGF2) can scale according to the “formula” configured
inside the VNFD.

The best scaling algorithm could be:

- collect the generic parameter “CPU utilisation" data coming from all the BGF
instances

- compute the average value

- compare this value with the VNFD thresholds and the “breaches_count”
configured inside the VNFD

These operations should be applied by the WP3/WP4, since each VM send the «CPU
utilization” data directly to the Monitoring Manager.

If this algorithm can’t be applied, a simpler alternative could be the following:

- the second VDU2 instance (BGF2) scales out when the CPU load of the first VDU2
instance (BGF1) exceeds an upper threshold

- the second VDU2 instance (BGF2) scales in when the “CPU load" of the second
VDU?2 instance (BGF2) goes below a lower threshold.

Once the scale-out procedure is finished, the IBCF function of VDUl applies an
internal load balancing towards the two BGF instances (BGF1 and BGF2), using a
round-robin algorithm, unless the BGF instance has already reached an internal
threshold of maximum traffic.

4.2.3.1. vSBC scale-out flow chart
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The following Figure depicts the scale-out flow chart.
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Figure 34 — vSBC "Scale-out” flow chart

Cyclically the BGF1 instance, by means of its local Collectd daemon, sends the "CPU
utilisation" metric to the Monitoring Manager. These data are sent to the VIM and
then to the VNFO.

If the collected metrics satisfy the VNFD scale-out rules described in par. Erreur!
Source du renvoi introuvable. , the VNFO requires a new VDU2 instance (BGF2), and
waits the acknowledge coming from the VNF at the end of its initialization phase.

The scale-out request must be sent to the VNF Controller (O&M) of the VDUl
through the Management Network. This request is a http PUT method, different from

the “Start” PUT request (i.e: on the basis of a different URL), and must contain the
identifier of the new VDU2 instance (BGF2).

A Scale-out request is like a “start” request for the new VDU2 instance (BGF2) since it
enables, from now on, the handling of the media stream.

At the receipt of the scale-out command, the VNF Controller (O&M) of the VDUL sets
to “enable” the administration status of the BGF2 instance. From now on the IBCF
function starts to balance the media stream on BGF1 and BGF2.
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4.2.3.2. vSBC Scale-in flow chart

Figure 35— vSBC “scale-in" flow chart

Cyclically both BGF1 and BGF2 instances, by means of their local “Collectd” daemon,
send the "CPU utilisation” metric to the Monitoring Manager. These data are sent to
the VIM and then to the VNFO.

If the collected metrics satisfy the VNFD scale-in rules described in par. Erreur!
Source du renvoi introuvable., the VNFO/VNFM requires the VNF to stop the usage
of the VDU2 instance (BGF2), and waits the acknowledge coming from the VNF at the
end of this operation.

The scale-in request must be sent from the VNFO/VNFM to the VNF Controller
(O&M) of the VDUL, through the Management Network. This request is a http PUT
method, different from the “Start” request (i.e: on the basis of a different URL), and
must contain the identifier of the VDU2 instance that must be removed (BGF2).

A scale-in request is like a "Stop” request for the VNF, since the VNF Controller (OEM)
stops, in a graceful way, all the active media sessions of BGF2. The administrative
status of BGF2 is set to “disable”, so that the IBCF, from now on, can use only the first
BGF instance (BGF1) to handle new calls.
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During the scale-in procedure no media calls are moved from the BGF2 instance to
the BGF1 instance. Only when all active BGF2 calls are finished, then all the resources
linked to the BGF2 can be released. Anyways there is a maximum time interval after
which all the active sessions are stopped.

Finally the VNF controller (O&M) of the VDU1 notifies the VNFM/VNFO the end of
the scale-in operation, so that the VNFO can request the VIM to release all resources
linked to the BGF2 instance.

