

Deliverable D4.51

Infrastructure Integration and
Deployment

Editor E. Trouva (NCSRD)

Contributors C. Sakkas, C. Xilouris, I. Angelopoulos (NCSRD), M. J.
McGrath, V. Riccobene (Intel), L. Zuccaro , F. Cimorelli (CRAT),
G. Gardikis, I. Koutras (SPH), I. Trajkovska, D. Baudinot
(ZHAW), K. Karras (FINT)

Version 1.0

Date December 31st, 2015

Distribution PUBLIC (PU)

Ref. Ares(2016)2344864 - 20/05/2016

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
2

Executive Summary

This deliverable presents the procedures that were followed for the the deployment
of the IVM components. Furthermore, lessons learnt from the deployment and
integration efforts, as well as the interactions of the components are presented. A
walkthrough is provided as a technical guide for the implementation of an NFVI
testbed, aiming at those who intent to replicate a similar deployment.

First, we provide an overview of the T-NOVA NFVI and explain the rationale behind
the technology choices selected in four different domains, hypervisors, computing
storage and network. We describe the main roles that are available for the
deployment of the IVM layer components and next, we list the components
comprising the NFVI, including both infrastructure and T-NOVA specific components.
A step-by step presentation of the procedures we used for the components
deployment follows. We outline the interaction between the components and how
their integration was accomplished.

Furthermore, we define the set of tools that were employed, to build a testing
environment that validates the functionality and performance of a deployed T-NOVA
IVM layer stack. We provide a set of tests that verify the function of the deployed
components in order to support users who wish to successfully deploy the T-NOVA
IVM testbed. A testing dashboard application was developed to ease the testing
procedures, allowing automated installation of the testing environment, execution of
the tests and presentation of the results in a graphical way.

The conclusions gathered from the activities within the work conducted in T4.5 and a
summary of the next goals to be accomplished over the remaining duration of task
are outlined. Finally, we provide a number of annexes with detailed guidelines and
instructions on the steps involved in the deployment and integration of the T-NOVA
IVM layer components and their required configuration to produce to a functional
and performant testbed.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
3

Table of Contents

1. INTRODUCTION .. 6	

1.1. MOTIVATION, OBJECTIVES AND SCOPE .. 6	
1.2. RELATIONSHIP, INTER TASK DEPENDENCIES AND RELEVANT DOCUMENTS 7	

2. REFERENCE T-NOVA NFVI OVERVIEW ... 10	

2.1. TECHNOLOGY CHOICES AND SELECTION RATIONALE .. 10	
2.1.1. Hypervisors .. 10	
2.1.2. Computing ... 10	
2.1.3. Storage .. 14	
2.1.4. Network .. 18	

2.2. INFRASTRUCTURE COMPONENTS .. 21	
2.2.1. Roles .. 21	
2.2.2. Roles Planning ... 24	
2.2.3. Hardware Requirements ... 25	

2.3. T-NOVA COMPONENTS ... 25	
2.3.1. Virtualised SDN Control Plane ... 25	
2.3.2. Monitoring Framework ... 26	
2.3.3. SDK for SDN (SDK4SDN) and Service Function Chaining (SFC) 28	
2.3.4. VNFs .. 30	

3. INFRASTRUCTURE DEPLOYMENT AND INTEGRATION 31	

3.1. COMPONENTS DEPLOYMENT .. 31	
3.2. COMPONENTS INTEGRATION .. 32	

3.2.1. OpenDaylight - OpenStack Integration .. 32	

4. INFRASTRUCTURE VALIDATION .. 34	

4.1. TESTING TOOLS ... 34	
4.1.1. OpenStack Tempest Test Suite ... 34	
4.1.2. Rally Benchmarking Test Suite for OpenStack .. 34	
4.1.3. OpenDaylight Test Suite ... 36	
4.1.4. Installation of the Testing Environment .. 36	

4.2. VALIDATION TESTS .. 37	
4.2.1. OpenStack Tests .. 37	
4.2.2. OpenDaylight Tests .. 38	
4.2.3. VNF Testing ... 42	
4.2.4. T-NOVA Testing Dashboard ... 51	

5. CONCLUSIONS AND FUTURE WORK ... 56	

6. ANNEXES ... 58	

6.1. ANNEX A – OPENSTACK INSTALLATION .. 58	
6.2. ANNEX B – OPENSTACK AND OPENDAYLIGHT INTEGRATION THROUGH ML2 PLUGIN 82	
6.3. ANNEX C – TESTING ENVIRONMENT INSTALLATION AND VALIDATION 88	

6.3.1. Automated installation of the testing environment .. 88	
6.3.2. OpenStack Rally/Tempest installation for OpenStack cloud testing 102	

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
4

6.3.3. Robot Framework installation for OpenDaylight testing 104	

7. LIST OF ACRONYMS .. 106	

8. REFERENCES ... 108	

Index of Figures

Figure 2-1: Neutron with VLAN segmentation .. 19	
Figure 2-2: Neutron with GRE segmentation ... 20	
Figure 2-3 Virtualised SDN Control Plane ... 26	
Figure 2-4. The components of the VIM Monitoring Framework .. 27	
Figure 4-1: Architectural components of the VNF Characterisation framework 45	
Figure 4-2: Yardstick testbed deployment configuration ... 50	
Figure 4-3: Installation of the testing environment within the dashboard 52	
Figure 4-4: Sceenshot of the test page in the testing dashboard 53	
Figure 4-5: Testing Workflow ... 54	
Figure 4-6: Sceenshot showing the result of executing the Suspend and Resume
Servers test for OpenStack Nova .. 54	
Figure 4-7: Screenshot depicting the result of the Remove Flow test 55	

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
5

Index of Tables

Table 1.1: Task dependencies of T4.5 .. 7	
Table 1.2: Deliverables relevant to Task 4.5 ... 8	
Table 3: T-NOVA storage solution ... 17	
Table 3.1: IVM layer stack templates ... 31	
Table 4.1: OpenStack tests per service .. 37	
Table 4.2: T-NOVA VNF workload classifications ... 42	
Table 4.3: Factors affecting VNF performance in bare and virtualised deployments
[10]: ... 43	

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
6

1. INTRODUCTION

1.1. Motivation, Objectives and Scope

The primary focus of Task 4.5 is the implementation of a testbed comprised the
implementations of the functional entities of the T-NOVA IVM layer namely the NFVI,
VIM and WICM. The task will integrate the network and cloud assets into a composite
network infrastructure. The aim is not only to present technical advances in individual
components, but to demonstrate the added value of the integrated IVM architecture
as a whole. The integration of these assests into successful IVM layer is a key
technical milestone in support WP7 which is tasked with the overall plan for the
validation and assessment of the T-NOVA system from an end-to-end system wide
use case prespective. The activities within the task are informed by the key outputs
from tasks 4.1, 4.2, 4.3 and 4.4.

The scope of this task encompasses a number of key activities. Firstly, the Task 4.5 will
leverage Tasks 4.1-4.4 to identify the technologies to be used in the implementation
of the functional entities. The tasks provide the necessary hands on knowledge and
best known methods (BKMs) for the deployment and configuration of the selected
technology components to achieve a stable and reproducible deployment for the
testbed. The technology innovations from the tasks will be deployed and validated on
the testbed. The testbed will then be used to integrate the technology innovations
from the tasks in order to provide an end-to-end solution to support the deployment
of VNFs within the IVM. To validate both the components and overall testbed system
validation and functional test cases will be defined and executed in this task. The
functional tests cases will focus on determine if the IVM testbed has the correct
functionality to support the associated requirements. The validation test cases will
determine if the IVM fulfils its necessary goals within the context of the overall T-
NOVA system. Key characteristics to be validated are reliability, availability,
configurability and scalability. Validation will focus on the key technology comprising
the NFVI and VIM such as OpenStack, OpenDaylight etc. Additionally, the validation
activities will have a workload and service perspective. Therefore, tests associated
with the deployment of VNF and networks services will be identified and executed. In
order to support the test regime appropriate test tools will be identified and utilised.
For example, OpenStack Rally and Tempest could be used to validate the deployment
of OpenStack and its services. The selection of appropriate open source tools will
ensure that testing can be implemented in a reproducible manner. The use of open
source test tools where support easier testing of the T-NOVA system components by
third party adopters.

The overall objective for this task is the integration and deployment of the
components identified or developed in supporting tasks into a composite
network/cloud programmable infrastructure. Supporting this overall objective are
number of sub-objectives including:

• Validation of the SDN Control Plane
• Validation of VM interconnections and virtual networking functions.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
7

• Validation of the NFVI resources (physical compute and network resources)
• Identification and execution of functional and validation test cases including:

o VNF functional deployment
o Network service deployment.
o Infrastructure metrics capture and exposure

• Identification of IVM deployment patterns and mechanisms templates for VNF
deployments.

• Generation of technical documentation that describes the IVM Layer
implementation, components, supported stacks, installation procedures, user
interfaces, APIs, and configuration files.

1.2. Relationship, Inter Task Dependencies and Relevant
Documents

The implementation of a testbed comprising of the IVM layer components is the
primary output of Task 4.5. Therefore, the task is dependent of the outcomes and
learnings within the other WP4 tasks, namely Tasks 4.1, 4.2, 4.3 and 4.4. On-going
close cooperation and coordination between the dependent tasks is required to
ensure that the outputs are appropriate and meet the expectations of the dependent
task. Table 1.1 provides a description of the tasks that Task 4.5 is dependent on and
briefly explains the dependency.

Table 1.1: Task dependencies of T4.5

Task Dependency

Task 4.1
Task 4.1 helps to define the technology components including both
software and hardware and their most appropriate configuration
required to implement a performant IVM in Task 4.5.

Task 4.2

The validation of the SDN Control plane that will be defined and
developed in Task 4.2 is feeding the activities of Task 4.5 that handle
the deployment and integration of the SDN Control Plane of T-NOVA
infrastructure.

Task 4.3

Task 4.3 focuses on the design and implementation of an SDK for SDN
within the T-NOVA platform, which is one of the IVM layer components
to be integrated into Task 4.5. Test case scenarios and measurements
are being produced in Task 4.3, validating the functionality and
performance of the SDK under development.

Task 4.4

The IVM monitoring framework developed within Task 4.4 is another of
the components to be integrated by Task 4.5. Moreover, a set of test
cases will be produced in Task 4.4 and will be used to validate the
deployment, functionality and performance of the monitoring
framework.

Due to the dependencies of Task 4.5 to the other WP4 tasks we include a list of the
relevant deliverables, in which detailed component descriptions, recommended
configurations and individual per component test cases can be found.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
8

Table 1.2: Deliverables relevant to Task 4.5

Deliverable Relevance

D4.01 - Interim Report on
Infrastructure Virtualisation
and Management

D4.01 [12] presents an overview of all activities
within WP4 tasks, focusing on the identification
of appropriate virtualisation mechanisms and
enablers; implementation and characterisation of
a virtualised software defined networking (SDN)
control plane; implementation of an SDN
software development kit; infrastructure
monitoring and maintenance subsystems for the
IVM.

D4.1 - Resource Virtualisation

D4.1 [13] focuses on the identification,
characterisation and optimisation of the
hardware and software components that can be
used in the implementation of the T- NOVA
Infrastructure Virtualisation and Management
(IVM) layer. This document includes testbed
configuration and network optimisation, Storage
Performance Characterisation test cases, VNF
Workload Characterisation test cases and test
cases for the vTC VNF.

D4.21 - SDN Control Plane -
Interim

D4.21 [14] focuses on the design and
development of the T-NOVA SDN control
platform. Section 5 of this deliverable provides
initial preliminary validation test cases for the
SDN control plane. The first test case features a
single controller instance and aims to validate
the functionality of recovery from persistent data
when using the clustering service. The second
test case features multiple instances of
controllers and its purpose is to validate the
functionality of high availability of the control
plane after an instance (specifically the leader) of
the cluster fails.

D4.31 - SDK for SDN - Interim

D4.31 [15] focuses on the specification of the
SDK for SDN architecture and its implementation.
Section 5.4 of this deliverable provides initial test
case scenarios, validating the functionality and
benchmarking the developed SDK. The first
scenario is related to service function chaining. It
uses one of the T-NOVA VNFs to carry out traffic
classification and branch the flow into two
different chains. The second scenario provides
basic performance characterisation of non-

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
9

tunnelling traffic between two OpenStack VMs.

D4.41 - Monitoring and
Maintenance – Interim

D4.41 [7] focuses on the design, implementation
and integration of the monitoring framework
elaborated within Task 4.4. Section 5 is dedicated
to the validation and assessment of the
developed framework. A set of functional tests
are provided validating the functional capabilities
of the monitoring framework and also,
benchmarking tests are performed to test the
scalability and performance of the monitoring
framework when overloaded with an increasing
number of requests for monitoring metrics.

D5.31 - Network Functions
Implementation and Testing -
Interim

D5.31 [16] focuses on the architecture and
implementation details of the VNFs developed
within T-NOVA. Preliminary testing scenarios
have been considered for validating the expected
behaviour, dimensioning and performance of the
developed VNFs. Within Task 4.5 we are not
interested in the test cases that are specific a
particular VNF function, but to use a set of the
developed T-NOVA VNFs and validate the
correct function of the IVM layer stack that is
related to VNFs such as typical operations on
VNFs and their images (deploying, storing) and
the ability to provide connectivity between the
deployed VNFs.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
10

2. REFERENCE T-NOVA NFVI OVERVIEW

2.1. Technology Choices and Selection Rationale

2.1.1. Hypervisors

There is a variety of open source and commercial hypervisors available such as KVM,
QEMU, XenServer, VMware vCenter, Hyper-V, LXC and Ironic. OpenStack supports
many hypervisors, each one offering a different set of features and capabilities. An
effort has been made to collect all supported hypervisors and compare their features
in a single table [8] so that users can select the most appropriate hypervisor for their
needs.

In the deliverable D2.31 - Specification of the Infrastructure Virtualisation,
Management and Orchestration - Interim [17] the key functionality of a hypervisor
was described together with two approaches for classifying hypervisors, one based
on the virtualisation method used by the hypervisor and a second one based on the
type of the hypervisor. We also presented a short overview of the key hypervisor
technologies, namely KVM, XenServer, VMware and Hyper-V, being the most popular
choices amongst the available hypervisors. Section 7 of D4.01- Interim Report on
Infrastructure Virtualisation and Management [12], the describes rational for the
selection of the KVM hypervisor for used in T-NOVA.

2.1.2. Computing

The compute platform has a significant impact on the performance of the VNF.
Typically, VNF workload characterisation is used to determine what type of compute
platform is required to support the function in advance. For example, a VNF such as
the vTC developed in the project run with 1 CPU and 2GRAM. However other VNF’s
many require much larger allocations of resources such as virtual content distribution
network (vCDN). Also the number of a VNF instance or services to be run on the
compute node has an influence on the sizing of the node e.g. a small Customer
Premise Equipment (CPE) vs the main deployment for a large multinational company.
Typically compute resources can be classified as small e.g. Supermicro Intel Atom
based SOC’s, medium e.g. HP DL360/DL390 and large e.g. Dell PowerEdge R930. For
the purposes of the IVM testbed a medium scale node was the most appropriate
choice given that nodes are required to support a limited number of VNFs and
services. Another consideration for compute selection is availability. For a Telco grade
NFVI deployment high-availability is a high priority requirement and therefore
redundant controller and compute nodes are necessarily. However, for the IVM
testbed high-availability was not required given the testing nature of the deployment.

2.1.2.1. Central Processing Units (CPU)

The selection of the CPU is key consideration for the compute node. ARM based
options are available for small server options however the X86 s CPU offerings are

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
11

available across the small to large categories. The current generation of CPU’s
targeting the medium to large category from Intel are the Haswell generation of
processors (Xeon E5-26xx v3 series). Many server options are also available with the
Ivy Bridge processor generation (Xeon E5-26xx v2). The testbed used in Task 4.1 used
both generations. When considering the selection of a server there a number of
factors which can affect overall system performance; however the most influential are
as follows:

• CPU speed (1.6 GHz to 3.7 GHz, note some processors have offer a Turbo
mode which is the maximum single core frequency at which the processor is
capable of operating using Intel® Turbo Boost Technology.)

• CPU Features e.g. Integrated I/O, to reduce latency, Data Direct I/O
Technology, to improve I/O performance through direct storage to cache
communications. Advanced Programmable Interrupt Controller virtualization
(APICv) to reduce virtualization overhead to improve performance and
scalability.

• L3 Cache (measured in megabits, usually 10MB to 45MB)
• Number of cores per processors (4 to 18)
• Number of processors (1 to 8)
• QPI (provides high-speed, point-to-point links inside and outside of the

processor. Speeds up data transfers by connecting distributed shared
memory, the internal cores, the I/O hub, and other processors. With speeds of
up to 9.6 GT/s supported.

Current Intel CPUs also have an integrated memory controller and an integrated PCIe
controller which can significantly improve I/O handling an important capability for
VNF applications.

2.1.2.2. Memory

VNFs typically require specific memory allocations; therefore, the amount and type of
memory can have an important influence on performance. The number of dual in-line
memory module (DIMM) slots and total memory affect how many VNFs can be
supported on a given server. The speed of the DIMMs also has important influence
on performance. While most servers support mixed speeds, it is common for them to
operate at the slowest DIMM’s common frequency. It is important to note that the
various DIMM types such as unregistered DIMM (UDIMM), registered DIMM (RDIMM)
or load reduction DIMM (LRDIMM) cannot be mixed.

2.1.2.3. CPU and NUMA Pinning

Provisioning VNFs requires the allocation of resources (memory and CPU). As
described in deliverable 4.1 it is best practical to assign cores from the same CPU (i.e.,
the same socket) to a VNF for the best I/O performance and reduced latency. The
process of assigning CPU cores is called “CPU pinning”.

In multiprocessor systems NUMA pinning can have a significant influence on
performance (up to 50% in packet processing throughput – see D4.1). NUMA is a
computer memory access design used in multiprocessing, where the memory access
time depends on the memory location relative to the processor. In multiprocessor

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
12

systems the processors can be grouped together with their own memory and their
own I/O channels which includes direct access to the NIC. When a processor accesses
memory that is not connected (i.e., remote memory), or I/O device e.g. NIC the data
must be transferred over the NUMA connection (QPI) and this significantly impacts
performance.

2.1.2.4. QuickPath Interconnect (QPI)

In a multi-processer server, the mechanism used to interconnect the processor and
their access to memory slots and other I/O components is an important factor in
system performance. Recent generations of servers based on Intel’s multi-processor
architecture use a high speed point-to-point technology called QuickPath
Interconnect (QPI). A system with two processors will have two QPI connections
providing speeds up to 9.6GT/s, which translates to 19.6 Gbps for unidirectional
traffic. Traffic I/O from a PCIe to another PCIe slot on the same processor does not
traverse the QPI, while traffic to a PCIe slot on the second processor will. It is
therefore important to understand the architecture of the system and what the PCIe
slot assignment is.

2.1.2.5. Huge Pages

When executing instructions in an x86 architecture both the CPU and OS mark the
RAM as being used by a process. For efficiency, the CPU usually allocates RAM in
blocks (the default value for Linux is 4KB) named pages. Since these pages can be
swapped to the disk, the memory addresses are virtual and the operating system has
to keep track of which page belongs to which process and where they are stored on
disk. As the number of pages increases, more time is taken to find where the memory
has been mapped too. Newer CPU architectures and operating systems support
bigger pages (so less time spent on look-ups as is the number of pages required).
This feature is called Huge Pages. Huge page support is processor dependent, for
example only Xeon class processor support 1GB pages. As described in D4.1 huge
pages can have had effect on VNF performance particular when multiple VNFs are
deployed on the same compute node.

2.1.2.6. Hyper-threading Support

Hyper-threading on an x86 CPU is used to improve parallelisation of computations
(doing multiple tasks at once). For each physical processor core available in a CPU the
operating system addresses two virtual or logical cores, and shares the workload
between them when possible thus doubling the amount of physical cores of a multi-
core CPU. For example, if a server has two (dual socket) Intel E5-2690 v3 processors,
each with 12 physical cores, enabling HT provides 48 logical cores (2x 12 cores x2).
While hyper-threading is a commonly used feature due to potential improvements in
the efficiency of CPU utilisation, it can also degrade performance due to resource
contention in some scenarios. Ideally a VNF application should be written specifically
to make use of hyper-threading. Hyper-threading needs to be enabled in the BIOS of
the server.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
13

2.1.2.7. Virtualisation Support

To support virtualisation on an X86 server, Intel Virtualisation Technology (Intel VT)
must be enabled on the server platform. Intel VT is required to run virtualisation
technologies such the KVM hypervisor. The feature is configured in the BIOS and is
typically enabled by default.

