

Deliverable D5.01

Interim Report on Network
Functions and associated
framework

Editor Paolo Comi (﴾Italtel)﴿

Contributors Ahmed Abujoda (﴾LUH)﴿, Aurora Ramos (﴾ATOS)﴿, Bruno Miguel
Parreira, José Bonnet (﴾PTInS)﴿, Dora Christofi, Savvas
Charalambides (﴾PrimeTel)﴿, Enzo Figini, Pietro Paglierani
(﴾Italtel)﴿, Federico Pedersini , George Xilouris, Michail-‐
Alexandros Kourtis (﴾NCSRD)﴿, Giuliano Grossi (﴾UniMI)﴿, Nicolas
Herbaut (﴾VIO)﴿, Yacine Rebahi (﴾Fokus)﴿

Version 1.0

Date December 19th, 2014

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
2

Distribution PUBLIC (﴾PU)﴿

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
3

Executive Summary

This document reports the initial stage of the development of the Virtualised
Network Functions (﴾VNFs)﴿, as well as the Network Function Framework that is the
conceptual element of the T-‐NOVA system devoted to the definition of the structure
and behaviour of the Virtual Network Functions (﴾VNFs)﴿. It includes also the
description of the Function Store that is the container of the VNF images as well as
the information provided by software developers and function providers offering
their VNFs to the T-‐NOVA marketplace.

This report contains the research, design and implementation results and ideas
developed in WP5 “Network Functions” work-‐package of T-‐NOVA project. This work-‐
package gets inputs from WP2 “System Specification” and in particular from T2.5
“Specification of Network Function framework”. WP5 has relationships with WP3
“Orchestrator Platform” mainly because of the VNFs’ interactions with T-‐NOVA
orchestrator system. Other relationships are with WP6 “T-‐NOVA Marketplace” mainly
because of the Function Store that is the gate for providing T-‐NOVA marketplace
with suitable VNFs. WP5 has also interactions with WP4 “Infrastructure Virtualisation
and Management”.

The VNFs developed in WP5 are:

• Security Appliance (﴾SA)﴿
• Session Border Controller (﴾SBC)﴿
• Traffic Classification (﴾DPI)﴿
• Home Gateway (﴾HG)﴿

These virtual network functions will be used for proving the effectiveness of T-‐NOVA
concept. Some of them represent real implementations of first stage prototypes
interesting for T-‐NOVA industrial partners willing to address the NFV market.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
4

Table of Contents

1. INTRODUCTION .. 6	

1.1. MOTIVATION, OBJECTIVES AND SCOPE .. 6	

1.2. DOCUMENT STRUCTURE .. 6	

2. FUNCTION PACKAGING AND REPOSITORY .. 7	

2.1. INTRODUCTION ... 7	

2.2. STATE-‐OF-‐THE-‐ART .. 8	

2.2.1. Image repositories ... 8	

2.2.2. OpenStack repositories .. 9	

2.2.3. Web-frameworks .. 10	

2.3. REQUIREMENTS .. 11	

2.4. ARCHITECTURE ... 12	

2.4.1. Implementation design .. 13	

2.5. FUNCTIONAL DESCRIPTION .. 14	

2.5.1. Sequence diagrams .. 14	

2.5.2. Lifecycle .. 18	

2.6. INTERFACES .. 18	

2.7. TECHNOLOGY ... 19	

2.8. DIMENSIONING AND PERFORMANCES ... 19	

2.9. FUTURE WORK .. 20	

3. FUNCTION DEPLOYMENT, CONFIGURATION AND MANAGEMENT 21	

3.1. INTRODUCTION .. 21	

3.2. STATE-‐OF-‐THE-‐ART ... 22	

3.3. REQUIREMENTS .. 23	

3.4. ARCHITECTURE ... 24	

3.4.1. VNF Middleware API Components ... 25	

3.4.2. Non-Functional Elements .. 25	

3.5. FUNCTIONAL DESCRIPTION .. 26	

3.5.1. Sequence diagrams .. 26	

3.6. INTERFACES .. 27	

3.6.1. Northbound interfaces .. 27	

3.6.2. Southbound interface .. 28	

3.7. TECHNOLOGY ... 29	

3.8. FUTURE WORK .. 29	

4. DEVELOPMENT OF NETWORK FUNCTIONS ... 30	

4.1. INTRODUCTION .. 30	

4.1.1. Packet handling acceleration frameworks ... 30	

4.1.2. GPU-based acceleration ... 32	

4.2. VIRTUAL SECURITY APPLIANCE .. 36	

4.2.1. Introduction .. 36	

4.2.2. State-of-the-art ... 37	

4.2.3. Requirements ... 40	

4.2.4. Architecture .. 40	

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
5

4.2.5. Lifecycle .. 42	

4.2.6. Technology ... 42	

4.2.7. Dimensioning and Performances ... 42	

4.2.8. Future work .. 43	

4.3. SESSION BORDER CONTROLLER .. 43	

4.3.1. Introduction .. 43	

4.3.2. State-of-the-art ... 44	

4.3.3. Requirements ... 45	

4.3.4. Architecture .. 45	

4.3.5. Functional description .. 47	

4.3.6. Interfaces ... 48	

4.3.7. Technology ... 48	

4.3.8. Dimensioning and Performances ... 49	

4.3.9. Future work .. 49	

4.4. TRAFFIC CLASSIFICATION .. 49	

4.4.1. Introduction .. 49	

4.4.2. State-of-the-art ... 51	

4.4.3. Requirements ... 52	

4.4.4. Architecture .. 53	

4.4.5. Functional description .. 55	

4.4.6. Lifecycle .. 57	

4.4.7. Interfaces ... 57	

4.4.8. Technology ... 58	

4.4.9. Dimensioning and Performances ... 58	

4.4.10. Initial Implementation ... 61	

4.4.11. Future work .. 62	

4.5. VIRTUAL HOME GATEWAY ... 63	

4.5.1. Introduction .. 63	

4.5.2. Scope & Intentions ... 63	

4.5.3. State of the art ... 63	

4.5.4. Requirements ... 65	

4.5.5. Architecture .. 65	

4.5.6. Virtualization targets .. 70	

4.5.7. Sequence diagrams .. 70	

4.5.8. Technology ... 70	

4.5.9. Dimensioning and Performances ... 72	

4.5.10. Future Work ... 73	

5. CONCLUSIONS AND FUTURE WORK .. 74	

5.1. CONCLUSIONS ... 74	

5.2. FUTURE WORK ... 74	

6. LIST OF ACRONYMS ... 76	

7. REFERENCES .. 79	

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
6

1. INTRODUCTION

1.1. Motivation, objectives and scope

The design and implementation work of WP5 benefits from the extensive work done
in WP2 that designed the overall system and detailed its decomposition.

Therefore, even if this document is produced at the initial stage of T-‐NOVA
development, the system design, the objectives and the interactions among system
components are almost clear.

We believe reporting the current status of the development will provide benefits to a
clear understanding of the actual implementation of the concepts studied in the first
phase of T-‐NOVA project and provides feedbacks for the refinement of the design
and specifications of WP2. Moreover, it is a good tool for detailing the interfaces with
all the other components of T-‐NOVA system.

1.2. Document Structure

This document is organized in a modular way following the structure of the tasks
composing WP5. Each task is described in a dedicated section.

Section 2 “Function Packaging and Repository” deals with the Network Function
Store design and implementation. (﴾Task 5.1)﴿

Section 3 “Function Deployment, Configuration and Management” describes a
middleware layer realizing the Network Function API for VNF configuration and
management. (﴾Task 5.2)﴿

Section 4 “Development of Network Functions” contains the actual description of the
VNFs developed inside of the work-‐package. The introduction of this section provides
general description and design choices applicable to any VNF that is part of T-‐NOVA
ecosystem. (﴾Task 5.3)﴿

Section 5 “Conclusions and Future Work” summarizes the results of WP5 work as
described in the previous sections. Future work is meaningful as this document is
produced in the initial stage of T-‐NOVA project development.

Finally, the usual chapters for the list of acronyms and references complete the
document.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
7

2. FUNCTION PACKAGING AND REPOSITORY

2.1. Introduction

This section is dedicated to the T-‐NOVA Network Function Store (﴾NF Store)﴿ design
and implementation. The NF Store is mainly a repository for the VNFs and their
metadata. It contains the virtual machines (﴾VMs)﴿ software images and the metadata
descriptor composing each VNF. The structure of a VNF is described in [D2.41].

The diagram in Figure 2-‐1 provides a very high level architectural description of the
relationships of NF Store and VNFs with the other elements of T-‐NOVA architecture.

Figure 2-1. NF Store high level architecture

The interfaces T-‐Da-‐Nfs and T-‐OR-‐Nfs describe the interaction of NF Store with the
rest of T-‐NOVA system.

Software developers can upload VNF images into the NF Store accompanied with
metadata descriptor containing both technical and business related information, such
as the business description of the cost of using such VNF.

The description of the VNFs in the NF Store is made available to the T-‐NOVA
Marketplace [D2.41] and [D6.01]. Whenever a VNF is chosen for being part of a
service, the T-‐NOVA orchestrator will get the VNF image for deploying and executing
it over the virtualized execution environment.

The NF Store is part of the T-‐NOVA logical infrastructure. With respect to the overall
architecture definition [D2.21], a T-‐NOVA system can be composed by more than one
datacenters where the VNFs can actually run. In case of multi-‐datacenter deployment
the NF Store is not constrained to be part of a specific one, while the VNFs stored in
it will be. This concept is graphically represented in Figure 2-‐2 where the NF Store
serves all the datacenters but it logically belongs to the common elements of T-‐
NOVA infrastructure.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
8

Figure 2-2. NF Store logical deployment view

2.2. State-of-the-art

Many technologies can be considered for NF Store implementation, also because the
need of a repository for virtual machine images is common to many software
architectures and projects. Nevertheless, none of the available solutions we
considered fits with all T-‐NOVA NF Store requirements.

Our solution availability analysis involved the following three different approaches: (﴾1)﴿
look at currently available solutions for image repository; (﴾2)﴿ investigate OpenStack
approach to the problem; (﴾3)﴿ identify the basic components we can use for fresh
implementation. These options are described in the following chapters.

2.2.1. Image repositories

Many solutions are currently available as open-‐source software implementing image
repositories. Some of them are:

DSpace DSpace [DSpace] is used by educational, government, private and
commercial institutions by more than 1000 organizations that are
currently using it in a production or project environment. It is also used
by museums, state archives, state and National Libraries, journal
repositories, consortiums, and commercial companies to manage their
digital assets. The DSpace application can recognize and manage a large
number of file format and mime types. It also provides simple file format
registry where you can register any unrecognized format, so that it can
be identified in the future. This software can be customized in many ways
like user interface, metadata, browse and search, authentication,
compatibility and database to be used.

Fedora Fedora Repository software [Fedora] is used by more than 300
institutions for storing, managing, and accessing digital content. Fedora
defines a set of abstractions for expressing digital objects, asserting

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
9

relationships among digital objects, and linking "behaviours" (﴾i.e.
services)﴿ to digital objects. It can store all types of content and metadata
adopting many storage options (﴾e.g. database, file system, …)﴿. It provides
access via Web API (﴾REST/SOAP)﴿ and supports disaster recovery and data
migration. It is able to scale to millions of objects.

Invenio Invenio is a free software suite [Invenio] enabling running a digital library
or document repository on the web. The technology covers all aspects of
digital library management from document ingestion through
classification, indexing, and curation to dissemination. Documents are
organised in collections, with powerful search engine, using standard
MARC (﴾MAchine-‐Readable Cataloging)﴿ metadata for handling articles,
books, theses, photos, videos, museum objects and more.

Eprints Eprints is a software platform [Eprints] for building high quality OAI-‐PMH
(﴾The Open Archives Initiative Protocol for Metadata Harvesting)﴿
compliant repositories with a flexible plugin architecture for developing
extensions for import and export options, changes to the interface and
new ways for users to enter the data. It gives also an 'auto completion'
feature to assist in better quality metadata.

The list of available software can continue long. Most of them are meant to particular
purposes like software development or digital archive offering many functions that
are not needed in T-‐NOVA. Most important, all of them don’t have the concept of
VNF as a group of related VMs. Therefore, none of them can be used as-‐it-‐is.

In order to be used for T-‐NOVA NF Store we shall add an external component that
manages the VNF as aggregation of VM images. Then, it shall report VNF updates to
T-‐NOVA orchestrator.

2.2.2. OpenStack repositories

An interesting possibility comes from OpenStack Murano component [Murano]. It is
an application catalogue which allows application developers and cloud
administrators to publish cloud-‐ready applications. It is composed by three parts: the
main part with core and engine, an agent which runs on guest VMs that executes
deployment plan and a dashboard implementing a plugin for OpenStack Dashboard
(﴾see Figure 2-‐3)﴿.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
10

Figure 2-3. Murano functional architecture

Murano is a promising project for NF Store implementation. As T-‐NOVA NF Store it
provides a repository for applications in a cloud environment. Nevertheless, there are
some considerations that prevent Murano to be used in T-‐NOVA as it is:

• Lack of VNF concept as a group of VMs.
• Strong relation and integration with OpenStack. Murano extends OpenStack

services providing an application catalogue and is not meant to live outside
OpenStack.

• The deployment location can be different from the datacenter where the VNF
will run. This will require interactions between diverse OpenStack installations.

• VMs shall include a guest agent. This introduces additional constraints with
respect to T-‐NOVA open marketplace.

Notwithstanding, Murano project is very attracting because we believe it can evolve
in the future to cope with requirements similar to T-‐NOVA ones. The telco
Workgroup that has been created within the frame of Openstack, has already
specified as a near term research item the mapping of the Openstack components to
the ETSI NFV MANO architecture, as an initial step in the time plan for
accommodating NFV in their agenda.

2.2.3. Web-‐frameworks

Considering the limits of the available solutions described above, we studied the
option of fresh implementation of the NF Store. Fortunately many powerful tools are
currently available mitigating the risk of re-‐inventing the wheel again and again. The
main technologies we considered are mainly web-‐frameworks, databases and generic
storage techniques.

Web-‐frameworks support web and REST interfaces. Therefore, they match the
requirements about NF Store external interfaces. Moreover, they can be used for the
implementation of NF Store core logic.

We grouped the available technologies based on the implementation language.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
11

java JAX-‐RS API that provides support in creating web services
according to the REST architectural pattern that uses
annotations to simplify the development of web service
clients and endpoints.

Spring application framework and inversion of control container
that contains extensions for building web applications on
top of the J2EE platform.

python Django web application framework which follows the MVC
architectural pattern.

Flask microframework for Python based on Werkzeug and Jinja 2

web2py full-‐stack framework for rapid development of web-‐based
applications

TurboGears microframework that can scales up to a fullstack solution,
extensible and pluggable

php

Symfony web application framework for Model View Controller
(﴾MVC)﴿ applications inspired by other Frameworks such as
Django, and Spring

Zend object-‐oriented web application framework

Libraries and APIs such as JAX-‐RS shall be deployed in an application container such
as [JBoss], [Tomcat], or [Jetty].

VNF metadata can be saved with VNF images, but the data can also be maintained in
a database. There are lots of DBs that can be used such as [MySQL], [H2], or
[PostgreSQL]. Some of them have no limits, or have a very high limit, for table size. In
this case VM images can be stored in the database too. Another option is to store
VM images in the file system directly leaving only metadata descriptors in the
database.

2.3. Requirements

The main requirements for the Network Function Store are summarized here.

General requirements

1. NF Store is the repository for the VNF images and its metadata.
2. A VNF can be composed of x VM images and one metadata descriptor
3. The VNF metadata descriptor and all the VM images composing a VNF shall

be correlated, i.e. associated to a unique identifier (﴾VNF-‐id)﴿.
4. The VNF-‐id is part of the VNF metadata descriptor.
5. A VNF can be versioned.

Functional requirements

1. The NF Store informs the orchestrator whenever a VNF is added to or
removed from the repository.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
12

2. The NF Store supports the following interfaces: T-‐Da-‐Nfs, T-‐OR-‐Nfs.
3. T-‐Da-‐Nfs shall allow to upload the VNF metadata descriptor and each VNF

VM image.
4. T-‐Da-‐Nfs shall allow to remove a VNF. Then, all VNF components are deleted

from the NF Store.
5. T-‐OR-‐Nfs shall allow to download the VNF metadata descriptor and each VNF

VM image.
6. The operations over the supported interfaces shall be allowed upon

authentication and authorization.

Non-‐Functional Requirements

1. The NF Store shall provide storage capacity for a reasonable number of VNFs
and VM images. These numbers belong to the set of NF Store configuration
parameters that shall be provided at NF Store deployment time.

2. NF Store shall not introduce additional performance constraints beyond the
available bandwidth and throughput.

2.4. Architecture

High level design of NF Store includes:

-‐ NF repository
o Decomposed in VNF metadata repository and VNF image(﴾s)﴿ repository.