4.2.4. Summary of the vSBC scaling procedures

The following Figure summarizes the vSBC “scale-out” procedure previously
described in par. Erreur ! Source du renvoi introuvable.
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Figure 36 - vSBC “scale out” procedure

The following Figure summarizes the vSBC “scale-in” procedure previously described
in par. Erreur ! Source du renvoi introuvable.
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Figure 37 - vSBC “scale-in" procedure

© T-NOVA Consortium T



T-NOVA | Deliverable D5.32 Network Functions Implementation and Testing - Final

4.3. vHG/ vCDN scaling

Thanks to the use of SaltStack and the Infrastructure as a Service Approach, scaling is
made quite easy for the vHG/VCDN. In this section, we briefly describe how we
implemented scaling. We followed the antifragile pattern, allowing each micro service
to operate in autonomy so that the whole VNF can be resilient and easily scalable.

4.3.1. Scaling out

First, the monitoring agent reports that the storage is running low, or that the
ingestion procedure cannot cope with the ingestion demand, thanks to application-
specific metrics.

Then, the VNFM launches a new VM (storage node or worker node depending on
which metric is breached) and this node is provided with the IP address of the VNF
controller. The new VM connects to the controller so that it can be part of the
infrastructure under its supervision.

When the VNFM send the scale-up lifecycle event, the controller re-synchronize the
infrastructure with all the connected VMs. It's important to note that the exact same
procedure is used when scaling the VM and when starting them: software is
downloaded (swiftstack or docker + custom made-images), the VM is configured
(configuration files are written and services are launched) according to its “role” as a
storage node or as a worker.

Once a new worker joins the pool, it is ready to take orders from the caching
orchestrator and starts consuming messages on the broker queue. Similarly, once a
new storage nodes arrive, swiftstack proxy node re-balance the load amongst the
nodes automatically.

4.3.2. Scaling in

Scaling in can occur easily, as workers can be shut instantaneously: killed tasks will
not be acknowledged by the workers and will be automatically relaunched after a
timeout. For storage nodes, when the node proxy detects that the integrity of the
Distributed Hash Table is compromised (when a node terminates), load is rebalanced
on existing nodes, automatically in background task.
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5. T-NOVA VNFs: LESSONS LEARNT

In this section, some practical information collected during the development phase of
T-NOVA VNFs is reported. In particular, in the following subsections, the most
relevant difficulties encountered during the project are reported and briefly
discussed, so as to provide guidelines to new developers who wish to develop new
VNFs and/or make them available in the T-NOVA framework. Some novel aspects are
also considered, such as the use of various types of HW accelerators to enhance the
performance of VNFs.

5.1. Architecture

When it comes to the architecture of the various VNFs developed in T-NOVA, all VNF
developers planned to have a typical VNF composed of several VNF components
reflecting the different functionalities required for the operation of the VNF. Although
this distributed architecture works fine with VMs running on hosts, it does not,
unfortunately, work in a seamless way when OpenStack is being used. In fact,
OpenStack does not really count as a complete NFV infrastructure and raised several
networking issues in terms of automated VNF deployment, Service Function Chaining
(SFQC), traffic forwarding and inter-VM communication, required for VNFs such as the
vSA and the Traffic Classifier (vTIC) to function properly. The automated and
functional integration of the vSA and vTC to OpenStack’'s networking environment,
and more specifically to Neutron service, is non-trivial and remains to be
substantiated and implemented as Neutron at the moment does not offer much
freedom and flexibility on arbitrary traffic steering.

In order to support direct traffic forwarding, meaning the virtual network interface of
one Virtual Network Function Component (VNFC) to be directly connected to another
VNFC's virtual network interface, a modification on Neutron’s OVS needs to be
applied. Each virtual network interface of a VNFC is reflected upon one TAP-virtual
network kernel device, a virtual port on Neutron's OVS and a virtual bridge
connecting them. This way, packets travel from the VNFC to Neutron’s OVS through
the Linux kernel. The virtual kernel bridges of the two VNFCs need to be shut down
and removed. Then an OVSDB rule needs to be applied at the Neutron OVS, applying
an all-forwarding policy between the OVS ports of the corresponding VNFCs.