2.1.2.8. Network Interface Card

Most servers have one or more network interface cards (NICS). The selection of the
NICs is a significant decision and will affect what services can be deployed on the
server.

When planning the number of NICs in a server, it is important to consider that:

• One interface is required for management/orchestration
• Typically, a second interface for management/orchestration for carrier grade

applications.
• Two or more interfaces are required for network services

The NICs used for network services must support the required line rate e.g. 10Gbps,
40 Gbps etc. while the NIC for management and orchestration can have lower speeds
such as 1Gbps or less. SPF+ or 10GBaseT are two common options for the physical
interfaces of the NIC and come in come in single, dual and quad port configurations.
For SPF+ NIC vendors frequently only support transceivers that have been tested and
certified by them.

The NIC should support advanced features such as SR-IOV, DPDK, Virtual Machine
Device Queues (VMDq), On-chip QoS and Traffic Management and others.

The version of PCIe the NIC supports is important with PCIe 3.0 being the latest
version (Older versions are 2.0 and 1.1). It is important to know the version of the
PCIe slots on the server and to ensure the NICs being ordered are compatible with
PCIe version. If 40Gbps NICs are being considered, they will require PCIe 3.0. Also, the
physical dimensions of the NIC may be important as the server may have either full
height or low profile slots.

2.1.2.9. PCI Passthrough

PCI Passthrough is a capability allows a physical PCI device from a host machine to be
assigned directly to a VM on the same host machine. The VM can use the device
hardware such as NIC directly bypassing the hypervisor and vSwitch. This
configuration can provide I/O performance improvement particularly for some
workload types. When PCI Passthrough is enabled the CPUs is responsible for
mapping PCI physical addresses to guest virtual addresses. The CPU manages device
access (and protection), while the guest OS uses the device as if it were a non-
virtualized system. Intel provides passthrough support through its Directed I/O (VT-d)
technology while AMD provides in the form of I/O Memory Management Unit
(IOMMU).

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
14

2.1.2.10. FPGA SoC-based Compute Node

T-NOVA also looked into the possibility of utilising heterogeneous compute nodes
for accelerating specific VNFCs. As part of that investigation the integration of such a
compute node is being pursued. As the vehicle of choice for this experiment an FPGA
SoC-based node has been selected since a device offers ample programmable
resources through which the acceleration is achieved and two ARM CPU cores on
which the OpenStack agent software can be executed thus facilitating integration
into existing cloud infrastructure. Since FPGAs differ fundamentally from standard x86
CPUs, several of the OpenStack components had to be adapted to accommodate
this:

• A modified nova scheduler service communicates with the database to
identify & manage an appropriate FPGA host.

• The Nova Conductor service was modified to interact with the Glance and to
fetch VNF information such as host ID and flavour.

• The Nova Compute service was adapted to compensate for the absence of a
hypervisor (libvirt, XenAPI, etc).

• The Glance service was modified to store the bitstream used to configure the
FPGA.

This modified version of OpenStack is to be used when managing the FPGA SoC
compute node, although all changes made have been performed as extensions of
existing functionality, meaning the adapted OpenStack version can also manage
standard x86 CPUs together with FPGA-based ones.

2.1.2.11. Testbed Compute Node Selection

For the implementation of the IVM layer testbed we have selected server hardware
that satisfies the previously mentioned technology choices. Most models of the latest
generation servers fulfil our requirements in CPU, memory, I/O Interconnect and
network and virtualisation capabilities. In addition, latest hypervisors support hyper-
threading and provide NUMA style division of PCIe I/O lanes between CPUs.

2.1.3. Storage

2.1.3.1. Instance Storage Options

Typically, there three approaches to provide storage on which the instantiated
instances in a cloud will run:

On compute node storage - Non-shared

In this approach, each compute node is specified with enough disks to store the
instances it hosts. The main advantages of this configuration is the increased
performance due to the direct I/O access and also, the fact that heavy I/O usage on
one compute node does not affect instances on other compute nodes. However,
there are several disadvantages as well: In case of a compute node failure, the
instances stored within that node are lost. Moreover, migrating instances from one

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
15

node to another is more complicated and adding extra capacity is limited by the
chassis size of the compute node.

On compute node storage - Shared

With this approach, each compute node is provisioned with a significant amount of
disk space, but a distributed file system ties the disks from each compute node into a
single mount. The main advantage of this option is that it scales to external storage
when additional storage is required. On the downside, running a distributed file
system removes data locality compared to non-shared storage where each host runs
its instances. On a compute node failure, recovery of lost instances becomes
complicated. Moreover, network access decreases performance, which may be not
viable for applications with storage requirements sensitive to latency. Again,
extensibility is limited by the chassis size of the compute nodes.

Off compute node storage - Shared

Following this approach, the disks storing the running instances are hosted in servers
outside of the compute nodes. In this way, the instances are not dependent to the
compute nodes normal operation. If a compute node fails, instances will be easily
recovered. Moreover, running a dedicated storage system can be operationally
simpler, supporting the temporary removal of compute nodes for scheduled
maintenance activities. Moreover, the separation of compute to storage nodes is
more efficient in terms of specification planning. Compute nodes have different
requirements to storage nodes. Compute hosts typically require more CPU and RAM
than storage hosts, while disk capacity is the most important factor for storage hosts.
Separating compute nodes from storage nodes is a tactic typically followed by most
operators as reliability and scalability are the most important factors in production-
level cloud deployments. One of the disadvantages of this approach is the fact that
network access can decrease performance. Off compute storage is not suited well for
applications with low latency storage requirements.

2.1.3.2. Types of Storage

Storage might be ephemeral (temporary) or persistent. Ephemeral storage is tightly
tied to the lifecycle of each virtual machine and it is the only option when the users
do not have access to any form of persistent storage by default. Usually the local
drives of the compute nodes that host the virtual machines are used for non-
persistent storage. The disks associated with VMs are "ephemeral," meaning that
(from the user's point of view) they effectively disappear when a virtual machine is
terminated. Snapshots created from a running instance will remain, but any
additional data added to the ephemeral storage since last snapshot will be lost. On
the other hand, persistent storage means that the storage resource outlives any other
resource and is always available, regardless of the state of a running instance. Today,
clouds explicitly support three types of persistent storage: file system storage, block
storage and object storage.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
16

2.1.3.3. File System Storage

The most traditional service type is shared filesystem, or simply “file storage”, which
as the name implies offers to multiple clients the ability to access a single shared
folder. The two most popular shared filesystem protocols in use today are NFS and
SMB/CIFS. Users interact with Shared File Systems service by mounting remote File
Systems on their instances with the following usage of those systems for file storing
and exchange. Shared File Systems service provides you with shares. A share is a
remote, mountable file system. A user can mount a share to and access a share from
several hosts by several users at a time.

Like Block Storage, the Shared File Systems service is persistent. It can be mounted to
any number of client machines and detached from one instance and attached to
another without data loss. During this process the data are safe unless the Shared File
Systems service itself is changed or removed.

Shares are provided by the Shared File Systems service. In OpenStack, Shared File
Systems service is implemented by Shared File System (manila) project, which
supports multiple back-ends in the form of drivers. The Shared File Systems service
can be configured to provision shares from one or more back-ends. Share servers are,
mostly, virtual machines that export file shares via different protocols such as NFS,
CIFS, GlusterFS, or HDFS.

2.1.3.4. Block Storage

Block storage provides network access to the equivalent of raw block devices. Users
interact with block storage by attaching volumes to their running VM instances. A
client machine connects to a specific volume on the storage service and formats it as
if it were a local block device. These volumes are persistent: they can be detached
from one instance and re-attached to another, and the data remains intact.

Most block storage drivers allow the instance to have direct access to the underlying
storage hardware's block device. This helps increase the overall read/write IO.
However, support for utilising files as volumes is also well established, with full
support for NFS, GlusterFS and others. Multiple clients do not generally mount the
same volume, but they may in master/slave high-availability configurations where the
slave needs to be ready to take over the master. Block devices are usually exported
over Fibre Channel, iSCSI or AoE (ATA over Ethernet).

Block storage is implemented in OpenStack by Cinder, the OpenStack Block Storage
project, which supports multiple back ends in the form of drivers. The choice of a
storage back end must be supported by a Block Storage driver. In addition, Ceph
OpenStack project also offers block storage technology.

2.1.3.5. Object Storage

Object storage is a relatively new storage type, designed for unstructured data such
as media, documents, logs, backups, application binaries and VM images.
Conceptually they are like a persistent key/value store; objects are usually submitted
via a REST API call, and an identifier returned. Most object stores allow attaching

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
17

metadata to objects, and aggregating them into containers (or buckets). Both Ceph
and Swift OpenStack projects offer object store interfaces, with Swift to be the
recommended option for using only this type of storage. The most popular cloud
object store is AWS S3 [18], and many object store implementations are compatible
with it, including Ceph’s S3 RADOS Gateway service [19].

2.1.3.6. NFVI Storage solution choices

As laid out in Deliverable 2.1 [21] with respect to the requirements of the storage
subsystem and also taking into account the requirements imposed by the VNF
developers [16], the selected implementation of storage for T-NOVA is summarised in
the following table (Table 3):

Table 3: T-NOVA storage solution

Purpose Technical Solution Comments

Block storage for hosting
of the VM instances

Separate NAS based disk
array is used that serves as
a common repository for
hosting of the VM
instances that run the
VNFs. The access to the
storage subsystem is
achieved by NFSv4
protocol

This solution allows for
live-migration between
compute nodes, with close
to zero latencies

Block storage for hosting
of VNF/VM Images

Separate NAS based disk
array may be used for this
purpose or use Cloud
Controller local disk. As
this same path usually
stores the snapshot, it
would be more efficient
for quicker access, backup
and storage of snapshots.
The access to the storage
subsystem is achieved by
NFSv4 protocol

Due to the limited span of
the testbed environment
discussed in this
deliverable, it was selected
to host the images and the
snapshots on the Cloud
Controller.

Block/Object Storage for
hosting of persistent or
ephemeral storage for
disk volumes used by the
VNFs

The additionally requested
storage from the VMs is
served either locally at
each compute node or
over the network at the
disk array (over NFSv4 or
iSCSI).

To avoid complicated
storage models and focus
on providing the minimum
requirements for the VNF
storage needs

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
18

The main driver of our choices related to storage was to retain a configuration as
simple as possible. For this reason, we did not focus on an optimization based on the
workloads or the types of VNFs.

2.1.4. Network

2.1.4.1. OpenStack Neutron Network Topologies

Neutron is a service which provides Networking-as-a-Service functionality in
OpenStack. It has a rich tenant-facing API for defining network connectivity and
addressing in the cloud, and gives operators the ability to leverage different
networking technologies to power their cloud networking.

Each tenant has a virtual Neutron router with one or more private networks, which
can communicate with the outside world. This allows full routing isolation for each
tenant private network. Virtual networks (one or more) can be created for a single
tenant, forming an isolated L2 network called a "private network". Each private
network can support one or more IP subnets. Private networks can be segmented
using one of three different topologies:

VLAN (IEEE 802.1Q tagging) segmentation

OVS will in the virtual switches allocate an internal VLAN for each tenant. These
VLANs provide separation amongst the tenants (as VLANs are designed to do).
Tenants can specify the same subnet and overlap in that subnet range (VM1 from
tenant 1 can get assigned IP 10.4.128.3 and VM1 from tenant 2 can also get
10.4.128.3, without conflict).

 Ideally, "Private network" traffic is located on a dedicated network adapter that is
attached to an untagged network port. It is, however, possible for this network to
share a network adapter with other networks. In this case, non-intersecting VLAN-ID
ranges for "Private network" and other networks should be used.

A typical deployment for VLAN segmentation is shown in Figure 2-1. The network
tagged as Management Network is a tagged or untagged isolated L2 network
reserved for the communication between the different OpenStack components and
supporting services (RabbitMQ, MySQl, etc.). The External Network is a tagged or
untagged isolated L2 network that serves for external API access and providing the
tenants’ instances with connectivity to/from networking outside the cloud. The
Storage Network connects the compute nodes to the server running the OpenStack
storage services (Glance, Ceph, Swift or Cinder depending on the type of storage
selected). Finally, the Private Network serves for 802.1Q (VLAN) tagged traffic of
private network segments for tenants.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
19

Figure 2-1: Neutron with VLAN segmentation

GRE segmentation

In this mode of operation, Neutron does not require a dedicated network adapter.
Neutron builds a mesh of GRE tunnels from each compute node and controller nodes
to every other node. Private networks for each tenant make use of this mesh for
isolated traffic, encapsulating tenant traffic in the created tunnels. For example, a
tenant might have VMs running on compute nodes A, B, and C. Neutron, along with
OVS, will build a fully connected mesh of tunnels between all of these machines, and
create a tunnel bridge on each of these nodes that is used to direct traffic from VMs
into and out of these tunnels. If a VM on machine A wants to send packets to a VM
on machine B, machine A will encapsulate the IP packets coming out of the VM using
a segmentation ID that is generated for the tenant by OpenStack, and the receiving
machine (B) will decapsulate the packets and route them to the destination VM using
the addressing information in the Ethernet frame. Figure 2-2 depicts a typical
deployment using GRE segmentation technology.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
20

Figure 2-2: Neutron with GRE segmentation

VXLAN segmentation

VXLAN segmentation is similar to GRE segmentation. It also provides separation
among tenants, and also allows overlapping subnets and IP ranges.

All of the Neutron topologies can use Open vSwitch (OVS) to isolate tenants from
each other on L2 and L3 layers or the ML2 plugin with OVS driver.

The currently elaborated solution is a hybrid configuration that will effectively
combine the native (default) network deployment model of Openstack environment
along with the capability to have multi-homed compute nodes that are connected via
Provider Network model. The later required manual configuration and
interconnection with actual production equipment (e.g. Gateways, FW switches) in
order to achieve connectivity.

2.1.4.2. Packet Acceleration

Intel’s Data Plane Development Kit (Intel® DPDK) is a set of libraries and drivers for
fast packet processing on x86 platforms that can improve packet-processing
performance by up to ten times. DPDK support, which actually depends on the
processor, is integrated in all recent Intel Atom and Xeon processors.

DPDK improves packet throughput performance by leveraging Poll Mode instead of
interrupt based drivers. DPDK includes 1 Gigabit, 10 Gigabit and 40 Gigabit and para
virtualized virtio Poll Mode Drivers. One side effect of this is that the CPU core
assigned will run at 100%. It also maps software threads to hardware queues on the
dedicated CPUs. DPDK also leverages batch packet processing (handling multiple
packets at a time). While this can improve throughput, it may induce some latency,
depending on the batch size used. It also uses huge memory pages, which greatly
reduces TLB thrashing. DPDK can be enabled by Open vSwitch and can also be
enabled directly from the VM. Use of DPDK requires a compatible NIC. Companies
such Cisco, Intel, Mellanox and Broadcom provide NICs with DPDK support. A listed
of supported NIC can be found at [20]. Apart from the necessity of the NIC

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
21

supporting DPDK the VNF must also be built with DPDK support. A number of the T-
NOVA VNF’s use DPDK to improve packet throughput. The DPDK version of
virtualised traffic classifier VNF for example achieved in excess of 8 Gbps throughput
(see deliverable 4.1 for further details. Therefore, DPDK is a key packet acceleration
technology for the testbed and will be fully supported.

2.1.4.3. SR-IOV

Single Root I/O Virtualisation (SR-IOV) is an extension to the PCI Express (PCIe)
specification. It enables a single PCI Express (PCIe) device such as a network adapter
to appear to the hypervisor as multiple special-purpose network adapters. These
special-purpose network adapters, termed Virtual Functions (VF), are only available
for direct presentation to VMs. By providing a VF directly to a VM, the hypervisor’s
virtual switch is no longer required to process network traffic. This hypervisor bypass
increases network throughput, lowers latency, and reduces overall CPU utilisation.

Network adapters that feature SR-IOV are comprised of one Physical Function (PF)
and multiple VFs per port. Each PF and VF is assigned a unique PCI Express Requestor
ID (RID) that allows an I/O memory management unit (IOMMU) to differentiate
between different traffic streams and apply memory and interrupt translations
between the PF and VFs. This allows traffic streams to be delivered directly to the
appropriate VM. As a result, data traffic flows from the PF to VF without affecting
other VFs. It is important to note when a PCI device is directly assigned to a VM,
migration will not be possible without first hot-unplugging the device from the guest
which significantly impacts on the ability to migrate VMs (see deliverable D2.32 state
of art review section for more details).

2.2. Infrastructure Components

2.2.1. Roles

In this section we define a number of roles, where each defined role performs a
specific function, either related to the OpenStack environment, T-NOVA components
and their testing or the provision of a special purpose function, such as ensuring
service availability. It is not mandatory to assign a role per server; as we will see later
in the Role Planning section the number of servers required for the deployment
depends on the purposes this deployment was created for. It might well be the case
that a server can be assigned to two or more roles at the same time.

2.2.1.1. OpenStack Nodes Roles

An OpenStack environment contains a set of specialised nodes and roles. While
single-node configurations are acceptable for small environments, testing or POCs
most production environments will require a multi-node configuration for a variety of
reasons. As outlined previously multi-node configuration groups similar to
OpenStack services provide scalability as well as support for high availability. The
standards for deploying multi-node OpenStack are as a two-node, three-node or
four-node configuration, separating compute, controller, network and possibly

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
22

storage services. In the following paragraphs we briefly describe these roles and their
function and the services they run.

Controller Node

A Controller node is a server which has most of the shared OpenStack services and
other tools needed to orchestrate the deployment of virtual machines on Compute
nodes. The Controller node supplies API, scheduling, and other shared services for
the cloud. Usually the Controller node runs the following OpenStack services:

• the dashboard (Horizon),
• the image store (Glance),
• the telemetry service (Celiometer),
• the orchestration service (Heat)
• the identity service (Keystone).

Other services that may optionally run on the Controller include:

• Neutron,
• Swift,
• Ceph Monitor,
• Sahara,
• Murano.

To achieve high availability for the environment, a cluster of at least three Controller
nodes is recommended. It is possible, although not recommended, to run both the
Compute and Controller roles on a single server.

Compute Node

The Compute nodes are the servers on which the users will create their virtual
machines and host their applications. Each compute node runs a hypervisor (KVM,
ESX, Hyper-V, XenServer, etc.) program that allows the virtual machines to share the
compute node’s hardware. In a common setup, the compute node handles compute
service (nova), telemetry (ceilometer compute agent) and network Open vSwitch
agent service (neutron). Compute nodes need to talk to controller nodes and reach
out to essential services such as RabbitMQ and MySQL.

Network Node

A Network node is a server that runs networking services. It runs the neutron services
for L3, metadata, DHCP and Open vSwitch. The network node handles all networking
between other nodes as well as tenant networking and routing. It provides virtual
networking and networking services to Nova instances using the Neutron Layer 3 and
services such as DHCP and floating IPs that allow instances to connect to public
networks. Neutron sits on top of Open vSwitch using either the ml2 or openvswitch
plugin. Using Open vSwitch, Neutron builds three network bridges: br-int, br-tun and
br-ex. The br-int bridge connects all instances. The br-tun bridge connects instances
to the physical NIC of the hypervisor. The br-ex bridge connects instances to external
(public) networks using floating IPs. Both the br-tun and br-int bridges are visible on
compute and network nodes. The br-ex bridge is only visible on network nodes.

Storage Node

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
23

The storage node runs storage services. These include the image service (Glance) and
depending on the storage options we have selected for our environment block
storage (Cinder or Ceph), object storage (Swift or Ceph) and shared file storage
(Manila). Typically, a storage node would run one type of storage service: object,
block or file system. Glance should run on nodes providing storage services for
images (Cinder or Swift) or on a separate node.

2.2.1.2. Other Roles

Apart from the roles that are usually present in a standard OpenStack deployment,
for the T-NOVA IVM layer deployment we expect nodes to be assigned to other roles
such as a T-NOVA node, an SDN controller, a Build Server, a Testing Server and an
Endpoint Node.

T-NOVA Node

A T-NOVA node is a server on which we have deployed T-NOVA IVM layer
components. The components that need to be deployed are the SDN Control
Platform, the SDK for SDN and the Monitoring Framework. Even in the simplest case
of a deployment for study purposes multiple nodes are generally required.

