

Deliverable D4.42

Monitoring and Maintenance -
Final

Editor G. Gardikis (SPH)

Contributors I. Koutras, G. Mavroudis, S. Costicoglou (SPH), G.
Dimosthenous, D. Christofi (PTL), M. Di Girolamo (HPE), K.
Karras (FINT), G. Xilouris, C. Sakkas, E. Trouva (NCSRD), M.
Arnaboldi (ITALTEL), P. Harsh (ZHAW), E. Markakis (TEIC)

Version 1.0

Date March 31th, 2016

Distribution PUBLIC (PU)

Ref. Ares(2016)2347437 - 20/05/2016

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
2

Executive Summary

This deliverable is the final report of the work carried out in Task 4.4 (Monitoring and
Maintenance). The task focuses on the implementation and integration of a monitoring
framework, able to extract, process and communicate monitoring information from
both physical and virtual nodes as well as VNFs at IVM level.

The first step is the consolidation of IVM requirements, as expressed in Deliverable
D2.32, in order to derive the specific requirements for the monitoring framework. The
latter include: monitoring of all NFVI domains (hypervisor/compute/storage/network)
as well as VNF applications; processing and generation of events and alarms;
communication of monitoring information as well as events/alarms to the Orchestrator
in a scalable manner.

In parallel, a comprehensive survey of cloud and network monitoring tools is
performed, in order to identify technologies which can be re-used for VIM monitoring.
Special emphasis is put on frameworks which integrate smoothly with Openstack, in
particular Openstack Telemetry/Ceilometer, Monasca, Gnocchi, Cyclops, Zabbix,
Nagios as well as relevant OPNFV projects (Doctor and Prediction). It seems that most
of the existing technological enablers for VIM monitoring, can only partially address all
the aforementioned challenges in a lightweight and resource-efficient manner.
Although most of them are indeed open and modular, they are already quite
complicated and resource-demanding and therefore further expanding them to cover
these needs would require considerable effort and would raise efficiency issues. We
thus propose a “clean-slate” approach towards NFV monitoring at VIM level, exploiting
only some basic enablers and adding only the required functionalities.

The T-NOVA VIM monitoring framework is introduced as a contribution towards this
direction. The framework is built around the VIM Monitoring Manager (VIM MM),
which is the key component devoted to monitoring at VIM level. The VIM MM exploits
OpenStack and OpenDaylight APIs to retrieve a set of metrics for both physical and
virtual nodes, which should be sufficient for most NFV handling requirements.
However, in order to gain a more detailed insight on the VNF status and operation, a
Monitoring Agent, based on the collectd framework, is also introduced in each VNF
VM, collecting a large variety of metrics at frequent intervals.

The VIM MM consists of the following components:

• Openstack and OpenDaylight connectors, used to periodically poll the two
platforms via their monitoring APIs.

• A VNF Application connector, which accepts data periodically dispatched by the
VNF application. These metrics are specific to each VNF.

• A time-series database (InfluxDB) for data persistence.

• An alarming/anomaly detection engine which utilises statistical methods based
on pre-defined but also dynamic thresholds in order to identify possible
anomalies in the NFV service and to produce the corresponding alarms/events
to be forwarded to the Orchestrator/VNFM.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
3

• A Graphical User Interface (GUI), based on Grafana, which visualizes the stored
metrics and presents them as live, time-series graphs.

• A Northbound API, which communicates selected metrics and events to the
Orchestrator and, in turn, to the VNF Manager(s). The provided REST API allows
metrics to be communicated in either push or pull mode.

The VIM monitoring framework is integrated, validated, evaluated and released as
open-source in the frame of the project.

It is concluded that, with the proposed approach, the goal of delivering an effective,
efficient and scalable monitoring solution for the T-NOVA IVM layer is achieved. The
developed solution is able to expose to the Orchestrator and to the Marketplace
enhanced awareness of the IVM status and resources, while at the same time keeping
the communication and signalling overhead at minimum.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
4

Table of Contents

1. INTRODUCTION .. 6	

2. REQUIREMENTS OVERVIEW AND CONSOLIDATION .. 7	

3. TECHNOLOGIES AND FRAMEWORKS FOR NFV MONITORING 9	

3.1. OPENSTACK TELEMETRY/CEILOMETER .. 9	
3.2. MONASCA .. 11	
3.3. GNOCCHI .. 13	
3.4. CYCLOPS ... 14	
3.5. ZABBIX .. 16	
3.6. NAGIOS ... 16	
3.7. OPNFV PROJECTS .. 17	

3.7.1. Doctor ... 17	
3.7.2. Prediction ... 18	

3.8. OPENDAYLIGHT MONITORING .. 19	
3.9. OTHER RELEVANT MONITORING FRAMEWORKS .. 19	
3.10. TECHNOLOGY SELECTION AND JUSTIFICATION ... 20	

4. THE T-NOVA VIM MONITORING FRAMEWORK ... 23	

4.1. ARCHITECTURE AND FUNCTIONAL ENTITIES ... 23	
4.2. MONITORING METRICS LIST ... 25	

4.2.1. Generic metrics .. 25	
4.2.2. VNF-specific metrics .. 27	

4.3. VNF MONITORING AGENT .. 31	
4.4. COLLECTION OF VNF-SPECIFIC METRICS ... 33	
4.5. MONITORING OF FPGA-BASED VNFS .. 34	
4.6. VIM MONITORING MANAGER ARCHITECTURE AND COMPONENTS .. 35	

4.6.1. VIM MM Architecture ... 35	
4.6.2. Interfaces to cloud and network controllers .. 38	
4.6.3. Northbound API to Orchestrator ... 39	
4.6.4. Time-series Database .. 42	
4.6.5. Anomaly detection ... 42	
4.6.6. Graphical user interface ... 47	

4.7. PACKAGING, DOCUMENTATION AND OPEN-SOURCE RELEASE .. 48	

5. VALIDATION ... 49	

5.1. FUNCTIONAL TESTING ... 49	
5.1.1. Metrics acquisition and integration test .. 49	
5.1.2. Northbound API tests .. 51	

5.2. BENCHMARKING .. 51	
5.3. ASSESSMENT OF ANOMALY DETECTION METHODS .. 53	

5.3.1. Linear regression ... 55	
5.3.2. Mahalanobis distance .. 56	

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
5

5.4. FULFILLMENT OF REQUIREMENTS .. 57	

6. CONCLUSIONS ... 59	

7. REFERENCES ... 60	

8. LIST OF ACRONYMS .. 62	

9. ANNEX I: SURVEY OF RELEVANT IT/NETWORK MONITORING TOOLS 63	

9.1.1. IT/Cloud monitoring .. 63	
9.1.2. Network Monitoring ... 66	

10. ANNEX II: VIM MONITORING MANAGER API REFERENCE 69	

10.1. MEASUREMENT-RELATED METHODS .. 69	
10.1.1. List available metrics ... 69	
10.1.2. Batch retrieval of latest measurements .. 70	
10.1.3. Retrieval of individual measurements ... 71	

10.2. SUBSCRIPTIONS ... 72	
10.2.1. List all the active subscriptions .. 72	
10.2.2. Subscribe to a measurement event .. 72	
10.2.3. Delete a specific subscription ... 73	
10.2.4. Get a specific subscription's details .. 73	

10.3. ALARM MANAGEMENT ... 74	
10.3.1. List all the active alarm triggers .. 74	
10.3.2. Create an alarm trigger ... 74	
10.3.3. Delete a specific alarm trigger ... 76	
10.3.4. Get a specific alarm trigger's details .. 76	

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium

6

1. INTRODUCTION

This deliverable is the final report of the work currently being carried out in Task 4.4
(Monitoring and Maintenance1). Task 4.4 focuses on the implementation and
integration of a monitoring framework, able to extract, process and communicate
monitoring information from both physical and virtual nodes as well as VNFs at IVM
level. In other words, the operational scope of the monitoring framework being
developed in Task 4.4 corresponds to the two lower layers of the T-NOVA architecture,
namely the NFVI and VIM. The metrics2 collected, along with alarms/events generated,
are in turn communicated to the upper layers (Orchestrator and Marketplace), so that
the latter have a comprehensive view of the status of the infrastructure resources as
well as the network services running on them.

The present document is structured as follows:

• Chapter 2 overviews and consolidates the T-NOVA system and IVM
requirements which directly or indirectly affect the monitoring framework.

• Chapter 3 presents a survey of the most prominent enabling technologies for
NFV monitoring, as well as relevant Openstack, OpenDaylight and OPNFV
projects and presents a justification for the technologies used.

• Chapter 4 presents the architecture and the functional blocks of the T-NOVA
VIM monitoring framework.

• Chapter 5 presents the testing and validation of the framework against specific
test cases.

• Finally, Chapter 6 concludes the document.

Compared to the interim version of this deliverable (D4.41), the present document
contains the following major updates:

• Addition of Section 4.6.5 (Anomaly detection) to reflect the new work done in
this field, as well as Sec. 5.3 (Assessment of anomaly detection methods)

• Addition of Annex II (VIM Monitoring Manager API Reference)

• Addition on Sec. 5.1.2 (Northbound API tests)

• Update on the mechanism of FPGA-based VNFs (Sec. 4.5)

• Significant update of VNF-specific metrics (Sec.4.4)

• Update on OPNFV Doctor and Prediction projects (Sec. 3.7)

• Update on the requirements fulfillment status (Sec. 5.4)

1 It must be clarified that although some kind of maintenance actions were in the initial scope of T4.4,
during the design and the specification phases of the project it was decided that all control operations are
to be decided by the Orchestrator and carried out mostly via the VNFM. Thus, maintenance actions, as a
reaction to monitored status data, are in scope of WP3.