5.2. Descriptors

The original input for creation of the descriptors for the T-NOVA VNFs was from the
early works of ETSI NFV ISG. As the information model used by ETSI ISG NFV is a
subject to change, our efforts focused in producing a T-NOVA derivative that would
efficiently support the Marketplace imposed rules for Function Developers in
delivering their VNFs. Rules as such focus on the the following main sections

- Trading and brokerage support
- SLA assurance
- Networking (via mandatory specified virtual networks)
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- QoS not fully supported yes, only BW limiting
- VNFC collapse to single VDU mapping. Due to focusing in VMs rather than
containers.

The decided descriptors used by TeNOR when a NS is composed by a number of
VNFs and decomposed when the the service is to be deployed according to the PoP
selected for the instantiation of each VNF. Internally the system is translating the
previously presented descriptor into HOT template (HEAT) assuming that the it is
assumed that the PoPs are supporting Openstack. The mapping of the T-NOVA
descriptor to HEAT templates is not one to one, additionally for the enforcement of
the graph VNF Forwarding Graph information has to pass through the SDN Controller
as the integration of the OpenDayLight SDN controller is still not supported by both
Openstack and ODL.

5.3. Networking

The network acceleration in a NFV environment is an ever-evolving important aspect
of the virtualized network environment under-test. The mitigation of physical network
functions to a virtualized environment, improves portability and flexibilty, but also
limits and penalizes the performance. This is why several mechanisms have been
developed in order to accelerate the packet processing performance in a virtualized
environment, such as DPDK and SRIOV.

The Data Plane Development Kit (DPDK) framework succeeds in maximizing packet
throughput in a virtualized environment. A novel DPDK-enabled version of the vTC
has been in order to optimize the packet-handling and processing for the inspected
and forwarded traffic, by bypassing the kernel space. The analyzing and forwarding
functions are performed entirely on user-space which enhances the vTC performance.
Performance evaluation results showed that with and without DPDK, a significantly
higher performance can be achieved compared to packet processing with the Linux
kernel network stack. However, during the experimentation process various issues
ascended, regarding the DPDK deployment. Firstly, the DPDK compilation with nDPI
libraries was not possible in any Linux VM, functional version under-test is a Ubuntu
14.04 VM.

The second issue, was connectivity issues caused by the loading of the DPDK drivers,
as they remove the TCP-IP stack of the virtual NICs, by default. The external access
was resolved by adding multiple interfaces to the VM, in order not to lose
connectivity. The second most important issue was the packet routing issue inside an
Openstack network environment, which functions over a series of linux bridges and
OVS ports. An overview of the Openstack networking has been presented in detail at
the vTC section. The main purpose of this architecture scheme is to demonstrate that
network functions, such as port mirroring and traffic forwarding cannot work properly
under a clean Openstack network environment.

In order to support direct traffic forwarding, meaning the virtual network interface of
one VNFC be directly connected to another VNFC's virtual network interface, a
modification on Neutron’s OVS needs to be applied. Each virtual network interface of
a VNFC is reflected upon one TAP-virtual network kernel device, a virtual port on
Neutron’s OVS, and a virtual bridge connecting them. This way packets travel from
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the VNFC to Neutron's OVS through the Linux kernel. The virtual kernel bridges of
the 2 VNFCs need to be shut down and removed, then an OVSDB rule needs to be
applied at the Neutron OVS, applying an all-forwarding policy between the OVS ports
of the corresponding VNFCs. NCSRD has developped this method in order to tackle
traffic steering issues.

Another major issue solved by this implementation was the traffic mirroring feature
provided by the vTC VNF. As the vTC VNF consisted of 2 VNFCs, which received
duplicated traffic at the same time, the concept of traffic mirroring was realized.
Further on, it was implemented in an Openstack environment using the above
method described.