SDN Controller Node

The SDN Controller node is a server running an SDN controller application to manage
flow control. The controller is the logical control centre of the SDN network,
communicating with switches via its "southbound" interface to provide networking
instructions and communicating with applications via its "northbound" interface.
Typically, the SDN controller contains a collection of pluggable modules that can
perform different tasks such as inventorying what devices are within the network and
the capabilities of each, gathering network statistics, etc. After reviewing a number of
available SDN controllers, in T-NOVA we have decided to use the OpenDaylight SDN
controller.

Build Server

A build server is a server assigned with the task to provision other nodes with their
selected roles. It runs software that enables automated provisioning and
configuration management and it usually runs and manages network services
including DHCP, DNS, PXE, and TFTP. A build server is mainly responsible for the
installation and configuration of software packages, as well as the configuration of
new nodes (e.g. configuration of users and groups or network interfaces). Depending
on the software it runs, it may be able to support bare-metal provisioning of new
nodes through PXE-based on an unattended installation of the operating system. It
may also monitor servers over the duration of their lifespan, reporting possible issues
or failures. Well-known tools for automated provisioning and configuration
management include Foreman, Fuel, Ansible, Puppet, Chef and Salt among others.
Obviously, the existence of a build server for a T-NOVA IVM layer deployment is not
mandatory. However, assigning this role to a server facilitates the deployment due to
the use of the automated provisioning and configuration management tools.

Testing Server

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
24

A set of libraries and software required to set up a testing environment can be
installed on this server to run tests validating the functionality and the performance
of the services deployed in the other nodes of our configuration. Obviously, as with
the build server, the existence of a testing server is not mandatory. By setting up the
testing environment to a remote machine separate from the services under test, we
diminish the possibility of mixing the different and often conflicting requirements
(packages and libraries) between them.

Endpoint Node

The Endpoint node runs load balancing and high availability services. The Endpoint
node is optional in a T-NOVA INM layer deployment and relates to production-level
T-NOVA deployments.

2.2.2. Roles Planning

The following sections provide details related to deployment planning for different
scenarios and purposes. In particular, three different deployments are described, one
for demonstration and study purposes, one for testing purposes and one for
production purposes.

The setups described do not make any allocation to T-NOVA nodes as the
implementation of IVM layer T-NOVA components is currently in progress. Safe
assumptions on the roles planning and hardware requirements for the T-NOVA
components will be made in the final version of this deliverable.

2.2.2.1. Setup for Development Purposes

The absolute minimum requirement for a T-NOVA IVM layer deployment in a lab
environment is the allocate of two nodes:

• 1 All-In-One OpenStack node that combines multiple roles, including the
Controller, Compute, Network and Storage roles in one server

• 1 SDN Controller node

Such a deployment can serve development purposes, minimising the hardware
requirements. The testing environment, along with tests can be installed and
deployed in an All-In-One OpenStack node. Another possible option is the
deployment in virtual machines for example using software such as VirtualBox.

2.2.2.2. Setup for Extensive Testing and Experimentation Purposes

When setting up a T-NOVA deployment for testing and experimentation purposes, it
is recommended to spread the OpenStack roles (and, hence, the workload) over as
many servers as possible in order to have a fully redundant, highly-available
OpenStack environment and to avoid performance bottlenecks. It is highly preferable
to separate compute from storage and network services, resulting in an allocation of
6 nodes:

• 1 Controller node
• 2 Compute nodes
• 1 Network node

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
25

• 1 Storage node
• 1 SDN Controller node

2.2.2.3. Setup for Pilot/Demonstration

The above minimum and recommended deployments do not foresee replication of
services and servers to minimise downtime and data loss in the event of a hardware
failure. The setups proposed are focused on testing purposes and not on high
availability scenarios.

A setup for pilots or demonstration of T-NOVA requires high availability and
redundancy of services, scalability and automation of operations. The OpenStack
services are maintained on separate servers and also include a separate node for
automated provisioning and testing. In addition, endpoint nodes offering load
balancing to the OpenStack services are expected.

• 2 Controller nodes
• 2 Compute nodes
• 2 Endpoint nodes
• 1 Network node
• 2 Storage node
• 1 SDN Controller node
• 1 Build server (automated provisioning of nodes and testing environment)

2.2.3. Hardware Requirements

When choosing the hardware to deploy the T-NOVA IVM layer stack on,
considerations have to be taken on the hardware requirements and specifically on
the CPU, memory, storage and networking requirements for the servers:

CPU considerations - The number of required CPUs depends on the number of
virtual machines we plan to deploy in the cloud environment and the CPU allocation
per virtual machine.

Memory considerations - Depends on the amount of RAM assigned per virtual
machine and the controller node.

Storage considerations - Depends on the local drive space per virtual machine,
remote volumes that can be attached to a virtual machine, and object storage.

Networking considerations - Depends on the network topology chosen, the
network bandwidth per virtual machine, and network storage.

2.3. T-NOVA Components

2.3.1. Virtualised SDN Control Plane

The Virtualised SDN Control Plane is composed by one or more synchronized
instances of OpenDaylight controllers, each one deployed on a dedicated virtual
machine. Such instances are configured to form a cluster of controllers, leveraging on
the clustering service built in ODL based on the Akka [6] framework.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
26

The clustered approach was adopted in order to develop a logically-centralized but
physically-distributed SDN control plane aiming at providing data-persistence,
reliability and high availability of the control plane. The state synchronization is
obtained through a distributed datastore to ensure that each instance of ODL
controllers works on the same data/state information. More specifically, the
clustering service is provided by the OpenDaylight Model-driven Service Abstraction
Layer (MD-SAL) Clustering feature and can be used in two different scenarios. In the
single node cluster scenario, such feature takes advantage from the distributed data-
store to provide data-persistence capabilities, i.e. the network state, being stored in
the persistent memory, can be reconstituted after restarting the controller. Indeed,
when multiple instances are deployed, such feature provides also horizontal scaling,
fault-tolerant and high availability of the control plane. So, once a node becomes
unavailable, it can be easily replaced by another one running in the cluster.
Preliminary validation tests focused on the clustering service have been carried out
by Task 4.2. Results are reported in D4.21.

Figure 2-3 Virtualised SDN Control Plane

Leveraging the clustering service, the virtualised SDN Control Plane provides a
common interface to the northbound applications, as shown in Figure 2-3. Since each
RESTful request may be served by any controller in the cluster, a HTTP proxy is used
to distribute the requests to one of the available instances. From the southbound
side, the network nodes can be connected with one or more controllers
simultaneously, allowing load balancing of the instances belonging to the cluster.

2.3.2. Monitoring Framework

The T-NOVA VIM Monitoring Framework is the subsystem of the VIM responsible for
collecting, aggregating and communicating dynamic monitoring metrics to the upper
layers (Orchestrator and, in turn, Marketplace). It comprises two main elements:

• A centralised VIM Monitoring Manager (VIMMM), which consists of:

o OpenStack and OpenDaylight interface modules, to retrieve
monitoring metrics from the network and cloud controllers

o A VNF Application connector, which accepts data periodically
dispatched by a VNF application. These metrics are specific to each
VNF.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
27

o A time-series database (InfluxDB) for data persistence.

o An alarming/anomaly detection engine for event processing and fault
detection

o A Graphical User Interface (GUI), based on Grafana, which visualises
the stored metrics and presents them as live, time-series graphs.

o A Northbound REST API, which communicates selected metrics and
events to the Orchestrator and, in turn, to the VNF Manager(s).

• Distributed VNF monitoring agents, which are installed in the VNFCs to be
monitored and collect a rich set of metrics from the guest OSs.

A detailed presentation of the VIM Monitoring Framework can be found in
Deliverable D4.41 [7].

Figure 2-4. The components of the VIM Monitoring Framework

In order to integrate the VIM Monitoring Framework into the IVM infrastructure, the
following steps are planned:

1. Installation of the VIM Monitoring Manager backend node.js application on
either a dedicated physical server or a VM, accessible by the OpenStack public
network.

• Alternatively: The VIM MM is already built into a Docker container, so
the container can be launched directly.

2. Installation of the database (InfluxDB) in either a physical server or VM (same
with the VIM MM or another)

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
28

• Alternatively: InfluxDB is already available as a Docker container, so it
can be directly launched.

3. Configuration of the VIM MM (via configuration file) with regard to the
following parameters:

• OpenStack Keystone IP/port and credentials (in order to access
Ceilometer and Nova)

• Ceilometer service IP, port and polling interval

• Nova service IP and port

• InfluxDB IP address/port and credentials

4. Launching of the VIM MM backend service

5. Deployment of VNF agents with the following configuration (this step is
meant to be automated via Heat)

• VIM MM IP address and port to send metrics

• Metrics to be dispatched

• Pushing interval

6. Verification of proper operation via a GUI

7. Verification of proper operation via Northbound API (using the VIM MM
swagger-based front-end)

2.3.3. SDK for SDN (SDK4SDN) and Service Function Chaining (SFC)

2.3.3.1. SDK4SDN Integration

A detailed description of the SDK4SDN can be found in [15]. The SDK4SDN
integration has mainly two functions, one is to provide an API for Service Function
Chaining and the other is to provide an API for connection based flow programming
in a datacentre. The SDK4SDN is heavily integrated with the OpenStack Kilo release
and depends on the Neutron ML2 plugin to get the necessarily information to
provide SFC and connection based routing in that environment.

2.3.3.2. Service Function Chaining API

SFC in the SDK4SDN is realised by create, read, update and delete (CRUD) based
remote procedure calls (RPCs). The complete API specification is under development
at the time of writing. These are the minimal calls, which are necessarily to provide
SFC routing:

• Create Service Chain: Provide an ordered list of Neutron Ports. The SDK4SDN
will automatically calculate connection paths between them and push
OpenFlow messages to establish the chain routing.

• Delete Service Chain: Chains can be referenced via an ID and deleted. Again
the SDK4SDN handles this call by pushing the respective OpenFlow messages
onto the network.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
29

2.3.3.3. Installation Prerequisites

The current SDK4SDN is tested with the following dependencies:

• OpenStack Kilo release
• OpenDaylight Lithium release

In order to use SDK4SDN the network needs to be fully SDN enabled through OVS
switches. SDK4SDN can only detect OVS topology. A physical switch which supports
OVS is for example the Pica8 switch in OVS mode.

2.3.3.4. Disabling the firewall for Open Stack nova service and neutron service

The default SFC implementation requires that iptables rules are disabled as they
would prevent non-standard forwarding to OpenStack instances.

On each controller and compute node, change in
/etc/neutron/plugins/ml2/ml2_conf.ini:

[securitygroup]
enable_security_group = False
firewall_driver = neutron.agent.firewall.NoopFirewallDriver

To stop the nova-compute service from creating the iptables rules, it should be
configured to use its Noop driver. In /etc/nova/nova.conf:

[DEFAULT]
security_group_api = nova
firewall_driver = nova.virt.firewall.NoopFirewallDriver]]

Restart all neutron-server, neutron-openvswitch-agent, nova-api and nova-compute
services.

2.3.3.5. Installation

The repository is maintained on github.

git clone https://github.com/icclab/netfloc.git
cd netfloc

For compilation the following is needed:

export MAVEN_OPTS="-Xmx1028m -XX:MaxPermSize=256m"

Then the repository can be compiled as follows:

mvn clean install

2.3.3.6. Execution

After successful compilation the controller can be run using the following commands:
cd karaf/target/assembly/
./bin/karaf

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
30

2.3.3.7. Resolving Errors and Troubleshooting

The following are useful troubleshooting tips for developing on or extending the
SDK4SDN.

If errors are experienced duirng the build processing due to missing bundles or
features, the following should be run:

rm -rf ~/.m2/repository/org/opendaylight/
mvn clean install

If the problem happens when changes are introduced or new bundles features are
installed in Netfloc, the following can be tried:

rm -rf journals snapshots
bin/karaf clean

It will clean the distribution data store from the previous executions.

Once a stable version of the installation with the required features and bundles has
been created which should not be updated by Maven with new artifacts offline mode
should be engaged. For that you will need to have all the artifacts available in your
Maven local repo and use the dependency plugin's "go-offline".

mvn dependency:go-offline
mvn clean install -o

2.3.4. VNFs

Within WP5 of T-NOVA a set of VNFs are being developed. Specifically, a Virtual
Security Appliance (vSA), a Virtual Session Border Controller (vSBC), a Virtual
Transcoding Unit (vTU), a Traffic Classifier (vTC), a Virtual Home Gateway (vHG) and a
Proxy as a Service (vPxaaS). An extensive description of the architecture and
distinctive components of each VNF are provided in the deliverable D5.31 - Network
Functions Implementation and Testing - Interim [16].

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
31

3. INFRASTRUCTURE DEPLOYMENT AND INTEGRATION

3.1. Components Deployment

To deploy successfully an IVM layer stack the following steps are planned:

1. Determine the purpose of the deployment. As outlined in section 2.2.2 of
this deliverable there are different infrastructure requirements depending
on the objective of the deployment, whether it will be used for
study/demonstration, testing or in a production environment.

2. Decide what is the appropriate infrastructure deployment topology:
Document roles assigned to each node and note nodes’ addresses that
will be required during provisioning.

3. Networking configuration: Cable nodes and configure any required
networking equipment.

4. Optionally, deploy a build server and configure the installation to the
required nodes. In the final release of this deliverable we plan to use an
available open source tool that automates the processes of deployment
and provisioning. In this case, the allocation of an extra host should be
considered under the role of build server.

5. Install OS to the target nodes. If a build server has been set up the OS to
the target machines will be installed through bare metal provisioning of
hosts. Also, required is control and management software, such as Puppet,
which will be installed on the target nodes. In the scenario where a build
server has not been provisioned, the OS should be manually installed on
each target node.

6. Install the IVM Layer stack on nodes based on their specific roles.
Installation will be done manually or through recipes configured on the
build server in the case where a build server is planned.

Table 3.1: IVM layer stack templates

Component Stack A Stack B

OS Ubuntu Trusty Ubuntu Trusty

VIM OpenStack Liberty OpenStack Liberty

Network Controller OpenDaylight
Lithium

OpenDaylight Lithium

Virtualisation KVM / QEMU KVM / QEMU / Docker

Virtual Networking Open vSwitch Open vSwitch

VNFs vTC, vHG vTC, vPxaaS, vSA, vHG,
vSBC, vTU

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
32

Table 3.1 provides two different templates for an IVM layer stack to be
targeted. For this interim version of this deliverable the focus was on
deploying Stack A with manual installation of the components. It
specifically includes Ubuntu Trusty 14.04 as OS to all provisioned nodes,
OpenStack Liberty as VIM, OpenDaylight Lithium for network controller,
KVM/QEMU hypervisors, Open vSwitch for virtual switch software and vTC
and vHG VNFs to be used for testing. Annexes A and B provide detailed
instructions on the installation of OpenStack and OpenDaylight and
describe the steps required for integration via the ML2 plugin. Stack B will
be the target IVM layer stack for the final version of this deliverable.
Within the second stack, Docker containers are included in the
virtualisation enablers and all T-NOVA developed VNFs (vTC, vPxaaS, vSA,
vHG, vSBC, vTU) are loaded as their development will be completed by the
time of final release of this deliverable.

7. Pre-load VNF/VM images for the VNFs we want to deploy and test.

8. Install and configure the test environment to validate the deployment. The
testing machine might be a compute node already assigned with a role or
a different machine, separate from the actual deployment. Detailed
instructions on the installation and use of the testing suites can be found
in Annex C.

3.2. Components Integration

3.2.1. OpenDaylight - OpenStack Integration

OpenDaylight is integrated with OpenStack via the Neutron ML2 plugin. With the
integration of OpenStack Neutron and OpenDaylight, changes to the network and
network elements can also be triggered by an OpenStack user. The changes
performed in OpenStack are translated into Neutron APIs, and handled by neutron
plugins and corresponding agents running in OpenDaylight. For example,
OpenDaylight interacts with Neutron by using the ML2 plugin present on the network
node of Neutron via the REST API using northbound communication. When an
OpenStack user performs any networking related operation
(create/update/delete/read on network, subnet and port resources) the typical flow
would be as follows:

• User operations on the OpenStack dashboard (Horizon) are translated into
the corresponding networking API and sent to the Neutron server.

• The Neutron server receives the request and passes it to the configured
plugin (assume ML2 is configured with an ODL mechanism driver and a
VXLAN type driver).

• The Neutron server/plugin will make the appropriate change to the DB.
• The plugin will invoke the corresponding REST API to the SDN controller

(assume an ODL).
• ODL, upon receiving the request, may perform necessary changes to the

network elements using any of the southbound plugins/protocols, such as
OpenFlow, OVSDB or OF-Config.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
33

Annex B [6.2] provides detailed information on the steps needed for configuring
OpenStack with Neutron ML2 networking to work with OpenDaylight.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
34

4. INFRASTRUCTURE VALIDATION

The infrastructure validation of operation includes:

• Testing the basic VIM functionality that includes tenant/user CRUD operations
(create, delete, list) and VNF images CRUD operations (create, delete, boot,
list).

• Testing the VIM functionality to support VNF operations (deploy/create,
modify, stop, destroy).

• Testing the VIM functionality to support basic VNF network connectivity
(adding and deleting networks, subnets, routers and floating IPs).

• Testing the inter working between the VIM and the SDN controller (adding
and deleting networks, subnets, ports and OpenFlow rules).

• Testing the NFVI functionality as a black box to ensure that it meets the VIM
requirements.

• Testing the VNFs developed within T-NOVA.

Before defining the tests that will help us validate a correctly configured IVN layer
stack, we describe the tools that were selected for this purpose, Rally and Tempest
testing suites for OpenStack and Robot testing suite for OpenDaylight validation.
Detailed instructions on the proper installation and configuration of these tools for
testing the deployed infrastructure are provided in Annex C of this deliverable. A
testing framework was developed that automates the installation of the testing
environment and provides a GUI for the execution and reporting of results and
statistics for the defined tests.

4.1. Testing Tools

4.1.1. OpenStack Tempest Test Suite

Tempest [1], [2] is the OpenStack official test suite. Its purpose is to run tests for
OpenStack API validation, scenarios and other specific tests useful for validating an
OpenStack deployment. It is also used as a gate for validating commits into the
OpenStack core projects-it avoids breaking them while merging changes. Tempest is
based on unittest2 framework and currently uses Nosetest runner to run test against
OpenStack service endpoints by exercising API calls and validating the received
response. There are several types of tests included in Tempest, such as smoke tests,
positive tests, negative tests, stress tests and white box tests that allow functional,
integration, load and performance testing. One can use the already provided
Tempest tests or write its own customized tests. Overall, Tempest offers a single
unified suite to test all OpenStack components, which is easily maintainable and
expendable.

4.1.2. Rally Benchmarking Test Suite for OpenStack

Rally [3] is a community-based project that allows OpenStack developers,
administrators and operators to get relevant and repeatable benchmarking data of

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
35

how their cloud operates at under load at scale. It is intended to provide the
OpenStack community with a benchmarking tool that is capable of performing
specific, complicated and reproducible test cases on real deployment scenarios.

Rally automates and unifies multi-node OpenStack deployment, cloud verification,
benchmarking & profiling using pluggable Rally benchmark scenarios. It offers
different types of user-defined workloads useful for developers (synthetic tests, stress
tests) and operators (real-life cloud usage patterns). It can be used as a basic tool for
an OpenStack continuous integration / continuous development (CI/CD) system that
would continuously improve its SLA, performance and stability. Rally comes with a
dashboard that has an easy-to-read user interface, showing a graphical snapshot of a
process’s key performance indicators that enable the user to make instantaneous and
informed decisions. Another valuable feature of Rally is that it can use Tempest in its
testing. It automatically installs and configures Tempest, and automates running tests
already created in Tempest. Moreover, Rally Benchmark can launch Tempest tests
with a variable number of (simulated) active users, a feature which is not available
when we are testing our deployment using Tempest alone.

Typical Rally use involves providing Rally with the OpenStack deployment to be
benchmarked. This is done either through OpenRC files or through deployment
configuration files in JSON format. After registering a deployment, a sequence of
benchmarks has to be created which will be launched by Rally. The benchmarks are
specified in a benchmark task configuration file, which is either in JSON or in YAML
format. A single task might include one or multiple benchmarks. Parameters that can
be set to simulate real-life cloud usage include the number of users, the number of
tenants, concurrency, the type of workload and the duration of the test. There is an
option to run the benchmark tasks already available in the Rally source or create our
own tasks customized to our needs. The results of these tests and benchmarks are
saved in Rally’s database and we have the option to output these results in illustrative
and comprehensive HTML reports based on the benchmarking data. The results
include execution times, failure rates, graphics and charts and profiling data.