-‐ NF Store manager
o Implements the logic governing the repository and the interactions over

the exposed interfaces.
-‐ NF Store interfaces or front-‐ends

o Provides interfaces for interacting with the NF repository.

Figure 2-4. NF Store High Level Design

The NF repository is responsible for concurrent operations that are performed on the
store (﴾CRUD operations)﴿ on VM images and metadata.

The NF Store Manager block implements the interfaces to the repositories. In
addition, it delegates some traits of its responsibility (﴾like authentication and
authorization access)﴿ to an external authentication and authorization (﴾AA)﴿ module.
Security mechanisms can be adopted for data exchange over these interfaces.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
13

The NF Store provides interfaces to the orchestrator (﴾T-‐Or-‐Nfs)﴿ and marketplace's
Dashboard (﴾T-‐Da-‐Nfs)﴿. An additional interface (﴾not shown in the picture)﴿ for console
management is foreseen.

The NF Store high level architecture (﴾Figure 2-‐4)﴿ remains valid independently from
the specific technology we will use to implement it. As we introduced in the analysis
of the available technologies, many alternatives can be considered for NF Store
implementation. Our decision has been to divide the implementation in phases.

The goal of the first phase is to provide a usable implementation in a short time also
reducing risks of using interesting technologies but requiring unpredictable amount
of modifications. The second phase will be driven to the exploration of the interesting
research. The research activities we have identified are: (﴾1)﴿ considering alternative
implementations for studying differences in performance and reliability; (﴾2)﴿ extending
our knowledge of interesting projects such as OpenStack Murano and also
considering to contribute to the open-‐source community.

2.4.1. Implementation design

The NF Store will be implemented by a java web-‐framework. The implementation
architecture is represented in Figure 2-‐5.

Figure 2-5. NF Store java web-framework implementation

The NF Store interfaces will be developed as a web service using java language and
deployed into a servlet container such as Tomcat or Jetty. The same architecture can
be implemented using python or PHP languages.

Figure 2-‐5 shows a standard implementation with front-‐end and back-‐end of inside
the same application. In our case the front-‐end is part of Marketplace dashboard.

Using a single application server the http server is not necessary but it is required to
implement load sharing of requests in case of two or more application servers are
instantiated to increase performances (﴾see Figure 2-‐6)﴿.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
14

Figure 2-6. NF Store multi-server deployment

The database is used to store information about VNFs coming from metadata files
while VNF VM images are saved in a file system. Saving VNF VM images in the
database is an option that will be explored and evaluated.

2.5. Functional description

The Dashboard front-‐end provides the T-‐Da-‐Nfs interface, used by software
developers to publish their VNFs. The supported operations are: publication,
modification, withdrawal of a VNF and its metadata.

Considering that a VNF can be composed by several VM images, the amount of data
to be transmitted can become very large. Therefore, each VM image will be
transmitted separately. The VNF metadata descriptor shall contain information of
each VM composing the VNF. The VNF metadata descriptor is the first file to be
uploaded. The descriptor is parsed by the NF Store manager. Then it waits for the
user to upload each VNF image. At the end of this process the VNF is considered
uploaded.

The same policy is implemented in the orchestrator front-‐end over the T-‐Or-‐Nfs
interface. In this case the VNF metadata descriptor is downloaded first. The VM
images can be downloaded in a second time even sometime later. In the download
process the NF Store does not verify that each VM image has been downloaded. This
task is up to the user of the orchestrator front-‐end interface.

Each time a modification of the repository occurs, the NF Store triggers a message
through the orchestrator front-‐end. It usually serves to T-‐NOVA orchestrator to be
informed of such modification.

2.5.1. Sequence diagrams

The description of the interactions over the NF Store interfaces is described here on
per interface basis.

2.5.1.1. Dashboard front-‐end

The T-‐Da-‐Nfs interface supports the following operations:

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
15

• publish_VNF_metadata
• publish_VNF_image
• withdraw_VNF
• get_VNF_metadata
• get_VNF_list

The diagram in figure 2-‐7 describes the publication procedure:
publish_VNF_metadata, publish_VNF_image.

Figure 2-7. VNF publication in the NF Store

Two main attributes are used in order to identify a VNF:

1. the metadata file name
2. the data inside of metadata descriptor.

In both cases the identification should include the VNF name with version/revision.
This combination must be unique into the NF Store.

The workflow for withdrawing the VNF from the NF Store is slightly different. It is
represented in figure 2-‐8.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
16

Figure 2-8. VNF withdrawal from the NF Store

The needed data (﴾name/version/revision)﴿ to identify the VNF to be removed shall be
provided by calling withdraw_VNF. The NF Store will remove all the files and data
related to the VNF.

It is useful for the dashboard presentation to have a way to get information about the
available VNF inside the NF Store. This list is obtained by get_VNF_list operation as
described in Figure 2-‐9.

Figure 2-9. Get list of VNFs in the NF Store (Dashboard front-end)

Operation get_VNF_metadata retrieves the metadata descriptor of a given VNF (﴾see
Figure 2-‐10)﴿.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
17

Figure 2-10. Get VNF metadata descriptor from the NF Store (Dashboard front-end)

2.5.1.2. Orchestrator front-‐end

The T-‐OR-‐Nfs interface supports the following operations:

• get_VNF_image
• get_VNF_list
• get_VNF_metadata

The get_VNF_image is the main operation that is expected to be invoked (﴾see Figure
2-‐10)﴿. It can be executed at any time for extracting a VNF VM image from the NF
Store. T-‐NOVA orchestrator was informed about VNF metadata when the VNF was
published into the NF Store. Therefore, it is able to directly address the VM images
composing the VNF.

Figure 2-11. Get VNF image

The NF Store supports also scenarios where the orchestrator can ask to refresh the
entire list of VNFs available in the NF Store. The get_VNF_list and get_VNF_metadata
operations are used to retrieve the list of the available VNFs and then their metadata
descriptors. These operations can be invoked in all the cases the orchestrator is not
aligned with the SF Store, for example after a restart of the orchestrator due to
software update or any other reason.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
18

Operation get_VNF_list, represented in Figure 2-‐12 is logically equivalent to the same
operation executed over the Dashboard front-‐end interface.

Figure 2-12. Get list of VNFs in the NF Store (orchestrator front-end)

Operation get_VNF_metadata, represented in Figure 2-‐13 is logically equivalent to
the same operation executed over the Dashboard front-‐end interface.

Figure 2-13. Get VNF metadata descriptor from the NF Store (orchestrator front-end)

2.5.2. Lifecycle

The NF Store implements the Publication state of the VNF lifecycle. Extensive
description is available in deliverable [D2.41].

2.6. Interfaces

This section summarizes the APIs for interacting with the NF Store for uploading,
downloading, and deleting the VNF VM images and the related metadata descriptor.

Interface T-‐Da-‐Nfs contains the following operations:

• publish_VNF_metadata, publish_VNF_image
o Upload into NF Store the VNF image and the VNF metadata

descriptor.
• withdraw_VNF

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
19

o Delete from NF Store the VNF image and the VNF metadata
descriptor.

• get_VNF_metadata
o Read from NF Store the VNF metadata descriptor.

• get_VNF_list
o Get from NF Store the list of stored VNF.

Interface T-‐Or-‐Nfs contains the following operations:

• get_VNF_metadata, get_VNF_image
o Read from NF Store the VNF image and the VNF metadata descriptor.

• get_VNF_list
o Get from NF Store the list of stored VNF.

The interface is implemented by REST primitives using JSON for data representation.

2.7. Technology

For the NF Store implementation we chose java web service on Tomcat application
server. In a second phase we are planning to adopt a Python based web-‐framework
such as web2py [web2py] or django [django], so that we will be able to measure the
differences in development effort, performances, reliability of these similar
implementations.

Apache Tomcat is an open source software implementation of the Java Servlet and
Java Server Pages technologies. For our implementation it will be used version 8, the
most recent major version available at the moment.

Database data is described using JPA (﴾Java Persistence API)﴿ and the interconnection
with DB using JDBC API, giving us the possibility to change it without requiring
changes in source code.

The database we are going to use is H2, a pure Java SQL database with small
footprint that matches very well with java applications. It can be used in embedded or
server mode and give also clustering support if needed.

Data exchange on interfaces T-‐Da-‐Nfs and T-‐Or-‐Nfs are implemented by REST
primitives using the standard JSON (﴾JavaScript Object Notation)﴿ format. JSON is a
lightweight data-‐interchange format easy for humans to read and write and also easy
for machines to parse and generate a text format that is completely language
independent and based on a subset of the JavaScript Programming Language.

2.8. Dimensioning and Performances

The NF Store is mainly constrained by the size of VM images. The bottleneck in term
of performances is the network interface used for transmitting this huge amount of
data.

In terms of dimensioning the size of VM images is again the main driver. Because
each VM can be some GB large we chose to store them directly in a file system. The
back-‐end storage facility should adopt RAID system for extending not only the
available space (﴾RAID 1)﴿ but also for increasing reliability and performances (﴾RAID 5)﴿.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
20

2.9. Future work

We are currently working on the implementation of a first version of NF Store using
the java based technologies described in this section. When this functioning NF Store
implementation will be available, we will work on an alternative version based on
python technology. These two implementations will be compared in terms of
performances and reliability. We will also compare the effort that was required by
adopting these two different approaches. The results of this activity will be reported
and hopefully published for the benefit of the research community.

At the same time we will continue to study OpenStack Murano framework for better
understand how it could be enhanced to satisfy T-‐NOVA needs. Part of this activity
will consist in exploring possible ways to collaborate with OpenStack community with
the goal to contribute to Murano enhancements if we realize that it could be
effectively adopted in T-‐NOVA.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
21

3. FUNCTION DEPLOYMENT, CONFIGURATION AND
MANAGEMENT

3.1. Introduction

The interactions of the VNFs with T-‐NOVA orchestrator shall support the VNF
lifecycle [D2.41]. A peculiarity of T-‐NOVA system is the wide set of applications or
VNFs developed by different and possibly independent developers. Therefore, the
decision was that VNFs shall support the T-‐NOVA VNF lifecycle but are not imposed
to implement a unique standard interface for interacting with the T-‐NOVA
orchestrator. The chosen solution was to introduce a middleware between the
T-‐NOVA orchestrator and the VNFs.

The purpose of the middleware framework is to implement the interface between
T-‐NOVA orchestrator components and the VNFs, identified in Deliverable D2.41 as
SWA-‐3 [D2.41] and represented in Figure 3-‐1. This framework exposes a common API
to the T-‐NOVA orchestrator which allows triggering configuration and management
actions on VNFs.

Figure 3-1. T-NOVA NFV structure mapping to ETSI framework

During the Management and Termination states of the VNF lifecycle [D2.41], the T-‐
NOVA orchestrator interacts with VNFs by using the RESTful API in the middleware
framework. The API exposes generic methods, which map in the VNF lifecycle.

To enforce the requests on VNFs, the framework uses one of the available drivers,
which are mapped in a one-‐to-‐one relationship between the latter and distinct VNFs.

Figure 3-‐2 shows the T-‐NOVA Architecture with the VNF middleware API, represented
by an orange box. Although the middleware API is logically located between the
orchestrator and the VNFs, it makes sense to include it within the orchestrator. First,
the consumers of the middleware API are the management and orchestration

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
22

(﴾MANO)﴿ elements, which are all within the T-‐NOVA orchestrator. Secondly, the
middleware API aggregates various mechanisms used to communicate with the VNFs,
which makes the middleware API not only an interface but a framework which
abstracts the real interface implementation.

Figure 3-2. T-NOVA Architecture with VNF Middleware API

3.2. State-of-the-art

Traditional network management, in particular, configuration protocols and tools
were discussed in RFC 1157. The Simple Network Management Protocol (﴾SNMP)﴿
[RFC1157] utilizes Management Information Bases (﴾MIBs)﴿ to implement the
management functionality. It provides methods for (﴾1)﴿ remotely reading and writing
the MIBs on the managed resources, and (﴾2)﴿ monitoring their state and control their
configuration. Even if SNMP is often used for monitoring tasks (﴾thanks to the
advanced MIB state notification mechanisms it provides)﴿, it is also utilized for other
Configuration Management operations. Unfortunately, SNMP heavily depends on
standardized MIBs and the fact that some of the parameters that need to be
configured are vendor specific and not part of any standardized MIB, leads to some
limitations. In other words, these parameters cannot be managed through SNMP and
their management relies on other tools, such as the Command Line Interface (﴾CLI)﴿ of
the device to be configured. The CLI defines a console based interface to the device,
through which the state of the resource can be manually requested and re-‐
configured.

A modern protocol for Network Management is reflected by the Network
Configuration Protocol (﴾NETCONF)﴿ [RFC4741] that is built based on technologies

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
23

such as XML. NETCONF mainly targets the configuration related tasks in Network
Management. It allows a hierarchical structuring of configuration information
through XML based NETCONF datastores, and provides operations to remotely
modify this configuration data. Typically, the contents of the NETCONF structure are
defined using CLI, thus in this case it acts as a protocol to structure and remotely
execute CLI configuration requests. S im i l a r l y to SNMP and CLI, NETCONF also
relies on the involvement of the operator, as it does not provide mechanisms for the
auto-‐discovery of incrementally connected routers.

The Simple Middlebox Configuration (﴾SIMCO)﴿ protocol [RFC4540] enables the
configuration of firewall and NAT. As known, NAT and firewalls can hinder the
communication between end hosts by blocking particular ports or addresses. SIMCO
allows end hosts to dynamically configure NATs and firewalls such that packets can
go through. SIMCO is a point-‐to-‐point protocol with a host being one point and the
middleboxes is another point, i.e. to configure all middleboxes on the path, the end
host needs to execute multiple separate SIMCO sessions. SIMCO is a binary-‐based
protocol.

Next Steps In Signaling (﴾NSIS)﴿ [RFC4080] provides a set of signaling protocols which
supports different applications. One of these applications is firewall and NAT control.
As with SIMCO, NSIS offers a signaling protocol to dynamically configure NAT and
firewall middleboxes by end hosts. In contrast to SIMCO, a host does not need a
separate communication session to configure each middleboxes on the traffic path,
i.e. NSIS signaling (﴾configuration)﴿ messages propagates through all middleboxes on
the path from one end host to the other. NSIS is also a binary-‐based protocol.

Similar to openFlow, OpenNF [OpenNF] offers a set of flow-‐based APIs to configure
and control the internal state of middleboxes. The APIs allows inserting, copying and
deleting of middleboxes' state. The APIs was designed by considering different types
of middleboxes with different requirements. OpenNF design focuses on facilitating
state migration between different instances of NFs (﴾middleboxes)﴿. OpenNF APIs are
implemented using JSON.

3.3. Requirements

The middleware API shall expose methods which guarantee all the orchestrator
configuration and management necessities towards the VNFs during the lifecycle
stages. The states considered in the VNF lifecycle are the management and
termination. The management state can be divided in further states which comprise
the extended VNF lifecycle: setup; start; scale; stop. Beside these requirements, there
are others which are directly related to this component and how it can fulfil its role:

Scalable -‐ Since this component is a generic configuration and management API for
all VNFs deployed in T-‐NOVA, the number of VNFs may be significant (﴾e.g. vHG)﴿.
Scaling capabilities are required to keep response times low, especially during peak
times.

Modular -‐ To enforce the requests made by the orchestrator several technologies are
available, e.g. SSH, SNMP, Telnet. Usually the enforcement mechanism is chosen by
the VNF developer, it can support one or more technologies. Again, since this

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
24

component is generic to all VNFs it needs to support all the necessary technologies
and as new VNFs are added it needs to support the adoption of new ones as
seamlessly as possible.

Extension Capabilities -‐ Since the framework will have to interact with a myriad of
VNFs, it needs to support not only current interfaces but future ones as well. This
imposes the need to deploy mechanisms which allows extending the available
interfaces.

High Availability -‐ A failure in this component would lead to the disruption of
communications between T_NOVA orchestrator components and the VNFs. Due to its
crucial role in the configuration and management of VNFs, it’s extremely important
that the downtime is kept to the absolute minimum, which may imply some
redundancy mechanisms.

RESTful API – A RESTful API is a type of interface that is useful to provide a level of
abstraction between the interface and the actual implementation. Also, this style of
architecture decouples the interface from the architecture which in turns enables
independent development.

Driver Abstraction -‐ From the T-‐NOVA orchestrator perspective there is no need to
know which driver is going to be used to enforce a configuration on the VNF. The T-‐
NOVA orchestrator only needs to focus on the requests, e.g. start VNF, stop VNF, etc.
Abstracting the southbound drivers not only facilitates the co-‐existence of different
technologies in a very heterogeneous environment but it also eases the integration
of new drivers and of the VNFs with the T-‐NOVA orchestrator.