Single Root I/0O virtualization (SR-IOV) in networking is a very useful and strong
feature for virtualized network deployments. SRIOV is a specification that allows a PCI
device, for example a NIC or a Graphic Card, to share access to its resources among
various PCI hardware functions: Physical Function (PF) (meaning the real physical
device), from it a number of one or more Virtual Functions (VF) are generated.
Supposedly we have one NIC and we want to share its resources among various
Virtual Machines, or in terms of NFV various VNFCs of a VNF. We can split the PF into
numerous VFs and distribute each one to a different VM. The routing and forwarding
of the packets is done through L2 routing where the packets are forwarded to the
matching MAC VF. The purpose of this section is to share a few tips and hacks we
came across during our general activities related to SRIOV.

First of all, the SR-IOV enablement in an Openstack environment is by itself a lesson,
as SR-IOV networking operates in an independent separate manner than the rest of
the standard Openstack networking. It is in a sense a parallel high-speed road to the
Neutron-OVS service. SR-IOV uses VLANs by default for packet routing and path
selection, which was caused an extra strain in order for the packet to reach the VNF.
However, a different approach was also built using a no-VLAN SR-IOV network, which
worked properly and facilitated the experimental process of the vIC VNF.

As already mentioned, in an Openstack environment traffic mirroring is not
something trivial, this applies also to the parallel SR-IOV path. In order to tackle this,
a live modification was performed at the SR-IOV VFs of the port, in order to achieve
traffic mirroring. The detailed actions in order to achieve this, are enlisted below.

Let's say you want to send the same flows and packets to 2 VMs simultaneously.

if you enter the ip link show you should see something like this:

p2pl: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT
group default glen 1000

link/ether a0:36:9f.68:fc:f4 brd ff-ff-fAff-ffff

vf 0 MAC 00:00:00:00:00:00, spoof checking on, link-state auto
vf 1 MAC fa:16:3e:c0:d8:11, spoof checking on, link-state auto

vf 2 MAC fa:16:3e:a1:43:57, spoof checking on, link-state auto

vf 3 MAC fa:16:3e:aa:33:59, spoof checking on, link-state auto

p2p1: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT
group default glen 1000
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link/ether a0:36:9f.68:fc:f4 brd ff-ff-ff-ff-ff:-ff

vf 0 MAC 00:00:00:00:00:00, spoof checking on, link-state auto
vf 1 MAC fa:16:3e:c0:d8:11, spoof checking on, link-state auto

vf 2 MAC fa:16:3e:a1:43:57, spoof checking on, link-state auto

vf 3 MAC fa:16:3e:aa:33:59, spoof checking on, link-state auto

In order to perform mirroring and send all traffic both ways we need to change the
MAC address both on the VM and on the VF and disable the spoof check.

Let's change vf2 -> vf3

On the VM:

ifconfig ethO down

ifconfig ethO hw ether fa:16:3e:aa:33:59
ifconfig ethO up

ifconfig ethO down

ifconfig ethO hw ether fa:16:3e:aa:33:59
ifconfig ethO up

On the host — VF:

ip link set ethO down

ip link set ethO vf 2 mac fa:16:3e:aa:33:59
ip link set ethO vf 2 spoofchk off

ip link set ethO up

ip link set ethO down

ip link set ethO vf 2 mac fa:16:3e:aa:33:59
ip link set ethO vf 2 spoofchk off

ip link set ethO up

After that we have 2 VFs with the same MAC.

But it will still not work. What you have to do is, change again the vf 2 to something
resembling the latest MAC

ip link set ethO vf 2 mac fa:16:3e:aa:33:58

ip link set ethO vf 2 mac fa:16:3e:aa:33:58

After these changes through the experiments we performed we managed to mirror
the traffic on 2 different VFs.