Typical Rally test cases are:

• Automated measurement & profiling focused on how new code changes
affect OS performance;

• Using Rally profiler to detect scaling & performance issues;

• Investigating how different deployments affect the OS performance:

o Finding the set of suitable OpenStack deployment architectures;

o Creating deployment specifications for different loads (amount of
controllers, swift nodes, etc.);

• Automating the search for hardware best suited for particular OpenStack
cloud;

• Automate the production cloud specification generation:

o Determine terminal loads for basic cloud operations: VM start & stop,
Block Device create/destroy & various OpenStack API methods;

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
36

o Check performance of basic cloud operations in case of different
loads.

4.1.3. OpenDaylight Test Suite

For testing the OpenDaylight controller we will use the Robot Framework [5],
inheriting the test cases already developed in the OpenDaylight project. Robot
Framework is a Python-based, extensible keyword-driven test automation framework
for end-to-end acceptance testing and acceptance-test-driven development (ATDD).
Test cases are automated by writing steps using Robot framework keywords. It can
be used for testing distributed, heterogeneous applications, where verification
requires touching several technologies and interfaces.

The Robot Framework has a set of features that facilitate testing. The framework:

• Enables easy-to-use tabular syntax for creating test cases in a uniform way.
• Provides ability to create reusable higher-level keywords from the existing

keywords.
• Provides easy-to-read result reports and logs in HTML format.
• Platform and application independent.
• Provides a simple library API for creating customised test libraries which can

be implemented with either Python or Java.
• Provides a command line interface, XML and HTML based output files for

integration into existing build infrastructure (continuous integration systems).
• Provides support for Selenium for web testing, Java GUI testing, running

processes, Telnet, SSH, and so on.
• Supports creating data-driven test cases.
• Built-in support for variables, practical particularly for testing in different

environments.
• Provides tagging to categorise and select test cases to be executed.
• Enables easy integration with source control: test suites are just files and

directories whose version can be designated with the production code.
• Provides test-case and test-suite -level setup and tear down.
• The modular architecture supports creating tests even for applications with

several diverse interfaces.

4.1.4. Installation of the Testing Environment

The testing environment for the T-NOVA IVM layer consists of the OpenStack
Tempest test suite, the Rally Benchmarking test suite for testing OpenStack and
Robot Framework for testing OpenDaylight. Annex C – Testing environment
installation and validation provides installation instructions of the testing
environment in two ways; either automated installation of the three tools through a
script or specific steps on how to install each tool separately.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
37

4.2. Validation Tests

4.2.1. OpenStack Tests

We use Rally OpenStack Bench test suite to run a set of functional tests that validate
the OpenStack deployment and its functionality. The scenarios selected are based on
the existing Rally samples scenarios [4] and test the OpenStack components
individually.

We have chosen to test nova, neutron, cinder, glance, heat, ceilometer, keystone
projects of OpenStack and validate their main functionalities as these are used during
the interactions of the T-NOVA systems. The following table summarises the
OpenStack tests we have chosen per project.

Table 4.1: OpenStack tests per service

OpenStack Component

Nova Neutron Cinder

List hypervisors

List images

List servers

Suspend and resume

Boot

Boot and list

Boot and associate
floating IP

Boot and delete

Suspend and resume

Create and list
networks

Create floating IPs and
delete

Create and delete
networks

Create and list
networks

Create and delete
pools

Create and delete
routers

Create and delete
subnets

Create and list floating
IPs

Create and list subnets

Create and update
networks

Create and update
pools

Create and update
routers

Create and update
subnets

List volumes

Create volume

Create and attach
volume

Create and delete
volume

Create and list volumes

Create and delete
snapshot

Create and list
snapshots

Glance Heat Celiometer

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
38

Create and delete
image

Create and list image

Create image and boot
instances

List images

Create and delete
stack

Create, check and
delete stack

Create, update and
delete stack

Create and list stack

Create, suspend,
resume and delete
stack

Create and delete
stack with neutron

List stack and
resources

List all meters

List meters

List all resources

List resources

List samples

Create and query
samples

Create meter and get
stats

Keystone Authenticate

Create user

Create and delete user

Create and list users

Create tenant

Create and list tenants

Keystone

Validate cinder

Validate glance

Validate heat

Validate neutron

Validate nova

Using Rally, we are also running Tempest. Tempest scenario tests are “through path”
tests of OpenStack function, with complicated setups where one part might depend
on completion of a previous part. They ideally involve the integration between
multiple OpenStack services to exercise the touch points between them. For this first
version we have chosen to run the Tempest smoke tests, a quick, lightweight
automated set of tests that validate the basic functionality of OpenStack.

4.2.2. OpenDaylight Tests

For OpenDaylight testing we have decided to validate the OpenStack - OpenDaylight
integration when the user preforms operations on the three core resources -
networks, subnets and ports. Specifically, we are running tests for the creation and
the deletion of networks, ports and subnets. The following describes the key steps for
each test run when using the Robot Framework:

Create Network:

1. Check OpenStack Neutron for known networks
a. Authenticate OpenStack to create session
b. Perform GET request to retrieve current Neutron networks
c. Verify that return code was 200 (GET request was successful)

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
39

d. Log the result
2. Check OpenDaylight Networks

a. Authenticate OpenDaylight to create session
b. Perform GET request to retrieve current Neutron networks
c. Verify that return code was 200 (GET request was successful)
d. Log the result

3. Create Network in OpenStack
a. Perform POST request to create a new Neutron network
b. Verify that return code was 201 (POST request was successful

and created element id was returned)
c. Get created network id and description
d. Log created network id and description
e. Save created network id in variable for later usage

4. Check Network in OpenDaylight
a. Perform GET request using saved network id to verify that the

network is visible in OpenDaylight
b. Verify that return code was 200 (GET request was successful)

Create Subnet:

1. Check OpenStack Subnets
a. Authenticate OpenStack to create session
b. Perform GET request to retrieve current Neutron subnets
c. Verify that return code was 200 (GET request was successful)
d. Log the result

2. Check OpenDaylight subnets
a. Authenticate OpenDaylight to create session
b. Perform GET request to retrieve current Neutron subnets
c. Verify that return code was 200 (GET request was successful)
d. Log the result

3. Create New subnet in OpenStack
a. Perform POST request to create a new Neutron subnet
b. Verify that return code was 201 (POST request was successful

and created element id was returned)
c. Get created subnet id and description
d. Log created subnet id and description
e. Save created subnet id in variable for later usage

4. Check New subnet in OpenDaylight
a. Perform GET request using saved subnet id to verify that the

subnet is visible in OpenDaylight
b. Verify that return code was 200 (GET request was successful)

Create Port:

1. Check OpenStack ports
a. Authenticate OpenStack to create session

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
40

b. Perform GET request to retrieve current Neutron ports
c. Verify that return code was 200 (GET request was successful)
d. Log the result

2. Check OpenDaylight ports
a. Authenticate OpenDaylight to create session
b. Perform GET request to retrieve current Neutron ports
c. Verify that return code was 200 (GET request was successful)
d. Log the result

3. Create New Port in OpenStack
a. Perform POST request to create a new Neutron ports
b. Verify that return code was 201 (POST request was successful

and created element id was returned)
c. Get created port id and description
d. Log created port id and description
e. Save created port id in variable for later usage

4. Check New Port in OpenDaylight
a. Perform GET request using saved port id to verify that the port

is visible in OpenDaylight
b. Verify that return code was 200 (GET request was successful)

Delete Network:

1. Delete a new Network in OpenStack
a. Authenticate OpenStack to create session
b. Perform DELETE request to delete saved network id
c. Verify that return code was 204 (DELETE request was successful

and no entity-body was returned)
d. Log response content

2. Check Network is Deleted in OpenDaylight
a. Authenticate OpenDaylight to create session
b. Perform GET request using saved port id to verify that the

network was deleted in OpenDaylight
c. Verify that return code was 404 (requested element was not

found)

Delete Subnet:

1. Delete a new Subnet in OpenStack
a. Authenticate OpenStack to create session
b. Perform DELETE request to delete saved subnet id
c. Verify that return code was 204 (DELETE request was successful

and no entity-body was returned)
d. Log response content

2. Check a new subnet is deleted in OpenDaylight
a. Authenticate OpenDaylight to create session

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
41

b. Perform GET request using saved port id to verify that the
subnet was deleted in OpenDaylight

c. Verify that return code was 404 (requested element was not
found)

Delete Port:

1. To delete Port in OpenStack
a. Authenticate OpenStack to create session
b. Perform DELETE request to delete saved port id
c. Verify that rerun code was 204 (DELETE request was successful

and no entity-body was returned)
d. Log response content

2. Check Port is deleted in OpenDaylight
a. Authenticate OpenDaylight to create session
b. Perform GET request using saved port id to verify that the port

was deleted in OpenDaylight
c. Verify that return code was 404 (requested element was not

found)

In addition a set of tests are being run to verify that the insertion and deletion of
flows is being performed correctly. Flow rules can be based on source IP, destination
IP, destination MAC address, VLAN ID and other parameters. An example test
procedure that validates adding and removing a flow is described below:

Test suite for pushing/verify/remove a flow through RESTCONF:

1. Push a flow through REST-API
a. Open premade configuration file
b. Save file content to variable
c. Perform PUT request to restconf using the variable as request

body
d. Verify that return code was 200 (PUT request was successful)

2. Verify after adding flow config
a. Perform GET request to the Restconf using table id and flow id
b. Verify that return code was 200 (GET request was successful –

the flow exists)
c. Compare response content with file sent to verify that the

correct file was send
3. Verify flows after adding flow config on OVS

a. Wait 1 second
b. Open ssh connection
c. Login
d. Execute “ovs-ofctl dump-flows s1 -O OpenFlow13” in order to

get switch flows
e. Read switch output and verify it contains the input flow

elements

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
42

f. Close ssh connection
4. Remove a flow

a. Perform DELETE request to the Restconf using table id and flow
id to delete the flow

b. Verify that return code was 200 (DELETE request was
successful)

5. Verify after deleting flow config
a. Perform GET request to the Restconf using table id
b. Verify that the response does not contain the flow id

6. Verify flows after deleting flow config on OVS
a. Open ssh connection
b. Login
c. Execute “ovs-ofctl dump-flows s1 -O OpenFlow13” in order to

get the switch flows
d. Read the switch output and verify it does not contain the input

flow elements
e. Close ssh connection

4.2.3. VNF Testing

As described in Deliverable 4.1 [13], there are four key types of network workloads:

• Data Plane – These workload types perform packet handling that involves
input/output and read/write memory operations.

• Control Plane –These workloads relate to protocol exchanges including
setup, session management, and termination.

• Signal Processing –These workloads are responsible for digital processing
and are typically highly CPU intensive and delay-sensitive.

• Storage – These workloads have significant read and write to disk storage
operations.

The VNFs being developed by T-NOVA and their workload classification are outlined
in Table 4-2.

Table 4.2: T-NOVA VNF workload classifications

VNF D
at

a
Pl

an
e

Co
nt

ro
l P

la
ne

Si
gn

al
 p

ro
ce

ss
in

g

St
or

ag
e

Security Appliance (vSA) X

Traffic Classification (vDPI) X

Session Boarder Controller (vSBC) X

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
43

Home Gateway (vHG) X

Video Transcoding Unit (vVTU) X

Proxy as a Service (vPxaaS) X

When testing, there are many factors that impact performance. It is important to
establish performance baselines before adding complexity and determine what may
be creating a performance bottlenecks through isolation. A step-wise process would
involve:

When testing a virtualized function, there are two primary approaches:

• Map the function to physical NIC interfaces and test with traditional
hardware-based test systems

• Test the function in the virtualised system by inserting testing into the
virtualised system (primarily through running on a VM). This can also include a
combination of virtual and physical test ports

Table 4.3: Factors affecting VNF performance in bare and virtualised deployments [10]:

are Metal Virtualised Deployment

• Processor architecture
• Extended instruction set (req. for

crypto)
• Clock rate
• Size of data caches
• Memory access speed
• Memory latency
• Inter-processor bus bandwidth
• Number of cores on a processor
• Large page support
• I/O page support
• TLB cache with large page

support
• I/O TLB cache with large page

support
• Size of TLB caches
• Interrupt affinity
• Layered memory cache
• Deterministic allocation of threads

in CPU
• Deterministic memory allocation
• Independent memory structures

per thread
• Inter-thread communications

through memory pipeline
structures

• CPU isolation

• Processor architecture
• Extended instruction set (req. for

crypto)
• Clock rate
• Size of data caches
• Memory access speed
• Memory latency
• Inter-processor bus bandwidth
• Number of cores on a processor
• Large page support
• I/O page support
• TLB cache with large page

support
• I/O TLB cache with large page

support
• Size of TLB caches
• Interrupt affinity
• Layered memory cache
• Deterministic allocation of threads

in CPU
• Deterministic memory allocation
• Independent memory structures

per thread
• Inter-thread communications

through memory pipeline
structures

• CPU isolation

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
44

• DMA
• Direct I/O access to processor

cache
• Flow affinity/steering by I/O

devices
• NIC acceleration capabilities

• Polling mode drivers
• DMA
• Direct I/O access to processor

cache
• Flow affinity/steering by I/O

devices
• NIC acceleration capabilities
• Instructions to reduce the number

of VM exits under certain
common

• operations
• Second-level address translation

services
• Second-level address translation

services for large pages
• Second-level address translation

services for I/O
• Second-level address translation

services large I/O pages
• I/O interrupt remapping
• Extension of processor caches

with new fields to avoid cache
eviction with

• VM exits
• Extension of processor TLB caches

with new fields to avoid TLB
flushes

• Independent TX/RX queues for
virtual machines

• SR-IOV

Within Task 4.5 we are not interested in the test cases that are specific to the VNF
functions but to use a subset of the WP5 developed VNFs to validate the correct
function of the IVM layer stack that is related to VNFs such as typical operations on
VNFs and their images (deploy/create, modify, stop, destroy), ability to provide
connectivity between the deployed VNFs and operations on the VNF images (create,
delete, download, list and update). The following section provides the test cases
developed to validate the vTC VNF.

4.2.3.1. vTC VNF Tests

As outlined in deliverable 4.1 [13], a VNF Characterisation Framework was developed
for automating the execution of test cases and benchmarks of VNF workloads.

On top of that framework, different test cases have been implemented. Specifically, in
the context of Task 4.1, two test cases have been implemented to investigate and
measure affinities for the different quantities and types of resources allocations in an
iterative manner, as shown in Figure 4-1. The parameters that can be investigated are

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
45

those which can be specified in the Heat template for a given VNF deployment. For a
given test scenario, parameters values that will utilised during an experiment are
defined in a configuration file which is used by the framework to generate a test of
Heat templates to deploy the configurations of interest. The framework provides
orchestration of the full test case lifecycle. A typical test case will comprise of
template deployment, followed by VNF load application (e.g. traffic generation sent
to the deployed VNF), collection of real time data on performance (e.g. network
throughput), and VNF deletion. This process is repeated until all templates have been
deployed. Development of the framework was completed as part of the Task 4.1
activities.

Figure 4-1: Architectural components of the VNF Characterisation framework

The four test cases that have been developed were defined in cooperation with
OPNFV Yardstick project and form part of the contribution from T-NOVA to Yardstick.

The four cases are as follows:

1. Virtual Traffic Classifier Instantiation Test
2. Virtual Traffic Classifier Instantiation in the presence of Noisy Neighbours Test
3. Virtual Traffic Classifier Data Plane Throughput Benchmarking Test
4. Virtual Traffic Classifier Data Plane Throughput Benchmarking in presence of

noisy neighbours Test

The definitions of these test cases are based on the ETSI specification ETSI GS NFV-
TST001 - Validation of NFV Environments and Services.

Network throughput was measured using the RFC2544 benchmarking methodology
for network interconnected devices (see Deliverable 4.1 section 8.2 for additional
details).

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
46

The key focus from a Task 4.5 perspective has been on the development of these test
cases, testing and deployment on the T-NOVA and Yardstick test beds. While the test
case contributions to Task 4.5/Yardstick remain a work in progress, a set of key
development activities have been completed in this task to date.

The initial version of the VNF characterisation framework was completed in D4.1 was
further extended. A “BenchmarkBaseClass” class was developed to provide a
reference for all benchmarks. This class provides the necessary definitions of the
parameters required for a test case lifecycle.

Benchmark Feature Definition

The method that defines the features in a test case is as follows:
def get_features(self):
 features = dict()
 features['description'] =
 'Please implement the method "get_features" for
your benchmark'
 features['parameters'] = list()
 features['allowed_values'] = dict()
 features['default_values'] = dict()
 return features

The key aspects include:

• A description of the test case (a free text string that is user defined).
• A list of parameters, provided in the form of a list of strings containing the

names of the parameters.
• The allowed values, which are represented as a dictionary; including all the

permissible values for the specified parameters.
• The default values, which are represented as a dictionary and include the

values that the parameters will be assigned in a test case where the user does
not specify any value.

The values of the parameters are collected by the framework from the configuration
file. The get_features method is used to over write by the benchmark class. An
example is shown in following in the context of the “RFC2544ThroughputBenchmark”
class.

PACKET_SIZE = 'packet_size'
VLAN_SENDER = 'vlan_sender'
VLAN_RECEIVER = 'vlan_receiver'
def get_features(self):
 """
 Returns the features associated to the benchmark
 :return:
 """
 features = dict()
 features['description'] = 'RFC 2544 Throughput
calculation'
 features['parameters'] = [PACKET_SIZE, VLAN_SENDER,
VLAN_RECEIVER]
 features['allowed_values'] = dict()
 features['allowed_values'][PACKET_SIZE] = ['64', '128',
'256', '512',
 '1024',
'1280', '1514']

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
47

 features['allowed_values'][VLAN_SENDER] = map(str,
range(-1, 4096))
 features['allowed_values'][VLAN_RECEIVER] = map(str,
range(-1, 4096))
 features['default_values'] = dict()
 features['default_values'][PACKET_SIZE] = '1280'
 return features

This implementation requires the test case parameter values to be specified in the
configuration file as follows:

[Testcase-parameters]
packet_size = 1280
vlan_sender = 1000
vlan_receiver = 1001	

The initialisation method of the class is as follows:

def __init__(self, name, params):
 if not params:
 params = dict()
 if not isinstance(params, dict):
 raise ValueError("Parameters need to be provided in a
dict")
 for param in self.get_features()['parameters']:
 if param not in params.keys():
 params[param] =
self.get_features()['default_values'][param]
 for param in self.get_features()['parameters']:
 if params[param] not in \
 (self.get_features())['allowed_values'][param]:
 raise ValueError('Value of parameter "' + param +
 '" is not allowed')
 self.name = name
 self.params = params

This method is mainly dedicated to initialise the parameters given by the user and is
based on the implementation of the get_features shown before.

Running a Test Case

Execution of a test case is performed by the framework (the benchmarking unit,
specifically) calling the method “run”. The benchmarking class needs to implement
the method according to the signature included in the BenchmarkBaseClass as shown
in the following:

@abc.abstractmethod
def run(self):
 """
 This method executes the specific benchmark on the VNF
already instantiated
 :return: list of dictionaries (every dictionary contains
the results of a data point
 """
 raise NotImplementedError("Subclass must implement abstract
method")	

An example of test case execution relating to RFC2544 is shown in the following:

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
48

def run(self):
 """
 Sends and receive traffic according to the RFC methodology
in order to
 measure the throughput of the workload
 :return: Results of the testcase (type: dict)
 """
 ret_val = dict()
 packet_size = self._extract_packet_size_from_params()
 ret_val[PACKET_SIZE] = packet_size
 # Packetgen management
 packetgen = dpdk.DpdkPacketGenerator()
 self._configure_lua_file()
 packetgen.init_dpdk_pktgen(dpdk_interfaces=2,
 pcap_file_0='packet_' +
 packet_size + '.pcap',
 pcap_file_1='igmp.pcap',
 lua_script='rfc2544.lua',
 vlan_0=self.params[VLAN_SENDER],

vlan_1=self.params[VLAN_RECEIVER])
 common.LOG.debug('Start the packet generator - packet size:
' +
 str(packet_size))
 packetgen.send_traffic()
 common.LOG.debug('Stop the packet generator')
 # Result Collection
 results = self._get_results()
 for metric_name in results.keys():
 ret_val[metric_name] = results[metric_name]
 self._reset_lua_file()
 return ret_val

Once the size of the packets to be used is assigned, the method interacts with the
DPDK packet generator library, in order to initialise the packet generator with the
required parameters and then triggers execution of the traffic generator. This phase
of the test case lifecycle is managed by LUA script indicated in the parameter listings.
Once the execution of the traffic generation is completed the method collects the
results and returns them. The results are automatically managed and stored by the
Benchmarking Unit via the Data Manager.