2 It must be also clarified that Task 4.4 focuses on the collection of dynamic metrics, i.e. metrics which
change frequently in relation to resource usage. Static information reflecting the status and capabilities of
infrastructure, e.g. number of installed compute nodes, processing resources per node etc. are assumed
to be handled by Task 3.2 (Infrastructure Repository).

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
7

2. REQUIREMENTS OVERVIEW AND CONSOLIDATION

Deliverable D2.32 [D232] has defined and identified architectural concepts and
requirements for the IVM (NFVI and VIM) layers. The technical requirements which
drive the specification and development of the T-NOVA monitoring framework can be
directly derived/inherited by the specific IVM requirements. Table 1 below identifies
the IVM requirements that –either directly or indirectly- are associated to IVM
monitoring, focusing on NFVI-PoP resources and describes how each of these are
translated to a specific requirement for the monitoring framework.

Table 1. IVM requirements which affect the monitoring framework

IVM
Req.ID

IVM Requirement
Name

Requirement for the Monitoring Framework

VIM.1
Ability to handle
heterogeneous
physical resources

The MF must provide a vendor agnostic mechanism for
physical resource monitoring.

VIM.2

Ability to provision
virtual instances of
the infrastructure
resources

The MF must be able to report the status of virtualized
resources as well as from physical resources in order to
assist placement decisions

VIM.3 API Exposure
The MF must provide an interface to the Orchestrator
for the communication of monitoring metrics.

VIM.6

Translation of
references between
logical and physical
resource identifiers

The MF must re-use resource identifiers when linking
metrics to resources.

VIM.8
Control and
Monitoring

The MF must monitor in real time the physical network
infrastructure as well as the vNets instantiated on top
of it, providing measurements of the metrics relevant
to service level assurance.

VIM.9 Scalability
The MF must keep up with dynamic increase of the
number of resources to be monitored

VIM.18
Query API and
Monitoring

The MF must provide an API for communicating
metrics (in either push or pull mode)

VIM.21
Virtualised
Infrastructure
Metrics

The MF must collect performance and utilisation
metrics from the virtualised resources in the NFVI.

C.7
Compute Domain
Metrics

The MF must collect compute domain metrics.

C.12
Hardware accelerator
metrics

The MF must collect hardware accelerator metrics

H.1
Compute Domain
Metrics

The MF must collect compute metrics from the
Hypervisor.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
8

H.2
Network Domain
Metrics

The MF must collect network domain metrics from the
Hypervisor.

H.12
Alarm/Error
Publishing

The MF must process and dispatch alarms.

N.5 Usage monitoring
The MF must collect metrics from physical and virtual
networking devices.

N.8 SDN Management The MF must leverage SDN monitoring capabilities.

By consolidating the aforementioned requirements, it becomes clear that the basic
required functionalities of the IVM monitoring framework are as follows:

1. Collection of IT and networking metrics from virtual and physical devices of the
NFVI. It should be noted that at the IVM level, metrics correspond only to
physical and virtual nodes and are not associated to services since the VIM does
not have knowledge of the end-to-end Network Service. Metrics are mapped
to Network Services at Orchestrator level;

2. Processing and generation of events and alarms;

3. Communication of monitoring information and events/alarms to the
Orchestrator in a scalable manner;

The following chapter overviews several technological frameworks for NFV monitoring
which could be partially exploited towards fulfilling these requirements.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
9

3. TECHNOLOGIES AND FRAMEWORKS FOR NFV

MONITORING

This chapter presents a brief overview of the most relevant monitoring frameworks
which can be applied to the NFV domain. This section mostly focuses on monitoring
tools which provide a satisfactory degree of integration with OpenStack and can be
extended for NFV monitoring; a more comprehensive survey of other, most generic IT
and network/SDN monitoring tools can be found in Annex 2.

3.1. OpenStack Telemetry/Ceilometer

The goal of the Telemetry project within OpenStack [Telemetry], is to reliably collect
measurements of the utilisation of physical and virtual resources, comprising deployed
clouds, store such data for offline usage, and trigger actions on the occurrence of given
events. It includes three different services (Aodh, Ceilometer and Gnocchi – see Sec.
3.3), providing the different stages of the data monitoring functional chain: Aodh
delivers alarming functions, Ceilometer deals with data collection, Gnocchi provides a
time-series database with resource indexing.

The actual data collection service in the Telemetry project is Ceilometer. Ceilometer is
an OpenStack service which performs collection of data, normalizes and duly
transforms them, making them available to other services (starting from the Telemetry
ones). Ceilometer efficiently collects the metering data of virtual machines (VMs) and
the computing hosts (Nova), the network, the Operating System images (Glance), the
disk volumes (Cinder), the identities (Keystone), the object storage (Swift), the
orchestration (Heat), the energy consumption (Kwapi) and also user-defined meters.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
10

Figure 1. OpenStack Telemetry/Ceilometer architecture

Figure 1 depicts an overall summary of the Telemetry/Ceilometer logical architecture.
Each of the Telemetry services are designed to scale horizontally. Additional workers
and nodes can be added depending on the expected load. The system consists of the
following basic components:

• Polling agents; these are:
o compute agents (ceilometer-agent-compute): they run on each

compute node and poll for resource utilisation statistics;
o central agents (ceilometer-agent-central): it runs on one or more central

management servers to poll for resource utilisation statistics for
resources not tied to instances or compute nodes;

• Notification agents; these run on one or more central management servers to
monitor the message queues (for notifications and for metering data coming
from the agent);

• Collectors (ceilometer-collector): designed to gather and record event and
metering data created by notification and polling agents.

• Databases, containing Events, Meters and Alarms; these are capable of handling
concurrent writes (from one or more collector instances) and reads (from the
API module);

• An Alarm Evaluator and Notifier (ceilometer-alarm-notifier): Runs on one or
more central management servers to allow configuration of alarms based on
threshold evaluation for a collection of samples. This functionality is now
undertaken by the Aodh module, as will be described later.

• An API module (ceilometer-api): Runs on one or more central management
servers to provide access to the data from the data store.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
11

Ceilometer offers two independent ways to collect metering data, allowing easy
integration of any Openstack-related project which needs to be monitored:

• By listening to events generated on the notification bus, transformed into
Ceilometer samples. This is the preferred method of data collection, since it is
the most simple and straightforward. It requires, however, that the monitored
entity uses the bus to publish events, which may not be the case for all
OpenStack-related projects.

• By polling information via the APIs of monitored components at regular
intervals to collect information. The data are usually stored in a database and
are available through the Ceilometer REST API. This method is least preferred
due to the inherent difficulty in making such a component resilient.

Each meter measures a particular aspect of resource usage or on-going performance.
All meters have a string name, a unit of measurement, and a type indicating whether
values are monotonically increasing (cumulative), interpreted as a change from the
previous value (delta), or a standalone value relating only to the current duration
(gauge). Samples are individual data points associated with a particular meter and have
a timestamp and a value. The aggregation of a set of samples for a specified duration
(start-end time) is called a statistic. Each statistic has also an associated time period,
which is a repeating interval of time that the samples are grouped for aggregation.
Currently there are five aggregation functions implemented: count, max, min, avg and
sum.

Another feature of Telemetry is alarming, which used to be internal to Ceilometer, but
moved to a separate project, Aodh [Aodh]. An alarm is a set of rules defining a monitor
of a statistic that will trigger when a threshold condition is breached. An alarm can be
set on a single meter, or on a combination of meters and can have three states:

• alarm (the threshold condition is breached)
• ok (the threshold condition is not met)
• insufficient data (not enough data has been gathered to determine if the alarm

should fire or not).

The transition to these states can have an associated action, which is either writing to
a log file or an http post to a URL. The concept of meta-alarm is also supported; meta-
alarms aggregate over the current state of a set of other basic alarms combined via a
logical operator (AND/OR). For example, a meta-alarm could be triggered when three
basic alarms become active at the same time.

3.2. Monasca

Monasca [Monasca] is an OpenStack project, aiming at developing an open-source
multi-tenant, highly scalable, performant, fault-tolerant monitoring-as-a-service
solution, which is integrated within the OpenStack framework. Monasca uses a REST
API for high-speed metrics processing and querying, and has a streaming alarm and
notification engine. Monasca is being developed by HPE, Rackspace and IBM.

Monasca is conceived to scale up to service provider level of metrics throughput (in
the order of 100,000 metrics/sec). The Monasca architecture is natively designed to

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
12

support scaling, performance and high-availability. Retention period of historical data
is not less than one year. Storage of metrics values, and metrics database query, use
an HTTP REST API. Monasca is multi-tenant, and exploits OpenStack authentication
mechanisms (Keystone) to control submission and access to metrics.

The metric definition model consists of a (key, value) pair named dimension. Basic
threshold-based real-time alarms are available on metrics. Furthermore, complex alarm
events can be defined end instrumented, based on a simple description grammar with
specific expressions and operators.

Monasca agents embed a number of built-in system and service level checks, plus
Nagios checks and statsd.

Figure 2. Monasca architecture

Monasca agents are Python based, and consist of several sub-components and
supports system metrics, such as cpu utilization and available memory, Nagios plugins,
statsd and many built-in checks for services such as MySQL, RabbitMQ, and many
others.

The REST API provides an exhaustive set of functions:

• Real-time storage and querying of large amounts of metrics;
• Statistics query for metrics;
• Alarm definition management (create, delete, update);
• Query and cleanup of historical metrics database;
• Compound alarms definition;
• Alarm severity ranking;
• Full storage of alarm transition pattern;

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
13

• Management of alarm notification mechanisms;
• Java and Python API available

Published metrics and events are pushed into a Kafka3 based message queue, from
which a component named Persister pulls them out and stores them into the metrics
database (HPE Vertica, InfluxDB and Cassandra are supported). Other engine
components look after compound metric creation, predictive metrics, notification, and
alarm threshold management.

Monasca also includes a multi-publisher plugin for OpenStack ceilometer, able to
convert and publish metric samples to the Monitoring API, plus an OpenStack Horizon
dashboard as user interface.