3.4. Architecture

Figure 3-‐3 shows the components of the VNF middleware API and their interaction.
The Northbound API receives requests sent by the T-‐NOVA orchestrator, which may
hold some input parameters. Afterwards, the northbound API forwards the request to
the Service Logic, which will request from the VNF Registry the recipe for the specific
VNF. At this moment, the Service Logic holds all the necessary information (﴾recipe
plus input parameters)﴿ to build the configuration template. After building the
configuration template, the Service Logic will trigger the specific VNF driver that will
enforce the desired changes on the VNF.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
25

Figure 3-3. VNF Middleware API Architecture

3.4.1. VNF Middleware API Components

Northbound API – component that exposes configuration and management actions
to MANO elements within the T-‐NOVA orchestrator.

VNF Registry – component that stores and provides the recipes that describe how
each action exposed on the northbound API is performed on specific VNFs. For
scalability reasons, this component may reside outside of the middleware framework
to ease horizontal scaling.

Service Logic – component that parses the requests received through the
northbound API and uses the information contained in the recipes to build the
configuration templates that will be enforced on VNFs.

Driver(s) – enforcement mechanisms which are capable of performing actions on the
VM that hold the VNF or the VNF itself. In some cases, it might be necessary to
transfer configuration files or to make requests to an API within the VNF.

3.4.2. Non-‐Functional Elements

In this section non-‐functional elements within the VNF middleware API are described.

Recipe – file or group of files that contain the necessary information on how to
perform specific actions on VNFs. These files are a subset of the VNF Descriptor
[D2.41].

Configuration Template – the configuration template is built by the Service Logic by
using the data contained in recipes and input parameters received through the
northbound API. When ready, the configuration template is sent by the Service Logic
to the specific driver for enforcement on VNFs.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
26

3.5. Functional description

3.5.1. Sequence diagrams

In this section the sequence diagrams below will illustrate some of the internal
workflows for different methods. Figure 3-‐4 shows the procedures during a request
to retrieve the current configuration of a VNF.

Figure 3-4. VNF Get Configuration Sequence

Setting a configuration in a VNF has an extra step in the workflow in comparison with
the get configuration method, see Figure 3-‐5. The extra step is where the
configuration template is built before activating the driver to enforce changes in the
configuration.

Figure 3-5. VNF Set Configuration sequence

The start operation sequence diagram is shown in Figure 3-‐6. The same workflow
applies to the stop and termination methods by changing the start function calls to
the respective function calls.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
27

Figure 3-6. VNF Start sequence

3.6. Interfaces

This section covers the interfaces present in the VNF Middleware API. These are
divided in two parts, the interfaces towards the T-‐NOVA orchestrator (﴾northbound)﴿
and the interfaces towards the VNFs (﴾southbound)﴿.

3.6.1. Northbound interfaces

The T-‐NOVA orchestrator uses the VNF Middleware API northbound interfaces in two
distinct occasions. Firstly, to upload and manage the VNF recipes stored in the
repository and secondly to manage VNFs. Although these interfaces can be realized
using within a common REST API, their functionality and purpose is distinct and thus
are regarded as different interfaces.

3.6.1.1. VNF API

This interface exposes methods which are mapped in the VNF extended lifecycle
[D2.41]. These methods enable the T-‐NOVA orchestrator to control and manage
VNFs during the different stages of the VNF lifecycle (﴾see Table 1)﴿.

Method Description

Get Configuration Retrieval of the VNF current configuration

Set Configuration Enforce specific configuration on the VNF

Start Start the VNF service

Stop Stop the VNF service

Terminate Terminate the VNF service

Table 1. VNF API methods description

The Stop and Terminate methods are used in different situations, the first is used to
stop the service without destroying or terminate the VNF and can be resumed
afterwards. The second is used to terminate the VNF service before shutting down
the resources.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
28

An additional sixth method might be implemented depending on the VNF developer
requirements, the “custom command” method. This can be used to trigger an
operation on the VNF that doesn’t fit into any of the previously mentioned methods,
e.g. scaling.

3.6.1.2. Repository Registry

The repository contains the recipes that describe how to perform specific operations
on VNFs. These recipes are part of the VNF Descriptor and need to be uploaded and
managed by the T-‐NOVA orchestrator. Table 2 shows the available operations in
Repository Registry.

Operations Description

Post Creates a new VNF API on the middleware framework by
uploading a new recipe to the repository and returns the
VNF API ID

Update Updates a VNF recipe in the repository, can be used for
VNF versioning

Delete Removes the VNF recipe from the repository

Table 2. Repository Registry operations description

3.6.2. Southbound interface

The southbound interface will be implemented by one of the available drivers, these
enable the enforcement of configurations on VNFs. The drivers are called by the
Service Logic component, which uses a configuration template to describe the
operations to be performed. These operations can be commands, upload of
configurations files or any other necessary action.

The actual drivers consist of implementations of standard network protocols.
Although it is intended to support the most common such as SSH or Telnet, it is
impossible to support the myriad of network protocols. Therefore, there is a need for
some extension mechanism that allows VNF developers to use the driver of their
choice. The HTTP driver is a special driver because it allows VNF developers to extend
the VNF Middleware API. By using this driver VNF developers can deploy an API
within the VNF or in an external module, see Figure 3-‐7. The latter allows VNF
developers to use proprietary or other specific drivers which are not present in the
middleware framework.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
29

Figure 3-7. Extending available drivers

3.7. Technology

A few technologies are mature and well known in the development world to perform
configuration management and remote execution application Salt [Salt], Puppet
[Puppet], Chef [Chef], and Ansibl [Ansibl] are the most known tools.

They all propose an abstraction over the operating system and deployed services and
applications. They all provide both CLI and Rest APIs to remotely orchestrate a park
of machines. They all allow the development for Execution modules, making it
possible for developers to write code to pilot the application and services.

The decision about which technology actually adopt for our implementation is still
ongoing.

3.8. Future work

For the near-‐term, the following objectives will be investigated:

-‐ Define the complete process for the onboarding of VNF recipes
-‐ Retrieve requirements from VNF Developers to better align the proposed

solution
-‐ Test and evaluate the proposed technologies which can be used to implement

the VNF Middleware API
-‐ After choosing one of the technologies, we will analyze the points that need

to be explored to fulfill the T-‐NOVA requirements

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
30

4. DEVELOPMENT OF NETWORK FUNCTIONS

4.1. Introduction

This section provides the description of the VNFs developed in WP5. They are:

• Security Appliance (﴾SA)﴿
• Session Border Controller (﴾SBC)﴿
• Traffic Classification (﴾DPI)﴿
• Home Gateway (﴾HG)﴿

These virtual network functions will be used for proving the effectiveness of T-‐NOVA
concept. Some of them represent real implementations of first stage prototypes
interesting for T-‐NOVA industrial partners willing to address the NFV market.

Each VNFs is described in self-‐consistent chapters, while this introduction provides a
general description and design choices applicable to any VNF that is part of T-‐NOVA
ecosystem.

4.1.1. Packet handling acceleration frameworks

The ordinary environment where the VNFs will be executed is within virtual machines
or containers operating over a host hypervisor that provides the appropriate
abstraction mechanisms allowing virtualization of the available hardware resources.
The challenge that VNF performance faces is that of the method of communication
between the actual network interface card (﴾NIC)﴿ hardware and the VM.

Depending on the architecture of the system, resource access from the guest VM can
be mediated by the hypervisor, or physical resources may be partially or completely
allocated to the guest, which then uses them with no interference from the
hypervisor (﴾except when triggering protection mechanisms)﴿.

In this context Figure 4-‐1 illustrates the three cases that can be envisaged. (﴾i)﴿ Case A,
the hypervisor does a full emulation of the network interfaces (﴾NICs)﴿, and intercepts
outgoing traffic so that any communication between the virtual machine instances
goes through it (﴾-‐net user mode in QEMU)﴿; (﴾ii)﴿ Case B the hypervisor still provides NIC
emulation, but traffic forwarding is implemented by the host, e.g. through an in-‐
kernel bridge (﴾-‐net-‐tap)﴿ or another proprietary module; (﴾iii)﴿ Case C, the virtual
machine has direct access to the NIC (﴾or some of its queues)﴿. In this case, the NIC
itself can implement packet forwarding between different guest (﴾see C1 line)﴿, or
traffic is forwarded to an external switch which in turn can bounce it back to the
appropriate destination (﴾see C2 line)﴿.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
31

Figure 4-1 NIC access I/O schemes for VM-to-VM communication

It is generally largely understood that NIC emulation is slow, and direct NIC access (﴾as
in C1 and C2)﴿ is generally necessary for efficient virtual network performance.
However, it is most times required some sort of hardware support to make sure that
the guest does not interfere with other critical system resources. In this context
packet handling acceleration frameworks have been proposed namely:

• DPDK Framework
Data Plane Development Kit (﴾DPDK)﴿ is an Open Source BSD licensed project
[DPDK]. DPDK provides a set of libraries and drivers for fast packet processing.
These libraries can be used to: i)﴿ receive and send packets within the
minimum number of CPU cycles (﴾usually less than 80 cycles)﴿; ii)﴿ develop fast
packet capture algorithms (﴾tcpdump-‐like)﴿; iii)﴿ run third-‐party fast path stacks.
For example, some packet processing functions have been benchmarked up
to 160 Mfps (﴾million frames per second, using 64-‐byte packets)﴿ with a PCIe
Gen-‐2 NIC.
It was designed to run on any processors knowing Intel x86 has been the first
CPU to be supported. It runs mostly in Linux userland. The DPDK is device
specific since it required specialized chipset for the support of its enhanced
capabilities. A list of supported hardware is provided in [DPDK_NIC].
Currently a lot of NFV related implementations exploit DPDK for optimized
and enhanced performance under utmost traffic conditions. The DPDK
development community has provided extensions of OpenVirtualSwitch (﴾OVS)﴿
supporting DPDK [vSwitch] and in addition to this specific memory/kernel
configurations have been proposed enhancing the VM communication with
the hardware NIC [DPDK_RN170].

• PFRing

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
32

PFRing is a new type of network socket that dramatically improves the packet
capture speed [PFRing]. PFRing is available for Linux Kernels (﴾>2.6.32)﴿ and is
provided as a loadable module (﴾no need for patching)﴿. The capabilities of
PFRing support 10Gbit hardware packet filtering using commodity network
adapters. Current implementation is device driver independent and also
supports for libcap implementations in an effort for backwards compatibility.
PFRing supports inherently content inspections and Berkley Packet Filters
(﴾BPF)﴿ type of rules for creation of matching traffic filters from L2 and above.
Additionally it supports plugins for on top functionalities. Latest evolutions
are the support of zero copy at the user space level (﴾using Direct NIC access –
DNA drivers)﴿, thus supporting extreme packet capture/transmission speed as
the NIC NPU (﴾Network Process Unit)﴿ is pushing/getting packets to/from
userland without any kernel intervention. Extensions for supporting VM
shared threads is provided by PRRing ZC library.

• NetMap
netmap / VALE is a framework for high speed packet I/O. Implemented as a
kernel module for FreeBSD and Linux, it supports access to network cards
(﴾NICs)﴿, host stack, virtual ports (﴾the "VALE" switch)﴿, and "netmap pipes".
netmap can easily do line rate on 10G NICs (﴾14.88 Mpps)﴿, moves over
20 Mpps on VALE ports, and over 100 Mpps on netmap pipes [Netmap].

4.1.2. GPU-‐based acceleration

NFV allows to consolidate a great variety of network functions, which could
previously run only on bespoke hardware by specific vendors, as software appliances
executed on top of standard commodity servers by any provider. This way, network
operators can significantly reduce OPEX and CAPEX, accelerate time-‐to-‐market and
achieve the high level of automation and flexibility in service provisioning that the
cloud computing paradigm can offer.

On the other hand, however, the outburst of innovative services and applications
coming from the internet world is generating an ever-‐increasing demand for low cost
and energy-‐efficient processing power, which can be hardly satisfied only by the
technological evolution of general purpose CPU’s.

For this reason, a great interest is now on the use of hardware accelerators, to offload
the commodity server general purpose CPU’s of the most intensive workloads. Many
different types of specialized devices are available, which can significantly accelerate
networking functions, video applications, cryptographic algorithms, audio coding, etc.
Among these, general purpose Graphic Processing Units (﴾GPU’s)﴿ represent a very
appealing solution, owing to their high computation performance (﴾one or two order
of magnitude faster than a general purpose CPU)﴿ and relatively low cost, guaranteed
by the huge demand of such devices originated by the gaming market [Kirk].

With respect to the extremely complex and closed-‐source graphic processors
available a decade ago, current GPU’s can be programmed with general purpose,
high level languages, such as CUDA (﴾by NVIDIA)﴿ or OpenCL, coming from the open
source community. Moreover, effective development and debugging/profiling tools

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
33

are also at hand, and are continuously enhanced by device manufacturers, to
facilitate the rapidly increasing community of GPU developers [CUDA], [Karimi].

However, to fully exploit the huge potentialities offered by GPU’s to the cloud
computing context, it is necessary to extend virtualization also to this type of
processors. Fortunately, many activities have been ongoing in this field in the last
years [Duato], [Walters].

The first attempts to virtualize GPU’s have been made in the areas of scientific high
performance computing and education, in order to share highly expensive GPU
clusters, often under-‐utilized, among a larger number of users. The next step was
moving GPU’s to the cloud within the “Infrastructure as a Service” framework.
However, even if many research efforts have been spent so far, Amazon is probably
the only known example of a major OTT provider offering access to GPU-‐enabled
services to its customers [Walters].

A relevant objective of T-‐NOVA is to deeply change this scenario, by providing an
overall framework which will allow to easily developing and straightforwardly
bringing to the market high performance NFV’s. In the high performance computing
domain, this will mean combining the disruptive performances of GPU-‐based
accelerators with the benefits brought about by the NFaaS (﴾Network Function as a
Service)﴿ concept. To this end, T-‐NOVA will contribute with innovative results at all
levels of its NFV framework, i.e. in the Marketplace (﴾WP6)﴿, in Orchestration (﴾WP3)﴿ and
at the virtualized infrastructure level (﴾WP4)﴿.

The objective of WP5 is to provide the project with a set of innovative VNF’s, to
demonstrate the results achievable by the T-‐NOVA framework, using accelerators
both in the networking (﴾DPDK)﴿ and in the computing domain (﴾GPU)﴿. In this section
we will briefly summarize the most significant results so far achieved in the field of
GPU virtualization, and will describe and motivate the (﴾initial)﴿ choices made within the
T-‐NOVA project to approach the use of this type of accelerators.

4.1.2.1. Current GPU market scenario

In order to be able to run GPU-‐accelerated VNFs in T-‐NOVA, high-‐end GPU devices
are necessary. High-‐performance GPUs are nowadays produced by NVIDIA, AMD,
and Intel.

NVIDIA was the first to propose, with G80 and CUDA, a family of architectures and a
paradigm for exploiting GPUs for general-‐purpose parallel computing. For this reason
NVIDIA’s are the most diffused GPUs used in High Performance Computing (﴾HPC)﴿
applications. To this day, NVIDIA produces two kinds of GPU boards suitable for
datacenter solutions:

– the NVIDIA Tesla family, optimized for maximum computing performance, and

– the NVIDIA GRID platform, optimized for use in virtualized environments.

The top model features 4992 cores and is capable of a peak performance of 8.74
TFLOPS (﴾single precision)﴿ and 480 GB/s memory bandwidth.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
34

AMD (﴾formerly ATI)﴿ has been, together with NVIDIA, producer of high-‐end GPUs.
AMD’s recent GPUs are capable of general-‐purpose computing, as they can be
programmed using OpenCL. AMD also produces devices suitable for datacenters
(﴾AMD FirePro S series)﴿. Top models are capable of a peak performance of 5.91
TFLOPS (﴾single precision)﴿ and 480 GB/s memory bandwidth.

Intel has also produced GPU for long, although not in form of stand-‐alone chips or
boards, but integrated in the Intel CPUs. The recent models (﴾starting from Intel HD
4000, embedded in third-‐generation i3/i5/i7 CPUs)﴿ are capable of running OpenCL
code, and are therefore considered GP-‐GPUs. However, peak performances are
currently around 800 GFLOPS, by approximatively 25 GB/s memory bandwidth, still
lower than NVIDIA’s and AMD’s counterparts.

4.1.2.2. GPU Virtualization

In the literature, GPU virtualization is usually addressed in its most simplified form,
which can be stated as follows: on a hardware platform, consisting of both general
purpose CPU’s and specialized GPU-‐based accelerators, the guest VM’s running on
the CPU’s must be able to concurrently and independently access the GPU
computing resources without security issues [Duato],[Walters],[Maurice].

As already discussed in the introduction, in T-‐NOVA and in general in the NFaaS
context, the problem of virtualizing specialized accelerators has a much wider scope:
virtualized acceleration resources must be managed at all levels of the T-‐NOVA stack,
that is at the marketplace, at the orchestrator and at the virtualized infrastructure
level.

In this document, which is focused on VNF’s, for the sake of simplicity we will
consider GPU virtualization adopting the narrowest definition. In fact, considerations
about the wider NFaaS context are not in the scope of this deliverable.

In the literature, many techniques to achieve GPU virtualization have been proposed.
However, all the proposed methods can be divided in two main categories, which are
usually referred to as API remoting [Maurice] (﴾also known as split driver model or
driver paravirtualization [Maurice])﴿ and PCI pass-‐through [Walters] (﴾also known as
direct device assignment [Maurice])﴿, respectively.