5.4. Acceleration support

54.1. FPGA

Designing a VNF for a programmable logic based device harbours completely
different challenges from its software counterparts. The fact that this VNF was
designed for a specific programmable logic based platform imposed one more layer
of constraints. The most important such constraint from a T-NOVA perspective is the
limited scaling options available to the VNF. Since the platform used in T-NOVA is
single-tenant and the hardware of the VNF is fixed, scaling up by dedicating more
resources to this instances is not possible. This means that the VNF should be
designed with meaningful performance and resource use goals in mind thus
minimizing the need for scaling up (and thus occupying a different device) but also
optimize use of the device already in use.
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One more critical element is to ensure that all platform components work together
harmoniously without causing bottlenecks and thus allowing the hardware VNF
instance to reach the maximum possible performance. This pertains to both the
OpenStack agent running on the ARM A9 CPUs but also on the software and
hardware platform that moves data from OpenStack to the HW VNF and back. While
the hardware side of the infrastructure provides ample bandwidth for this, the
software component remains unpredictable and outstanding interrupts and excessive
buffer copying can easily get the best of any implementation. The effect of this was
minimized by extensive testing and performance benchmarking at various location in
both the hardware and the software.

5.4.2. Graphical Processing Units (GPU)

Hard parallelization of video coding: In spite of the common thought, typical in the
HPC research community, that digital image and video processing algorithms can be
greatly accelerated when ported on GPU's as they are well-suited for massive
parallelization, in the GPU-accelerated algorithms for video encoding/decoding
developed in T-NOVA no simple massive parallelization was possible, and much more
effort than expected was needed in order to obtain satisfying (but not impressive)
speed-ups with respect to the standard CPU-based algorithms, significantly
contradicting this common expectation. This is mainly due to the strict and recursive
correlation between adjacent data, both in coded and decoded video streams (each
coded/decoded unit — the macroblock — refers to several previously coded/decoded
units, thereby imposing a fine-grained sequentially (and therefore no chance for
parallelism) in the encoding/decoding algorithms. Finally, a performance
improvement, in terms of speed-up with respect to CPU-based algorithms, has been
obtained exploiting the GPU; this was achieved by adopting a cooperative CPU-GPU
approach, in which some computationally-intensive tasks (such as Motion Estimation)
that could run autonomously (i.e. in parallel with the main algorithm) have been
delegated to GPU, while the CPU is executing the main computation threads and
then “picks” the already computed results from the GPU when needed, thus saving
the time necessary for computing them [hwAcc].

GPU virtualization: In order to exploit GPU's in the T-NOVA virtualized infrastructure,
it was necessary to “see” the GPU as an available virtual resource. GPU virtualization is
not a straightforward issue: GPU manufacturers have developed some solutions
providing virtual resources (like NVIDIA's GRID architecture and PCI-pass-through
enabled on GPU boards, for instance) but they are not so stable and robust against
any combination of hardware platform, virtualization environment, and operating
system. At the end, satisfying results have been achieved by adopting kvm as
virtualization infrastructure, running VMs using Linux Ubuntu 14. Several different
GPU platforms from NVIDIA have been successfully virtualized exploiting the PCI-
pass-through. This architectural approach has proven to be very efficient, since the
virtualized GPU could deliver substantially the same performance as the same
physical GPU device in a native environment, in terms of both computation speed
and load capabilities.
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5.5. VNF initialization

The VNF initialization may require the usage of the “Cloud Init" library at the boot
time of the virtual machine, with a specific installation script *. In other words, during
the bootstrapping phase of a VNF, some information regarding the networking (i.e:
Management IP address) can be collected by means of Cloud Init and a specific
installation script.

The vSBC initialization is a typical example of this kind of collecting data.

The installation script can be configured using the GUI of the Marketplace, and it
covers two main aspects:

1) The first is how to get the networking information (i.e: the IP address of the
Management interface), available only after TeNOR has allocated resources for a
specific VNF instance. This info can be obtained by means of the "get_attr"
function, that allows the retrieval of a resource attribute value at runtime. In our
case a User-Data Script is written inside the installation script, beginning
typically with "#! ", as depicted in the following example.