Monasca features like real-time alarm processing, integration with OpenStack and
scalability/extendibility make it a monitoring system potentially well suitable to be
employed within NFV platforms.

3.3. Gnocchi

Gnocchi [Gnocchi] s a project incubated under the OpenStack Telemetry program
umbrella, addressing the development of a TDBaaS (Time Series Database as a Service)
framework. Its paramount goal is to fix the significant performance issues experienced
by Ceilometer in the time series data collection and storage. The root cause of such
issues is the highly generic nature of Ceilometer’s data model, which gave the needed
design flexibility in the initial OpenStack releases, but imposed a performance penalty
which is no longer deemed acceptable (storing a large amount of metrics on several
weeks makes substantially collapse the storage backend). The current data model on
one hand encompasses many options never appearing in real user requests, on the
other hand doesn't handle use cases which are overcomplex or too slow to be run.
From the aforementioned remarks, the idea of a brand new solution for metrics sample
collection was ignited, which brought to the inception of Gnocchi.

Diving deeper into the problem, whereas event collection model in Ceilometer is pretty
robust, metrics collection and storage suffers the aforementioned performance flaws.
The root of the problem is in the free form metadata associated to each metric, storing
a bevy of redundant information which is hard to efficiently query. Gnocchi proposes
a faster and scalable pair of time series storage/resource indexer, with a REST API
returning an entity (the measured thing) and a resource (information metadata).
Differently from Ceilometer, in Gnocchi data stores are separated for metrics and
metadata.

3 http://kafka.apache.org/

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
14

Figure 3. Gnocchi architecture

The storage driver (abstracted) is in charge of metrics storage. Aggregated metrics are
actually pre-aggregated before the storage operation occurs, based on the user
request at entity time creation. The canonical implementation of time series data (TSD)
storage uses Pandas and Swift.

The indexer driver (abstracted as well) uses SQLAlchemy, to exploit the speed and
indexable nature of SQL, very well fitting indexing storage. In Gnocchi vision, there will
be predefined resource schemas (image, instance,…) to improve indexing and querying
at the maximum extent.

Additional functional updates envisioned in Gnocchi include configurable per time-
series retention policies.

In future perspective, Gnocchi API should be transitioned to Ceilometer API V3, and its
TSDB interaction fully moved into the Ceilometer collector. In an initial phase, Gnocchi
should be integrated as self-standing code inside the Ceilometer workflow (via
Ceilometer Database Dispatcher).

3.4. Cyclops

Cyclops [Cyclops] is a generic rating-charging-billing (rcb) framework that allows
arbitrary pricing and billing strategies to be implemented. The business rules are
registered and processed inside of a Drools BPM rule engine [Drools]. The framework
itself is organized as a set of micro-services with clear separation of functionalities and
communication among them carried over well defined RESTful interfaces.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
15

Figure 4. Cyclops architecture

Figure 4 above shows the key micro services and modules that make up the Cyclops
framework. A brief explanation of each module is described next:

• udr µ-service: this service is responsible of metric collection for natively
supported cloud platforms, currently OpenStack and CloudStack are supported.
The metric collection drivers for other popular frameworks including PaaS as
public cloud vendors are in the plans. It also persists the collected metrics data
into TSDB (InfluxDB 0.9.x data store). For non-natively supported applications,
it processes the metrics pushed into the messaging queues as and when they
arrive thus enabling the framework to support all sorts of composite and
converged billing needs.

• rc µ-service: the rating and charging service processes the udr-records and
transforms them into charge-records with cost details. The rating part of the
service generates / fetches the rate value for identified services or resources
that form in the product portfolio of any provider. The rating rules are
processed through drools BPM rules engine, enabling providers to activate
dynamic rating and maximize the revenue potential of their portfolio while
maintaining consumer satisfaction and loyalty.

• billing µ-service: as the name suggests, this service processes and aggregates
all the charge records created by rc µ-service; furthermore it processes any SLA
violations and associated penalties for a specified time period. This service also
processes any pending service credits, discounts and seasonal offers and
applicable regional tax rates before generating the final bill document.

• Auth-n/z µ-service: Cyclops micro-services validate API requests using secure
tokens.

• Messaging service: this feature allows external non-natively supported
applications and platforms to send in their usage metrics data for further
processing by the Cyclops framework.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
16

• Dashboard: this module provides a rich graphical user interface for customers
to manage and view their usage charts and bills, and allows admins to control
various parameters of the framework and also manage the pricing and billing
rules.

As the framework is implemented as a distributed platform, the health status
monitoring of various service is critical. For this, currently Sensu [Sensu] is used to track
the aliveness of each service. Sensu could also be used to manage the data collection
tasks scheduling and triggering. Although the framework designers are migrating
towards a self-contained scheduler for their data collection and processing
requirements. The usage metrics collection depends heavily on the granularity of the
service monitoring implementation.

3.5. Zabbix

Zabbix [Zabbix] is an open source, general-purpose, enterprise-class network and
application monitoring tool that can be customised for use with OpenStack. It can be
used to automatically collect and parse data from monitored cloud resources. It also
provides distributed monitoring with centralised Web administration, a high level of
performance and capacity, JMX monitoring, SLAs and ITIL KPI metrics on reporting, as
well as agent-less monitoring. An OpenStack Telemetry plugin for Zabbix is already
available.

Using Zabbix the administrator can monitor servers, network devices and applications,
gathering statistics and performance data. Monitoring performance indicators such as
CPU, memory, network, disk space and processes can be supported through an agent,
which is available as a native process for Linux, UNIX and Windows platforms. For the
OpenStack infrastructure it can currently monitor:

● Core OpenStack services: Nova, Keystone, Neutron, Ceilometer (OpenStack
Telemetry), Horizon, Cinder, Glance, Swift Object Storage, and OVS (Open
vSwitch)

● Core infrastructure components: MySQL, RabbitMQ, HAProxy, memchached,
and libvirtd.

● Operating system statistics: Disk I/O, CPU load, free RAM, etc.
Zabbix is not limited to OpenStack cloud infrastructures: it can be used to monitor
VMware vCenter and vSphere installations for various VMware hypervisor and virtual
machine properties and statistics.

3.6. Nagios

Nagios is an open source tool that provides monitoring and reporting for network
services and host resources [Nagios]. The entire suite is based on the open-source
Nagios Core which provides monitoring of all IT infrastructure components - including
applications, services, operating systems, network protocols, system metrics, and
network infrastructure. Nagios does not come as a one-size-fits-all monitoring system
with thousands of monitoring agents and monitoring functions; it is rather a small,

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
17

lightweight system reduced to the bare essential of monitoring. It is also very flexible
since it makes use of plugins in order to setup its monitoring environment.

Nagios Fusion enables administrators to gain insight into the health of the
organisation's entire network through a centralised view of their monitored
infrastructure. In addition, they can automate the response to various incidents
through the usage of Nagios Incident Manager and Reactor. The Network Analyser,
which is part of the suite, provides an extensive view of all network traffic sources and
potential security threats allowing administrators to quickly gather high-level
information regarding the status and utilisation of the network as well as detailed data
for complete and thorough network analysis. All monitoring information is stored in
the Log Server that provides monitoring of all mission-critical infrastructure
components – including applications, services, operating systems, network protocols,
systems metrics, and network infrastructure.

Nagios and Telemetry are quite complementary products which can be used in an
integrated solution. The ICCLab, which operates within the ZHAW’s Institute of Applied
Information Technology, has developed a Nagios plugin which can be used to capture
metrics through the Telemetry API, thus allowing Nagios to monitor VMs inside
OpenStack. Finally, the Telemetry plugin can be used to define thresholds and triggers
in the Nagios alerting system.

3.7. OPNFV Projects

3.7.1. Doctor

Doctor (Fault Management) [Doctor] is an active OPNFV requirements project. Started
December 2014, its aim is to build fault management and maintenance framework for
high availability of Network Services on top of virtualized infrastructure. The project is
supported by engineers from several major telecom vendors as well as telco providers.

So far, the project has produced a report deliverable which was recently released
(October 2015) [DoctorDel]. This report identifies use cases and requirements for an
NFV fault detection and management system. In specific, the following requirements
are identified for a VIM-layer monitoring system:

• Monitoring of resources

• Detection of unavailability and failures

• Correlation and Cognition (especially correlation of faults among resources)

• Notification by means of alarms

• Fencing, i.e. isolation of a faulty resource

• Recovery actions

Doctor has also specified an architectural blueprint for the fault management
functional blocks within the NFV infrastructure, as shown in Figure 5. In particular, it is
envisaged that certain functionalities for control, monitoring, notification and
inspection need to be included in the VIM.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
18

Figure 5. Doctor functional blocks

As a first implementation proposal, the report proposes to re-use and integrate some
off-the shelf solutions for these functionalities, namely Ceilometer (see Sec. 3.1) for the
Notifier, Zabbix (see Sec. 3.5) for the Monitor and Monasca (see Sec. 3.2) for the
Inspector.

However, it is evident that integrating these frameworks results in considerable
overlaps, since many functionalities are present in all of them (e.g. metrics collection,
storage, alarming etc.) and thus may produce an unnecessarily complex and
overprovisioned system. In addition, some key requirements mentioned in the
document, such as correlation and root cause detection are not covered by the present
versions of these frameworks.

The first version of the Doctor platform has been included in the Brahmaputra release
of OPNFV (February 2016).

3.7.2. Prediction

Data Collection for Failure Prediction [Prediction] is another OPNFV project, aiming to
implement a system for predicting failures. Notifications produced can be dispatched
to the fault management system (see previous section), so that the latter can
proactively respond to faults, before these actually happen.