API remoting – Various approaches based on API remoting have been proposed in
the literature. The most well-‐known solutions are rCUDA [Duato], gVirtuS [Lauro],
vCUDA [Shi], and GVim [Gupta]. All such approaches adopt the same technique,
which consists in splitting the GPU driver into a front-‐end and a back-‐end driver. The
front-‐end driver is included in each VM. The back-‐end driver runs in a privileged
domain (﴾like the Dom0 in Xen, [Walters])﴿ and includes the GPU drivers and (﴾in the
case of NVIDIA devices)﴿ the CUDA library. Calls to the GPU library made within a VM
are sent from the front-‐end to the back-‐end driver, which executes the CUDA API on
the physical GPU on behalf of the VM. This way, many VM’s can concurrently interact
with one physical GPU; in particular, a software emulation of the GPU can be assigned
to each VM. However, the performance of such techniques can be adversely affected
by the performance of the transport channel between the front-‐end and the back-‐
end drivers, as well as by the amount of data (﴾which is application-‐dependent)﴿ that
must be moved [Walters].

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
35

The open source rCUDA framework seems to be the most popular API-‐remoting
technique to virtualize GPU’s. Its main advantages with respect to the other
techniques quoted above are its hypervisor-‐independence, as well as its maintained
alignment with the CUDA API’s [Duato].

Pass-through -‐ Pass-‐through techniques are based on the pass-‐through mode made
available by the PCI-‐Express channel [Walters], [Maurice]. To perform PCI pass-‐
through, an Input/Output Memory Management Unit (﴾IOMMU)﴿ is used. The IOMMU
acts like a traditional Memory Management Unit, i.e. it maps the I/O address space
into the CPU virtual memory space, so enabling the access of the CPU to peripheral
devices through Direct Memory Access channels. The IOMMU is a hardware device
which provides, besides I/O address translations, also device isolation functionalities,
thus guaranteeing secure access to the external devices [Walters]. Currently, two
IOMMU implementations exist, one by Intel (﴾VT-‐d)﴿ and one by AMD (﴾AMD-‐Vi)﴿. To
adopt the pass-‐through approach, this technology must also be supported by the
adopted hypervisor. Nonetheless, Xenserver, open source Xen, VMWare ESXi, KVM
and also the Linux containers can support pass-‐through, thus allowing VM’s
accessing external devices such as accelerators in a secure way [Walters].

In general, the performance that can be achieved by the pass-‐through approach is
higher than the one offered by API-‐remoting [Walters],[Maurice]. Also, the pass-‐
through method gives immediate access to the latest GPU drivers and development
tools [Walters]. A comparison between the performance achievable using different
hypervisors (﴾including also Linux Containers)﴿ is given in [Walters], where it is shown
that pass-‐through virtualization of GPU’s can be achieved at low overhead, with the
performance of KVM and of Linux container very closed to the one achievable
without virtualization.

One major drawback of pass-‐through is that it can only assign the entire physical
GPU accelerator to one single VM. Thus, the only way to share the GPU is to assign it
to the different VM’s one after the other, in a sort of “time sharing” approach
[Maurice]. This limitation can be overcome by a technique also known as Direct
Device Assignment with SR-‐IOV (﴾Single Root I/O Virtualization)﴿ [Maurice]. A single
SR-‐IOV capable device can expose itself as multiple, independent devices, thus
allowing concurrent hardware multiplexing of the physical resources. This way, the
hypervisor can assign an isolated portion of the physical device to a VM; thus, the
physical GPU resources can be concurrently shared among different tenants.
However, the only now available GPU enabled to this functionality belongs to the
recently launched NVIDIA Grid family [Maurice]. Also, the only hypervisors which can
currently support this type of hardware virtualization are VMWare Sphere and Citrix
XenServer 6.2. However, since now also KVM can support SR-‐IOV, there is a path
towards the use of GPU hardware virtualization also with this hypervisor, though this
possibility has not been mentioned so far in NVIDIA documentation.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
36

4.2. Virtual Security Appliance

4.2.1. Introduction

A security Appliance (﴾SA)﴿ is simply a “device” designed to protect computer networks
from unwanted traffic. This device can be active and block unwanted traffic. This is
the case for instance of firewalls and content filters. A security Appliance can also be
passive. Here, its role is just detection and reporting. Intrusion Detection Systems are
a good example. If the SA is in charge of scanning the network and identifying
potential breaches (﴾e.g. penetration testing)﴿, the SA can be qualified as preventive.
Nowadays, Security Appliances combine various security features including
firewalling, content filtering, and intrusion detection. For this reason, they are more
known as Unified Threat Management (﴾UTM)﴿ systems.

In the context of T-‐NOVA, we will focus more on the use of firewalls to show how a
secure service that the T-‐NOVA system offers can be deployed. The firewall service
will be endorsed by an intrusion detection system that will investigate deeper the
suspicious traffic.

Conventional firewalls were deployed at the network border in order to examine the
traffic destined to this network. As networks become more complex, it is often
necessary to place firewalls between multiple network segments. With virtualization
and cloud computing, the situation becomes more challenging as entire networks or
network segments could be hosted completely within a virtual environment. As a
result, firewalls need also to protect virtual environment in addition to physical
networks. The burden of this task can be carried out by firewalls running on virtual
machines. A virtual firewall (﴾VF)﴿ is a network firewall service running entirely within a
virtualized environment. It provides the usual security functionalities offered by a
physical network firewall.

To be more concrete, a Firewall (﴾FW)﴿ is a program/device that simply filters the
network traffic. It controls the traffic (﴾in and out)﴿ using one of the following methods,

• Packet filtering
• Proxy service
• Stateful inspection

The vSA can be deployed at the edges of the network close to the customer premises
or at other convenient locations within the virtual network slice that has been
provisioned for this customer (﴾see Figure 4-‐2)﴿.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
37

Figure 4-2 Security appliance

The vSA is able to sense potential dangerous or suspicious traffic and to respond
appropriately to either block it (﴾for example, in case of DDoS attacks)﴿ or redirect it to
a traffic analysis/forensics virtual device for deeper attack pattern analysis and
recognition.

4.2.2. State-‐of-‐the-‐art

The available technologies considered for the implementation of the vSA are briefly
referenced here. The main groups are firewalls, neural networks, virtual switches.

4.2.2.1. Firewalls

In this section, we provide a short evaluation [reddit], [Wfirewalls] of firewalls
software that can run in virtual environments. The idea is not to go through all the
relevant existing software but just through the most popular ones that could be
extended to fulfill the project requirements.

Firewall Evaluation

Vyatta VyOS VyOS is a community fork of Vyatta, a Linux based network
operating system that provides software-‐based network routing,
firewall, and VPN functionality. [Vyatta]

• Runs on both physical and virtual platforms.
• Supports paravirtual drivers and integration packages for

virtual platforms.
• Completely free and open source.

pros: open source, large user base, REST APIs, high performance,
root shell, support for IDS

pfSense The pfSense project is a free network firewall distribution, based
on the FreeBSD operating system with a custom kernel and
including third party free software packages for additional

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
38

functionality. [pfSense]

Runs on both physical and virtual platforms

pros: Open source, Web User Interface, very easy to use, large
community, root shell, integration of external packages

cons: incomplete bgp/ospf, xml config, no config cli, no REST
APIs

Halon Halon Virtual Security Router (﴾VSR)﴿ is an OpenBSD-‐based
firewall, router, VPN and load balancing appliance focusing on
security, flexibility and manageability. [Halon]

Runs on both physical and virtual platforms

pros: Open source, Web User Interface, SOAP APIs, juniper-‐style
config/rollback/commit, inexpensive, root shell, pkg_add

cons: small community, unknown vendor, no IPS functionalities

m0n0wall m0n0wall is a project aimed at creating a complete, embedded
firewall software package that, when used together with an
embedded PC, provides all the important features of commercial
firewalls. m0n0wall is based on FreeBSD, along with a web
server, PHP and a few other utilities. The entire system
configuration is stored in one single XML text file to keep things
transparent. [m0n0wall]

Runs on both physical and virtual platforms

Provides packet filtering, VPN, NAT, IPS

pros: open source, very small image, root shell, pkg_add

cons: less feature complete than pfSense

Vuurmuur Vuurmuur is a powerful firewall manager built on top of iptables
that works with Linux kernels 2.4 and 2.6. It has a simple and
easy to learn configuration that allows both simple and complex
configurations. [Vuurmuur]

Runs on both physical and virtual platforms

pros: open source, no iptables knowledge required, human
readable rules syntax, Ncurses GUI, no X required, potential
integration with IDS/IPS, traffic volume accounting

cons: no REST APIs for configuration, less feature complete than
pfSense

4.2.2.2. Neural Networks

Data mining techniques will be introduced into the IDS engine in order to support
the misuse detection achieved at the protocol analysis. This combination will ensure a

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
39

better detection. Neural Networks (﴾NNs)﴿ are popular methods that have been applied
in research and real life circumstances. They have been often proposed for use in the
data security area due to their flexibility. To be more precise, a NN is able to analyze
the network data even this data is incomplete or distorted. For this reason, it is
foreseen in the T-‐NOVA project to use this technique as well.

Some NNs can exploit known cases of attacks and are trained so as to be capable of
identifying analogous attack cases occurring in the future. Such NNs are usually Feed
Forward NNs and belong to the general class of supervised NNs. Although useful,
such approaches fail to identify malicious activities that are unknown or not identified
in the past. Another interesting approach is to focus on the clustering capabilities of a
special type of unsupervised NN called Self Organized Map (﴾SOM)﴿. SOMs are simple
networks that unlike other types of NNs do not use activation functions nor have
hidden layers.

4.2.2.3. Open vSwitch

Open vSwitch is a virtual switch that is used to bridge traffic between virtual
machines and with the outside word. It is integrated into the latest Linux kernel and
comprises in particular the following components,

Figure 4-3. Open vSwitch architecture

§ ovs-vswitchd, A daemon that manages and controls Open vSwitch switches
on the local machine. The Openflow protocol is being used to talk to ovs-‐
vswitchd

§ ovsdb-server, a lightweight database that holds switch-‐level configuration.
External clients can talk to ovsdb-‐server using ovsdb management protocol.
The Open vSwitch Database Management Protocol (﴾OVSDB)﴿ is an OpenFlow
configuration protocol designed to manage Open vSwitch implementations

§ control and management cluster contains client tools to talk to ovsdb-‐server
and ovs-‐vswitchd

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
40

4.2.3. Requirements

The following requirements are considered.

1. The vSA shall protect the service from malicious traffic
2. The vSA shall provide simple traffic filtering as well as deep inspection
3. The vSA shall run on virtual machines
4. The vSA shall provide appropriate APIs for configuration
5. The vSA shall provide an acceptable level of performance
6. The vSA shall be flexible enough to enable detection rules revision

4.2.4. Architecture

The architecture of the virtual Security Appliance (﴾vSA)﴿ is depicted in Figure 4-‐4. It is
composed from three main components,

Figure 4-4. vSA high-level architecture

The firewall: this component will be in charge of filtering the traffic towards the
service. As mentioned earlier, this component would run pfsense or Vyatta core
extended to fulfill the project requirements. It is worth to mention that packet
filtering firewalls are often unable to discover packets with malicious payload as they
just look at the source address, destination address, protocol, and port number.

The Intrusion Detection System (IDS): In order to improve detecting attacks, a
combination of a packet filtering firewall and an intrusion detection system using
both signatures and anomaly detection is considered. In fact, Anomaly detection IDS
have the advantage over signature based IDS in detecting novel attacks for which
signatures do not exist. Unfortunately, anomaly detection IDS suffer from high false
detection rate. So it is expected that combining both arts of detection will improve

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
41

the detection and reduce the number of false alarms. In T-‐NOVA, an appropriate
existing signature based IDS (﴾e.g. snort, Bro, Suricata)﴿ will be extended to support
anomaly detection as well. The mode of operation of the IDS component is depicted
in Figure 4-‐5.

Figure 4-5. IDS process flow diagram

§ The data packets are first of all filtered by the firewall before the analysis by the
IDS is conducted

§ The IDS will monitor and analyze all the services passing through the network
§ As a first step, the data packets go through a signature based procedure. This will

help in detecting efficiently well know attacks such as port scan attacks and TCP
SYN flood attacks

§ If an attack is detected at this stage, an alarm is generated or the firewall is
contacted to revise its rules

§ If no attack is detected, the data packets will be passed to an anomaly detection
algorithm. In our context, it might be NN-‐SOM, K-‐means, or another one

§ In the same way, if an attack is detected, an alarm is generated or the firewall and
the signature based IDs will be contacted to revise their rules

§ If no attack is detected, no further action is required

The OVSDB controller: As the firewall and the IDS run on different virtual machines
and need to interact with each other, a third component is needed to facilitate this
interaction and forward the traffic between the firewall and the IDS virtual machines.
For this purpose, Open vSwitch is going to be used. It is an open source software
(﴾client and server)﴿ designed to be used as a virtual switch. It can also be extended
and controlled using OpenFlow and the OVSDB (﴾Open vSwitch Database)﴿

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
42

management protocol [RFC7047]. Alternatively OpenFlow could be used in place,
along with a simple controller instance. However in order not to complicate our
implementation OVSDB solution is selected.

4.2.5. Lifecycle

With respect to the general VNF lifecycle [D2.41], the lifecycle of the vSA includes:
Start, Stop, Monitor, and Configure.

4.2.6. Technology

In the context of T-‐NOVA, open source firewalls will be extended to fulfill the related
requirements and used. So far, two candidates seem to be more appropriate,

§ Vyatta Core [Vyatta], which is the open source version of Vyatta. Its main
offerings are IPv4 and IPv6 routing, stateful firewall, IPSec and SSL VPN, and
intrusion prevention. It seems it also support REST APIs for configuration

§ pfsense. The pfSense project [pfSense] is also an open source network firewall
distribution. It also inludes third party free software packages for additional
functionality. Through this package system, pfSense is able to provide most of
the functionality of common commercial firewalls. pfSense software includes a
web interface for the configuration of all included components. Unfortunately,
no REST APIs for configuration exist so far

4.2.7. Dimensioning and Performances

Firewalls are often implemented in routers to control packet flows. If the packet
filtering process generates an extra overhead, this will, certainly, affect the
performance of the system and lead to degradation in its time response.

To study the performance of firewalls, benchmarking techniques are needed.
Unfortunately, activities in this area are very scarce. As an example, the IETF
Benchmarking Methodology Working Group produced several Request for
Comments (﴾RFCs)﴿ describing benchmarking terminology and methodology for a wide
range of networking devices. Performance benchmarks related to firewalls are
discussed in [RFC2647] and [RFC3511]. The suggested methodologies are intended
to be standard benchmarking for all classes of firewalls. Unfortunately, this makes
them too general to be applied to a particular class of firewall. So far, it seems to us
that the methodology suggested by Kean and Mohd [KeanMohd] for evaluating
firewalls performance. This methodology suggests the following metrics:

• Throughput: The maximum rate at network layer which none of the received
packet is dropped by the firewall without activating filtering rules. In
[RFC2647], the throughput is defined as the actual payload that is received
per unit of time

• Latency: The time interval starting when the last bit of input frame reaches at
the input interface of the firewall, and ending when the first bit of the output
frame is observed at the output interface of the firewall

• Jitter: measures the variation in delay of the received packet

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
43

• Goodput: The rate at which packets are forwarded to the correct destination
interfaces of the firewall, excluding any packets dropped due to the rule set
definition. The goodput could be seen as the opposite of the Packet Loss Rate
(﴾PLR)﴿ which is the ratio of the lost packets to the total transmitted packets

When testing the firewall components, different related specifications (﴾that will also
be used when defining SLAs)﴿ will be used. These specifications include,

§ Firewall model
§ Operating System
§ Memory
§ Processing Speed
§ Interfaces
§ Connections/second
§ Throughput
§ Concurrent sessions

The testing activities will be using IP traffic generators such as D-‐ITG [ITG], [ostinato]
and [IPTraf]. The latters will mainly generate TCP and UDP traffic at different rates.
Diverse loads (﴾light, medium, heavy)﴿ and different packet sizes will also be
considered.

4.2.8. Future work

At present the general architecture of the vSA is clear and the main components are
identified. To implement the vSA, different tasks are planned:

§ Setup the selected firewalls on virtual machines and investigate their
functionalities (﴾configuration, Web interface, APIs if any, etc)﴿. Different
virtualization technologies might be used here.