Example

resources:
server_init:
type: OS::Heat::SoftwareConfig
properties:
config:
str_replace:
template: |

#1/bin/bash

params:

mng_ip_par: {get_attr: [instance_port, fixed_ips, O, ip_address]}

* Cloud init is a UNIX package, supported by multiple cloud providers, that allows
developers to initialize cloud instance at boot time. It is installed in the Ubuntu Cloud
Images, and also in the official Ubuntu images available on EC2. It is needed in arch
“Linux” images that are built with the intention of being launched in cloud

(like OpenStack).
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get_resource: server_init

The "get_attr” function is then copied by Tenor inside the Heat Orchestration
Template (HOT).

The VIM provides the information through the Openstack Metadata API, which is
collected by the Virtual Machine after its Boot and is sent, via the mAP], to the
VNF controller.

2) Once the on-boarding phase is terminated, TeNor must send the “Start” event to

the all the VNF instances composing the service that was purchased.

This event must be received when all VNFs have completed their booting process.
Only in this way they are available to receive and handle the mAPI lifecycle events.
Heat can only provide information whether the requested resources are allocated
or not, but can't know if theVNF is still in a booting phase. For this reason the
VNF must notify this condition to Heat. This aim can be achieved through a
“wc_notify” line in the installation script, as depicted in the following example.

Example

resources:
server_init:
type: OS::Heat::SoftwareConfig
properties:
config:
str_replace:
template: |

#1/bin/bash

wc_notify --data-binary '{"status": "SUCCESS"}'

params:

The “wc_notify” line gets replaced by a “curl” line like that one of the following
example.

Example
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curl -i -X POST -H 'X-Auth-Token: 58b96bd5ac50409999bcf20491e8e7fb' -H
'‘Content-Type: application/json' -H '‘Accept: application/json’
http://10.10.1.2:8004/v1/70e1ff61ab0947558833196e4d94f06b/stacks/admin/
5e980984-ab37-449f-9f2c-c3d06d152255/resources/wait_handlel/signal --
data-binary '{"status": "SUCCESS"}'

This curl line is executed only at the end of the booting phase and it is used to
get the Wait Condition resource defined in Heat. This resource will change the
VNF stack status to “completed” only after receiving a signal (a http POST in the
previous example) through the procedure already described.

The VNF Controller component (the O&M component in case of vSBC), once
received the Start event from the Middleware AP, spreads the initialization event
to the other VNFC thanks to a specific configuration software.

With this approach the VNF itself is responsible for applying the configuration and
the starting of signalling and media flows. The same approach must be used also in
case of scale-out procedures, so that the new scaling instance receives the Sart event
when its bootstrap phase is terminated.
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6. VNF CHARACTERIZATION

6.1. Scope

This chapter provides some general guidelines to describe how the Virtual Network
Functions (VNFs) of T-NOVA framework perform under a particular workload, as
required in the task 5.4 of WP5.

The main scope is to suggest a common methodology to execute the Performance
testing and to evaluate the obtained measurements by means of load curves, based
on the following parameters:

« Cpu Load - represents the average system CPU load over a period of time

«  Memory Usage - represents the amount of system memory used over a period of
time

«  Network Throughput - rate of network message delivery over a communication
channel.

Each VNF developer needs to identify the most significant key scenarios, so to derive
the load curves related to the generic parameters previously described.

The analysis of the load curves could be useful to the Orchestrator/VIM in order to:
- estimate the configuration resources required during the phase of instantiation

- check, during the live traffic, the compliance with the declared VNF's load curves,
in order to recognize some bugs inside the VNF.

The steps for obtaining the load curves and testing the performances are described in
par. 6.2.

The final annexes (i.e: Annex A) contain, for each of these steps, some examples
related to the T-NOVA VNFs.
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6.2. Core Activities of Performance Testing

The performance testing consists of the following six steps:

Identify the Test Environment

Identify the Performance Acceptance Criteria

Plan and Design the Performance Tests

Configure the Test Environment

Execute the Tests

Analyze the obtained Results

Figure 38 — Steps of Performance Testing

The following chapters will describe in detail each of these steps.

6.2.1. Identify the Test Environment

This step requires the knowledge of the physical environment in which the
performance tests will be executed, along with the tools and the hardware required
to execute these tests (i.e: load-generation tools and resource monitoring tools). It is
requested the knowledge of all details of the hardware, software and network
configurations before beginning the testing process.