The scope of the project is very promising indeed and also very relevant. However, it is
still at a very early stage. Recently, it released a document [Pred-del] in which some
early gap analysis is performed with regard to existing monitoring frameworks.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
19

3.8. OpenDaylight monitoring

Since OpenDaylight has been selected as the SDN network controller for T-NOVA, it is
relevant to investigate the monitoring capabilities it provides.

The OpenDaylight Statistics Manager module, implements statistics collection, sending
statistics requests to all enabled nodes (managed switches) and storing responses in
the statistics operational subtree. The Statistics Manager collects information on the
following:

• node-connector (switch port)
• flow
• meter
• table
• group statistics

In the Hydrogen and Helium releases, monitoring metrics were exposed via the
northbound Statistics REST API.

The Lithium release introduces the Model-Driven Service Abstraction Layer (MDSAL),
which stores status-related data in the form of a document object model (DOM),
known as a “data tree.” MDSAL 's RESTful interfaces for configuration and monitoring
are designed based on RESTCONF protocol. These interfaces are generated
dynamically at runtime based on YANG models that define its data.

3.9. Other relevant monitoring frameworks

Apart from the frameworks surveyed in the present sections, there exists a large
number of IT/Cloud and Network/SDN monitoring tools, many of them open-source,
which could be re-used as components of an NFV monitoring platform. Some of the
most popular tools are presented in Figure 6, and are briefly overviewed in Annex I.

Figure 6. Other relevant Cloud/SDN Monitoring frameworks

While most of these frameworks require considerable effort in order to be adapted to
suit the needs of NFV monitoring, there are certain components which are quite mature

Shinken Icinga Zenoss Ganglia

StackTach Healthmon SeaLion MonALISA

collectd,	
StatsD	and	
Graphite

vSphere Amazon	
CloudWatch OpenNetMon

Payless DCM Flowsense

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
20

and can be reused. For example, in T-NOVA, the collectd module (the core version) is
adopted as monitoring agent for VNFs and compute nodes, as will be described in the
next section.

3.10. Technology selection and justification

With regard to the basic functionalities identified in Section 2 as requirements for VIM
monitoring, metrics collection (Functionality 1) can already be achieved by re-using a
number of the pre-existing monitoring mechanisms for virtualised infrastructures, as
surveyed in the following section. Apart from selecting and properly integrating the
appropriate technologies and possibly selecting the appropriate set of metrics, limited
progress beyond the state-of-the-art should be expected in this field.

On the other hand, the actual challenges and envisaged innovation of the monitoring
framework are seen to be associated with Functionalities 2 and 3. Specifically, the
following challenges have been identified:

• Events and alarms generation: Moving beyond the typical approach, which is
found in most monitoring systems and is based on static thresholds (i.e.
generate an alarm when a metric has crossed a pre-defined threshold) the aim
is to study and adopt more dynamic methods for fault detection. Such methods
should be based on statistical methods and self-learning approaches,
identifying outliers in system behaviour and triggering alarms reactively or even
proactively (e.g. before the actual fault has occurred). This anomaly detection
procedure, in the context of T-NOVA, can clearly benefit from the fact that the
monitored services are composed of VNFs rather than generic VMs. As virtual
appliances dedicated to traffic processing, VNFs are expected to expose some
common characteristics (e.g. the CPU load is expected to proportionally rise,
not necessarily linearly, with the increase of processed traffic). A significant
deviation from this correlation could, for example, indicate a potential
malfunction.

• Communication with the Orchestrator: With this functionality, scalability is the
key requirement that needs to be fulfilled. In an operational environment, the
Orchestrator is expected to manage tens or hundreds of NFVI-PoPs (or even
thousands, if micro-data centres distributed in the access network are
envisaged). It is thus impossible for the Orchestrator to handle the full set of
metrics from all managed physical and virtual nodes. The challenge is to
optimise the communication of monitoring information to the Orchestrator so
that only necessary information is transmitted. This optimisation does not only
imply fine-tuning of polling frequency, careful definition of a minimal set of
metrics or proper design of the communication protocol, but also requires an
intelligent aggregation procedure at VIM level. This procedure should achieve
the grouping/aggregation of various metrics from different parts of the
infrastructure as well as of alarms, and the dynamic identification of the
information that is of actual value to the Orchestrator.

To achieve the aforementioned innovations, Task 4.4 work plan involves in its initial
stage the establishment of a baseline framework which fulfils the basic functionalities

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
21

by collecting and communicating metrics and, as a second step, the study, design and
incorporation of innovative techniques for anomaly detection and metrics aggregation.

There are many alternative ways towards this direction, whose assessment is
overviewed in the following table.

Table 2. Assessment of various implementation choices for VIM monitoring

Implementation choice for
T-NOVA VIM monitoring

Pros Cons

Integration of required
functionalities (push meters,
statistical processing,
integration of guest OS and
VNF metrics) into Ceilometer
and Aodh.

Direct integration into
Openstack, contribution to
a mainstream project. Takes
advantage of Ceilometer’s
open and modular
architecture.

Will require intrusive
interventions into
Ceilometer. Solution will
be Openstack-specific and
also version-specific. Also,
Ceilometer suffers specific
scalability issues.

Adoption of Monasca, with
some extensions (push
meters, statistical processing,
integration of guest OS and
VNF metrics)

Monasca is a complete
monitoring system with
remarkable scalability and
also quite mature. Its REST
API already provides an
exhaustive set of functions.
Monasca has an open and
modular architecture.

Monasca is quite complex
and resource-demanding,
involving many
capabilities which are not
required in T-NOVA, given
that metrics are also
processed at Orchestrator.
Requires a special
monitoring agent
(monasca-agent).

Extension of Gnocchi (as a
TDBaaS framework) with all
necessary communication
and processing tools

Gnocchi is quite mature
and advancing rapidly, is
also well integrated with
Ceilometer to provide
scalability.

Will need to implement
several extensions for
communication and
processing, since Gnocchi
mainly provides a storage
solution.

Extension of Cyclops with all
necessary communication
and processing tools

Quite mature solution,
know-how available within
T-NOVA consortium
(Cyclops is developed by
ZHAW)

Will require extensive
modification since
Cyclops is mostly a rating-
charging-billing platform.

Extension of Nagios or Zabbix
with all necessary
communication and
processing tools

Both are well-proven
monitoring frameworks and
provide support for
multiple systems and
applications

Nagios and Zabbix
already involve many
features and capabilities
which are not needed in
T-NOVA, and thus their
extension would be
inefficient, also requiring
several modifications.

Integration of specific
enablers (agent, time-series

Will result in a tailored
solution for T-NOVA needs.

Some functionalities (such
as alarming) will have to

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
22

DB, existing APIs) into a new
framework.

Lightweight and directly
configurable.

be redeveloped from
scratch.

It seems that most of the existing technological enablers for VIM monitoring, as
previously overviewed, can only partially address all the aforementioned challenges in
a lightweight and resource-efficient manner. Although most of them are indeed open
and modular (such as Monasca), they are already quite complicated and resource-
demanding and therefore further expanding them to cover these needs would require
considerable effort and would raise efficiency issues. We argue that a “clean-slate”
approach towards NFV monitoring at VIM level, exploiting some basic enablers and
adding only the required functionalities, is a more optimized approach.

The VIM monitoring framework, which we describe in the next section, aims to provide
a lightweight and NFV-tailored contribution towards this direction.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
23

4. THE T-NOVA VIM MONITORING FRAMEWORK

4.1. Architecture and functional entities

The overall architecture of the T-NOVA VIM monitoring framework can be defined by
taking into account the technical requirements, as identified in Section 2, as well as the
technical choices made for the NFVI and VIM infrastructure. The specification phase
has concluded that the OpenStack platform will be used for the control of the
virtualised IT infrastructure, as well as the OpenDaylight controller for the management
of the SDN network elements.

In this context, it is proper to leverage the OpenDaylight (Statistics API) and OpenStack
(Telemetry API) capabilities for collecting metrics, rather than directly polling the
network elements and the hypervisors at NFVI layer, respectively.

Theoretically, it would be possible for the Orchestrator to directly poll the cloud and
network controllers of each NFVI-PoP and retrieve resource metrics respectively. This
approach, although simple and straightforward, would only poorly address the
challenges outlined in Section 3.10 and in particularly would introduce significant
scalability issues on the Orchestrator side.

Thus, it seems appropriate to introduce a mediator/processing entity at the VIM level
to collect, consolidate, process metrics and communicate them to the Orchestrator. We
call this entity VIM Monitoring Manager (VIM MM), as a stand-alone software
component. As justified in Sec. 3.10, VIM MM is re-designed and developed in T-NOVA
as a novel component, without depending on the modification of existing monitoring
frameworks.

With regard to the collection of monitoring information, OpenStack and OpenDaylight
already provide a rich set of metrics for both physical and virtual nodes, which should
be sufficient for most T-NOVA requirements. However, in order to gain a more detailed
insight on the VNF and the NFVI status and operation, we consider advisable to also
collect a rich set of metrics from the guest OS of the VNF container (VM) - including
information which cannot be obtained via the hypervisor – as well as the compute node
itself.

For this purpose, we introduce an additional VNF Monitoring Agent, deployed within
the VNF VMs. The agent intends to augment VNF monitoring capabilities, by collecting
a large variety of metrics, as declared in the VNF Descriptor document (VNFD) of each
VNF and also at a higher temporal resolution compared to Ceilometer.

The monitoring agent can be either pre-installed in the VNF image or installed upon
VNF deployment. It must be noted, however, that in some cases the presence of an
agent might not be desirable by the VNF developer for several reasons (e.g. resource
constraints, incompatibilities etc.). In this case, the system can also work in agent-less
mode, solely relying on Ceilometer data for VNFs which do not have an agent installed.

In addition to collecting generic VNF and infrastructure metrics, the VIM MM is also
expected to retrieve VNF-specific metrics from the VNF application itself. For this
purpose, we have developed specific lightweight libraries (currently in Python, but

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
24

planned to expand to other languages), which can be used by the VNF developer to
dispatch application-specific metrics to the VIM MM.