§ Check their performance based on the metrics discussed earlier.
§ Identify the extensions needed to fulfill the project requirements

-‐ interfaces to the other components within the vSA
-‐ metadata for the NF store
-‐ configuration format and packaging
-‐ APIs to the orchestrator and potentially to other component in the T-‐NOVA

system
-‐ vSA manager implementation

4.3. Session Border Controller

4.3.1. Introduction

A Session Border Controller (﴾SBC)﴿ is a device used in multi-‐media telecommunication
for providing network interconnection and security services between two IP networks
whenever multi-‐media sessions involve two different IP network domains. Main
logical components of an SBC are the Interconnection Border Control Function (﴾IBCF)﴿
for the signalling procedures and the Border Gateway Function (﴾BGF)﴿ for user data

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
44

plane processing. Signalling procedures are usually implemented by the Session
Initiation Protocol (﴾SIP)﴿, while the data or use plane usually adopts Real-‐time
Transport Protocol (﴾RTP)﴿ for multimedia content delivery.

As already introduced in T-‐NOVA “System Use Cases and Requirements” deliverable
[D2.1], we will focus on the virtualized implementation of such device.

Figure 4-6 Virtualized SBC high level model

The virtualized SBC (﴾vSBC)﴿ is the VNF implementing the SBC service in T-‐NOVA
virtualized environment. As analyzed in [D2.41] the same functionality is compatible
with ETSI NFV apart from the details of the actual implementation of the interfaces to
the virtualized environment. For instance the ETSI Ve-‐Vnfm interface corresponds to
T-‐NOVA T-‐Ve-‐Vnfm. On the other hand, however, applying ETSI NFV paradigm to the
existing Telco infrastructures can require challenging architectural upgrades, as well
as radical changes in service models and operating procedures. Moreover, the
services provided by telecommunication networks greatly differ from the standard IT
applications running in the cloud, in terms of “carrier grade availability” and “high
processing throughputs”, achieved with specialized devices such as Network
Processor Units (﴾NPU)﴿ and/or Digital Signal Processors (﴾DSP)﴿. For this reasons the
“pure” software implementation shall be complemented by acceleration technologies
such as DPDK that can be available also in cloud environments [DPDK].

The vSBC implementation in T-‐NOVA project is a feature-‐limited or prototyped
version of the commercial SBC Italtel is developing for NFV market.

4.3.2. State-‐of-‐the-‐art

Session Border Controller is well known component in IP multi-‐media
telecommunication networks. Its logical architecture, functional and non-‐functional
requirements are described in different standard specifications by ETSI, 3GPP and
others. Some non-‐exhaustive references are: [ES282.001], [TS23.228], [TS29.238].

Many vendors are active in Session Border Controllers market. Among them ACME
Packet (﴾now Oracle)﴿ [SBC_ACME], Sonus [SBC_Sonus], Alcatel-‐Lucent [SBC_ALU],
Audiocodes [SBC_Audiocodes], Metaswitch [SBC_Metaswitch], and finally Italtel
[SBC_Italtel] are the most representative. For the objective of this document we want
just to outline current commercial offers in SBC market and not providing detailed
company-‐sensitive information.

Typically an SBC is a stand-‐alone device integrating signaling and media capabilities.
Distributed deployment is also possible but not considered here. Any SBC basically

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
45

supports NAT (﴾Network Address Translation)﴿ service. Some vendor implements also
media processing service also known as transcoding for adapting media streams in
interconnections between two different non-‐compatible codecs. Finally, some vendor
offers a virtualized version of this device.

Research and development departments of SBC manufacturers are now spending
efforts in the design and implementation of ETSI NFV version of such devices. This is
actually in line with the objective of T-‐NOVA project.

4.3.3. Requirements

General requirements for SBCs are summarized here.

1. IP to IP network interconnection
2. SIP signalling proxy
3. SIP signalling manipulation and interworking
4. Media flow NAT
5. RTP media support
6. Real-‐time audio and/or video transcoding
7. Topology hiding
8. Security gateway
9. IPv4-‐IPv6 gateway
10. High-‐availability (﴾99,999%)﴿

This list catches not only essential but also some advanced requirements expected by
an SBC. For example media manipulation and advanced security are distinctive
features supported by advanced version of commercial products.

For the objectives of T-‐NOVA project we will focus on a subset of these requirements
with the objective to provide a virtualized implementation of an SBC according to the
VNF paradigm and compliant with T-‐NOVA framework.

The requirements addressed in T-‐NOVA are then:

1. IP to IP network interconnection
2. SIP signalling proxy
3. Basic SIP signalling manipulation and interworking
4. Media flow NAT
5. RTP media support
6. Real-‐time audio and/or video transcoding (﴾optional)﴿

4.3.4. Architecture

The high level architecture of the virtualized SBC consists of specialized components
represented in Figure 4-‐7. Each component could be deployed as a dedicated VM.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
46

Figure 4-7 vSBC internal architecture

DPS (﴾Data Plane Switch)﴿ manages the IP network interface using DPDK technology
[DPDK]. This component implements the single ingress or egress point of both the
signaling and media flows. It is controlled by a dedicated interface (﴾DPS ctrl)﴿ to
provide packet forward or NAT function.

IBCF (﴾Interconnection Border Control Function)﴿ implements the control function of
the SBC. It analyzes the SIP messages supporting the establishment, modification and
termination of the communication between disparate SIP end-‐point applications. The
IBCF can provide SIP message adaptation or modification enabling interoperability
and also enforcing topology hiding and other security features. The IBCF extracts
from SIP messages the information about the media streams associated to the SIP
dialog and instructs media plane components to process them.

SIP LB (﴾Load Balancer)﴿ balances incoming SIP messages traffic, forwarding them to
the appropriate IBCF instance.

BGF (﴾Border Gateway Function)﴿ processes media streams applying transcoding
algorithms. This is used whenever the endpoints of the media connection support
different codecs. Transcoding function is implemented by a pure software transcoder,
that can dramatically increase its performance whenever GPU acceleration hardware
is available in the virtual execution environment. The BGF is controlled by the BGF ctrl
interface.

O&M (﴾Operating and Maintenance)﴿ module supervises the operating and
maintenance functions of the network function. In the cloud environment the O&M
module extends the traditional management operations with the internal
orchestration function. This orchestrator knows how to instruct the internal
component of the VNF to accomplish scaling procedures and to support the pay-‐as-‐

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
47

you-‐go paradigm. The O&M orchestrator interfaces the VNF manager that instruct it
for applying the VNF lifecycle.

4.3.5. Functional description

The most innovative components of the vSBC are the Data Plane Switch and the
Border Gateway Function implemented in a virtualized environment. The following
chapters provide some insight about them and also outlines the research activities we
are doing.

4.3.5.1. Data Plane Switch

The Data Plane Switch (﴾DPS)﴿ is the front-‐end component dedicated to IP network
interface management. Its goal is to provide high speed packet processing for the IP
packets destined or originated by a single IP address. The same IP address is used for
the signaling and the media flows. Many signaling flows can share the same port
while each media flow is associated to a single port.

The DPS processes the addressing information in the header of IP packet leaving
untouched the payload. Therefore, it can provide packet forwarding, packet
redirection, Network Address Translation (﴾NAT)﴿, port translation. The DPS is
instructed how to manage the IP packets by an external controller. For the vSBC the
controller is the IBCF component.

Besides these basic packet processing functions, the DPS can be optionally extended
with firewall and security gateway components. The front-‐end role of DPS has been
implemented by dedicated hardware components such as Network Processing Unites
(﴾NPUs)﴿ in traditional SBC products, performing wire-‐line speed processing rate.

The challenge of pure software implementation is to reach a performance level
comparable to the hardware based version. The approach we are following is to
adopt acceleration technologies such as DPDK that is available in Intel x86
architectures. Whenever DPS virtual machine is executed on a DPDK enabled CPU, it
considerably increases its performances, while not being constrained to run only on
such type of hardware platform. In the latter case of course we will experience poorer
performances.

4.3.5.2. Border Gateway Function

The Border Gateway Function (﴾BGF)﴿ provides real-‐time media stream adaptation
when media transcoding is required. This is an ancillary function for an SBC because
in common network deployments only a limited subset of media streams processed
by the SBC need to be transcoded.

For sake of simplicity we use the term transcoding for indicating also the transrating
function. While transcoding transforms the algorithm used for coding the media
stream, transrating changes the sending rate of IP packets carrying media content.
Both transcoding and transrating are key functions for allowing interoperability
between diverse media endpoints. Transcoding is a highly intensive computation
process implemented by dedicated Digital Signal Processors (﴾DSPs)﴿ hardware devices.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
48

Moving BGF to pure software implementation suffers from dramatic decrease of the
number of simultaneously processed media streams. By embracing cloud elasticity
paradigm, this issue could be mitigated by running more BGF instances. This is in fact
the first strategy we are going to adopt. However, this approach could be not
appropriate to all situations. To improve BGF performances we shall move to
hardware acceleration techniques. The DSP technology is well known in telco field
but is not usually adopted in IT domains where however similar problems exists
about efficient graphical processing. Graphical Processing Units (﴾GPUs)﴿ has been
developed and can now be considered commodity hardware almost easily available
in datacenters. The BGF can benefit from GPU technology using it to run transcoding
and transrating algorithms. The BGF we are studying and implementing has the
capability to use GPUs whenever they are available in the execution environment of
the VMs hosting the BGF instances.

Summarizing, the BGF will implement pure software transcoding and transrating
algorithms. It can be instantiated multiple times to provide a pool of resources
according to the actual need or real-‐time media processing. If GPUs are available,
they can provide hardware acceleration to increase BGF performances.

4.3.5.3. Lifecycle

The network function lifecycle was discussed in a general way in [D2.41].

The lifecycle of the SBC includes: Start, Stop, Monitor, and Configure.

4.3.6. Interfaces

The most interesting interfaces are the ones used for controlling the internal
components.

DSP ctrl interface instructs the Data Plane Switch to perform forward, NAT, redirect of
IP packets.

BG ctrl interface instruct the Border Gateway Function to perform media stream
transcoding and transrating between two codecs.

T-‐Ve-‐Vnfm interface instructs the O&M component to implement VNF lifecycle.

Detailed description of these interfaces is ongoing. It will be reported in future
deliverables.

4.3.7. Technology

The technology we are going to use for vSBC implementation derives from
NetMatch-‐S CI product by Italtel S.p.A, a pure software edition of Italtel SBC based on
virtual platforms, specifically designed for deployment in Data Center/Cloud
Environments. [SBC_Italtel]

The transcoding feature provided by the BGF module benefits from GPU-‐acceleration.
The overall system consists of a standard commodity server, with a commercial GPU
board hosted in a PCIe bay. The GPU board is the Nvidia Tesla k20x platform; the
initial development will be based on the use of the Linux operating system, and the

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
49

KVM hypervisor. This way, both the API remoting and the GPU passthtrough
approaches can be adopted. The limitation of this approach, due to the lack of
support of SR-‐IOV by the Nvidia Tesla architecture, is that in the pass-‐through case
the entire GPU will have to be assigned to a single VM. However, in this initial stage
of the development, this is not felt as a major issue; also, it will be easily removed by
upgrading the GPU board to the Grid family. The adopted GPU programming
language is CUDA. The developed virtual function is a video transcoding unit, that will
represent one of the VNF component of the virtual SBC use case. The transcoding will
be performed between domains using the Google VP8 coding scheme, and the ITU-‐T
H.264.

4.3.8. Dimensioning and Performances

At present, we don’t have absolute numbers related to the expected performances of
the vSBC. Nevertheless, we have target requirements about the expected behavior of
its internal components. They are summarized here:

• The DPS component shall be able to process all the traffic offered to and
originated by a single network interface.

• The SIP LB component shall be able to process all the ingress SIP messages.
• Both IBCF and BGF components shall provide market sensitive performances.

For instances it shall support 10, 25, 50, 100, 500, 1000 simultaneous
instances. For the commercial product, each component size will be
associated to a license fee.

4.3.9. Future work

The work done in this initial stage brought to clear identification of the system
architecture and the acceleration technologies that are necessary to provide a
Session Border Controller with performances comparable to the legacy hardware
versions available in the market.

The backlog of our work can be summarized in the following list:

• Continue studying acceleration technologies and their applicability to SBC
context.

• Define detailed description of internal interfaces.
• Complete the implementation of vSBC internal components.
• Test in particular the most innovative components such as DPS and BGF in a

deployment scenario with and without hardware accelerators available.

4.4. Traffic Classification

4.4.1. Introduction

Deep Packet Inspection (﴾DPI)﴿ is a technology that inspects IP packets at Layer 2
through Layer 7. This includes headers and data protocol structures as well as the
actual payload of the message. DPI is used to prevent attacks from viruses and worms

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
50

at wire line speeds. More specifically, DPI can be effective against buffer overflow
attacks, Denial of Service (﴾DoS)﴿ attacks, sophisticated intrusions, and a small
percentage of worms that fit within a single packet. A classified packet can be
redirected, marked/tagged, blocked, rate limited, and of course reported to a
reporting agent in the network.

Figure 4-8 DPI used for Monitoring and Statistics for Enterprise Customers

The exploitation of DPI methods for traffic classification is built around two basic
assumptions: (﴾i)﴿ third parties unaffiliated with either source or recipient are able to
inspect each IP packet’s payload and (﴾ii)﴿ the classifier knows the relevant syntax of
each application’s packet payloads (﴾protocol signatures, data patterns, etc.)﴿.

The proposed DPI based approach will only use an indicative, small number of the
initial packets from each flow in order to identify the content and not inspect each
packet. In this respect it follows the Packet Based per Flow State (﴾PBFS)﴿. This method
uses a table to track each session based on the 5-‐tuples (﴾source address, destination
address, source port, destination port, and the transport protocol)﴿ that is maintained
for each flow.

For the second assumption, a library of protocol signatures and filter strings has to be
built. This library may be consulted, so the protocol can be accurately detected.
Nevertheless, the larger it gets the more resources for the classification procedures
are needed. The signature library needs to be constantly updated as application
protocols evolve or as new protocols emerge.

The Traffic Classification VNF implementation for T-‐NOVA will build on top of readily
available Opensource libraries providing protocol signatures (﴾i.e. OpenDPI, nDPI
[REFnDPI])﴿ to be exploited by the Inspection Engine. Additionally the protocol
signature library will be expanded in order to accommodate video delivery specific
protocols.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
51

4.4.2. State-‐of-‐the-‐art

4.4.2.1. Inspection Algorithms

The most popular algorithms exploited identification through DPI for signature
analysis and mapping can be summarized as:

• Automaton (﴾Regular expression matching)﴿ – Tracks partially matched patterns
in the data string by transition in either a Deterministic Finite Automaton
(﴾DFA)﴿ or Non-‐DFA implementation that accepts strings in the pattern set. The
main drawback of this approach is that either the memory space needed to
keep the patterns is big in expense to the lower time complexity (﴾Non-‐DFA)﴿ or
the opposite for the DFA method. However it is the most broadly used
method for pattern matching.

• Heuristics – A heuristic can check a block of characters in the window suffix
for its appearance in the patterns. It determines whether a match occurs and
moves to the next window position if not. This approach provides the ability
to skip characters not in a match to accelerate the search.

• Filtering Based – This approach searches the data string for necessary pattern
features and quickly excludes the content not containing those features. A
very common way of applying this approach for text filtering is using well-‐
known Bloom filters. This method is useful for the extraction of substrings
from regular expressions, and filtering text with them or checking for different
pattern lengths.

4.4.2.2. vDPI Implementations

The possible reference implementations for vDPI are described here.

• QOSMOS

Qosmos DPI as a Virtual Network Function Component (﴾VNFC)﴿ complies with
an official use case standardized by ETSI in July 2013. This new Qosmos
product runs in a virtual machine and uses optimized interface to feed
application information and metadata to other integrated components,
together forming virtual networking equipment (﴾VNFs)﴿ such as Service
Routers, GGSN, PCEF, BRAS, ADC/Load Balancers, Network Analytics, NG
Firewalls, WAN optimization, etc.

Qosmos DPI VNFC is based on Qosmos’ flagship product ixEngine, which is
already established as the de facto industry-‐standard DPI engine for
developers of telecoms and enterprise solutions. ixEngine identifies and
extracts information traveling over networks in real time, providing a true
picture of the traffic by identifying protocols, types of application, and
extracting additional information in the form of metadata. Equipment makers,
telco and enterprise software vendors, and cloud service providers use
Qosmos to gain application awareness, accelerate time to market and benefit
from continuous signature updates

• Wind River

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
52

Wind River Content Inspection Engine, a high-‐speed pattern-‐matching DPI
solution that can match large groups of regular expressions against blocks or
streams of data, is a scalable, cost-‐effective approach that runs entirely in
software. It is designed for both single-‐core and multi-‐core processors.
Content Inspection Engine is ideal for applications that need to scan large
amounts of data at line rate, such as intrusion prevention (﴾IPS)﴿, antivirus (﴾AV)﴿,
unified threat management (﴾UTM)﴿, and other DPI systems. [REFWind]

• IPOQUE Protocol and Application Classification with Metadata Extraction
(﴾PACE)﴿ 2.0 (﴾was OpenDPI)﴿
PACE 2.0 is ipoque’s next generation software that identifies thousands of
applications and services and provides deeper insight on application
attributes such as real-‐time performance metrics, all from a single solution.
PACE 2.0 combines the power of our application classification (﴾PACE)﴿ and
decoding engine (﴾PADE)﴿ into an all-‐in-‐one protocol and application
classification engine also capable of advanced metadata extraction. This
integrated solution makes it more efficient for customers to get deeper
application insight for troubleshooting, security or subscriber analytics
purposes. The granularity of detail is 100% configurable providing a
completely scalable solution. [REFPACE]

• nDPI
nDPI is a ntop-‐maintained superset of the popular OpenDPI library. Released
under the LGPL license, its goal is to extend the original library by adding new
protocols that are otherwise available only on the paid version of OpenDPI. In
addition to Unix platforms, it also supports Windows, in order to provide a
cross-‐platform DPI experience. Furthermore, they have modified nDPI do be
more suitable for traffic monitoring applications, by disabling specific features
that slow down the DPI engine while being them un-‐necessary for network
traffic monitoring. [REFnDPI]

4.4.3. Requirements

This subsection provides insight to the most important requirements that this VNF
will need to fulfil. The intention of the development of the Traffic Classification is not
to build a ready to market VNF rather than have a VNF with enough functionalities
and complexity in order to support the T-‐NOVA proof of concept validation.
Performance related non-‐functional requirements will be fine grained as soon as the
initial validation steps have concluded.