Initialisation and Finalisation of a Test Case

The benchmarking class defined by the user needs to implement an abstract method
called init. The signature of this method in the BenchmarkBaseClass is as follows:

@abc.abstractmethod
def init(self):
 """
 Initializes the benchmark
 :return:
 """
 raise NotImplementedError("Subclass must implement abstract
method")

A useful example on how to extend this is in the
“MultitenancyThroughputBenchmark” test case, where the deployment of noisy
neighbors is implemented.

def init(self):

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
49

 """
 Initialize the benchmark
 return: None
 """
 common.replace_in_file(self.lua_file, 'local out_file =
""', 'local out_file = "' + self.results_file + '"')
 heat_param = dict()
 heat_param['cores'] = self.params['number_of_cores']
 heat_param['memory'] = self.params['amount_of_ram']
 for i in range(0,
int(self.params['num_of_neighbours'])):
 stack_name = self.stack_name + str(i)

common.DEPLOYMENT_UNIT.deploy_heat_template(self.template_file,
stack_name, heat_param)
 self.neighbor_stack_names.append(stack_name)

This method triggers Heat in order to deploy a given number of neighbours (user
defined through configuration file) with a given amount of stress on the CPU and the
RAM (user defined as well). For this test case finalisation has also been implemented,
in order to terminate the virtual machines deployed during the initialisation phase.
The base class finalisation method is as follows:

@abc.abstractmethod
 def finalize(self):
 """
 Finalizes the benchmark
 :return:
 """
 raise NotImplementedError("Subclass must implement
abstract method")

This method has been overwritten in the MultitenancyThroughputBenchmark class as
follows:

def finalize(self):
 """
 Finalizes the benchmark
 return: None
 """
 common.replace_in_file(self.lua_file, 'local out_file =
"' + self.results_file +
 '"', 'local out_file = ""')
 # destroy neighbor stacks
 for stack_name in self.neighbor_stack_names:

common.DEPLOYMENT_UNIT.destroy_heat_template(stack_name)
 self.neighbor_stack_names = list()

Unit Testing

To interrogate and validate the functionality of the test cases an initial suite of unit
tests has been developed and executed. The purpose of unit testing is to securitise
the smallest testable parts of an application. Unit tests focus on the characteristics
that are vital to expected behaviour of the unit under test. While unit testing in time-
consuming and tedious it is necessary to ensure the quality of the application code.

OPNFV Test lab Deployment

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
50

To validate the functional characteristics of the VNF Framework and the four test
cases developed they were deployed in an OPNFV test lab hosted by Ericson in
Montreal, Canada. The OpenStack environment used to host the framework and test
cases was deployed using Fuel as per OPNFV requirements for automated and
reproducible deployment of components. Fuel is an open source deployment and
management tool for OpenStack which provides an intuitive, GUI-driven experience
for deployment and management of OpenStack. The key focus of Fuel is to bring
consumer-grade simplicity to streamline and accelerate the complex, and error-prone
process of deploying, testing and maintaining various configuration flavours of
OpenStack at scale. The configuration of the testbed after the initial OpenStack
deployment is shown in Figure 4-2. Configuration of the OPNFV testbed and setup of
continuous integration testing using Jenkins remains a work in progress.

Figure 4-2: Yardstick testbed deployment configuration

Future Work

The step in the development of the VNF framework is the implementation of an API
API interface. The purpose of the API is to allow another application or script to call it
and execute test cases available within the framework. Initially the API will support
integration with Yardstick framework allow the framework to call the VNF framework
characterisation framework and request execution of one of the four test cases
implemented.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
51

In addition, the framework will need to provide support for OPNFV’s results
repository. This repository provides a centralised repository for all OPNFV
implemented test cases and features a dashboard to show the results collected
during the tests. Design and implementation of repository support is an on-going
activity. An additional capability that potentially will be added is support for other
packet generators. A leading candidate is Moongen [9], which is a packet generator
based on DPDK that supports the generation of 10Gbps traffics streams, but also
provide key network metrics such as latency and jitter, in addition to the throughput.

4.2.4. T-NOVA Testing Dashboard

Within the context of Task 4.5 a dashboard is being developed that enables the
testing of an IVM layer deployment. The dashboard application can be installed in a
remote machine, separate from the T-NOVA infrastructure and provide the means to
validate a correctly installed T-NOVA IVM layer stack. The functions provided through
the dashboard are in two main pages, Testing Environment and Tests. Within the
Testing Environment, the user can setup the testing environment in their machine
(install all the tools, libraries and frameworks required for testing), check if the
environment is already installed and remove the testing environment. Within the test
pages, the user can run tests that verify the installation and function of the T-NOVA
IVM deployment by executing the OpenStack, OpenDaylight and VNF related tests
described in the previous sections.

4.2.4.1. Implementation

The Testing Dashboard was developed as a web application using Python (Flask
Framework) for the back-end and HTML, CSS (Bootstrap), Javascript (JQuery) for the
front-end. The user interface was based on “SB Admin 2” jQuery – Bootstrap Theme.
The main frameworks used in the development of the dashboard are:

Python - Flask

Flask is called a micro framework because it does not presume or force a developer
to use a particular tool or library. It has no database abstraction layer, form validation,
or any other components where pre-existing third-party libraries provide common
functions. However, Flask supports extensions that can add application features as if
they were implemented in Flask itself. Extensions exist for object-relational mappers,
form validation, upload handling, various open authentication technologies and
several common framework related tools.

Javascript – JQuery

jQuery is a cross-platform Javascript library designed to simplify the client-side
scripting of HTML. jQuery's syntax is designed to make it easier to navigate a
document, select DOM elements, create animations, handle events, and develop Ajax
applications. jQuery also provides capabilities for developers to create plug-ins on
top of the JavaScript library. This enables developers to create abstractions for low-
level interaction and animation, advanced effects and high-level, theme-able widgets.
The modular approach to the jQuery library allows the creation of powerful dynamic
web pages and web applications.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
52

HTML, CSS – Bootstrap

Bootstrap is a free and open-source collection of tools for creating websites and web
applications. It contains HTML and CSS based design templates for typography,
forms, buttons, navigation and other interface components, as well as optional
Javascript extensions. It aims to ease the development of dynamic websites and web
applications.

4.2.4.2. Application Architecture

The application follows a Model-View-Controller (MVC) architecture. The main
components of a Model-View-Controller (MVC) application are described below:

Model - The model is responsible for managing the data of the application. It
responds to the request from the view and it also responds to instructions from the
controller to update itself.

View - A presentation of data in a particular format, triggered by a controller's
decision to present the data.

Controller - The controller is responsible for responding to user input and handles
interactions with the data model objects. The controller receives the input, validates it
t and then performs the business operation that modifies the state of the data model.

The user, by visiting the URL, requests to view a page or load content. This request is
sent to the server where it is handled by a specific Controller. The Controller makes
use of the necessary Models and produces the result which is sent back to the user
via the View which is the generated HTML page.

4.2.4.3. Using the Testing Dashboard

Testing Environment

The “Testing Environment” page, this is where the testing environment can be
configured to run to the user's system. Figure 4-3 depicts a screenshot of the Test

Figure 4-3: Installation of the testing environment within the dashboard

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
53

Environment page.

As shown, there are three options, “Install Testing Environment”, “Check Testing
Environment State”, “Remove Testing Environment”. As their names dictate by
pressing the corresponding buttons the application performs the following actions:

Install - Necessary dependencies and testing tools are downloaded and installed to
the system. Specifically, OpenStack Rally, Tempest, Robot Framework, Open vSwitch
and Mininet are installed. The installation can take up to 5 minutes.

Check - The application checks current system configuration to ensure that the
necessary components are installed and configured properly to allow testing
operations to take place. If the required tools and dependencies are not installed a
relative message appears to notify the user.

Clean - The application removes saved files and folders created by the installation
process.

Tests

As shown in Figure 4-4, the “Tests” page contains all the available tests categorized
by the testing suite in which they belong, e.g. OpenStack Rally, Robot Framework, etc.
By clicking on “Tests” option on the sidebar the user comes across a multi-level drop
down list. By clicking on any of the list's elements the tests shown in the main content
of the page are filtered accordingly.

Each test comes with two buttons; “RUN TEST” and “LAST RESULT”. When the RUN
TEST button is pressed, the application executes the test validating the remote T-
NOVA IVM layer deployment. When the test is completed a message appears to
notify the user. Figure 4-5 describes the workflow followed for executing a Rally test
and getting back the result. We have configured a server (testing machine) which is
separate from the T-NOVA IVM layer deployment. Within the testing machine we
have installed the testing environment, including Rally, Tempest and Robot

Figure 4-4: Sceenshot of the test page in the testing dashboard

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
54

Framework. The workflow depicted relates to the execution of the Rally tests. The
application uses the Rally test suite to execute the task that corresponds to the
desired test; the task is then saved to the Rally database. From there the task id is
later retrieved to be used in the rally command responsible for exporting test results
in html format. The exported html file is then parsed and saved to the application
database.

Figure 4-5: Testing Workflow

The user can obtain the last result from the execution of a particular test by pressing
the button LAST RESULT. The application loads from the application database the last
result for this test. The result is shown in a modal window which contains an HTML
Inline Frame Element (iframe) where the test suite html output file is loaded. Figure
4-4 and Figure 4-6 show examples of the results returned to the user after executing
Suspend and Resume Server and Remove Flow tests.

Figure 4-6: Sceenshot showing the result of executing the Suspend and Resume Servers
test for OpenStack Nova

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
55

Figure 4-7: Screenshot depicting the result of the Remove Flow test

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
56

5. CONCLUSIONS AND FUTURE WORK

Task 4.5 is focused on the implementation of a testbed which provides an
implementation of the functional entities that comprise the IVM layer of the T-NOVA
system namely the NFVI, VIM and WICM. The task has a number of key primary
dependencies within WP4 namely Tasks 4.1 to 4.4. In addition, there is also a
dependency on WP5 in terms of providing VNFs which can be used to test and
validate the outputs from the WP4 tasks and to interrogate the overall functional
operation of the Task 4.5 testbed.

The key technologies selections from a hardware and software perspective have been
described. Open source technologies have been used exclusively such as OpenStack
for the cloud computing environment and OpenDaylight for the SDN control. From a
hardware perspective commercial of the shelf (COTS) X86 servers have been used in
the implementation of the testbed. However, the use of additional hardware
platforms to provide specialised acceleration capabilities namely FPGA is being
actively investigated and may form part of the final testbed implementation. Details
on how the selected are being integrated together in the testbed are also provided
together with a description of the various open source tools such as Rally, Tempest
etc. that have selected and deployed to provide automated testing and validation of
component functional and performance. Additionally, the approach that is being
developed to create a robust and reproducible deployment process is described. This
included the development of testing dashboard to provide coordination of IVM
deployments and functional component testing through an intuitive user interface.

The key components of the cloud environment adopted in the testbed have been
described. The implementation adopted is designed to adaptable in order to support
various usage scenario such as experimental deployment, production deployment
etc. In addition, the key components developed by T-NOVA have been described
namely the virtualised SDN control plane, the monitoring framework, SDK for SDN
with SFC and VNF Characterisation Framework. Details of how these components will
be deployed and integrated into the testbed have been described.

The next steps for Task 4.5 Infrastructure integration and deployment involve the
deployment of the T-NOVA components and the validation and testing of their
function. Specifically, detailed documentation for the deployment of the Virtualised
SDN Control Plane, the Monitoring Framework, the SDK for SDN, the SFC component
will be produced. In addition, a set of test cases validating the proper deployment
and function of the T-NOVA component will be implemented. Completing this step
will help us to make safer and more realistic assumptions on the roles planning for
the deployment of the T-NOVA IVM layer, affecting both the number of nodes
required for the deployment and the hardware requirements needed. An additional
step will be to include the T-NOVA components tests in the testing dashboard
application. Moreover, effort will be made towards utilising open source tools that
allow the automated deployment and integration of the T-NOVA IVM layer
components, facilitating greatly the deployment procedures. We have already
reviewed the available automation provisioning and configuration management tools

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
57

and we lean towards the use of Foreman and Puppet for this purpose. All the
aforementioned advances will be reflected in the final version of this deliverable.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
58

6. ANNEXES

6.1. Annex A – OpenStack installation

In this Annex we describe the procedure for installing OpenStack Liberty.

Network Time Protocol (NTP)

Chrony is an implementation of NTP to synchronize services among nodes. Controller
Node is the reference of the compute nodes.

In all nodes:

apt-get install chrony

Edit and configure /etc/chrony/chrony.conf :

Controller

Nodes

Identity Service

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
59

The Identity service provides a single point of integration for managing
authentication, authorization, and service catalog services.

The other OpenStack services need to collaborate with it. When an OpenStack service
receives a request from a user, it checks with the Identity service whether the user is
authorized to make the request.

Install and Configure

Before we configure the Identity service, we create the database and the
administration token.

• Connect as root to the Database server

mysql -u root -p
• Create the Database

 CREATE DATABASE keystone;
• Grant proper access to the database

GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'localhost' \
IDENTIFIED BY'KEYSTONE_DBPASS';

GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'%' IDENTIFIED BY \
'KEYSTONE_DBPASS';

Install and configure components
1. Disable the keystone service from starting automatically after installation:

echo "manual" > /etc/init/keystone.override
2. Install the packages:

#apt-get install keystone apache2 libapache2-mod-wsgi memcached \
python-memcache

3. Edit the /etc/keystone/keystone.conf file
(??)

4. Populate the Identity service database:
su -s /bin/sh -c "keystone-manage db sync" keystone

Configure the Apache HTTP server
1. Edit the /etc/apache2/apache2.conf file and configure the ServerName option

to reference the controller node:
ServerName controller

2. Create the /etc/apache2/sites-available/wsgi-keystone.conf file:

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
60

3. Enable the Identity service virtual hosts:

ln -s /etc/apache2/sites-available/wsgi-keystone.conf \
/etc/apache2/sites-enabled

Finalize the installation

1. Restart the Apache HTTP server:

service apache2 restart
2. By default, the Ubuntu packages create an SQLite database. We remove the

SQLite database file:

rm -f /var/lib/keystone/keystone.db
Create the service entity and API endpoints

The Identity service provides a catalog of services and their locations. Each service
that you add to your OpenStack environment requires a service entity and several
API endpoints in the catalog.

1. Configure the authentication token:

export OS_TOKEN=ADMIN_TOKEN
2. Configure the endpoint URL:

export OS_URL=http://controller:35357/v3
3. Configure the Identity API version:

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
61

export OS_IDENTITY_API_VERSION=3
4. Create the service entity for the Identity service:

openstack service create --name keystone --description "OpenStack \
identity" identity

5. Create the Identity service API endpoints:

openstack endpoint create --region RegionOneidentity public \
http://$controller_public_ip:5000/v2.0
openstack endpoint create --region RegionOne identity internal \
http://$controller_mgmt_ip:5000/v2.0
openstack endpoint create --region RegionOneidentity admin \
http://$controller_mgmt_ip:5000/v2.0

Create projects, users, and roles

The Identity service provides authentication services for each OpenStack service. The
authentication service uses a combination of domains, projects (tenants), users, and
roles.

1. Create an administrative project, user, and role for administrative operations
in your environment
Create the admin project:

openstack project create --domain default --description "Admin Project" \
admin
Create the admin user:

openstack user create --domain default--password-prompt admin
Create the admin role:

openstack role create admin
Add the admin role to the admin project and user:

openstack role add --project admin --user admin admin
2. Use a service project that contains a unique user for each service that you add

to your environment.

Create the service project:

openstack project create --domain default --description "Service Project" \
service

3. Regular (non-admin) tasks should use an unprivileged project and user. In our
environment we create project and user per VNF, for example the VHG project
and user for the vHome Gateway VNF.

Create the VHG project:

openstack project create --domain default --description “VHG Project" VHG
Create the VHG user:

openstack user create --domain default --password-prompt VHG
 Create the user role:

openstack role create user

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
62

 Add the user role to the VHG project and user:

openstack role add --project VHG --user VHG user
Verify operation
Disable, for security reasons, the temporary authentication token mechanism with
removing admin_token_auth from the [pipeline:public_api], [pipeline:admin_api], and
[pipeline:api_v3] sections in the /etc/keystone/keystone-paste.ini file.

1. Unset the temporary OS_TOKEN and OS_URL environment variables:

unset OS_TOKEN OS_URL
2. As the admin user, request an authentication token:

3. As VHG user, request an authentication toke:

Create OpenStack client environment scripts

OpenStack supports simple client environment scripts also known as openrc files.
These scripts typically contain common options for all clients, but also support
unique options.

Creating the scripts

Create client environment scripts for the admin and VHG projects and users. Future
portions of this guide reference these scripts to load appropriate credentials for client
operations.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
63

To run clients as a specific project and user, you can simply load the associated client
environment script prior to running them.

Load the admin-openrc.sh file to populate environment variables with the location of
the Identity service and the admin project and user credentials:

Add the Image service

The OpenStack Image service (glance) enables users to discover, register, and retrieve
virtual machine images. It offers a REST API that enables you to query virtual machine
image metadata and retrieve an actual image.

Install and configure

1. Create glance database, service credentials, and API endpoints

Create the database following the next steps

• Connect as root to the Database server

mysql -u root –p
• Create the Database

CREATE DATABASE glance;
• Grant proper access to the database

GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'localhost' IDENTIFIED BY \
'GLANCE_DBPASS';

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
64

GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'%' IDENTIFIED BY \
'GLANCE_DBPASS';

2. Source the admin credentials to gain access to admin-only CLI commands:

source admin-openrc.sh
3. Create the service credentials

Create the glance user:

openstack user create --domain default --password-prompt glance
Add the admin role to the glance user and service project:

openstack role add --project service --user glance admin
Create the glance service entity:

openstack service create --name glance --description "OpenStack Image \
service" image

4. Create the Image service API endpoints:

openstack endpoint create --region RegionOne image public \
http://$controller_pub_ip:9292
openstack endpoint create --region RegionOneimage internal \
http://$controller_mgmt_ip:9292
openstack endpoint create --region RegionOneimage admin \
http://$controller_mgmt_ip:9292

Install and configure components

1. Install the packages:

apt-get install glance python-glanceclient
2. Edit the /etc/glance/glance-api.confand etc/glance/glance-registry.conf files

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
65

3. Populate the Image service database:

su -s /bin/sh -c "glance-manage db_sync" glance
Finalize installation

1. Restart the Image service services:

service glance-registry restart
service glance-api restart

2. By default, the Ubuntu packages create an SQLite database. We remove the
SQLite database file:

rm -f /var/lib/glance/glance.sqlite
Verify operation
Run on the Controller Node

1. In each client environment script, configure the Image service client to use API
version 2.0:

echo "export OS_IMAGE_API_VERSION=2" | tee -a admin-openrc.sh \
VHG-openrc.sh

2. Source the admin credentials to gain access to admin-only CLI commands:
source admin-openrc.sh

3. Download the source image:
wget http://download.cirros-cloud.net/0.3.4/cirros-0.3.4-x86_64-disk.img

4. Upload the image to the Image service using the qcow2 disk format, bare
container format, and public visibility so all projects can access it:

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
66

Add the Compute Service

OpenStack Compute is a major part of an Infrastructure-as-a-Service (IaaS) system.
The main modules are implemented in Python.

It interacts with OpenStack Identity for authentication, OpenStack Image service for
disk and server images, and OpenStack dashboard for the user and administrative
interface. Image access is limited by projects, and by users; quotas are limited per
project. OpenStack Compute can scale horizontally on standard hardware, and
download images to launch instances.