Although traditionally the VNF metrics are supposed to be directly sent to the VNF
Manager, for the sake of simplicity we chose to exploit the already established VIM
monitoring framework to collect and forward VNF metrics to the VNF Manager through
the VIM, rather than implement a second parallel “monitoring channel”.

Based on the design choices, outlined above, the architecture of the T-NOVA VIM
monitoring framework can be defined as shown in Figure 7 below.

Figure 7. Overview of the VIM monitoring modules

The VIM MM aggregates metrics by polling the cloud and network controllers and by
receiving additional information from the monitoring agents as well as the VNF
applications, consolidates these metrics, produces events/alarms if appropriate and
communicates them to the Orchestrator. For the sake of scalability and efficiency, it
was decided that metrics will be pushed by the VIM MM to the Orchestrator, rather
than being polled by the latter. Moreover, the process of metrics
collection/communication and event generation can be partially configured by the
Orchestrator via a relevant configuration service to be exposed by the VIM MM. More
details on the introduced modules can be found in the sections to follow.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
25

4.2. Monitoring metrics list

4.2.1. Generic metrics

A crucial task when defining the T-NOVA approach for monitoring is the identification
of metrics that need to be collected from the virtualised infrastructure. Although the
list of metrics that are available via the existing controllers can be quite extensive, it is
necessary, for the sake of scalability and efficiency, to restrict this list to include only
the information that is actually needed for the implementation of the T-NOVA Use
Cases, as defined in Deliverable D2.1. Table 3 belows summarises a list of such metrics,
which are “generic” in the sense that they are not VNF application-specific4. This list is
meant to be continuously updated throughout the project in order to align with the
technical capabilities and requirements of the components under development and
the use cases which are implemented.

Table 3. List of generic monitoring metrics

Domain Metric Units Origin Relevant UCs

VM/VNF CPU utilisation (user &
system)

 % VNF
Mon.Agent

UC3, UC4

VM/VNF Free space in root FS MB VNF
Mon.Agent

UC3, UC4

VM/VNF RAM available MB VNF
Mon.Agent

UC3, UC4

VM/VNF System load
(short/mid/long term)

% VNF
Mon.Agent

UC3, UC4

VM/VNF No. of processes
(running/sleeping etc)

VNF
Mon.Agent

UC3, UC4

VM/VNF Network Interface
in/out bitrate

Mbps VNF
Mon.Agent

UC3, UC4

VM/VNF Network Interface
in/out packet rate

pps VNF
Mon.Agent

UC3, UC4

VM/VNF No. of processes # VNF
Mon.Agent

UC4

Compute Node CPU utilisation % OS Telemetry UC2, UC3, UC4

Compute Node RAM available MB OS Telemetry UC2, UC3, UC4

Compute Node Disk read/write rate MB/s OS Telemetry UC3, UC4

Compute Node Network i/f in/out rate Mbps OS Telemetry UC3, UC4

4 Please refer to Sec. 4.2.2 for a list of VNF-specific metrics.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
26

Storage (Volume) Read/write rate MB/s OS Telemetry UC3, UC4

Storage (Volume) Free space GB OS Telemetry UC2, UC3, UC4

Network
(virtual/physical
switch)

Port in/out bit rate Mbps ODL Statistics UC2, UC3, UC4

Network
(virtual/physical
switch)

Port in/out packet rate pps ODL Statistics UC3, UC4

Network
(virtual/physical
switch)

Port in/out drops # ODL Statistics UC3, UC4

With regard to metrics identification, a very relevant reference is the ETSI GV NFV-INF
010 document [NVFINF010] which was released December 2014. This document aims
at defining and describing metrics which relate to the service quality, as perceived by
the NFV Consumer. These metrics are overviewed in the table below.

Table 4. NFV Service Quality Metrics (Source: [NFVINF010])

It can be seen that, apart from the service latency metrics which are related to the
provisioning and/or reconfiguration of the service and essentially refer to the response
of management commands (e.g. VM start), the rest metrics can be directly or indirectly
derived from the elementary metrics identified in Table 3 as well as the events/alarms
associated. However, it is up to the Orchestrator, which has a complete view of the
service, to assemble/exploit VIM metrics in order to derive the service quality metrics
to be exposed to the SP and the Customer via the Dashboard. These metrics will be
used as input to enforce the Service Level Agreement (SLA) that will be finally evaluated
at Marketplace level for the applicability of possible rewards to the customer in case of
failure (see D6.4 – SLAs and billing).

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
27

4.2.2. VNF-specific metrics

Apart from the generic metrics identified in the previous section, each VNF generates
specific dynamic metrics to monitor its internal status and performance.

These metrics:

• are specified inside the VNF Descriptor (VNFD) as monitoring-parameters
(both for the VDUs and for the whole VNF) to define the expected performance
of the VNF under certain resource requirements.

• are sent by the VNF application to the VIM Monitoring Manager, either via the
agent or directly (see details in Sec. 4.4)

• are processed, aggregated and forwarded, if required, to the upper layers
(Orchestrator and Marketplace).

At the Orchestration level, some of the VNF-specific metrics can be used for
automating the selection of the most efficient VNF flavour in terms of usage of
resources, to achieve a given SLA (for example using automated scaling procedures –
see D3.3).

At the Marketplace level, those VNF-specific metrics that may be part of the SLA agreed
between SP and customer will be evaluated for business and commercial clauses (e.g:
penalties, rewards, etc.) that will finally impact in the billing procedure (see D6.4)

The subsections to follow overview a list of VNF-specific metrics for each of the VNFs
being developed in T-NOVA. The lists which follow are tentative and are meant to be
continuously updated as the VNF applications evolve.

Please also note that most of these metrics refer to the specific functionality of each
VNF as well as its component software modules. For a detailed description of the T-
NOVA VNFs, please refer to Deliverable D5.32 [D532].

4.2.2.1. vSBC metrics

The vSBC components (VNFCs) able to generate metrics are: LB, IBCF, BGF and O&M
(please refer to [D532] for more details).

These data are collected by the O&M component, and sent to the Monitoring Manager
via the monitoring agent, using the SNMP protocol.

The following table sums up the VNF-specific metrics for the vSBC functions.

Table 5. vSBC monitoring metrics

Metric Description Units

total_sip_sessions Total number of confirmed SIP
sessions

Integer
(incremental)

rtp_pack_in Number of incoming RTP packets Integer
(incremental)

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
28

rtp_pack_out Number of outgoing RTP Integer
(incremental)

rtp_pack_in_byte Number of incoming RTP bytes [Byte]
(incremental)

rtp_pack_out_byte Number of outgoing RTP bytes [Byte]
(incremental)

rtp_frame_loss RTP frame loss Integer
(incremental)

average_latency Average RTP delay [Msec]

max_latency Maximum RTP delay [Msec]

average_interarrival_jitter Average inter-packet arrival jitter [Msec]

max_interarrival_jitter Maximum inter-packet arrival jitter [Msec]

number_of_in_transcoding Number of incoming transcoding
procedures

Integer
(incremental)

number_of_out_transcoding Number of outgoing transcoding
procedures

Integer
(incremental)

number_of_in_transrating Number of incoming transrating
procedures

Integer
(incremental)

number_of_out_transrating Number of outgoing transrating
procedures

Integer
(incremental

We point out that:

• the SIP metrics are related to the control plane monitoring
• the rest metrics are related to the media plane monitoring

At the receipt of a new SNMP GET request coming from the monitoring agent, all these
metrics are reset, while their enhancement starts again.

These metrics may be strongly influenced by:

• incoming packet sizes(i.e : 64, 128, 256,……, 1518 byte)
• hardware and software acceleration technologies (i.e: DPDK or GPU). In

particular the GPU hardware accelerators might be used, in tandem with
standard processors, in case of intensive processing (i.e: video
trascoding/transrating).

4.2.2.2. vTC metrics

Table 6 overviews the metrics reported by the virtual Traffic Classifier VNF (vTC).

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
29

Table 6. vTC monitoring metrics

Metric Description Units

pps Packets per second processed pps

flows Flows per second # (average)

totalflows Total flows # (incremenetal)

protocols Application Protocols # (incremental)

mbits_packets_all Total Throughput Mbps

mbits_packets_bittorrent BitTorrent application rate Mbps

mbits_packets_dns DNS application rate Mbps

mbits_packets_dropbox Dropbox application rate Mbps

mbits_packets_google Google application rate Mbps

mbits_packets_http HTTP application rate Mbps

mbits_packets_icloud iCloud application rate Mbps

mbits_packets_skype Skype application rate Mbps

mbits_packets_twitter Twitter application rate Mbps

mbits_packets_viber Viber application rate Mbps

mbits_packets_youtube Twitter application rate Mbps

4.2.2.3. vSA metrics

The metrics reported by the virtual Security Appliance (vSA) are shown in Table 7. The
vSA metrics correspond to the two vSA components (snort and pfsense).