4.4.3.1. Functional Requirements

The traffic Classification VNF:

• Shall be able to analyze incoming traffic exploiting DPI methodologies
• Shall be able to provide precise identification of RTP flows
• Shall be able to prioritize and differentiate traffic, according to configured

policies

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
53

• Shall provide appropriate functional APIs, for statistics retrieval and
configuration.

• Shall be modular and configurable upon service requirements.
• Shall be able to support QoS features
• Shall be able to provide analytics of the available monitored flows information
• Shall provide internal monitoring (﴾VNF specific)﴿ information to VNFM in order

to allow efficient scaling decision taking.

4.4.3.2. Non-‐Functional Requirements

The Traffic Classification VNF:

• Shall function at an acceptable and scalable level of performance.
• Shall not introduce latency to the inspected flows; latency as result of the

queuing based on the prioritisation does not apply here.
• Shall be able to operate near line rates for simple inspection rules and long

living flows.

Requirements related to the performance of this VNF will be updated and refined as
soon as the initial implementations will be thoroughly tested in the actual
deployment environment.

4.4.4. Architecture

Figure 4-‐9 provides an overview of the high-‐level Traffic Classification VNF
architecture. The VNF comprises three VNF components namely the DPI VNFC; the
Classification VNFC; and the Statistics VNFC. The role of each VNFC is explained
summarized below.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
54

Figure 4-9 vDPI VNF Architecture

Inspection Engine VNFC, this component is responsible for the most processing
intensive functionality of the VNF. The component will implement the filtering and
packet matching algorithms in order to support the traffic classification. This
component support a flow table (﴾exploiting hashing algorithms for fast indexing of
flows)﴿ and an inspection engine for traffic classification. As soon as a new flow has
been identified by the DPI engine, the flow register will be updated with the
appropriate information and communicated to the Classification VNFC.

Classification VNFC, this component is responsible for routing and packet
forwarding process. The component will accept the incoming traffic, consult the Flow
Table for classification information for each incoming flow and then apply mark the
traffic or apply QoS policies accordingly. It is noted that traffic is mirrored to the DPI
VNFC in order these modules to work in parallel. In case that the VNFCs are not
executed on the same host, thus mirroring the traffic might include additional
overhead, other more complex and less efficient VNF graphs should be implemented
(﴾see VNF Consideration section)﴿.

Repository VNFC, this component is responsible for storing the raw information of
the monitored and classified flows. This component will be implemented as a round
robin database that will be possible to store monitoring and classification information
for a specific time window.

Analytics VNFC, this component is responsible for the analysis and statistical
processing of the classified traffic information. The component will also expose Web
based API allowing the access to this information from the VNF tenants (﴾external to

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
55

the T-‐NOVA SP)﴿. This component will fulfill the requirement for passive operation of
the VNF allowing collection of historical traffic information by the customer.

4.4.4.1. VNF Graph considerations

Depending on the anticipated performance yield by the VNF, there are different
deployment scenarios that can be supported for these NVF components, yielding
different VNF graphs and restrictions in the VNF management and lifecycle. The
following cases may be considered:

-‐ Deployment on the same host without packet acceleration support

In this case, the traffic mirroring needs to be achieved at the network
hypervisor level (﴾i.e. OpenVirtual Switch)﴿ with the processing cost of the
packet duplication. The VNF graph in this case has two brunches on towards
the Classification VNFC and another one towards the DPI VNFC

-‐ Deployment on the same host with packet acceleration support
In this case, the traffic mirroring is achieved without packet copy penalty as
the DPDK support zero copy method and both VM access the data directly
on the share memory pool (﴾hugepages)﴿ available at the host. This method is
the most efficient performance wise. The VNF graph is the same as
previously.

-‐ Deployment on different hosts.
In this case, the traffic needs to be switched to different hosts running the
VNFCs. We can have two variations (﴾i)﴿ traffic is firstly forwarded to the DPI
and then to the Classification VNFC (﴾in sequence)﴿ or (﴾ii)﴿ traffic is mirrored on
the TOR switch supporting the NFVI, hence the same VNG graph as above is
preserved. In case the variation (﴾i)﴿ is selected, the VNF graph is altered in a
way that the traffic parses the two VNFCs in sequence. If no identification has
yet occurred, the classification VNFC forwards the traffic with no policies
applied. As soon as the traffic is identified the classification VNFC will apply
the policies instantly. This method is considered as the indicative method in
order not to cause latency to the forwarded traffic due to delays in the packet
inspection process.

4.4.5. Functional description

Given the nature of this VNF it is important that the packet handling mechanisms
used are optimized in order to guarantee performance and stability with the
minimum cost in resource utilization. For this reason various mechanisms are being
considered in order not only to allow the development of a VNF that is performant
under stringent platform capabilities but also develop a version that is more open
and generic. The most notable functional blocks of the VNF at this stage is the
Packet Handling block, actually putting the platform requirements.

4.4.5.1. Packet Handling

Currently one of the most promising frameworks, widely used by the industry is the
Intel DPDK framework, which we discuss in previous sections. This framework

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
56

supports the IVSHMEM memory handling mechanism available in Linux OSes.
IVSHMEM is a mechanism for sharing host memory with VMs running on that host,
providing: i)﴿ zero-‐copy access to data; ii)﴿ interrupt/signaling mechanisms; iii)﴿
optimizing guest/guest and host/guest communications. The initial implementation
of the platform where the Traffic Classification will developed, tested and validated
will exploit this mechanism along with DPDK. However in the future a more native to
Linux kernel implementation of DPDK (﴾i.e. DPDK-‐netdev)﴿ will be considered in the
place of the OVS-‐DPDK that is used now.
The functional description of this platform although not strictly related to this VNF is
important in order to understand the bottlenecks of the implementation. Initially a
specific memory address space in the host is allocated as a buffer that will store the
incoming packets received by the physical interface of the host compute node.
IVSHMEM is used in order to allow VMs that are operating on the same host to have
access at the same time to this memory space. In this case no additional
configuration needs to be performed to the OVS instance that controls the
networking of the VMs. In the alternative case were mirroring would be required an
the memory sharing mechanism was not supported, configuration and packet
duplication at the OVS would be needed thus decreasing the performance of the
platform.
IVSHMEM mechanisms provides zero copy access to the packets between the host
and the guest VMs, meaning very low to zero latency, in copying the packet data
from the physical network interfaces to the VNFs. Furthermore, IVSHMEM offers the
option to have higher packet throughput, when the application is trusted, thus
providing a basic service layer scheme, correlating trust and packet throughput.
Another option available is the VM-‐VM security capability, enhancing the inter VM
packet buffer security sharing by an additional buffer allocation (﴾via. memcpy)﴿. The
latter option enables our system to apply restrictions on the packet buffer that each
VNF can read and modify, so as to prevent overwriting, or modifying packets of
another VNF without permission. Also VNF packet buffer restriction can provide
concurrency control among different VNF operations. Last but not least, DPDK’s
feature IVSHMEM gives the opportunity to work and process data packets without
using the Linux network stack, giving more flexibility and more speed on how to
handle the incoming packet queues.

4.4.5.2. Classification

This VNFC controls the packet policing, prioritisation and forwarding for the traffic
that passes through this VNF. The implementation of this VNF will be based on Linux
OS, using native Linux Kernel capabilities and user space control software and
libraries. The role of this VNFC is to be able to forward the traffic received by the
ingress interface of the VNFC, and as soon as identification information for a
particular flow is signalled to this VNFC to apply certain policies and prioritisation.
The policies will be signalled via the VNFM according to tenant specification and
needs. In order to support various QoS schemes, the VNFC will be able to apply DSCP
marking on the forwarded flows as well as support traffic queuing and prioritisation
specifically for the tenant flows. Given the application and context awareness that is

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
57

provided via DPI methods, classification rules can be automatically applied based on
more abstracted policies.

4.4.6. Lifecycle

The Traffic Classification function lifecycle follows the T-‐NOVA lifecycle template with
the basic functions of Start, Stop, and Configure. As previously mentioned the Traffic
Classification function will take advantage of Intel’s DPDK libraries in order to
accelerate the packet processing speed. This creates the need to identify in advance if
the deploy environment is DPDK-‐enabled. The concurrent work on the Enhanced
Platform Awareness under T-‐NOVA WP4 [D4.01] is very much related to this. In the
case that a DPDK enhancement does not exist, a non-‐DPDK solution should be
applied.

The basic lifecycle stages that are considered at the moment are start, configure,
monitor and stop. Depending on the platform capabilities we can currently see to
cases (﴾i)﴿ the DPDK is not supported – non-‐DPDK version of Traffic Classification is on-‐
boarded and (﴾ii)﴿ DPDK is supported – DPDK version is on-‐boarded.

Especially for the second case (﴾i.e. case ii)﴿ there are some steps that need to prepend
the bootstrapping of the VNF VMs. The critical configuration items are:

• DPDK network driver loading, on the required NICs. (﴾this is assumed that is
taken care by the VIM and the NFVI)﴿

• The memory Hugepages setting e.g. number of Hugepages, size of a
Hugepage.

As soon as the VMs are bootstrapped OVS-‐DPDK needs to be configured in order to
allow shared access and/or port mirroring.

The generic framework for VNF lifecycle stages has been discussed in D2.41, and is
considered also for this VNF [D2.41]. As soon implementation proceeds, each stage
will be documented and refined.

4.4.7. Interfaces

The most important interfaces for this VNF are identifies as:

i)﴿ internal – used for conveying information between the VNFCs
a. TC-‐flow, the interface that signals flow identification information between

the Inspection Engine and Classification VNFCs
b. TC-‐monitoring, the interface that conveys flow monitoring information

(﴾i.e pps, errors, identification, TTL etc)﴿ that from the inspection engine to
the repository.

c. TC-‐an-‐rep, the interface the conveys information between the analytics
VNFC and the repository

ii)﴿ external – used for conveying signaling and information between the external
to VNF entities (﴾i.e. the customer, the monitoring, the VNMF)﴿.
a. T-‐Ve-‐VNFM for control of the VNF lifecycle.
b. TC-‐rmon allowing access to the analytics by the customer

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
58

Detailed description of these interfaces is ongoing. It will be reported in future
deliverables.

4.4.8. Technology

The proposed DPI solution is based on the popular and ntop-‐maintained super-‐
enhanced OpenDPI library nDPI, released under LGPL license. However, further
modifications and additions will be added in order to capture specific cases that the
original filters and library do not support, mainly with respect to classification and
identification of media flows delivered over RTP protocol.

4.4.9. Dimensioning and Performances

In order to initially address the dimensioning assessment required for this VNF we
need to establish some baseline tests for the packet forwarding capabilities and
introduced latency related to the packet handling framework used at the host where
the Traffic Classification VNF is running. In the future a further measurement on the
VNFs resource utilization and performance on different type of traffic workloads will
be conducted. The traffic forwarding results provided are based upon different
system environment settings. The general overview of the setup can be described as
a traffic loop, between two individual machines, the traffic generator and the host
where the Traffic Classification VNF is running.

Experimental Setup

The software used for the traffic generation was based on NetMap library for
optimized traffic generation on our available hardware. The traffic generator was able
to approximate the 1Gbps line rate generation on supported network cards. On the
same node the generated packets after passing through the Device Under Test (﴾DUT)﴿
(﴾compute node, VNFCs)﴿ are arriving. The received packets are then analyzed for a
various metrics i.e. forwarding rate, one-‐way delay, jitter and loss.

On the compute node side DUT side, where the vDPI was running different
configurations and packet-‐handling frameworks were used i.e. PF_RING, DPDK,
OVS_DPDK (﴾with 1 and 2 VM configuration)﴿. The experimental setup is depicted in
Figure 4-‐11.

Figure 4-10 vDPI experimental Setup

In detail the following test scenarios were performed:

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
59

i)﴿ PF_RING -‐ the PF_RING bridge, with the PF_RING module, was used, on
top of the native network drivers

ii)﴿ DPDK – baseline, everything running on the host (﴾no VMs)﴿, i.e the host
forwards directly the packets to the second “exit” physical network
interface, after performing an LPM (﴾Longest Prefix Matching)﴿ lookup.

iii)﴿ DPDK (﴾single VM)﴿ – Single VM providing DPI and classification over
OpenVSwitch DPDK with IVSHMEM functionality.

iv)﴿ DPDK (﴾two VMs)﴿ – Two VMs distributing the functionalities of the vDPI
(﴾one running the DPI and the other running the classification/forwarding)﴿

The case where the forwarding is based on native Linux kernel (﴾bridge or L3)﴿ is not
considered at all, as it is well established that its performance is quite poor when the
packet size is less than 512bytes.

The retrieved results are presented in Table 3 and illustrated in Figure 4-‐11. The
Packet forwarding capability can be easily deducted by these statistics. It is important
to notice the improvement in the performance that DPDK provides in the baseline
case (﴾i.e. PF_RING vs DPDK)﴿, which is comparable. Additionally the introduction of
OVS with DPDK improves furthermore the performance.

Table 3 Loss ratio (%) Packet size vs packet handling framework

 Loss %

Packet Size PF_RING DPDK OVS DPDK 1
VM

OVS DPDK
2 VMs

64 53.93 30.00 16.23 18.45

128 54.88 2.47 9.56 2.5

256 43.25 4.40 7.78 1.3

512 5.35 2.77 5.51 13.1

1024 6.01 2.94 2.40 5.5

1280 2.53 4.80 5.26 0.4

1518 2.97 4.81 1.90 0.39

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
60

Figure 4-11 Loss(%): Packet Size vs Packet handling framework

Next table (﴾Table 4)﴿, provides the measured delay end-‐to-‐end through the DUT.
Comparing the first two cases the delay is fairly improved, when using the DPDK.
However the delay is slightly increased when introducing the OVS in the packet path.
Concluding, the tradeoff regarding the packet loss is in favor of selecting the
combination of OVS and DPDK.

Table 4 Delay (ms) Packet Size vs packet handling framework

 Delay ms

Packet Size PF_RING DPDK L3
Forwarding

OVS DPDK 1
VM

OVS DPDK 2
VMs

64 1.5 1.1 1.12 1.2

128 0.9 0.52 0.63 0.97

256 0.848 0.12 0.27 0.86

512 0.99 0.299 1.23 1.21

1024 1.04 0.75 1.21 0.3

1280 1.71 0.89 0.87 0.76

1518 1.07 1.53 1.57 1.15

The above provided results are illustrated in the following Figure 4-‐12.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
61

Figure 4-12 Delay (ms): Packet Size vs Packet handling framework

The main scope of these performance tests is to demonstrate the significant
improvement not only in packet processing and forwarding times, but also in the
total packet number forwarding performance, we can achieve using the DPDK
framework. On parallel additional similar tests are provided for various more fine-‐
grained scenarios and host compute node configurations in Deliverable D4.01
[D4.01].

4.4.10. Initial Implementation

The currently implemented Traffic Classification VNF comprises two VMs connected
to the deployed Open Virtual Switch (﴾OVS)﴿, all traffic will be sent to both VMs
simultaneously, in other words a traffic mirroring. One VM (﴾i.e. Inspection Engine)﴿ will
perform the flow inspection, assortment, and application detection and will send a
recap of the collected data to the other VM (﴾i.e. Classification/Forwarding)﴿, which will
correspondingly decide on the proper classification based on its configured policies.
The inter-‐VM communication is achieved through their TAP interfaces. This upper
layer of TAP communication provides an efficient and stable communication channel
for the different VMs, as it does not interfere with the main network traffic that is
inspected by the VNF, and establishes an independent path for packets related to
update and communication messages. This fast, reliable, and independent from the
traffic workload communication will guarantee a real-‐time update of the system. It is
obvious that this method of communication applies for VMs that are placed within
the same compute node. In the case were the VMs are placed in different hosts the
communication will need to be supported by a separate network in order to avoid

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
62

mixing intra-‐VNF communication data with the actual forwarded traffic.