Install and configure Controller Node

1. Create nova database, service credentials, and API endpoints

Create the database following the next steps

• Connect as root to the Database server

mysql -u root –p
• Create the Database

CREATE DATABASE nova;
• Grant proper access to the database

GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'localhost' IDENTIFIED BY \
'NOVA_DBPASS';
GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'%' IDENTIFIED BY \
'NOVA_DBPASS';

2. Source the admin credentials to gain access to admin-only CLI commands:

source admin-openrc.sh

3. Create the service credentials

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
67

Create the nova user:

openstack user create --domain default --password-prompt nova
Add the admin role to the nova user:

openstack role add --project service --user nova admin
Create the nova service entity:

openstack service create --name nova --description "OpenStack Compute" \
compute

4. Create the Image service API endpoints:

openstack endpoint create --region RegionOne image public \
http://$controller_pub_ip:8774/v2/%\(tenant_id\)s
openstack endpoint create --region RegionOne image internal \
http://$controller_mgmt_ip:8774/v2/%\(tenant_id\)s
openstack endpoint create --region RegionOne image admin \
http://$controller_mgmt_ip:8774/v2/%\(tenant_id\)s

Install and configure components

1. Install the packages:

apt-get install nova-api nova-cert nova-conductor nova-consoleauth \
nova-novncproxy nova-scheduler python-novaclient

2. Edit the /etc/nova/nova.conf file

3. Populate the Compute database:

su -s /bin/sh -c "nova-manage db sync" nova
Finalize installation

Restart the Compute services:

service nova-apinova-cert nova-consoleauth nova-scheduler \
nova-conductor nova-novncproxy restart
By default, the Ubuntu packages create an SQLite database. We remove the
SQLite database file:

rm -f /var/lib/nova/nova.sqlite
Install and configure Compute Nodes
Install and configure components

1. Install the packages:

apt-get install nova-compute sysfsutils

2. Edit the /etc/nova/nova.conf file

Finalize installation

1. Determine whether your compute node supports hardware acceleration for
virtual machines:

egrep -c '(vmx|svm)' /proc/cpuinfo

2. Restart the Compute service:

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
68

service nova-compute restart
3. By default, the Ubuntu packages create an SQLite database. We remove the

SQLite database file:

rm -f /var/lib/nova/nova.sqlite

Verify operation

1. Source the admin credentials to gain access to admin-only CLI commands:

source admin-openrc.sh
2. List service components to verify successful launch and registration of each

process:

3. List images in the Image service catalog to verify connectivity with the Image

service:

Add the Networking service
OpenStack Networking (neutron) allows you to create and attach interface devices
managed by other OpenStack services to networks. Plug-ins can be implemented to
accommodate different networking equipment and software, providing flexibility to
OpenStack architecture and deployment.
Install and configure Controller Node

1. Create nova database, service credentials, and API endpoints

Create the database following the next steps

• Connect as root to the Database server

mysql -u root –p
• Create the Database

CREATE DATABASE neutron;
• Grant proper access to the database

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
69

GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'localhost' IDENTIFIED BY
'NEUTRON_DBPASS';
GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'%' IDENTIFIED BY \
'NEUTRON_DBPASS';

2. Source the admin credentials to gain access to admin-only CLI commands:

source admin-openrc.sh

3. Create the service credentials

Create the neutron user:

openstack user create --domain default --password-prompt neutron
Add the admin role to the neutron user:

openstack role add --project service --user neutron admin
Create the neutron service entity:

openstack service create --name neutron --description "OpenStack \
Networking" network

4. Create the Networking service API endpoints:

openstack endpoint create --region RegionOne image public \
http://$controller_pub_ip:9696
openstack endpoint create --region RegionOne image internal \
http://$controller_mgmt_ip:9696
openstack endpoint create --region RegionOne image admin \
http://$controller_mgmt_ip:9696

Configure networking options

Install the components:

apt-get install neutron-server neutron-plugin-ml2 neutron-l3-agent \
 neutron-plugin-openvswitch-agent neutron-dhcp-agent \
 neutron-metadata-agent python-neutronclient

Configure the server component

1. Edit the /etc/neutron/neutron.conf

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
70

Configure the Modular Layer 2 (ML2) plug-in

1. Edit the /etc/neutron/plugins/ml2/ml2_conf.ini

Configure the layer-3 agent

1. Edit the /etc/neutron/l3_agent.ini file

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
71

Configure the DHCP agent

1. Edit the /etc/neutron/dhcp_agent.ini file

Configure the metadata agent

1. Edit the /etc/neutron/metadata_agent.ini file

Configure Compute to use Networking

1. Edit the /etc/nova/nova.conf file

Finalize installation

1. Populate the database:

su -s /bin/sh -c "neutron-db-manage --config-file /etc/neutron/neutron.conf
 --config-file /etc/neutron/plugins/ml2/ml2_conf.ini upgrade head" neutron

 Restart the Compute API service:

service nova-api restart
Configure the Open vSwitch (OVS) service
The OVS service provides the underlying virtual networking framework for instances.
The integration bridge br-int handles internal instance network traffic within OVS. The
external bridge br-ex handles external instance network traffic within OVS. The

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
72

external bridge requires a port on the physical external network interface to provide
instances with external network access. In essence, this port connects the virtual and
physical external networks in your environment.
Prepare following steps in Controller Node

1. Restart the OVS service:

service openvswitch-switch restart
2. Add the external bridge:

ovs-vsctl add-br br-ex
3. Add a port to the external bridge that connects to the physical external

network interface:

ovs-vsctl add-port br-ex $public_interface
4. Restart the Networking services:

service neutron-server restart
service neutron-plugin-openvswitch-agent restart
service neutron-l3-agent-restart
service neutron-dhcp-agent restart
service neutron-metadata-agent restart

5. By default, the Ubuntu packages create an SQLite database. We remove the
SQLite database file:

rm -f /var/lib/neutron/neutron.sqlite
Install and configure Compute Nodes
Prepare these steps in Controller Node

1. Install the components

apt-get install neutron-plugin-ml2 neutron-plugin-openvswitch-agent
 Edit the /etc/neutron/neutron.conf file

2. Edit the /etc/neutron/plugins/ml2/ml2_conf.ini file

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
73

Configure the Open vSwitch (OVS) service

1. Restart the OVS service:

service openvswitch-switch restart
Configure Compute to use Networking

1. Edit /etc/nova/nova.conf file

Finalize the installation

1. Restart the Compute service:

service nova-compute restart
2. Restart the Open vSwitch (OVS) agent:

service neutron-plugin-openvswitch-agent restart
Verify operation
Run on Controller Node

1. Source the admin credentials to gain access to admin-only CLI commands:
source admin-openrc.sh

2. List agents to verify successful launch of the neutron agents:
neutron agent-list

 The output should be as following:

Create Public network
1. Source the admin credentials to gain access to admin-only CLI commands:

source admin-openrc.sh

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
74

2. Create Public network

neutron net-create public --shared --provider:physical_network external \
--provider:network_type flat

3. Create Public subnet

neutron subnet-create public 10.10.1.0/24 --name public --allocation-pool \
start=10.10.1.50,end=10.10.1.200 --dns-nameserver 8.8.8.8 \
--gateway 10.10.1.1

Create the private project network (one or more per tenant)

1. On the controller node, source the tenant's (for example VHG) credentials to
gain access to user-only CLI commands:

source VHG-openrc.sh
2. Create the network:

neutron net-create private
3. Create a subnet on the network:

neutron subnet-create private 172.16.1.0/24 --name private \
--dns-nameserver 8.8.8.8 --gateway 172.16.1.1

Create a router

1. With admin credentials, add the router:external option to the public provider
network:

source admin-openrc.sh
neutron net-update public --router:external

2. Load VHG tenant's credentials and create the router:
source VHG-openrc.sh
neutron router-create VHG-router

3. Add the private network subnet as an interface on the router:
neutron router-interface-add router private

4. Set a gateway on the public network on the router:
neutron router-gateway-set router public

Add the Openstack dashboard
The OpenStack Dashboard, also known as horizon is a web interface that enables
cloud administrators and users to manage various OpenStack resources and services.
Install and configure components

1. Install the packages:

apt-get install openstack-dashboard
2. Edit the /etc/openstack-dashboard/local_settings.py file and configure the

following:

• OPENSTACK_HOST = "controller"
• ALLOWED_HOSTS = ['*',]
• CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
75

 'LOCATION': '127.0.0.1:11211',
 }
 }
• OPENSTACK_KEYSTONE_DEFAULT_ROLE = "user"
• TIME_ZONE = "TIME_ZONE"

3. Reload the web server configuration:

service apache2 reload

Add the Orchestration service
The Orchestration service provides a template-based orchestration for describing a
cloud application by running OpenStack API calls to generate running cloud
applications. The software integrates other core components of OpenStack into a
one-file template system. The templates allow you to create most OpenStack
resource types, such as instances, floating IPs, volumes, security groups and users. It
also provides advanced functionality, such as instance high availability, instance auto-
scaling, and nested stacks. This enables OpenStack core projects to receive a larger
user base.
The service enables deployers to integrate with the Orchestration service directly or
through custom plug-ins.
Prepare following steps only in Controller Node

Install and configure

1. Create glance database, service credentials, and API endpoints

Create the database following the next steps

• Connect as root to the Database server

mysql -u root –p
• Create the Database

CREATE DATABASE heat;
• Grant proper access to the database

GRANT ALL PRIVILEGES ON heat.* TO 'heat'@'localhost' IDENTIFIED BY \
'HEAT_DBPASS';
GRANT ALL PRIVILEGES ON heat.* TO 'heat'@'%' IDENTIFIED BY \
'HEAT_DBPASS';

2. Source the admin credentials to gain access to admin-only CLI commands:

source admin-openrc.sh
3. Create the service credentials

Create the heat user:

openstack user create --domain default --password-prompt heat
Add the admin role to the heat user:
openstack role add --project service --user heat admin
Create the heat and heat-cfn service entities:
openstack service create --name heat --description "Orchestration" \

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
76

orchestration
openstackservice create --name heat-cfn--description "Orchestration" \
cloudformation

4. Create the Orchestration service API endpoints:

openstack endpoint create --region RegionOne orchestration public \
http://controller_public_ip:8004/v1/%\(tenant_id\)s
openstack endpoint create --region RegionOne orchestration internal \
http://controller_mgmt_ip:8004/v1/%\(tenant_id\)s
openstack endpoint create --region RegionOne orchestration admin \
http://controller_mgmt_ip:8004/v1/%\(tenant_id\)s
openstack endpoint create --region RegionOnecloudformation public \
http://controller_public_ip:8000/v1
openstack endpoint create --region RegionOnecloudformation internal \
http://controller_mgmt_ip:8000/v1
openstack endpoint create --region RegionOnecloudformation admin \
http://controller_mgmt_ip:8000/v1

5. Orchestration requires additional information in the Identity service to
manage stacks. To add this information, complete these steps:
• Create the heat domain that contains projects and users for stacks:

openstack domain create --description "Stack projects and users" heat
• Create the heat_domain_admin user to manage projects and users in

the heat domain:

openstack user create --domain heat --password-prompt \
heat_domain_admin
• Add the admin role to the heat_domain_admin user in the heat

domain to enable administrative stack management privileges by the
heat_domain_admin user:

openstack role add --domain heat --user heat_domain_admin admin
• Create the heat_stack_owner role:

openstack role create heat_stack_owner
• Add the heat_stack_owner role to the demo project and user to enable

stack management by the demo user:

openstack role add --project demo --user demo heat_stack_owner
• Create the heat_stack_user role:

openstack role create heat_stack_user
Install and configure components

1. Install the packages:

apt-get install heat-api heat-api-cfn heat-engine python-heatclient
2. Edit the /etc/heat/heat.conf file

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
77

3. Populate the Orchestration database:

su -s /bin/sh -c "heat-manage db_sync" heat
4. Restart the Orchestration services:

service heat-api restart
service heat-api-cfn restart
service heat-engine restart

5. By default, the Ubuntu packages create an SQLite database. We remove the
SQLite database file:

rm -f /var/lib/heat/heat.sqlite
Verify operation

1. Source the admin tenant credentials:

source admin-openrc.sh
2. List service components to verify successful launch and registration of each

process:

Add the Telemetry service

• The Telemetry service performs the following functions:
• Efficiently polls metering data related to OpenStack services.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
78

• Collects event and metering data by monitoring notifications sent from
services.

• Publishes collected data to various targets including data stores and message
queues.

• Creates alarms when collected data breaks defined rules.

Install and configure components

1. Create the ceilometer database:

mongo --host controller --eval '
 db = db.getSiblingDB("ceilometer");
 db.addUser({user: "ceilometer",
 pwd: "CEILOMETER_DBPASS",
 roles: ["readWrite", "dbAdmin"]})'

2. Source the admin credentials to gain access to admin-only CLI commands:

source admin-openrc.sh

3. To create the service credentials, complete these steps:
Create the ceilometer user:

openstack user create --domain default --password-prompt ceilometer
Add the admin role to the ceilometer user.

openstack role add --project service --user ceilometer admin
Create the ceilometer service entity:

openstack service create --name ceilometer--description "Telemetry" \
metering

4. Create the Telemetry service API endpoints:

openstack endpoint create --region RegionOnemetering public \
http://controller_public_ip:8777
openstack endpoint create --region RegionOnemetering internal \
http://controller_mgmt_ip:8777
openstack endpoint create --region RegionOnemetering admin \
http://controller_mgmt_ip:8777

Install and configure components

1. Install the packages:

apt-get install ceilometer-api ceilometer-collector ceilometer-agent-central \
ceilometer-agent-notification ceilometer-alarm-evaluator \
 ceilometer-alarm-notifier python-ceilometerclient

2. Edit the /etc/ceilometer/ceilometer.conf file

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
79

3. Restart the Telemetry services:

service ceilometer-agent-central restart
service ceilometer-agent-notification restart
service ceilometer-api restart
service ceilometer-collector restart
service ceilometer-alarm-evaluator restart
service ceilometer-alarm-notifier restart

Configure the Image service to use Telemetry
1. Edit the /etc/glance/glance-api.conf and /etc/glance/glance-registry.conf files

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
80

2. Restart the Image service:

service glance-registry restart
service glance-api restart

Enable Compute service meters (Compute Nodes)
Telemetry uses a combination of notifications and an agent to collect Compute
meters. Perform these steps on each compute node.
Install and configure components

1. Install the packages:

apt-get install ceilometer-agent-compute
2. Edit the /etc/ceilometer/ceilometer.conf file

Configure Compute to use Telemetry

Edit the /etc/nova/nova.conf file and add the following lines in the [Default]
section:

[DEFAULT]

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
81

 ...
instance_usage_audit = True
instance_usage_audit_period = hour
notify_on_state_change = vm_and_task_state
notification_driver = messagingv2

Finalize Installation
1. Restart the agent:

service ceilometer-agent-compute restart
2. Restart the Compute service:

service nova-compute restart
Verify operation

1. Source the admin credentials to gain access to admin-only CLI commands:

source admin-openrc.sh

2. List available meters:

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
82

6.2. Annex B – OpenStack and OpenDaylight integration
through ML2 plugin

This annex describes in detail the steps needed for configuring OpenStack Juno with Neutron
ML2 networking to work with OpenDaylight Lithium and GRE Tunnels. Also it is important to
know that one OpenDaylight manages only one OpenStack deployment.

	Prerequisites	

You must have a working OpenStack Juno deployment in Ubuntu 14.04 (LTS). To install it
use the instructions provided in Annex A.

The networks required are:

• Management network 10.0.0.0/24
• Tunnel Network 10.0.1.0/24
• External Network 203.0.113.0/24

The OpenStack nodes required for this guide are:

• Controller node: Management Network, (External Network if you want public access
to the controller)

• Network node: Management Network, External Network
• Compute node 1: Management Network, Tunnel Network
• Compute node 2: Management Network, Tunnel Network

Additionally, you must have OpenDaylight Helium SR2 installed in the Management Network.
OpenDaylight must be installed in a different machine from your OpenStack nodes.

We want OpenDaylight to communicate with OpenFlow 1.3.

Edit etc/custom.properties and uncomment line ovsdb.of.version=1.3

Wait some seconds.

Now you are connected to OpenDaylight's console. Install all the required features:

apt-get install openjdk-7-jdk
wget https://nexus.opendaylight.org/content/groups/public/org/open
daylight/integration/distribution-karaf/0.2.2-Helium-
SR2/distribution-karaf-0.2.2-Helium-SR2.zip
unzip distribution-karaf-0.2.2-Helium-SR2.zip
cd distribution-karaf-0.2.2-Helium-SR2

./bin/start

./bin/client

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
83

Wait for the feature installation to finish.

Verify

If everything is working fine, a list of networks will be returned and it will be empty.

Monitor

If you want to monitor OpenDaylight there are 2 log files.

Controller	Node:	Erase	all	instances,	networks,	routers	and	ports	
You must delete all existing instances, networks, routers and ports from all tenants. Default
installation has admin and demo.

If you want do it from Horizon dashboards or use the following commands.

Do the same with demo-openrc.

If some ports cannot be deleted do the following:

Verify that everything is empty.

feature:install odl-base-all odl-aaa-authn odl-restconf odl-nsf-all
odl-adsal-northbound odl-mdsal-apidocs odl-ovsdb-openstack odl-
ovsdb-northbound odl-dlux-core

curl -u:admin:admin:http://<OPENDAYLIGHT MANAGEMENT
IP>:8080/controller/nb/v2/neutron/networks

tail -f data/log/karaf.log
tail -f logs/web_access_log_2015-11.txt

source admin-openrc
nova list
nova delete <INSTANCE ID>
neutron port-list
neutron port-delete <PORT ID>
neutron router-list
neutron router-gateway-clear <ROUTER ID>
neutron router-delete <ROUTER ID>
neutron net-list
neutron net-delete <NEWORK ID>

mysql -uroot –p
use neutron;
delete from ports;
exit

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
84

Stop the neutron-server service for the duration of the configuration.

A message saying that the neutron-server is stopped should appear. If not press it again to
make sure it is stopped.

Network/Compute	Nodes:	Configure	OpenvSwitches	

The neutron plugin in every node must be removed (or stopped and disabled) because only
OpenDaylight will be controlling openvswitches.

The last command must return an empty openvswitch. You should see only
<OPENVSWITCH ID> and version.

Nothing will appear if this command is entered correctly. To verify the configuration, you can
use:

ONLY NETWORK NODE SECTION START

Create the bridge br-ex that is needed for the external network for OpenStack.

ONLY NETWORK NODE SECTION END

Connect every openvswitch with the OpenDaylight controller.

If everything went ok you can see 4 switches in OpenDaylight. 3 br-int and 1 br-ex.

All	Nodes:	Configure	ml2_conf.ini	

nova list
neutron port-list
neutron router-list
neutron net-list

apt-get purge neutron-plugin-openvswitch-agent
service openvswitch-switch stop
rm -rf /var/log/openvswitch/*
rm -rf /etc/openvswitch/conf.db
service openvswitch-switch start
ovs-vsctl show

service neutron-server stop

ovs-vsctl set Open_vSwitch <OPENVSWITCH
ID> other_config={'local_ip'='<TUNNEL INTERFACE IP>'}

ovs-vsctl list Open_vSwitch

ovs-vsctl add-br br-ex
ovs-vsctl add-port br-ex <INTERFACE NAME OF EXTERNAL NETWORK>

ovs-vsctl set-manager tcp:<OPENDAYLIGHT MANAGEMENT IP>:6640

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
85

Controller Node

Edit vi /etc/neutron/plugins/ml2/ml2_conf.ini and put the following configuration.

Network Node

Edit vi /etc/neutron/plugins/ml2/ml2_conf.ini and put the following configuration.

[ml2]
type_drivers = flat,gre
tenant_network_types = gre
mechanism_drivers = opendaylight
[ml2_type_gre]
tunnel_id_ranges = 1:1000
[securitygroup]
enable_security_group = True
enable_ipset = True
firewall_driver =
neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDrive
r
[ml2_odl]
password = admin
username = admin
url = http://<OPENDAYLIGHT MANAGEMENT
IP>:8080/controller/nb/v2/neutron

[ml2]
type_drivers = flat,gre
tenant_network_types = gre
mechanism_drivers = opendaylight
[ml2_type_flat]
flat_networks = external
[ml2_type_gre]
tunnel_id_ranges = 1:1000
[securitygroup]
enable_security_group = True
enable_ipset = True
firewall_driver =
neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDrive
r
[ovs]
local_ip = <TUNNEL INTERFACE IP>
enable_tunneling = True
bridge_mappings = external:br-ex
[agent]
tunnel_types = gre
[ml2_odl]
password = admin
username = admin
url = http://<OPENDAYLIGHT MANAGEMENT
IP>:8080/controller/nb/v2/neutron

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
86

Compute Nodes

Edit vi /etc/neutron/plugins/ml2/ml2_conf.ini and put the following configuration.