Table 7. vSA monitoring metrics

Metric Description Units

vsa_pfsense_lan_inerrs Number of errors coming into the
lan interface of pfsense

(incremental)

vsa_pfsense_lan_outerrs Number of errors going out of the
lan interface of pfsense

(incremental)

vsa_pfsense_wan_inerrs Number of errors coming into the
wan interface of pfsense

(incremental)

vsa_pfsense_wan_outerrs Number of errors going out of the
wan interface of pfsense

(incremental)

vsa_pfsense_lan_inbytes Number of bytes coming into the
lan interface of pfsense

(incremental)

vsa_pfsense_lan_outbytes Number of bytes going out of the
lan interface of pfsense

(incremental)

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
30

vsa_pfsense_wan_inbytes Number of bytes coming into the
wan interface of pfsense

(incremental)

vsa_pfsense_wan_outbytes Number of bytes going out of the
wan interface of pfsense

(incremental)

vsa_pfsense_lan_inpkts Number of packets coming into the
lan interface of pfsense

(incremental)

vsa_pfsense_lan_outpkts Number of packets going out of
the lan interface of pfsense

(incremental)

vsa_pfsense_wan_inpkts Number of packets coming into the
wan interface of pfsense

(incremental)

vsa_pfsense_wan_outpkts Number of packets going out of
the wan interface of pfsense

(incremental)

vsa_pfsense_cpu Cpu usage of pfsense float (0.0-1.0)

vsa_pfsense_mem Memory usage of pfsense float (0.0-1.0)

vsa_pfsense_dis Hardware usage of pfsense float (0.0-1.0)

vsa_pfsense_load_avg Average load of pfsense float (0.0-1.0)

vsa_pfsense_pfstate State table size of pfsense float (0.0-1.0)

vsa_snort_cpu Cpu usage of snort float (0.0-1.0)

vsa_snort_memory Memory usage of snort float (0.0-1.0)

vsa_snort_pkt_drop_percent Percent of dropped packets,
generated by snort

 %

vsa_snort_alerts_per_second Number of alerts per second,
generated by snort

int

vsa_snort_kpackets_per_sec.realtime How many thousands of Packets
per second in realtime through vsa,
generate by snort

float

vsa_pfsense_uptime Pfsense uptime String

4.2.2.4. vHG metrics

Table 8 summarises the virtual Home Gateway (vHG) metrics.

Table 8. vHG monitoring metrics

Metric Description Units

remaining_storage_size Remaining Storage Size Bytes

transcoding_score Transoding Score double

httpnum Number of HTTP requests received # (incremental)

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
31

hits Cache hits percentage of all requests for the
last 5 minutes

 %

hits_bytes Cache hits percentage of bytes sent for the
last 5 minutes

 %

cachediskutilization Cache disk utilization %

cachememkutilization Cache memory utilization %

usernum Number of users accessing the proxy #

4.2.2.5. vProxy metrics

The metrics reported by the virtual proxy (vProxy) VNF are summarized in Table 9. Most
of them are bound to the specific proxy implementation (squid), but can be extended
to match other implementations as well.

Table 9. vProxy monitoring metrics

Metric Description Units

httpnum Number of HTTP requests received #
(incremental)

hits Cache hits percentage of all requests for the last
5 minutes

 %

hits_bytes Cache hits percentage of bytes sent for the last
5 minutes

 %

memoryhits Memory hits percentage for the last 5 minutes
(hits that are logged as TCP_MEM_HIT)

 %

diskhits Disk hits percentage for the last 5 minutes (hits
that are logged as TCP_HIT)

 %

cachediskutilization Cache disk utilization %

cachememkutilization Cache memory utilization %

usernum Number of users accessing the proxy #

cpuusage CPU consumed by Squid for the last 5 minutes %

4.3. VNF Monitoring Agent

The VNF Monitoring Agent comes either pre-installed within the VM image hosting
the VNFC or installed upon VNFC deployment. It will be automatically launched upon
VNF start-up and run continuously in the background. The agent collects a wide range
of metrics from the local OS.

For the implementation of the monitoring agent, we exploit the the popular collectd-
core module [collectd] (also see Annex I, Sec. 9.1.1.8.). Collectd-core comes in a

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
32

package already available in most Linux distributions and can be directly installed with
relatively minimal overhead.

Given that the list of available collectd plugins is quite extensive, we have selected a
basic set of plugins to be used in T-NOVA, in order to cover all generic metrics, as
identified in Sec. 4.2.1 but also to capture most vital meters of the system, without on
the other hand introducing too much overhead. These plugins, accompanied by a brief
description and the metrics which are collected, are overviewed in Table 10 below.

Table 10. Collectd plugins used in T-NOVA

Plugin Description Metrics

CPU Collects the amount of time spent by the
CPU in various states, most notably
executing user code, executing system
code, waiting for IO-operations and being
idle.

• user
• interrupt
• softirq
• steal
• nice
• system
• idle
• wait

Memory Collects physical memory utilization. • used
• buffered
• cached
• free

Disk Collects performance statistics of hard-disks
and, where supported, partitions.

• octets.read
• octets.write
• ops.read
• ops.write
• time.read
• time.write
• merged.read
• merged.write

Interface Collects information about the traffic
(octets per second), packets per second and
errors of interfaces

• if_octects.rx
• if_octects.tx
• if_packets.rx
• if_packets.tx
• if_errors.rx
• if_errors.tx

Processes Collects the number of processes, grouped
by their state (e. g. running, sleeping,
zombies, etc.).

• ps_state-running
• ps_state-sleeping
• ps_state-zombies
• ps_state-stopped
• ps_state-paging
• ps_state-blocked
• fork_rate

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
33

For the communication of metrics, the Monitoring Agent features a TCP or UDP
dispatcher which pushes measurements to the VIM MM periodically. The push
frequency will be configurable (either manually or automatically). The set of metrics
(selection among all available ones) to be communicated will also vary among VNFs,
and will be defined in the VNFD.

4.4. Collection of VNF-specific metrics

The VIM monitoring framework provides several options for collecting VNF metrics;
each VNF developer may choose the most appropriate option which suits their
requirements, policies and constraints.

The direct communication method involves the VNF application itself reporting
selected metrics as key-value pairs to the VIM MM at arbitrary intervals. For this
purpose, we have developed a set of lightweight libraries (currently in Python and Java)
which the VNF provider/developer can integrate in the application. This way, the VNFP
can use the methods provided to easily and quickly dispatch internal application
metrics without knowing the internals and interfaces of the monitoring framework.

The indirect communication method implies that all VNF metrics are collected by the
monitoring agent (collectd) by means of plugins. This can be done in three alternative
ways:

1. Using the collectd “Snmp” plugin. This option is appropriate in cases when the
VNF already exposes an SNMP service. In this case, the metrics to be collected
are described by a Management Information Base (MIB). The MIB includes the
VNF/VDU identifiers, and uses a hierarchical namespace containing object
identifiers (OIDs); each OID identifies a variable that can be read via the SNMP
protocol (see RFC 2578). The T-NOVA agent (collectd) issues standard SNMP
GET requests periodically to the VNF SNMP service for these specific OIDs and
gets back the values, which in turn communicates to the VIM MM.

2. Using the collectd “Tail” plugin. This is the simplest method which requires
minimal integration with the VNF. With this approach, the VNF application
dumps metrics as entries in a log file with known format. The collectd Tail plugin
parses the log file after each update, extracts the metrics and communicates to
the VIM MM.

3. Using the collectd “Custom” plugin. This is the most complicated method and
requires the VNFP to develop a special collectd plugin for the VNF. However,
this might be the preferred choice for some VNFPs who in any case want to add
collectd support in their VNF, given that collectd is very widely used also outside
T-NOVA and already integrated with some of the most popular monitoring
frameworks.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
34

4.5. Monitoring of FPGA-based VNFs

The T-NOVA project attempts to expand the NFV purview to heterogeneous compute
architecture such as GPUs and FPGAs. Utilizing such specialized hardware has direct
effects on the monitoring infrastructure that should be used to support it. This section
explores the corollaries of the use of programmable logic as compute nodes in the T-
NOVA environment.

Monitoring programmable logic devices represents unique challenges in comparison
to standard CPUs. Many of the notions present in the latter are not present in
programmable logic devices and furthermore programmable logic-based systems can
show large disparities which makes the task of providing one overarching concept
exceedingly difficult.

As a starting point for our measurement architecture definition we use the
programmable cloud platform architecture introduced in D4.1. In this architecture we
assume that a FPGA SoC (System-on-Chip) is used as the compute node. An FPGA SoC
consists of a Processing System (PS), which comprises one or more CPUs and the
Programmable Logic (PL). In this architecture the PS execute the OpenStack worker and
any software requirement for the management of the programmable resources
available in the PL, while the actual VNFCs to be monitored are deployed to the PL.

In this scheme the monitoring infrastructure is by necessity also divided into two
components. One component resides in SW and is executed in the PS. It consists of a
software stack that collects statistics from the HW components and forwards them to
the monitoring manager and can also be used to monitor the performance of the PS if
this is desired.

This software stack comprises several components and is further divided into a kernel-
mode part, which interacts with the DMA (Direct Memory Access) driver to send data
to and receive them from the programmable logic and a user-mode part that packages
the data and sends them to the remote monitoring manager. The kernel-mode part
utilizes the same DMA driver that’s used to transfer the application data and
complements that with a data mover program that exposes a block-level device to the
user-mode part, which allows the latter to exchange data with the driver. The
implementation of this mechanism is based on the same zero-copy principle as the
application data exchange in order to optimize performance. The user-mode part of
the data mover then writes the measurement data into a pre-defined storage location
whence they’re fetched by a shell script which interfaces with the monitoring manager.

The HW component on the other hand is responsible for collecting all of the relevant
parameters on the HW side and forwarding them to the software component. These
parameters are specific to each VNFC and thus it’s up to the uses to provide the
appropriate connections and circuits for it. The FPGA SoC platform provides the user
with infrastructure which can be used to send that data on to the software component.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
35

Figure 8. Monitoring architecture for the T-NOVA FPGA SoC

The HW monitoring component shares the DMA with the VNFC also deployed on the
FPGA. This is enabled by using separate DMA channels for the data transfers, a feature
offered by the DMA block used in the design. The DMA block offers one interface for
all inputs and uses additional signal to discern the user which provided the data. It then
transfers that to the appropriate memory address space from which the SW monitoring
application can read the data.

This scheme provides a clear, expandable, standard interface for the HW VM to
transfers its monitoring data to the SW component and a straightforward method for
the SW to read the data and perform any processing required before sending it on to
the monitoring manager.