Figure 4-13 Traffic classification VNF initial implementation

4.4.11. Future work

4.4.11.1. Directions in the exploitation of vDPI in 5G and FI

The provision of multimedia content and services has been recently increased
significantly, creating the need for both better quality and better exploitation of
network resources. QoS is an aspect addressed in 5G. Another issue addressed in 5G
is the aspect of intelligent environment-‐gnostic services. A vDPI function with traffic
classification and upper-‐layer application identification is extremely vital to the issues
addressed by 5G. The vDPI will not only address the matter of intelligent services, as
it will offer the capability to make decisions upon the traffic application type, but will
also be able to offer an efficient QoS mechanism for high network performance.

4.4.11.2. Development Time plan and Features

The first of developing the vDPI is to benchmark the capabilities and performance of
the environment on which the vDPI will be deployed. This includes implementing and
comparing different setup implementations, basically a DPDK-‐enabled versus a
standard linux environment, for processing packets. The second stage includes the
implementation of the vDPI function on both environment options and benchmark
the performance of the 2 individual settings. Furthermore, the difference in
performance and configuration of the 2 setups should be analyzed. The last step of
the process is the implementation of a system capable of deciding based on the
deploy parameters which option to prefer and proceed to initiate.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
63

4.5. Virtual Home Gateway

4.5.1. Introduction

Another VNF that T-‐NOVA aims to produce is currently known in the research and
the industry world under various names, notably Virtual Home Gateway (﴾VGH)﴿, Virtual
Residential Gateway, Virtual Set-‐Top Box or Virtual User Premise Equipment. The
following sections aim to provide a brief description of the proposed virtual function
along with the requirements, the architecture design, functional description,
technology etc.

4.5.2. Scope & Intentions

By Creating a VGH this will aim at putting parts or all of functional aspects usually
implemented by a regular residential gateway, at the end user’s premises to
another place within the network, closer to the core.

The foreseen benefits include:

• Lower capital for deploying the same installed base (﴾assuming increasing
returns to scale for all networking operations by using big servers in place of
small devices)﴿

• Lower operational costs by limiting the need to provide customer support.
The end user will not have to interfere with the equipment or update any
software

• Less time to market by having the possibility to deploy new functionalities
by pushing software and scaling up compute power and network capabilities.

• Reduce power consumption. It also opens up some green perspective by
reducing the overall power.

Although Residential Gateway Specifications are thoroughly described in TR-‐124 [TR-‐
124], the current contribution to the T-‐NOVA project does not aim at supporting the
whole stack of protocols. In T-‐NOVA, we will focus on the bottleneck points usually
found in resource constrained physical gateway like media delivery, streaming and
caching, media adaptation and context-‐awareness.

Particular attention will be given to real world deployment issues, like coexistence
with legacy hardware and infrastructure, compatibility with existing user premise
equipment and security aspects.

4.5.3. State of the art

Several academic and industrial initiatives have decided to study or implement part
of the VHG scenario whilst standardization bodies are also manifested and interested
in the proposed solution.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
64

4.5.3.1. Standardization bodies and Forums

ETSI mentioned the VHG Use Case in [NFV001] under the chapter “Virtualization of
the Home Environment”. It especially describes how Residential Gateway (﴾RGW)﴿ and
Home Set Top Box (﴾STB)﴿ merge into a unified virtualized device providing both
connectivity and value-‐added media services.

The Broadband Forum has been working since 2012 on a couple of studies and
projects addressing virtualization opportunities in home and business gateway
architectures. Their ongoing works on Network Enhanced Residential Gateway (﴾NERG)﴿
WT-‐317 recall the IETF point of view. Both organizations agreed a formal liaison
relationship in 2013 [IETF2013].

Albeit the Home Gateway Initiative (﴾HGI)﴿ has not yet published any document in
virtualizing with the NFV approach, they have included Java Virtual Machine in the
specification for the HGI Open Platform (﴾3)﴿, which is a step towards a modular home
gateway. This could be viewed as an alternative or complementary vision to the NVF
based one.

EURESCOM also released a study describing how the virtual home gateway could be
achieved. Although it’s not embracing the NFV model, it presents gaps and
challenges for this approach.

4.5.3.2. Academic Research

Insufficient academic research has been conducted focusing on the specifics of virtual
home gateway virtualization in the context of NFV.

In their paper [Silva], Lopez Da Silva and al. describe alternative architectures to
implement virtualization of the routing part of the Home Gateway, along with the
deployment of fiber connectivity.

Cruz and al. in [Cruz], propose architectures for both the network part of the access
network, the virtualization of the gateway and virtualization specific issues. They
explain that part of the functional stack of a home gateway could be mutualized
(﴾mentioning the collocation of services like DHCP or NAT)﴿ instead of being deployed
as a standalone VHG. Parts of the open issues regarding virtualization (﴾VM migration
and vHG Pool management)﴿ are addressed in the NVF approach and by T-‐NOVA.

Research has been carried out in order to demonstrate that virtualizing the home
gateway can be a good approach to save energy consumption [Gelas] by leveraging
the easier energy savings in data centers.

More recent research [Mikityuk] has been conducted to study how a set top box
could be virtualized by detailing the Thin Client and Zero Client approach.

4.5.3.3. Industrial projects and products

Other research is currently being carried out by industrials. At least 3 initiatives are
currently rolling out the first virtual home gateway with the common goal: being the
first operator to deploy vCPE over NVF.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
65

• Telefónica and NEC in Brazil: Telefonica presented a proposal for virtualizing
customer premises equipment (﴾vCPE)﴿ in a demo that illustrated how the
equipment at the customer's residence can be simplified and how the
management of the resources and services will improve [Nec].

• Telstra and Ericsson in Australia: Telstra and Ericsson have undertaken some
trials of new technology being that could enable pay TV, broadband internet
and other services to be delivered without customers needing a set-‐top box
at home. The concept will also allow subscribers to access their pay TV
subscription from any location via the Telstra networks making it possible for
people to have one subscription for multiple services [TheAge].

• China Telecom and Huawei in China: These two telecos are working in the
completion of virtualizing the CPR which aims to simplify deployment for
enterprise customers [LR_CPE].

Another thing that should be noticed is the fact that all technology providers and
telecom operators who are platinum sponsors of the OPNFV project are located
outside the US and EU. The goal of this project is to make the OpenStack project fit
the need for carrier grade cloud operation, which is basically the technology beneath
the brand name NFV [OPNFV].

4.5.4. Requirements

4.5.4.1. NVF centric

1. vHG NFV MUST propose a technical way to migrate from existing deployed
solution to fully NFV one.

2. vHG NVF MUST bring clear added value to the media experience of end user
compared to existing solutions

3. vHG SHOULD use standards for its operation as much as possible.
4. vHG SHOULD use libre or open source software for its operation as much as

possible.

4.5.4.2. Physical Gateway Centric

1. Applications deployed on the gateway MUST be compliant with a
standardisation recommendation, or a de facto standard.

2. Applications deployed on the gateway MUST have the lowest impact possible
on latency, throughput and jitter.

3. Applications deployed SHOULD be programmable through a standard and
open interface.

4.5.5. Architecture

4.5.5.1. High level

Network perspective
Even if T-‐NOVA doesn’t involve altering the current access network architecture, we
present a Bird's-‐eye view (﴾Figure 4-‐14)﴿ of the network where the box is usually

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
66

located in today’s configuration. A more complete description can be found in
[Abgrall].

Figure 4-14 high level architecture for field deployment

With the novel vHG approach, we aim at replacing legacy devices like Set Top Box
and Home Gateway with smaller devices with limited capabilities, with a vision to
reduce both OPEX, CAPEX and devices fragmentation for the Service Provider. All the
operations that were supported by the old devices will be relocated into the service
provider datacenters, possibly as NVF.

Note that for a first approach, we will have the home gateway replaced by a new
modular version promoted by [RD048] that supports deployment of vendor specific
modules. Those modules will be used to deploy applications that will delegate the
operations to VNF deployed on Service Providers datacenters.

Figure 4-15 proposed hardware replacement

Box-‐side architecture
Regarding the boxes, some services may be kept for performance and compatibility
reasons with existing deployment solutions. For example, from a deployment
perspective, it’s not clear yet if DHCP should be performed on the box like it’s done
now or remotely, leveraging DHCP option 82. On the other hand some services may
be virtualized locally using for example Java/OSGI or remotely using VNFs.

Since we need a way to demonstrate our development in real world application
scenarios, we will assume that boxes are able to run custom external modules, like
boxes that are compliant with [RD048] as shown on Figure 4-‐16.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
67

Figure 4-16 modular box architecture

Server Side Architecture
Several server architectures can be envisaged depending on the deployable service
and on the operational constraints of the target infrastructure. Some open questions
remain, and alternatives are exposed in [Cruz] as reported in Figure 4-‐17.

Figure 4-17 Architectural Optimizations for vHG

Vertical Segmentation.
The most straightforward scenario is having the vHG deployed in an infrastructure
where there’s a 1:1 mapping between the customer and vHG. It brings immediate
transposition between the physical world and the virtual world, intrinsic privacy, and
easy reuse of existing BSS modules. This approach however has certainly the most
important footprint.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
68

Co-‐located approach & Distributed approach
This approach is more modular as central servers can be optimized through their
placement or provisioning. The approach could also have a distributed flavor, for
example, DHCP relays could be installed in the access network.

Overall architecture
Next, we present how the box and the server will connect to perform network
operations. Figure 4-‐18 shows the high level architecture as presented by ETSI in
[NFV001]. This vision claims supporting vertical segmentation for the sake of
simplicity of migration.

Figure 4-18 ETSI home virtualization functionality

A Transition architecture.
A transition architecture is needed (﴾presented in Figure 4-‐19)﴿ to demonstrate the
capabilities on NFV to be able to suit the need for carrier grade services over IP. To
reach this point, we need a way to deploy part of the final scenario for selected
network functions to prove that the scenario is viable.

This transition architecture, built on ETSI and HGI vision will allow us to develop and
deploy a single NVF and plug it into the home gateway by deploying a small bridging
application that will be responsible for forwarding to the appropriate VNF the user’s
request.

Another advantage of being able to deploy selected VNF resides in the fact that we
will choose network functions that present the most added values for being deployed
into an NVF backend, given the physical HG inherent constraints.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
69

Figure 4-19 Transition Architecture

4.5.5.2. Low Level

To illustrate low level aspects of the VNFs that will be deployed, we will take a specific
example of VNF which caches, transcodes and streams the most requested videos by
gateway users.

Figure 4-20 Low level architecture diagram for transcode/stream VNF

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
70

Figure 4-‐20 illustrates a modular gateway which acts as a HTTP proxy, notifying the
content fronted when a video is consumed by the end user. Having this information
allows the content frontend to trigger the download from the content provider’s
network to the VNF. Once the video is entered on the VNF, it’s transcoded and
moved to the storage shared by the streamers.

Once the video resource is available to the end user, the gateway redirects the user’s
request to the streamer, ensuring the best QoE possible.

4.5.6. Virtualization targets

Here’s a list virtualization targets published by ETSI in [RD048]. We consider
implementing part of this list, with a particular focus given to media aspects.

4.5.6.1. Main objective: Media virtualization Target

• Streaming: using methods such as HTTP Streaming and Zero Client.
• Media Cache: Support caching of different content types and formats
• Content Sharing: Possibility for the end user to be able to see their contents

over any virtualized Home

4.5.7. Sequence diagrams

The sequence diagram presented in Figure 4-‐18 is associated with the example
presented in section 4.5.5.2.

Figure 4-21 Sequence diagram for the transcode/stream VNF example

4.5.8. Technology

4.5.8.1. Netty: a Java Non-‐Blocking Network Framework

Netty is an asynchronous event-‐driven network application framework for rapid
development of maintainable high performance protocol servers and clients.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
71

One of the most striking features of Netty is that it can access resources in a non-‐
blocking approach, meaning that some data is available as soon as it gets in the
program. This avoids wasting system resources while waiting for the content to
become available; instead a callback is triggered whenever data is available. This also
saves system resources by having only 1 thread for resource monitoring.

Netty is one of the building blocks to be used to implement the OSGi bundle Proxy.

4.5.8.2. Restful architecture

End user applications, Gateways and Front-‐end need to interact though secured
connection on the internet.

A Java Restful architecture can be implemented for those reasons:

• Architecture is stateless, which means that the servers that expose their
resources do not need to store any session for the client. This greatly eases
scaling up, since no real time session replication needs to be performed,
therefore a new server will be deployed for load balancing purposes.

• Architecture is standard and well supported by the industry, allowing us to
leverage tools for service discovery and reconfiguration.

• Authentication methods are well documented and widespread among web
browsers and servers.

Regarding the technical details, we will consider the standards of the Java SDK, by
using JAX-‐RS and its reference implementation, Jersey. This framework can be
integrated on any servlet container, JEE container or lightweight NIO HTTP server like
Grizzly which is used on the POC.

4.5.8.3. Transcoding workers

One of the key features of cloud computing is its ability to produce on-‐demand
compute power at a small cost. To take advantage of this feature, we plan to
implement the most computing intensive tasks as a network of workers using a
Python framework called Celery. Celery is an asynchronous task queue/job queue
based on distributed message passing.

Every Celery worker is a stand-‐alone application being able to perform one or more
tasks in a parallelized manner. To achieve this goal, a general transcoding workflow
has been designed to be applied on a remote video file.

Having a network of worker allows us to scale-‐up or scale-‐down the overall compute
power simply by turning a virtual machine up or down. Once the worker is up, it
connects to the message broker, and picks up the first task available on the queue.
Frequent feedback messages are pushed to the message broker, allowing us to
present the results on the gateway as soon as they are available on the storage.

If the compute capacity is above the required level, active workers are
decommissioned, leaving the pool as their host virtual machine turns of.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
72

4.5.9. Dimensioning and Performances

This chapter identifies the pieces of information related to dimensioning and
performance.

Processing Power: The vHG system’s resources that tend to become the bottleneck
are the processor and the processing power of the virtualization node. [Sigcomm]
reports that the key factor of performance in virtual residential gateways is able to
deliver throughput at the lowest cost of resource usage as possible.

CPU Utilization refers to the the time spent to complete a function and the amount
of CPU which is used during this interval by the VNF.

Memory Consumption can be defined as the amount of physical memory consumed
by the VNF

High Availability is concerned with the vHG function failure and the consequences
associated with these failures. This needs to be considered and specified including
the system’s response when the function fails, the failure recovery time and the
function downtime for upgrade. This will be measured by the probability that the
function will be operational when required.

Uptime refers to the level of the success provided by the service. This is measured
based on the time that the service has been consistently running for a certain period
of time.

Scalability is concerned with the ability of the network function to increase the
number of successful operations completed over a given period of time.

Provisioning Time is the time required for the service to become operational.

Access Control is concerned with the system’s ability to resist unauthorized usage,
while providing users with access to the service such as authenticating and
authorizing a user or encrypting data.

Network outage loss of virtual network connectivity will directly impact the service
latency, quality and availability experienced by the end user.

Since the proposed vHG is related to video streaming, it could be seen as a media
server for the end-‐user. Video streaming will be used to evaluate the performance of
the vHG network function based on encoding and decoding also as QoS and QoE
offered to the end user [Mei].

Peak Signal-to-Noise Ratio (PSNR): The objective peak signal-‐to-‐noise ratio
calculation is the best known evaluation metric. It represents the fidelity of an image
i.e. by comparing the image to its original form.

Video Quality Metric (VQM) is a standardized method of measuring video quality
by making a comparison between the original and the distorted video sequences
based on a set of features extracted from each video.

VQM takes the original video and the processed video and computes the quality
based on:

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
73

• Calibration: the sampled video is calibrated in preparation for feature
extraction. It estimates and corrects the spatial and temporal shift as well as
the contrast and brightness offset of the processed video sequence compared
to the original video sequence.

• Quality Features Extraction: This consists of extracting the set of quality
features characterizing perceptual changes in the spatial, temporal and
chrominance properties.

• Quality Parameters Calculation computes a set of quality parameters which
describe perceptual changes in video quality by comparing features from the
processed video with the original video

• Quality estimation computes the overall quality metrics using a linear
combination of parameters calculated based on the above steps

4.5.10. Future Work

The following present potential features for the vHG that may be necessary to
implement in order achieve more objectives on the vHG in the future.

• Parental Lock allows users to block access to specific content which not
appropriate to users under the age of 18 using a PIN.

• Configuration Management includes functions that aim to manage the HG
components including the firewall, security settings.

• QoS management includes functions that aim to manage the QoS of the HG
in order to ensure the reliable delivery of services.

• Monitoring includes functions that will detect any issues with the service
delivery also as provide statistics regarding the usage.

• Supporting Media protocols such for VOD, NPVR, TSTV, OTT clients and
provide interfaces to existing content platforms

• Multi-screen, support various, simultaneous, screens of varying resolution
and formats

• Encryption, to support different encryption schemes for cached content e.g.
scrambling.