Controller	Node:	Configure	Neutron	Database	

Reset the neutron database, in order to be configured with OpenDaylight.

If everything is ok, without errors you can start the neutron-server.

Controller	Node:	Create	Initial	Networks	

Controller	Node:	Launch	Instances	

Get preferred <HYPERVISOR NAME> from the command below.

[ml2]
type_drivers = flat,gre
tenant_network_types = gre
mechanism_drivers = opendaylight
[ml2_type_gre]
tunnel_id_ranges = 1:1000
[securitygroup]
enable_security_group = True
enable_ipset = True
firewall_driver =
neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDrive
r
[ovs]
local_ip = <TUNNEL INTERFACE IP>
enable_tunneling = True
[agent]
tunnel_types = gre
[ml2_odl]
password = admin
username = admin
url = http://<OPENDAYLIGHT MANAGEMENT
IP>:8080/controller/nb/v2/neutron

mysql -uroot –p
drop database neutron;
create database neutron;
grant all privileges on neutron.* to 'neutron'@'localhost'
identified by '<YOUR NEUTRON PASSWORD>';
grant all privileges on neutron.* to 'neutron'@'%' identified by
'<YOUR NEUTRON PASSWORD>';
exit
su -s /bin/sh -c "neutron-db-manage --config-file
/etc/neutron/neutron.conf --config-file
/etc/neutron/plugins/ml2/ml2_conf.ini upgrade juno" neutron

source admin-openrc
nova hypervisor-list

service neutron-server start

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
87

Get demo <NETWORK ID> from the command below.

Get <IMAGE NAME> from the command below.

Launch the instances!

Verify	the	Integration		

If everything works correctly, you will be able to ping every VM. Also, you should be able to
see the GRE tunnels from ovs-vsctl show in each node.

At this point, you should have the entire system up and running. To verify this, you can do the
following:

• Point your web browser at the OpenStack Horizon GUI and login using your tenant
credentials.

• Point your web browser at the OpenDaylight GUI and login using your OpenDaylight
credentials.

• You can play around in both GUIs and attempt to launch new instances in
OpenStack. As you launch VMs, you will see that OpenDaylight creates tunnel ports
and links between compute hosts, which will become visible with a refresh in the
OpenDaylight GUI.

source demo-openrc
neutron net-list

nova image-list

nova boot --flavor m1.tiny --image <IMAGE NAME> --nic net-
id=<NETWORK ID> test1 --availability_zone=nova:<HYPERVISOR NAME>
nova boot --flavor m1.tiny --image <IMAGE NAME> --nic net-
id=<NETWORK ID> test2 --availability_zone=nova:<HYPERVISOR NAME>
nova boot --flavor m1.tiny --image <IMAGE NAME> --nic net-
id=<NETWORK ID> test3 --availability_zone=nova:<HYPERVISOR NAME>
nova boot --flavor m1.tiny --image <IMAGE NAME> --nic net-
id=<NETWORK ID> test4 --availability_zone=nova:<HYPERVISOR NAME>

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
88

6.3. Annex C – Testing environment installation and validation

6.3.1. Automated installation of the testing environment

The automated installation of the testing environment is performed through the
execution of bash scripts. The first script, install_rally.sh, installs OpenStack Rally and
OpenStack Tempest (installation via Rally). The second script, install_robot.sh, installs
Robot Framework for OpenDaylight testing.

File: install_rally.sh

#!/usr/bin/env bash
This script installs Rally.
Specifically, it is able to install and configure
Rally either globally (system-wide), or isolated in
a virtual environment using the virtualenv tool.
NOTE: The script assumes that you have the following
programs already installed:
-> Python 2.6, Python 2.7 or Python 3.4
set -e
PROG=$(basename "${0}")
running_as_root() {
 test "$(/usr/bin/id -u)" -eq 0
}
VERBOSE=""
ASKCONFIRMATION=1
RECREATEDEST="ask"
USEVIRTUALENV="yes"
ansi colors for formatting heredoc
ESC=$(printf "\e")
GREEN="$ESC[0;32m"
NO_COLOR="$ESC[0;0m"
RED="$ESC[0;31m"

PYTHON2=$(which python || true)
PYTHON3=$(which python3 || true)
PYTHON=${PYTHON2:-$PYTHON3}
BASE_PIP_URL=${BASE_PIP_URL:-"https://pypi.python.org/simple"}
VIRTUALENV_191_URL="https://raw.github.com/pypa/virtualenv/1.9.1/virtualenv.py"

RALLY_GIT_URL="https://git.openstack.org/openstack/rally"
RALLY_GIT_BRANCH="master"
RALLY_CONFIGURATION_DIR=/etc/rally
RALLY_DATABASE_DIR=/var/lib/rally/database
DBTYPE=sqlite
DBNAME=rally.sqlite

Variable used by script_interrupted to know what to cleanup
CURRENT_ACTION="none"

Exit status codes (mostly following <sysexits.h>)
successful exit
EX_OK=0

wrong command-line invocation
EX_USAGE=64

missing dependencies (e.g., no C compiler)
EX_UNAVAILABLE=69

wrong python version
EX_SOFTWARE=70

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
89

cannot create directory or file
EX_CANTCREAT=73

user aborted operations
EX_TEMPFAIL=75

misused as: unexpected error in some script we call
EX_PROTOCOL=76

abort RC [MSG]

Print error message MSG and abort shell execution with exit code RC.
If MSG is not given, read it from STDIN.

abort () {
 local rc="$1"
 shift
 (echo -en "REDPROG: ERROR: $NO_COLOR";
 if [$# -gt 0]; then echo "$@"; else cat; fi) 1>&2
 exit "$rc"
}

die RC HEADER <<...

Print an error message with the given header, then abort shell
execution with exit code RC. Additional text for the error message
must be passed on STDIN.

die () {
 local rc="$1"
 header="$2"
 shift 2
 cat 1>&2 <<__EOF__
$RED==
$PROG: ERROR: $header
==
$NO_COLOR
__EOF__
 if [$# -gt 0]; then
 # print remaining arguments one per line
 for line in "$@"; do
 echo "$line" 1>&2;
 done
 else
 # additional message text provided on STDIN
 cat 1>&2;
 fi
 cat 1>&2 <<__EOF__

If the above does not help you resolve the issue, please contact the
Rally team by sending an email to the OpenStack mailing list
openstack-dev@lists.openstack.org. Include the full output of this
script to help us identifying the problem.
$RED
Aborting installation!$NO_COLOR
__EOF__
 exit "$rc"
}

script_interrupted () {
 echo "Interrupted by the user. Cleaning up..."
 [-n "${VIRTUAL_ENV}" -a "${VIRTUAL_ENV}" == "$VENVDIR"] && deactivate

 case $CURRENT_ACTION in

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
90

 creating_venv|venv-created)
 if [-d "$VENVDIR"]
 then
 if ask_yn "Do you want to delete the virtual environment in

'$VENVDIR'?"
 then
 rm -rf "$VENVDIR"
 fi
 fi
 ;;
 downloading-src|src-downloaded)
 # This is only relevant when installing with --system,
 # otherwise the git repository is cloned into the
 # virtualenv directory
 if [-d "$SOURCEDIR"]
 then
 if ask_yn "Do you want to delete the downloaded source in

'$SOURCEDIR'?"
 then
 rm -rf "$SOURCEDIR"
 fi
 fi
 ;;
 esac

 abort $EX_TEMPFAIL "Script interrupted by the user"
}

trap script_interrupted SIGINT

print_usage () {
 cat <<__EOF__
Usage: $PROG [options]

This script will install Rally in your system.

Options:
$GREEN -h, --help $NO_COLOR Print this help text
$GREEN -v, --verbose $NO_COLOR Verbose mode
$GREEN -s, --system $NO_COLOR Install system-wide.
$GREEN -d, --target DIRECTORY$NO_COLOR Install Rally virtual environment into

DIRECTORY.
 (Default: $HOME/rally if not root).
$GREEN --url $NO_COLOR Git repository public URL to download Rally

from.
 This is useful when you have only installation script and

want to install Rally
 from custom repository.
 (Default: ${RALLY_GIT_URL}).
 (Ignored when you are already in git repository).
$GREEN --branch $NO_COLOR Git branch name name or git tag (Rally

release) to install.
 (Default: latest - master).
 (Ignored when you are already in git repository).
$GREEN -f, --overwrite $NO_COLOR Deprecated. Use -r instead.
$GREEN -r, --recreate $NO_COLOR Remove target directory if it already exist.
 If neither '-r' nor '-R' is set default behaviour is to ask.
$GREEN -R, --no-recreate $NO_COLOR Do not reemove target directory if it already

exist.
 If neither '-r' nor '-R' is set default behaviour is to ask.
$GREEN -y, --yes $NO_COLOR Do not ask for confirmation: assume a 'yes'

reply
 to every question.
$GREEN -D, --dbtype TYPE $NO_COLOR Select the database type. TYPE can be one of
 'sqlite', 'mysql', 'postgres'.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
91

 Default: sqlite
$GREEN --db-user USER $NO_COLOR Database user to use. Only used when --dbtype
 is either 'mysql' or 'postgres'.
$GREEN --db-password PASSWORD$NO_COLOR Password of the database user. Only used when
 --dbtype is either 'mysql' or 'postgres'.
$GREEN --db-host HOST $NO_COLOR Database host. Only used when --dbtype is
 either 'mysql' or 'postgres'
$GREEN --db-name NAME $NO_COLOR Name of the database. Only used when --dbtype

is
 either 'mysql' or 'postgres'
$GREEN -p, --python EXE $NO_COLOR The python interpreter to use. Default:

$PYTHON
$GREEN --develop $NO_COLOR Install Rally with editable source code try.
 (Default: false)
$GREEN --no-color $NO_COLOR Disable output coloring.

__EOF__
}

ask_yn PROMPT

Ask a Yes/no question preceded by PROMPT.
Set the env. variable REPLY to 'yes' or 'no'
and return 0 or 1 depending on the users'
answer.

ask_yn () {
 if [$ASKCONFIRMATION -eq 0]; then
 # assume 'yes'
 REPLY='yes'
 return 0
 fi
 while true; do
 read -p "$1 [yN] " REPLY
 case "$REPLY" in
 [Yy]*) REPLY='yes'; return 0 ;;
 [Nn]*|'') REPLY='no'; return 1 ;;
 *) echo "Please type 'y' (yes) or 'n' (no)." ;;
 esac
 done
}

have_command () {
 type "$1" >/dev/null 2>/dev/null
}

require_command () {
 if ! have_command "$1"; then
 abort 1 "Could not find required command '$1' in system PATH. Aborting."
 fi
}

require_python () {
 require_command "$PYTHON"
 if "$PYTHON" -c 'import sys; sys.exit(sys.version_info[:2] >= (2, 6))'
 then
 die $EX_UNAVAILABLE "Wrong version of python is installed" <<__EOF__

Rally requires Python version 2.6+. Unfortunately, we do not support
your version of python: $("$PYTHON" -V 2>&1 | sed 's/python//gi').

If a version of Python suitable for using Rally is present in some
non-standard location, you can specify it from the command line by
running this script again with option '--python' followed by the path of
the correct 'python' binary.

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
92

__EOF__
 fi
}

have_sw_package () {
 # instead of guessing which distribution this is, we check for the
 # package manager name as it basically identifies the distro
 if have_command dpkg; then
 (dpkg -l "$1" | egrep -q ^i) >/dev/null 2>/dev/null
 elif have_command rpm; then
 rpm -q "$1" >/dev/null 2>/dev/null
 fi
}

which_missing_packages () {
 local missing=''
 for pkgname in "$@"; do
 if have_sw_package "$pkgname"; then
 continue;
 else
 missing="$missing $pkgname"
 fi
 done
 echo "$missing"
}

Download command
download() {
 wget -nv $VERBOSE --no-check-certificate -O "$@";
}

download_from_pypi () {
 local pkg=$1
 local url=$(download - "$BASE_PIP_URL"/"$pkg"/ | sed -n '/source\/.\/'"$pkg"'.*gz/

{ s:.*href="\([^#"]*\)["#].*:\1:g; p; }' | sort | tail -1)
 if [-n "$url"]; then
 download "$(basename "$url")" "$BASE_PIP_URL"/"$pkg"/"$url"
 else
 die $EX_PROTOCOL "Package '$pkg' not found on PyPI!" <<__EOF__
Unable to download package '$pkg' from PyPI.
__EOF__
 fi
}

install_required_sw () {
 # instead of guessing which distribution this is, we check for the
 # package manager name as it basically identifies the distro
 local missing pkg_manager
 if have_command apt-get; then
 # Debian/Ubuntu
 missing=$(which_missing_packages build-essential libssl-dev libffi-dev python-

dev libxml2-dev libxslt1-dev libpq-dev git wget)

 if ["$ASKCONFIRMATION" -eq 0]; then
 pkg_manager="apt-get install --yes"
 else
 pkg_manager="apt-get install"
 fi
 elif have_command yum; then
 # RHEL/CentOS
 missing=$(which_missing_packages gcc libffi-devel python-devel openssl-devel

gmp-devel libxml2-devel libxslt-devel postgresql-devel git wget)

 if ["$ASKCONFIRMATION" -eq 0]; then
 pkg_manager="yum install -y"

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
93

 else
 pkg_manager="yum install"
 fi
 elif have_command zypper; then
 # SuSE
 missing=$(which_missing_packages gcc libffi48-devel python-devel openssl-devel

gmp-devel libxml2-devel libxslt-devel postgresql93-devel git wget)

 if ["$ASKCONFIRMATION" -eq 0]; then
 pkg_manager="zypper -n --no-gpg-checks --non-interactive install --auto-

agree-with-licenses"
 else
 pkg_manager="zypper install"
 fi
 else
 # MacOSX maybe?
 echo "Cannot determine what package manager this system has, so I cannot check

if requisite software is installed. I'm proceeding anyway, but you may run into
errors later."

 fi
 if ! have_command pip; then
 missing="$missing python-pip"
 fi

 if [-n "$missing"]; then
 cat <<__EOF__
The following software packages need to be installed
in order for Rally to work:$GREEN $missing
$NO_COLOR
__EOF__

 # If we are root
 if running_as_root; then
 cat <<__EOF__
In order to install the required software you would need to run as
'root' the following command:
$GREEN
 $pkg_manager $missing
$NO_COLOR
__EOF__
 # ask if we have to install it
 if ask_yn "Do you want me to install these packages for you?"; then
 # install
 if [["$missing" == *python-pip*]]; then
 missing=${missing//python-pip/}
 if ! $pkg_manager python-pip; then
 if ask_yn "Error installing python-pip. Install from external

source?"; then
 local pdir=$(mktemp -d)
 local getpip="$pdir/get-pip.py"
 download "$getpip"

https://raw.github.com/pypa/pip/master/contrib/get-pip.py
 if ! "$PYTHON" "$getpip"; then
 abort $EX_PROTOCOL "Error while installing python-pip

from external source."
 fi
 else
 abort $EX_TEMPFAIL \
 "Please install python-pip manually."
 fi
 fi
 fi
 if ! $pkg_manager $missing; then
 abort $EX_UNAVAILABLE "Error while installing $missing"
 fi

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
94

 # installation successful
 else # don't want to install the packages
 die $EX_UNAVAILABLE "missing software prerequisites" <<__EOF__
Please, install the required software before installing Rally

__EOF__
 fi
 else # Not running as root
 cat <<__EOF__
There is a small chance that the required software
is actually installed though we failed to detect it,
so you may choose to proceed with Rally installation
anyway. Be warned however, that continuing is very
likely to fail!

__EOF__
 if ask_yn "Proceed with installation anyway?"
 then
 echo "Proceeding with installation at your request... keep fingers

crossed!"
 else
 die $EX_UNAVAILABLE "missing software prerequisites" <<__EOF__
Please ask your system administrator to install the missing packages,
or, if you have root access, you can do that by running the following
command from the 'root' account:
$GREEN
 $pkg_manager $missing
$NO_COLOR
__EOF__
 fi
 fi
 fi

}

install_db_connector () {
 case $DBTYPE in
 mysql)
 pip install pymysql
 ;;
 postgres)
 pip install psycopg2
 ;;
 esac
}

install_virtualenv () {
 DESTDIR=$1

 if [-n "$VIRTUAL_ENV"]; then
 die $EX_SOFTWARE "Virtualenv already active" <<__EOF__
A virtual environment seems to be already active. This will cause
this script to FAIL.

Run 'deactivate', then run this script again.
__EOF__
 fi

 # Use the latest virtualenv that can use `.tar.gz` files
 VIRTUALENV_DST="$DESTDIR/virtualenv-191.py"
 mkdir -p "$DESTDIR"
 download "$VIRTUALENV_DST" "$VIRTUALENV_191_URL"
 "$PYTHON" "$VIRTUALENV_DST" $VERBOSE -p "$PYTHON" "$DESTDIR"

 . "$DESTDIR"/bin/activate

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
95

 # Recent versions of `pip` insist that setuptools>=0.8 is installed,
 # because they try to use the "wheel" format for any kind of package.
 # So we need to update setuptools, or `pip` will error out::
 #
 # Wheel installs require setuptools >= 0.8 for dist-info support.
 #
 if pip wheel --help 1>/dev/null 2>/dev/null; then
 (cd "$DESTDIR" && download_from_pypi setuptools)
 # setup.py must be called with `python', which will be the
 # python executable inside the virtualenv, not `$PYTHON',
 # which is the system python.
 if ! (cd "$DESTDIR" && tar -xzf setuptools-*.tar.gz && \
 cd setuptools-* && python setup.py install);
 then
 die $EX_SOFTWARE \
 "Failed to install the latest version of Python 'setuptools'"

<<__EOF__

The required Python package setuptools could not be installed.