4.6. VIM Monitoring Manager architecture and components

4.6.1. VIM MM Architecture

Aligned with the requirements and the design choices set in the previous sections, the
functional components of the VIM Monitoring Manager are depicted in Figure 9 and
described in this section and in the ones which follow.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
36

Figure 9. VIM MM functional components

The Monitoring Backend is the core component of the monitoring framework. It
is developed in JavaScript and uses the node.js [nodejs] framework to run as a server-
side application. The reason behind this choice is that JavaScript matches an
asynchronous, event-driven programming style, optimal for building scalable network
applications. The main functionality of VIM MM is data communication and the node.js
ecosystem offers several services to facilitate communication, especially via web
services, as well as event-driven networking.

The backend itself is divided to the following modules:

• Database connector. This module accesses the time-series database (see Sec.
4.6.4) in order to write and to read measurements. This module uses influent5,
an InfluxDB Javascript driver.

• OpenStack and OpenDaylight connectors. These modules perform requests
to various OpenStack and OpenDaylight services in order to acquire cloud- and
network-related metrics (see Sec. 4.6.2). The Openstack connector
communicates with Keystone, the OpenStack Identity service, in order to
generate tokens that can be used for authentication and authorisation during
the rest of the OpenStack queries. It polls Nova, the OpenStack Compute
service, in order to get the available instances. Finally, it polls Ceilometer,
the OpenStack Telemetry service, in order to receive the latest measurements

5 https://github.com/gobwas/influent

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium

37

of the instances. The request-promise6 npm (node.js package) module provides
here the HTTP client to perform all these requests.

• Northbound REST API. This module exposes all the recorded measurements
via HTTP and offers the ability to subscribe to specific measurement events.
hapi.js7 has been used as a framework to build this. hapi.js plugins were also
used, such as joi8 for validation, hapi-swaggered9 and hapi-swagger10
for Swagger documentation generation. See Sec. 4.6.3 for more details.

• Alarming and anomaly detection. This module performs statistical processing
using outlier detection methods in order to derive events and alarms from
multiple metrics, without individual thresholds (see Sec. 4.6.5 for more details)

• VNF Application connector. It accepts data periodically dispatched by each
VNF application, filters them and stored. These metrics are specific to each VNF
(e.g. number of flows, sessions etc.). The list of metrics to be collected as well
as the dispatch frequency are described in the VNF Descriptor (VNFD).

• Configuration. This module allows the use of local files in order to load
settings. Node-config11 has been used here to define a set of default
parameters and extend them for different deployment environments, e.g.,
development, QA, staging and production. Configurations are stored in
configuration files within the backend application and can be overridden and
extended by environment variables.

The default config file is called config/default.json and the administrator may
create multiple files in the config directory with the same format, which can later
be used by the backend application if the environment variable NODE_ENV is set to
the configuration file without the .json suffix, e.g. for config/production.json the
following command needs to be invoked on a Bash-compatible shell:

export NODE_ENV=production

The configuration parameters that are currently available are the following:

Config Parameter Description

loggingLevel Sets the logging level. Available levels are debug, warn and
info.

database Connection information for the time-series database.
Required information should be entered in the following
strings: host, port, username, password and name (for the
target database name).

identity Connection information for the OpenStack Keystone service.
Required information should be entered in the following

6 https://www.npmjs.com/package/request-promise
7 http://hapijs.com/
8 https://github.com/hapijs/joi
9 https://github.com/z0mt3c/hapi-swaggered
10 https://github.com/glennjones/hapi-swagger
11 https://github.com/lorenwest/node-config

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
38

strings: host, port, tenantName, username and password. It
should be noted that the tenant whose credentials must have
sufficient privileges to access all the necessary OpenStack
VNF instances.

ceilometer Connection information for the OpenStack Ceilometer
service. Required information should be entered in the
following strings: pollingInterval, host and port. The
pollingInterval sets the time period during which the
backend polls Ceilometer for measurements.

nova Connection information for the OpenStack Nova service.
Required information should be entered in the following
strings: host and port.

4.6.2. Interfaces to cloud and network controllers

Monitoring of computing, hypervisor and storage status and resources are performed
directly via the OpenStack Ceilometer framework. The VIM MM (OpenStack connector)
periodically polls the Telemetry API for metrics regarding all deployed physical and
virtual resources. Although these metrics could be retrieved by directly accessing the
Ceilometer database, since the scheme of the latter may evolve in future OpenStack
versions, it is more appropriate to use the REST-based Telemetry API. The VIM MM
issues GET requests to the service referring to a specific resource and meter, and the
result are returned in JSON format.

Fortunately, the Telemetry support for the hypervisor selected for T-NOVA (libvirt)
offers the widest possible list of available monitoring metrics, compared to other
hypervisors, such as Xen or vSphere.

The current version of the OpenStack connector has the following workflow:

• Token management. Communication with the OpenStack API requires
always a valid token. The backend uses the Openstack Keystone service to
acquire a valid token, which is used for every transaction. The token is being
checked before submitting any request and if it is expired, it gets renewed.

• Instance information retrieval. The backend does not know a priori which
instances are to be monitored. By posting a request at the Nova API, it gets a
list of the active instances in order to proceed with the measurement request.

• Measurement retrieval Once the backend knows the existence of an active
OpenStack instance, it is able to retrieve specific measurements for it. Currently
CPU utilisation, incoming and outgoing bytes rate are supported, but the list is
quickly expanded with other metrics that OpenStack Ceilometer supports.

This workflow is being performed with a time period that can be set with the
pollingInterval parameter as aforementioned.

Moreover, collecting metrics via the API allows exploiting additional features of
Telemetry such as:

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
39

• Meter grouping: it is possible to define set of metrics and retrieve an entire set
with a single query;

• Sample processing: it is possible to define basic aggregation rules (average,
max/min etc.) and retrieve only the aggregate instead of a set of metrics;

• Alarming: it is possible to set alarms based on thresholds for the collection of
samples. An alarm can depend on a single meter, or a combination. The VIM
MM may use the API to set an alarm and define an HTTP callback service to be
called when the alarm has been set off.

Monitoring of physical and virtual elements is achieved via the OpenDayLight interface.
The VIM MM backend uses the available REST API of OpenDayLight to receive
respective statistics. Each REST API request is encapsulated with an Authorisation
Header, which contains a username and password with sufficient privileges.
Information of every network device is periodically requested and stored to the time-
series database, so that users can later access them through the monitoring API.

The statistics that are currently requested and stored are the following:

• Port Statistics: rx packet count, tx packet count, rx byte count, tx byte count,
rx drop count, tx drop count.

• Table Statistics: active count, lookup count, matched count, maximum
supported entries.

4.6.3. Northbound API to Orchestrator

The VIM Monitoring Framework offers a Northbound API to the Orchestrator in order
to inform the latter of the newest measurements and in the future for possible alerts.
An HTTP RESTful interface provides the latest measurements upon requests and the
ability to subscribe to measurements.

The latest draft of the ETSI NFV IFA document [NFVIFA005] which provides an insight
to the Or-Vi reference point, contains a high-level specification of the requirements
and the data structures which need to be adopted for infrastructure management and
monitoring. The requirements related to monitoring can be summarized into the
following:

• The VIM must support querying information regarding consumable virtualised
resources

• The VIM must issue notifications of changes to information regarding resources

• The VIM must offer full support for alarming (alarm creation/ modification/
subscription/ issue/ deletion)

• The VIM must issue notifications for infrastructure faults

The Northbound API provided by the T-NOVA VIM Monitoring Framework intends to
align with these requirements.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
40

4.6.3.1. Querying

First, a set of REST GET endpoints support the transmission of the latest
measurements of every available type for every instance being monitored.

The template of such URL is /api/measurements/{instance}.{type}, where instance is
the Universally Unique Identifier (UUID) given by the OpenStack deployment to the
instance and type one of the supported measurement types. The currently supported
measurement types are:

• cpu_util (CPU utilisation)

• cpuidle (CPU idle usage)

• fsfree (free space on the root filesystem)

• memfree (free memory space)

• network_incoming (the rate of incoming bytes) and

• network_outgoing (the rate of outgoing bytes)

The format of the answer is a JSON object whose fields are the following:

• timestamp: shows the timestamp the measurement was taken

• value: shows the actual measurement value

• units: shows the measurement units

These endpoints require constant polling in order to retrieve their values. If a system
requires a constant stream of measurements at specific interval times, then it could use
the subscription endpoint.

4.6.3.2. Meters/notifications push

The VIM MM enables a publish-subscribe communication model for pushing of metrics
and events to the Orchestrator. In order to subscribe for measurement events, it is
required to provide the following information in the form of a JSON object:

• types: This is an array of the measurement types. The supported types are the
same ones as the ones in the GET endpoints.

• instances: This is an array of the instances that have to be monitored. The UUIDs
of the instances are also used here.

• interval: This is the interval time the monitoring backend has to wait before
sending a new set of measurements. The time should be given in minutes.

• callbackUrl: This is the URL the monitoring backend has to callback in order to
submit the newest measurements.

This JSON object has to be submitted as a payload in a POST request to the endpoint
/api/subscribe. Upon transmission, a confirmation message is sent back as response
and after the specified interval, a message is given to the callbackUrl, similar to the
ones one can get via the GET endpoints.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
41

4.6.3.3. Alarming

The VIM MM offers methods for creating alarms and dispatching callbacks whenever
the status of alarm changes. Via the API, it is possible to:

• Create an alarm trigger, defining an instance ID, a metric, a comparison
operator (less, less or equal, not equal, greater or equal, greater) and a
threshold. The creation request is also accompanied by a callback URL; as soon
as the expression becomes true, the alarm notification is dispatched to a
callback URL. The alarm notification contains a reference to the expression
which was validated, the instance(s) which produced the alarm and the
timestamp of the measurement.