• Firewall: this should be deployed to filter and validate all requests.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
74

5. CONCLUSIONS AND FUTURE WORK

5.1. Conclusions

In this deliverable we reported the present status of research, design and
implementation we have done in WP5 "Network Functions" work-‐package of T-‐
NOVA project.

This work-‐package contributes to the project both in general framework aspects
(﴾T5.1, T5.2)﴿ and in the actual implementation of a set of VNFs we will use for proving
T-‐NOVA system (﴾T5.3)﴿.

It is worth noting that some of the VNFs we are developing in T5.3 will stand as the
"Proof-‐of-‐Concept" versions of prototypes with limited features focusing on the
innovation aspects. The industrial partners in charge of them aim to go further after
the project by implementing the real products out of them. This is especially true for
the vSBC and vHG.

The research and innovation activities consist of the optimization of VNF execution in
a cloud environment provided by acceleration techniques through commodity
hardware, in particular DPDK and GPU-‐based. The objective is to include them in a
datacenter deployment scenario similar to a production environment and prove their
efficiency.

For the development of T-‐NOVA system components in this stage we privileged the
objective to provide a full functioning version in the shortest time as possible instead
of working to the most appealing solution in terms of advanced research. The
rationale is to limit delay and risks for the implementation of the entire T-‐NOVA
system. Nonetheless, we realized that enough effort and time is available to work
enhancements towards to most advanced research solution by the end of the project.

5.2. Future Work

In each of the sections of this document we detailed the backlog of activities for each
topic, that are managed in the tasks composing WP5.

In general, since we designed the architecture and identified the technologies for the
first stage of implementation, the effort is now be in the implementation itself.
Research activity proceeds in parallel investigating more in depth the available
technologies, such as hardware accelerators that can be available in datacenters.

Extensive cross checking activities will be activated to harmonize details about
interfaces and information models among all the components of the project. We
have created a dedicated section in the project wiki for describing all the information
related to interfaces among T-‐NOVA system components. We plan to export this
knowledge in a public web site when it will be stable enough.

Detailed specification of VNF metadata descriptor is key for the actual
implementation of T-‐NOVA system. This descriptor will be aligned to the work in

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
75

WP3 regarding VNF Descriptors at Orchestration level as well as ETSI NFV ISG
recommendations. Moreover, it will be the result of extensive discussion and research
activities of all the technical workpackages (﴾WP3 to WP6, not forgetting WP2)﴿ that
will be reported in future deliverables. Intermediate results will be reported in the
project wiki as per interface descriptions.

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
76

6. LIST OF ACRONYMS

Acronym Explanation

3GPP Third Generation Partnership Project

API Application Programming Interface

BGF Border Gateway Function

CAPEX Capital Expenditures

CLI Command Line Interface

CRUD Create, Read, Update, Delete

DDoS Distributed Denial of Service

DFA Deterministic Finite Automaton

DHCP Dynamic Host Configuration Protocol

DoS Denial of Service

DPDK Data Plane Development Kit

DPI Deep Packet Inspection

DPS Data Plane Switch

DSP Digital Signal Processor

DUT Device Under Test

EMS Element Management System

ETSI European Telecommunications Institute

FW Firewall

HGI Home Gateway Initiative

HPC High Performance Computing

HTTP Hyper Text Transport Protocol

IBCF Interconnection Border Control Function

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IOMMU I/O Memory Management Unit

ITU-‐T International Telecommunication Union –
Telecommunication Standardization Bureau

JSON JavaScript Object Notation

KVM Kernel-‐based Virtual Machine

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
77

Acronym Explanation

LB Load Balancer

MANO Management and Orchestration

MIB Management Information Base

NAT Network Address Translation

NDVR Network Digital Video Recorder

NETCONF Network Configuration Protocol

NF Network Function

NFaaS Network Function as a Service

NFVI Network Function Virtualization Infrastructure

NIO Non Blockio I/O

NN Neural Network

NPU Network Processor Unit

NSIS Next Steps In Signaling

O&M Operating and Maintenance

OPEX Operational Expenditures

OSGI Open Service Gateway Initiative

OTT over-‐the-‐top

PCI Peripheral Component Interconnect

PCIe Peripheral Component Interconnect Express

POC Proof of Concept

PSNR Peak Signal-‐to-‐Noise Ratio

QoE Quality of Experience

RAID Redundant Array of Independent Disks

REST Representational State Transfer

RFC Request For Comments

RGW Residential Gateway

RTP Real-‐time Transport Protocol

SA Security Appliance

SBC Session Border Controller

SIMCO Simple Middlebox Configuration

SIP Session Initiation Protocol

SNMP Simple Network Management Protocol

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
78

Acronym Explanation

SOM Self Organizing Maps

SQL Structured Query Language

SR-‐IOV Single Root I/O Virtualization

SSH Secure Shell

STB Set Top Box

TSTV Time Shifted TV

UTM Unified Threat Management

vCPE virtualized customer premises equipment

VF Virtual Firewall

vHG Virtual Home Gateway

VIM Virtual Infrastructure Manager

VM Virtual Machine

VNF Virtual Network Function

VOD Video On Demand

VQM Video Quality Metric

vSA Virtual Security Appliance

vSBC Virtual Session Border Controller

XML Extensible Markup Language

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
79

7. REFERENCES

[Abgrall] Daniel Abgrall, “Virtual Home Gateway, How can Home Gateway
virtualization be achieved?,” EURESCOM, Study Report P055.

[Ansibl] http://en.wikipedia.org/wiki/Ansible_%28software%29

[Chef] http://en.wikipedia.org/wiki/Chef_%28software%29

[Cruz] T. Cruz, P. Simões, N. Reis, E. Monteiro, F. Bastos, and A. Laranjeira, “An
architecture for virtualized home gateways,” in 2013 IFIP/IEEE International
Symposium on Integrated Network Management (﴾IM 2013)﴿, 2013, pp. 520–526.

[CUDA] NVIDIA, CUDA C Programming Guide, 2013.

[D2.1] T-‐NOVA: System Use Cases and Requirements

[D2.21] T-‐NOVA: Overall System Architecture and Interfaces

[D2.41] T-‐NOVA: Specification of the Network Function framework and T-‐
NOVA Marketplace

[D4.01] T-‐NOVA: Interim Report on Infrastructure Virtualisation and
Management

[D6.01] T-‐NOVA: Interim report on T-‐NOVA Marketplace implementation

[django] https://www.djangoproject.com/

[Docker] Docker https://www.docker.com/

[DPDK] Data Plane Development Kit, on-‐line: http://dpdk.org

[DPDK_NIC] DPDK Supported NICs, on-‐line: http://dpdk.org/doc/nics

[DPDK_RN170] INTEL, “Intel DPDK Kit”, http://dpdk.org/doc/intel/dpdk-‐release-‐
notes-‐1.7.0.pdf

[DSpace] DSpace http://www.dspace.org/

[Duato] Duato, J.; Pena, A.J.; Silla, F.; Fernandez, J.C.; Mayo, R.; Quintana-‐Orti,
E.S., "Enabling CUDA acceleration within virtual machines using rCUDA," High
Performance Computing (﴾HiPC)﴿, 2011 18th International Conference on , vol., no.,
pp.1,10, 18-‐21 Dec. 2011 doi: 10.1109/HiPC.2011.6152718

[Egi] Egi, Norbert, et al. "Evaluating xen for router virtualization." Computer
Communications and Networks, 2007. ICCCN 2007. Proceedings of 16th International
Conference on. IEEE, 2007.

[Eprints] Eprints http://www.eprints.org/

[ES282.001] ETSI ES 282 001: Telecommunications and Internet converged Services
and Protocols for Advanced Networking (﴾TISPAN)﴿; NGN Functional
Architecture

[Fedora] http://www.fedora-‐commons.org/

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
80

[Felter] Felter, Wes, et al. "An Updated Performance Comparison of Virtual
Machines and Linux Containers." technology 28: 32.

[Gelas] J.-‐P. Gelas, L. Lefevre, T. Assefa, and M. Libsie, “Virtualizaing home
gateways for large scale energy reduction in wireline networks,” in Electronics Goes
Green 2012+ (﴾EGG)﴿, 2012, 2012, pp. 1–7.

[GlueCon14] “Containers At Scale. At Google, the Google Cloud Platform and
Beyond”. Joe Beda. GlueCon 2014.

[Gupta] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia, V. Talwar, and
P. Ranganathan, “GViM: GPU-‐accelerated virtual machines,” in 3rd Workshop on
System-‐level Virtualization for High Performance Computing. NY, USA:ACM, 2009, pp.
17-‐24

[H2] H2 http://www.h2database.com/html/main.html

[Halon] http://www.halon.se/

[IETF2013] https://datatracker.ietf.org/documents/LIAISON/liaison-‐2014-‐03-‐28-‐
broadband-‐forum-‐the-‐ietf-‐broadband-‐forum-‐work-‐on-‐network-‐enhanced-‐
residential-‐gateway-‐wt-‐317-‐and-‐virtual-‐business-‐gateway-‐wt-‐328-‐attachment-‐1.pdf

[Invenio] Cdsware http://cdsware.cern.ch/invenio/index.html

[IPTraf] http://iptraf.seul.org/

[ITG] http://traffic.comics.unina.it/software/ITG/

[JBoss] JBoss http://www.jboss.org/

[Jetty] Eclipse http://eclipse.org/jetty/

[Karimi] K. Karimi, N.G. Dickson, F. Hamze, A Performance Comparison of CUDA
and OpenCL, arXiv:1005.2581v3, arxiv.org.

[KeanMohd] http://core.kmi.open.ac.uk/download/pdf/11778682.pdf

[Kirk] D.B. Kirk, W.W. Hwu, Programming Massively Parallel Processors,
2nd ed., Morgan Kaufmann, 2013.

[Lauro] Di Lauro, R.; Giannone, F.; Ambrosio, L.; Montella, R., "Virtualizing
General Purpose GPUs for High Performance Cloud Computing: An Application to a
Fluid Simulator," Parallel and Distributed Processing with Applications (﴾ISPA)﴿, 2012
IEEE 10th International Symposium on , vol., no., pp.863,864, 10-‐13 July 2012 doi:
10.1109/ISPA.2012.136

[LR_CPE] http://www.lightreading.com/nfv/nfv-‐elements/huawei-‐china-‐telecom-‐
claim-‐virtual-‐cpe-‐first/d/d-‐id/710980

[LXC] https://linuxcontainers.org/

[m0n0wall] http://m0n0.ch/wall/

[Maurice] C. Maurice, C. Neumann, Olivier Heen, and A. Francillon,
“Confidentiality Issues on a GPU in a Virtualized Environment,” Proceedings of the
Eighteenth International Conference on Financial Cryptography and Data Security
(﴾FC'14)﴿,

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
81

[Mei] Mei Hwan Loke t al. (﴾2006)﴿ Comparison of Video Quality metrics on
multimedia videos

[Mikityuk] Mikityuk, A., J.-‐P. Seifert, and O. Friedrich. “The Virtual Set-‐Top Box: On
the Shift of IPTV Service Execution, Service Amp; UI Composition into the Cloud.” In
2013 17th International Conference on Intelligence in Next Generation Networks
(﴾ICIN)﴿, 1–8, 2013. doi:10.1109/ICIN.2013.6670887

[Modig] Modig, Dennis. "Assessing performance and security in virtualized
home residential gateways." (﴾2014)﴿.

[Murano] Murano https://murano.readthedocs.org/en/latest/

[MySQL] MySQL http://www.mysql.com/

[Nec] http://www.nec.com/en/press/201410/global_20141013_01.html

[Netmap] http://info.iet.unipi.it/~luigi/netmap/

[NFV001] “Network Functions Virtualisation (﴾NFV)﴿; Use Cases,” ETSI GS NFV 001
V1.1.1, Oct. 2013.

[OpenCL] AMD, Introduction to OpenCLTM Programming, 2014.

[OpenNF] http://opennf.cs.wisc.edu/

[OpenStack] OpenStack http://www.openstack.org/

[OpenVZ] http://openvz.org/Main_Page

[OPNFV] https://www.opnfv.org/

[ostinato] https://code.google.com/p/ostinato/

[PFRing] http://www.ntop.org/products/pf_ring/

[pfSense] https://www.pfsense.org/

[PostgreSQL] PostgreSQL http://www.postgresql.org/

[Puppet] http://en.wikipedia.org/wiki/Puppet_%28software%29

[RD048] “HG REQUIREMENTS FOR HGI OPEN PLATFORM 2.0,” HGI -‐ RD048,
May 2014.

[reddit]
 http://www.reddit.com/r/networking/comments/1rpk3f/evaluating_
virtual_firewallrouters_vsrx_csr1000v/

[REFnDPI] ntop, “Open and Extensible LGPLv3 Deep Packet Inspection Library”,
on-‐line: http://www.ntop.org/products/ndpi/

[REFPACE] IPOQUE, “Protocol and Application Classification with Metadata
Extraction”, on-‐line: http://www.ipoque.com/en/products/pace

[REFWind] Wind River, “Wind River Content Inspection Engine” on-‐line:
http://www.windriver.com/products/product-‐overviews/PO_Wind-‐River-‐Content-‐
Inspection-‐Engine.pdf

[RFC1157] A Simple Network Management Protocol (﴾SNMP)﴿

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
82

[RFC2647] Benchmarking Terminology for Firewall Performance

[RFC3511] RTP Profile for Audio and Video Conferences with Minimal Control

[RFC4080] Next Steps in Signaling (﴾NSIS)﴿

[RFC4540] NEC's Simple Middlebox Configuration (﴾SIMCO)﴿

[RFC4741] NETCONF Configuration Protocol

[RFC7047] The Open vSwitch Database Management Protocol

[Salt] http://www.saltstack.com/

[SBC_ACME] http://www.acmepacket.com/products-‐services/service-‐provider-‐
products/session-‐border-‐controller-‐net-‐net-‐session-‐director, Retrived
Nov 2014

[SBC_ALU] http://www.alcatel-‐lucent.com/solutions/ip-‐border-‐controllers,
Retrived Nov 2014

[SBC_Audiocodes] http://www.audiocodes.com/sbc, Retrived Nov 2014

[SBC_Italtel] http://www.italtel.com/en/products/session-‐border-‐controller, Retrived
Nov 2014

[SBC_Metaswitch] http://www.metaswitch.com/products/sip-‐
infrastructure/perimeta, Retrived Nov 2014

[SBC_Sonus] http://www.sonus.net/en/products/session-‐border-‐controllers/sonus-‐
session-‐border-‐controllers-‐sbc, Retrived Nov 2014

[Shi] Lin Shi; Hao Chen; Jianhua Sun; Kenli Li, "vCUDA: GPU-‐Accelerated High-‐
Performance Computing in Virtual Machines," Computers, IEEE Transactions on ,
vol.61, no.6, pp.804,816, June 2012 doi: 10.1109/TC.2011.112

[Sigcomm]
 http://www.sigcomm.org/sites/default/files/ccr/papers/2012/October/237895
6-‐2378962.pdf

[Silva] R. L. Da Silva, M. A. C. Fernandez, L. E. I. Gamir, and M. F. Perez, “Home
routing gateway virtualization: An overview on the architecture alternatives,” in Future
Network Mobile Summit (﴾FutureNetw)﴿, 2011, 2011, pp. 1–9.

[TheAge] http://www.theage.com.au/it-‐pro/business-‐it/telstra-‐and-‐ericsson-‐
testing-‐virtual-‐home-‐gateway-‐20140721-‐zv6rh.html

[Tomcat] Tomcat http://tomcat.apache.org/

[TR-‐124] Broadband Forum, “Functional Requirements for Broadband
Residential Gateway Devices,” TECHNICAL REPORT TR-‐124, Dec. 2006.

[TS23.228] 3GPP TS 23.228 IP Multimedia Subsystem (﴾IMS)﴿

[TS29.238] 3GPP TS 29.238 Interconnection Border Control Functions (﴾IBCF)﴿ -‐
Transition Gateway (﴾TrGW)﴿ interface, Ix interface

[vSwitch] INTEL, “Intel DPDK vSwitch”, on-‐line:
https://01.org/sites/default/files/downloads/packet-‐
processing/329865inteldpdkvswitchgsg09.pdf

T-‐NOVA | Deliverable D5.01 Interim Report on Network Functions and associated framework

© T-‐NOVA Consortium
83

[Vuurmuur] http://www.vuurmuur.org/trac/

[Vyatta] http://www.vyatta.com

[Walters] J. P. Walters, A. J. Younge,D.-‐I. Kang, K.-‐T. Yao, M. Kang, S. P. Crago,
and G. C. Fox, “GPU-‐Passthrogh Performance: A Comparison of KVM, Xen, VMWare
ESXi, and LXC for CUDA and OpenCL Applications,” in Proceedings of the 7th IEEE
International Conference on Cloud Computing (﴾CLOUD 2014)﴿, IEEE. Anchorage, AK:
IEEE, 06/2014

[web2py] http://www.web2py.com/

[Wfirewalls] http://en.wikipedia.org/wiki/Comparison_of_firewalls