__EOF__
 fi
 fi
}

setup_rally_configuration () {
 SRCDIR=$1
 ETCDIR=$RALLY_CONFIGURATION_DIR
 DBDIR=$RALLY_DATABASE_DIR

 [-d "$ETCDIR"] || mkdir -p "$ETCDIR"
 cp "$SRCDIR"/etc/rally/rally.conf.sample "$ETCDIR"/rally.conf

 [-d "$DBDIR"] || mkdir -p "$DBDIR"
 local CONF_TMPFILE=$(mktemp)
 sed "s|#connection *=.*|connection = \"$DBCONNSTRING\"|" "$ETCDIR"/rally.conf >

"$CONF_TMPFILE"
 cat "$CONF_TMPFILE" > "$ETCDIR"/rally.conf
 rm "$CONF_TMPFILE"
 rally-manage db recreate
}

rally_venv () {
 echo "Installing Rally virtualenv in directory '$VENVDIR' ..."
 CURRENT_ACTION="creating-venv"
 if ! install_virtualenv "$VENVDIR"; then
 die $EX_PROTOCOL "Unable to create a new virtualenv in '$VENVDIR':

'virtualenv.py' script exited with code $rc." <<__EOF__
The script was unable to create a valid virtual environment.
__EOF__
 fi
 CURRENT_ACTION="venv-created"
 rc=0
}

Main program ###
short_opts='d:vsyfrRhD:p:'
long_opts='target:,verbose,overwrite,recreate,no-

recreate,system,yes,dbtype:,python:,db-user:,db-password:,db-host:,db-
name:,help,url:,branch:,develop,no-color'

set +e
if ["x$(getopt -T)" = 'x']; then
 # GNU getopt

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
96

 args=$(getopt --name "$PROG" --shell sh -l "$long_opts" -o "$short_opts" -- "$@")
 if [$? -ne 0]; then
 abort 1 "Type '$PROG --help' to get usage information."
 fi
 # use 'eval' to remove getopt quoting
 eval set -- "$args"
else
 # old-style getopt, use compatibility syntax
 args=$(getopt "$short_opts" "$@")
 if [$? -ne 0]; then
 abort 1 "Type '$PROG -h' to get usage information."
 fi
 eval set -- "$args"
fi
set -e

Command line parsing
while true
do
 case "$1" in
 -d|--target)
 shift
 VENVDIR=$(readlink -m "$1")
 ;;
 -h|--help)
 print_usage
 exit $EX_OK
 ;;
 -v|--verbose)
 VERBOSE="-v"
 ;;
 -s|--system)
 USEVIRTUALENV="no"
 ;;
 -f|--overwrite)
 RECREATEDEST=yes
 ;;
 -r|--recreate)
 RECREATEDEST=yes
 ;;
 -R|--no-recreate)
 RECREATEDEST=no
 ;;
 -y|--yes)
 ASKCONFIRMATION=0
 ;;
 --url)
 shift
 RALLY_GIT_URL=$1
 ;;
 --branch)
 shift
 RALLY_GIT_BRANCH=$1
 ;;
 -D|--dbtype)
 shift
 DBTYPE=$1
 case $DBTYPE in
 sqlite|mysql|postgres);;
 *)
 print_usage | die $EX_USAGE \
 "An invalid option has been detected."
 ;;
 esac
 ;;

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
97

 --db-user)
 shift
 DBUSER=$1
 ;;
 --db-password)
 shift
 DBPASSWORD=$1
 ;;
 --db-host)
 shift
 DBHOST=$1
 ;;
 --db-name)
 shift
 DBNAME=$1
 ;;
 -p|--python)
 shift
 PYTHON=$1
 ;;
 --develop)
 DEVELOPMENT_MODE=true
 ;;
 --no-color)
 RED=""
 GREEN=""
 NO_COLOR=""
 ;;
 --)
 shift
 break
 ;;
 *)
 print_usage | die $EX_USAGE "An invalid option has been detected."
 esac
 shift
done

Post-processing ###

if ["$USEVIRTUALENV" == "no"] && [-n "$VENVDIR"]; then
 die $EX_USAGE "Ambiguous arguments" <<__EOF__
Option -d/--target can not be used with --system.
__EOF__
fi

if running_as_root; then
 if [-z "$VENVDIR"]; then
 USEVIRTUALENV='no'
 fi
else
 if ["$USEVIRTUALENV" == 'no']; then
 die $EX_USAGE "Insufficient privileges" <<__EOF__
$REDRoot permissions required in order to install system-wide.
As non-root user you may only install in virtualenv.$NO_COLOR
__EOF__
 fi
 if [-z "$VENVDIR"]; then
 VENVDIR="$HOME"/rally
 fi
fi

Fix RALLY_DATABASE_DIR if virtualenv is used
if ["$USEVIRTUALENV" = 'yes']
then

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
98

 RALLY_CONFIGURATION_DIR=$VENVDIR/etc/rally
 RALLY_DATABASE_DIR="$VENVDIR"/database
fi

if ["$DBTYPE" = 'sqlite']; then
 if ["${DBNAME:0:1}" = '/']; then
 DBFILE="$DBNAME"
 else
 DBFILE="${RALLY_DATABASE_DIR}/${DBNAME}"
 fi
 DBCONNSTRING="sqlite:///${DBFILE}"
else
 if [-z "$DBUSER" -o -z "$DBPASSWORD" -o -z "$DBHOST" -o -z "$DBNAME"]
 then
 die $EX_USAGE "Missing mandatory options" <<__EOF__
When specifying a database type different than 'sqlite', you also have
to specify the database name, host, and username and password of a
valid user with write access to the database.

Please, re-run the script with valid values for the options:
$GREEN
 --db-host
 --db-name
 --db-user
 --db-password$NO_COLOR
__EOF__
 fi
 DBAUTH="$DBUSER:$DBPASSWORD@$DBHOST"
 DBCONNSTRING="$DBTYPE://$DBAUTH/$DBNAME"
fi

check and install prerequisites
install_required_sw
require_python

Install virtualenv, if required
if ["$USEVIRTUALENV" = 'yes']; then
 if [-d "$VENVDIR"]
 then
 if [$RECREATEDEST = 'ask']; then
 echo "Destination directory '$VENVDIR' already exists."
 echo "I can wipe it out in order to make a new installation,"
 echo "but this means any files in that directory, and the ones"
 echo "underneath it will be deleted."
 echo

 if ! ask_yn "Do you want to wipe the installation directory '$VENVDIR'?"
 then
 echo "*Not* overwriting destination directory '$VENVDIR'."
 RECREATEDEST=no
 else
 RECREATEDEST=yes

 fi
 fi

 if [$RECREATEDEST = 'yes'];
 then
 echo "Removing directory $VENVDIR as requested."
 rm $VERBOSE -rf "$VENVDIR"
 rally_venv
 elif [$RECREATEDEST = 'no'];
 then
 echo "Using existing virtualenv at $VENVDIR..."

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
99

 . "$VENVDIR"/bin/activate
 else
 abort 66 "Internal error: unexpected value '$RECREATEDEST' for

RECREATEDEST."
 fi
 else
 rally_venv
 fi
fi

Install rally
ORIG_WD=$(pwd)

BASEDIR=$(dirname "$(readlink -e "$0")")

If we are inside the git repo, don't download it again.
if [-d "$BASEDIR"/.git]
then
 SOURCEDIR=$BASEDIR
 pushd $BASEDIR > /dev/null
 if find . -name '*.py[co]' -exec rm -f {} +
 then
 echo "Wiped python compiled files."
 else
 echo "Warning! Unable to wipe python compiled files"
 fi

 if ["$USEVIRTUALENV" = 'yes']
 then
 if ["$VENVDIR/src" != "$BASEDIR"]
 then
 SOURCEDIR="$VENVDIR"/src
 if [-d $SOURCEDIR]
 then
 rm -rf $SOURCEDIR
 fi
 mkdir $SOURCEDIR
 cp -r . $SOURCEDIR/
 fi
 fi
 popd > /dev/null
else
 if ["$USEVIRTUALENV" = 'yes']
 then
 SOURCEDIR="$VENVDIR"/src
 else
 SOURCEDIR="$ORIG_WD"/rally.git
 fi

 # Check if source directory is present
 if [-d "$SOURCEDIR"]
 then
 if [$RECREATEDEST != 'yes']
 then
 echo "Source directory '$SOURCEDIR' already exists."
 echo "I can wipe it out in order to make a new installation,"
 echo "but this means any files in that directory, and the ones"
 echo "underneath it will be deleted."
 echo
 if ! ask_yn "Do you want to wipe the source directory '$SOURCEDIR'?"
 then
 echo "*Not* overwriting destination directory '$SOURCEDIR'."
 else
 rm -rf $SOURCEDIR
 if [-d "$SOURCEDIR"/.git]

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
100

 then
 abort $EX_CANTCREAT "Unable to wipe source directory $SOURCEDIR"
 fi
 fi
 fi
 fi

 if ! [-d "$SOURCEDIR"/.git]
 then
 echo "Downloading Rally from subversion repository $RALLY_GIT_URL ..."
 CURRENT_ACTION="downloading-src"
 git clone "$RALLY_GIT_URL" -b "$RALLY_GIT_BRANCH" "$SOURCEDIR"
 if ! [-d $SOURCEDIR/.git]
 then
 abort $EX_CANTCREAT "Unable to download git repository"
 fi
 CURRENT_ACTION="src-downloaded"
 fi
fi

install_db_connector

Install rally
cd "$SOURCEDIR"
Get latest available pip and reset shell cache
pip install -i $BASE_PIP_URL -U 'pip'
hash -r

Install dependencies
pip install -i $BASE_PIP_URL pbr 'tox<=1.6.1'
Uninstall possible previous version
pip uninstall -y rally || true
Install rally
if [$DEVELOPMENT_MODE]
then
 pip install -i $BASE_PIP_URL -e .
else
 pip install -i $BASE_PIP_URL .
fi

cd "$ORIG_WD"

Post-installation
if ["$USEVIRTUALENV" = 'yes']
then
 # Fix bash_completion
 cat >> "$VENVDIR"/bin/activate <<__EOF__

. "$VENVDIR/etc/bash_completion.d/rally.bash_completion"
__EOF__

 setup_rally_configuration "$SOURCEDIR"

 if ! [$DEVELOPMENT_MODE]
 then
 SAMPLESDIR=$VENVDIR/samples
 mkdir -p $SAMPLESDIR
 cp -r $SOURCEDIR/samples/* $SAMPLESDIR/
 if ["$BASEDR" != "$SOURCEDIR"]
 then
 rm -rf $SOURCEDIR
 echo "Source directory is removed."
 else
 echo "Unabled to remove source directory, becaus this script was started

from it."

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
101

 fi
 else
 SAMPLESDIR=$SOURCEDIR/samples
 fi

 cat <<__EOF__
$GREEN==============================
Installation of Rally is done!
==============================
$NO_COLOR
In order to work with Rally you have to enable the virtual environment
with the command:

 . $VENVDIR/bin/activate

You need to run the above command on every new shell you open before
using Rally, but just once per session.

Information about your Rally installation:

 * Method:$GREEN virtualenv$NO_COLOR
 * Virtual Environment at:$GREEN $VENVDIR$NO_COLOR
 * Database at:$GREEN $RALLY_DATABASE_DIR$NO_COLOR
 * Configuration file at:$GREEN $RALLY_CONFIGURATION_DIR$NO_COLOR
 * Samples at:$GREEN $SAMPLESDIR$NO_COLOR

__EOF__
else
 setup_rally_configuration "$SOURCEDIR"

 if ! [$DEVELOPMENT_MODE]
 then
 SAMPLESDIR=/usr/share/rally/samples
 mkdir -p $SAMPLESDIR
 cp -r $SOURCEDIR/samples/* $SAMPLESDIR/
 if ["$BASEDIR" != "$SOURCEDIR"]
 then
 rm -rf $SOURCEDIR
 echo "Source directory is removed."
 else
 echo "Unabled to remove source directory, because this script was started

from it."

 fi
 else
 SAMPLESDIR=$SOURCEDIR/samples
 fi
 ln -s /usr/local/etc/bash_completion.d/rally.bash_completion

/etc/bash_completion.d/ 2> /dev/null || true
 if [-f "${DBFILE}"]; then
 chmod 777 "$DBFILE"
 fi

 cat <<__EOF__
$GREEN==============================
Installation of Rally is done!
==============================
$NO_COLOR
Rally is now installed in your system. Information about your Rally
installation:

 * Method:$GREEN system$NO_COLOR
 * Database at:$GREEN $RALLY_DATABASE_DIR$NO_COLOR
 * Configuration file at:$GREEN $RALLY_CONFIGURATION_DIR$NO_COLOR
 * Samples at:$GREEN $SAMPLESDIR$NO_COLOR

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
102

__EOF__
fi

File: install_robot.sh

#!/bin/bash
sudo apt-get update && sudo apt-get install -y build-essential fakeroot autoconf

libtool git automake autoconf gcc uml-utilities pkg-config linux-headers-`uname -r`
openvswitch-switch python-qt4 python-twisted-conch

virtualenv $HOME/robot_virtualenv
source $HOME/robot_virtualenv/bin/activate
$HOME/robot_virtualenv/bin/pip install paramiko simplejson requests robotframework

robotframework-sshlibrary -U robotframework-requests --upgrade robotframework-
httplibrary

deactivate
cd
git clone git://github.com/mininet/mininet
sudo ./mininet/util/install.sh -nf

6.3.2. OpenStack Rally/Tempest installation for OpenStack cloud
testing

Software	Prerequisities	

Install	Rally	

The easiest way to install Rally is by executing its installation script:

Or use curl:

By default, it will install Rally in a virtualenv in ~/rally when ran as standard user, or
install system wide when ran as root. You can install Rally in a venv by using the
option --target:

You can also install Rally system wide by running script as root and without --target

option:

Create	a	rally	deployment	from	your	environment	

apt-get install libssl-dev libffi-dev python-dev libxml2-dev
libxslt1-dev libpq-dev git

wget -q -O-
https://raw.githubusercontent.com/openstack/rally/master/install_ral
ly.sh | bash
curl
https://raw.githubusercontent.com/openstack/rally/master/install_ral
ly.sh | bash

./install_rally.sh --target /foo/bar

sudo ./install_rally.sh

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
103

To add your cloud to Rally:

Option A: Using an OpenRC file

After the installation is done, source the openrc file to start using OpenStack:

and then register a deployment to Rally:

Option B: Provide a configuration file

There is a second option here, to create a deployment by providing configuration
details of your OpenStack deployment in form of a json file.

Go to the rally directory and create a my-deployment.json file. The content of the file
should be like this:

Now, run ‘rally deployment create’ using the –file argument:

After adding your deployment, you can use `rally deployment list` to display a list of
all known deployments:

Check to see if Rally has been deployed correctly, and to determine which Rally

services are available:

Running	Rally	Scenarios	

First, choose a specific deployment to use by specifying the deployment id:

source ./admin-openrc.sh

rally deployment create --fromenv --name t-nova-cloud

{
 "type": "ExistingCloud",
 "auth_url": "http://example.net:5000/v2.0/",
 "region_name": "RegionOne",
 "endpoint_type": "public",
 "admin": {
 "username": "admin",
 "password": "myadminpass",
 "tenant_name": "demo"
 },
 "https_insecure": False,
 "https_cacert": "",
}

rally deployment create --filename=my-deployment.json --name=t-nova-
cloud

rally deployment list

rally deployment check
rally show images
rally show flavors
rally show networks

rally deployment use 8108584e-22b4-4e3c-b05c-d98dcdcb9f36

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
104

After selecting your deployment, you can run a rally sample scenario and get back the
results. Here is an example of running a neutron scenario testing the creation and
deletion of routers:

Install	Tempest	

You can use Rally to install and run Tempest tests. The command `rally-manage
tempest install` takes care of cloning the repository, generates the configuration file
for Tempest and installs the virtual environment with all dependencies:

Run	Tempest	

The command `rally verify start` launches auto-verification. This command expects
only one argument: the test set name. If this argument is not specified, smoke tests
(the default) will be executed. Output of this command is similar to the Tempest
output. Valid test set names include: full, smoke, baremetal, compute,
data_processing, identity, image, network, object_storage, orchestration, telemetry,
and volume. We have decided to run smoke tests of Tempest to verify correct
functionality of OpenStack at a high level:

View	Tempest	results	

You can list all tempest results with:

Detailed information for one execution can be derived with two commands:

The latter displays tracebacks for failed tests.

6.3.3. Robot Framework installation for OpenDaylight testing

We assume that Open vSwitch and OpenDaylight controller are already installed. To
set up a System Test environment you need to install Robot Framework and Mininet.

Mininet	Installation	

Install Mininet:

rally task start
/home/localadmin/rally/samples/tasks/scenarios/neutron/create_and_de
lete_routers.json

rally-manage tempest install

rally verify start --deployment t-nova-cloud
rally verify start smoke

rally verify list

rally verify show <UUID-of-deployment>
rally verify detailed <UUID>

git clone git://github.com/mininet/mininet
cd mininet/
git checkout -b 2.2.1 2.2.1
cd ./util
./install.sh -nf

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
105

Verify the Mininet installation with the following command:

To verify that Mininet works for OF1.3 run:

To test the version of used protocol by switch “s1”:

Robot	Framework	Installation	

To install Robot Framework run the following commands:

Verify the Robot Framework installation with the following command:

OpenDaylight	testing	

Clone the latest tests from the OpenDaylight Integration project:

To run all the tests in the base suite:

To run a particular test (e.g. switch_manager.txt):

sudo mn --test=pingall

Verify mininet works for OF1.3:
sudo mn --controller=remote,ip=10.125.136.52 --topo tree,2 --switch
ovsk,protocols=OpenFlow13

sudo ovs-ofctl -O OpenFlow13 show s1
sudo ovs-ofctl -O OpenFlow13 dump-flows s1

sudo apt-get install python-pip
sudo apt-get install python-paramiko
sudo pip install requests
sudo pip install robotframework
sudo pip install robotframework-sshlibrary
sudo pip install -U robotframework-requests
sudo pip install --upgrade robotframework-httplibrary

pybot --version

git clone https://github.com/yeasy/robot_tool.git

cd /home/localadmin/robot_tool/suites/base

pybot --variable topo_tree_level:2 switch_manager.txt

cd /home/localadmin/robot_tool/suites/

pybot --variable topo_tree_level:2 base

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
106

7. LIST OF ACRONYMS

Acronym Explanation

AoE ATA over Ethernet

APICv Advanced Programmable Interrupt Controller virtualization

AWS S3 Amazon Simple Storage Service

BIOS Basic Input/Output System

BKM Best Known Methods

CIFS Common Internet File System

CPE Customer Premises Equipment

COTS Commercial of the shelf

CRUD Create Read Update and Delete

DIMM Dual in-line Memory Module

FPGA Field-programmable gate array

GRE Generic Routing Encapsulation

IOMMU I/O memory management unit

HDFS Hadoop Distributed File System

LRDIMM Load Reduced DIMM

LXC Linux Containers

MD-SAL Model-driven Service Abstraction Layer

ML2 Modular Layer 2

MM Monitoring Manager

MVC Model-View-Controller

NIC Network Interface Controller

NFS Network File System

NTP Network Time Protocol

NUMA Non-Uniform Memory Access

QPI QuickPath Interconnect

ODL OpenDaylight

OVS Open vSwitch

PF Physical Function

PCIe PCI Express

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
107

POC Proof of Concept

PXE Preboot Execution Environment

RID PCI Express Requestor ID

RDIMM Registered Dual in-line Memory Module

RADOS Reliable Autonomic Distributed Object Store

REST Representational State Transfer

RPC Remote Procedure Call

SDK4SDN Software Development Kit for Software Defined Networking

SFC Service Function Chaining

SMB Server Message Block

SOC System on a Chip

SR-IOV Single Root I/O Virtualisation

TFTP Trivial File Transfer Protocol

UDIMM Unegistered Dual in-line Memory Module

vHG Virtual Home Gateway

VMDq Virtual Machine Device Queues

vPxaaS Virtual Proxy as a Service

vSA Virtual Security Appliance

vSBC Virtual Session Border Controller

vTC Virtual Transcoding Unit

VXLAN Virtual Extensible LAN

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
108

8. REFERENCES

[1] OpenStack Tempest [Online] http://docs.openstack.org/developer/tempest/

[2] OpenStack Tempest Github project [Online]
https://github.com/openstack/tempest

[3] OpenStack Rally [Online] https://wiki.openstack.org/wiki/Rally

[4] OpenStack Rally samples [Online]
https://github.com/openstack/rally/tree/master/samples/tasks/scenari
os

[5] Robot Framework [Online] http://robotframework.org/

[6] Keith Tenzer – OpenStack Multiple Node Configurations [Online]
http://keithtenzer.com/2015/01/26/openstack-multiple-node-
configurations/

[7] G. Gardikis (ed.) et al, “Monitoring and Maintenance – Interim”, T-NOVA
Deliverable D4.41, November 2015

[8] OpenStack Kilo hypervisor feature support matrix [Online]
http://docs.openstack.org/developer/nova/support-matrix.html

[9] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle, MoonGen: A Scriptable High-Speed Packet Generator, Available
http://arxiv.org/ftp/arxiv/papers/1410/1410.3322.pdf

[10] Ixia, Enabling and Testing Network Functions Virtualization (NFV) to Ensure
Carrier-Grade Delivery, White Paper, 915-0945-01 Rev. A, April 2014.

[11] G. Xilouris (ed.) et al, “Overall System Architecture and Interfaces”, T-NOVA
Deliverable D2.21, July 2014

[12] M. McGrath (ed.) et al, “Interim Report on Infrastructure Virtualisation and
Management”, T-NOVA Deliverable D4.01, December 2014

[13] M. McGrath (ed.) et al, “Infrastructure Virtualisation”, T-NOVA Deliverable D4.1,
September 2015

[14] L. Zuccaro (ed.) et al, “SDN Control Plane Interim”, T-NOVA Deliverable D4.21,
November 2015

[15] I. Trajkovska (ed.) et al, “SDK for SDN Interim”, T-NOVA Deliverable D4.31,
September 2015

[16] P. Paglierani (ed.) et al, “Network Functions Implementation and Testing”, T-
NOVA Deliverable D5.31, November 2015

[17] A. Gamelas (ed.) et al, “Specification of the Infrastructure Virtualisation,
Management and Orchestration - Interim”, T-NOVA Deliverable D2.31, September
2014

[18] Amazon Simple Storage Service [Online] https://aws.amazon.com/s3/

T-NOVA | Deliverable D4.51 Infrastructure Integration and Deployment

© T-NOVA Consortium
109

[19] Ceph Object Gateway S3 API [Online]
http://docs.ceph.com/docs/master/radosgw/s3/

[20] DPDK supported NICs [Online] http://dpdk.org/doc/nics

[21] J. Carapinha (ed.) et al, “System Use Cases and Requirements”, T-NOVA
Deliverable D4.1, June 2014