It is important to have a very high degree of similarity between the hardware,
software, and network configuration of the VNF under test in the local laboratory and
in the TNOVA testbed.

Some examples related to this testing step can be found in the final Annexes of this
document (i.e: Annex A).

6.2.2. Identify the Performance Acceptance Criteria

This step includes goals and constraints for the network throughput, the response
times and the resources allocation.

It is very important to start identifying, or at least estimating, both the desired
performance and the most common parameters of the VNFs, such as the CPU load,
the memory usage and the network throughput (defined in part. 6).
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For each of these generic parameters it makes sense to define some reference values,
for example the CPU Load not over 85% when the VNF load curve is at its maximum

value.
Some examples related to this testing step can be found in the final Annexes of this
document (i.e: Annex A).

6.2.3. Plan and Design the Performance Tests

This step identifies the main use cases to be tested and it defines also the metrics to
be collected.

These basic parameters, once identified, captured, and correctly reported, can help to
identify problems and bottlenecks within the VNF, and this could be helpful also to
the T-NOVA Orchestrator/VIM for choosing the VNFs able to manage a specific
service.

They could also be useful to identify the most critical scenarios for the basic
parameters previously described (CPU load, memory usage and network throughput).
Some examples related to this testing step can be found in the final Annexes of this
document (i.e: Annex A).

6.2.4. Configure the Test Environment

This step requires to prepare the test environment in laboratory, composed by the

VNF, the Measurement tools and the Load generator.

The test environment must be able to monitor the resources, if necessary.

Normally, it is important to consider some key points when configuring the test

environment:

» install in your VNF the same version of software already existing in the T-NOVA
testbed

* make a complete configuration of your VNF for all kind of scenarios that you are
going to test

* make sure that the test environment is reserved only for these tests

» determine how much load you can generate before the system reaches a
bottleneck.

Some examples related to this testing step can be found in the final Annexes of this
document (i.e: Annex A).

6.2.5. Execute the Tests

This step executes all tests, and then validates the obtained results.

The test execution can be viewed as a combination of the following sub-tasks:

1. Reset the system.

2. Coordinate the test execution with the other colleagues that could use the VNF.
3. Check the configurations and the state of the environments and data.
4

Begin the test execution, that normally must run for some hours (in this way any
peaks will be averaged).
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5. While the tests are running, monitor and validate the scripts, the system, and the
received data.

6. Upon the test completion, quickly review the results in case of obvious indications
that the test was not correctly handled (for example the restart of a VNF
component).

7. Archive the tests, the test data, the results, and other information.

8. Rerun the tests by changing the amount of emulated traffic, so to obtain new
points of the load curve.

Some examples related to this testing step can be found in the final Annexes of this
document (i.e: Annex A).

6.2.6. Analyze the obtained Results

This step analyzes the test results in order to highlight some critical issues while using
the VNF, or to obtain input data for applying special services (for example the scaling
procedures).

For this goal it is important to analyze the final load curve: its minimum point will be
the one with no traffic, while its maximum point will be the one where the traffic
cannot be increased because of the overuse of the CPU or memory, a too high
network throughput, or a high number of service failures.

Some examples related to this testing step can be found in the final Annexes of this
document (i.e: Annex A).
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7. CONCLUSIONS

This document provides the final versions of the description of the VNFs developed
in T-NOVA. Those VNFs demonstrate, with real-life applications, the capabilities
offered by the overall T-NOVA framework.

The developed VNFs cover a wide range of applications, and thus demonstrate the
versatility of the overall T-NOVA system to offer commercially attractive appliances
and services to real users.

The use of HW acceleration in a virtualized infrastructure has also been addressed:
different types of hw accelerators have been used in T-NOVA VNFs — GPU, FPGA and
networking accelerators such as SRIOV.

Many performance tests have been carried out, and general guidelines for developers
have been provided.
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