• Delete an alarm

• Retrieve the details of a set alarm

More details on the above functions can be found in Annex II.

4.6.3.4. Live API documentation

For the convenience of API consumers, a Swagger-UI endpoint is given at /docs, where
users can refer to for up-to-date information (Figure 10)

Figure 10. Live API documentation via Swagger

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
42

Also, Annex II of this document provides a complete API reference for the VIM
Monitoring Manager.

4.6.4. Time-series Database

Since the T-NOVA VIM Monitoring Backend handles primarily measurements, we have
selected a time-series database as optimal. For its implementation we have opted to
use InfluxDB [InfluxDB], a time-series database written in Go. By concentrating all data
in a performant DB and relying on periodical feeds, we can simplify workflows, reduce
inter-component signaling and thus eliminate the need for a message queue, which is
commonly used in monitoring frameworks.

Although, InfluxDB is a distributed database, for the time being we are evaluating it on
a single node until storage issues appear.

The Backend requires that a database has already been created in InfluxDB. The use of
a retention policy is also highly recommended, since the database could store
potentially multiple gigabytes of measurement data every day. For the development
and QA testing of the backend we use a retention policy of 30 days. After 30 days the
measurements are erased, in order to free up disk and memory space.

Each meter is stored in a separate table, where multiple instances may store values of
the specific measurement type. In addition to the actual value, a timestamp and an
instance tag are also stored, in order to identify the measurement’s origin and time.
Finally, the data type of every measurement is float64.

Queries are performed in the Line protocol12 by using the influent module. An example
query is the following:

SELECT last(value) FROM measurementType WHERE host='instanceA'

This query retrieves the last measurement of a certain type and a certain VNF instance.

4.6.5. Anomaly detection

For detecting critical situations and producing alarms, the T-NOVA VIM MM supports
operations via statically defined thresholds. The Orchestrator can use the alarming
methods (see Sec. 4.6.3.3.) to define and modify alarms. In turn the VIM MM checks the
affected measurements, evaluates the expressions given by the rules and sends
eventually a notification if the expression is true. This is a standard feature also
provided by several monitoring frameworks, as surveyed in Chap. 3.

However, alarming using single-metric thresholds is not always effective. For example,
in a VNF, a high CPU usage might be a result of either normal operation (under high
traffic volume) or malfunction. For this reason, it would be more appropriate to jointly
consider more than one metric and use multiple rules for alarming combined with

12 https://influxdb.com/docs/v0.9/write_protocols/write_syntax.html

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
43

logical operations (AND, OR etc.) In our case, a high CPU usage combined with a low
traffic volume could be a reason for alarm.

Even in this case though, finding the right set of rules to accommodate various
anomalous behaviours is not always easy and can lead to rather misleading results.
Instead, it would be much more effective to observe the normal VNF behaviour under
various usage scenarios and loads and dynamically (i.e. without pre-defined thresholds)
identify any deviation from the "normal" state, taking into account also the cross-
correlation of the various metrics, rather than observing each one individually. This is
the concept of NFV anomaly detection.

The first step towards this direction is to identify a set of metrics which best illustrate
the VNF status and decide, at any given time, whether the operating conditions are
normal or not. Let us assume a vector of samples of various metrics, each of which can
be either instantaneous or average over an arbitrary time window:

𝑚 = 𝑚#,𝑚%, …𝑚'

For example, m1 can be the current CPU load, m2 the memory utilization, m3 a VNF-
specific application metric etc. The question is whether from a given set of values we
can assume whether the VNF is functioning normally or not.

At first glance, this resembles a binary classification problem, for which several
approaches could be used, such as e.g. support vector machines, neural networks or
logistic regression. The problem with all these methods is that they are associated with
supervised learning, i.e. they need a diverse set of both positive and negative samples
for training. In other words, they need a sufficiently large dataset from a VNF operating
in both abnormal and normal state. While the normal state metrics can be derived after
a comprehensive measurements campaign with the VNF operating under multiple
usage scenarios and load profile, it is quite difficult to predict, plan and reproduce all
(or even, most) abnormal situations. For this reason, a supervised learning method
cannot be easily applied in our case.

Another approach would be to resort to statistical multivariate outlier detection
methods, which essentially aim at identifying samples (outliers) which significantly
diverge from the rest of the dataset. For the needs of T-NOVA, we choose two methods
which are quite efficient and at the same time can be implemented with reasonable
complexity. In particular, we consider and evaluate multivariate outlier detection based
on i) multiple linear regression and ii) Mahalanobis distance. These two statistical
methods are briefly overviewed in the next paragraphs, while their actual evaluation in
a test case involving the virtual Traffic Classifier (vTC) is presented in Sec. 5.3.

4.6.5.1. Anomaly detection based on multiple linear regression

In order to adopt the linear regression method, it is first essential to categorise the
metrics into independent and dependent ones (this classification is not essential in the
Mahalanobis method, which is described in the next paragraph). In an NFV
environment, we should consider as independent the metrics which are associated to

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
44

the external load imposed to the VNF (e.g. the bit rate or the number of flows of the
traffic fed to the VNF), while dependent metrics would reflect the actual status of the
VNF application and the associated VDU, such as e.g. CPU load, memory usage, etc.

Multiple linear regression attempts to deduce a linear dependency between one or
more dependent metric and one or more independent ones. If we denote as 𝑚(the
vector of the dependent metrics and 𝑚) the vector of independent ones, then the
multiple linear regression estimator for 𝑚(should be

𝑚(= 𝐴𝑚)
+ + 𝐵

where A and B are matrices whose values can be calculated using various methods, e.g.
using the least squares model.

Using this method, anomaly detection is pretty straightforward and can be achieved
using the following steps:

1. The VNF is put in normal operation and a set of measurements is derived under as
diverse as possible operating conditions, in order to collect the dataset.

2. The model parameters are specified by performing the linear fit on the dataset.

3. The RMSE (root mean square error) of the predictor is calculated for each individual
dependent metric 𝑚). , using the actually measured values and the predicted ones:

𝑅𝑀𝑆𝐸 =
(𝑚(.' − 𝑚(5)%

𝑛

where n is the number of samples in the dataset.

4. An operating threshold is chosen, typically an integer multiple of RMSE. As will be
shown in the evaluation section (Sec. 5.3), the choice of the threshold will need to
actually achieve an optimal trade-off between precision and recall.

5. During operation phase, VNF samples are gathered periodically, and when the
absolute deviation between a measured and an estimated dependent metric
exceeds the operating threshold, an anomaly is indicated. In order to reduce the
number of false alarms, it might be decided that an alarm is triggered only if a
number of consecutive high deviations are detected.

The concept of outlier detection using linear regression is visualized in Figure 11,
where, for the sake of visualization, single instead of multiple regression is used. That
is, a single dependent metric (mDi) is predicted from a single independent metric (mIi).
The two outliers shown are detected as deviating significantly from the predicted
values.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
45

Figure 11. Anomaly detection using linear regression (univariate example)

It must be noted that these two outliers could not be detected by setting thresholds
on the two metrics individually, since they are both quite close to the mean values of
mDi and mIj. This highlights the value of multivariate analysis –even in its simplest form-
for VNF anomaly detection.

For the VIM Monitoring Manager to use this method, it is essential to know a priori for
each VNF (or, more precisely, VNFC) the metrics to be used, the A and B matrices and
the operating threshold.

It must be also noted that the linear regression method –as its name implies- assumes
linear (or close-to-linear) dependency between the various metrics. If this is not the
case, a transformation should be applied to some or all the metrics in order to
approach linearity. However, as shown in the assessment campaign of Sec. 5.3., the
linearity assumption is more than sufficient for most cases.

4.6.5.2. Anomaly detection based on Mahalanobis distance

Unlike the linear regression method, the Mahalanobis approach [Mahalan36] does not
require a categorization of metrics into dependent and independent ones. The
Mahalanobis distance considers an N-dimensional space (in our case, N is the number
of different metrics) and calculates the distance of a sample from the mean of the
distribution of the existing dataset.

The advantage of the Mahalanobis distance with respect to the standard Euclidean
distance is that, unlike the latter, it also takes into account the covariance of the
different metrics.

In specific, the Mahalanobis distance of a sample of metrics

𝑚 = 𝑚#,𝑚%, …𝑚'

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
46

from a dataset of metrics observation with mean

𝜇 = 𝜇#, 𝜇%, … 𝜇'

and covariance matrix S, is defined as:

𝐷: 𝑚 = 	 (𝑚 − 𝜇)+𝑆<#(𝑚 − 𝜇)

The concept of using the Mahalanobis distance to detect outliers is shown in Figure
12. For the sake of visualization, we use only two metrics although the method is valid
for any N number of different metrics. The ellipses shown represent points with the
same Mahalanobis distance from the dataset centre. By choosing an appropriate
distance threshold, we can classify as outliers samples whose distance is greater than
the threshold.

Figure 12. Anomaly detection using the Mahalanobis distance

As it can be seen, the Mahalanobis formula essentially uses the covariance matrix to
build the ellipsoid that best represents the set's probability distribution. The
Mahalanobis distance is simply the distance of the test point from the center of mass
divided by the width of the ellipsoid in the direction of the test point.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
47

In order to achieve anomaly detection using the Mahalanobis distance, the following
steps are foreseen:

1. The VNF is put in normal operation and a set of measurements is derived under as
diverse as possible operating conditions, in order to collect the dataset.

2. The mean for each individual metric is derived.

3. The covariance matrix S is calculated, as well as its inverse (S-1)

4. The Mahalanobis distance of all existing samples in the dataset is calculated, and
the standard deviation of the distances σM is derived. An operating threshold is
chosen, often as an integer multiple of σM. Again, as it will be shown in the evaluation
section (Sec. 5.3), the choice of the threshold will need to actually achieve a trade-
off between precision and recall.

5. During operation phase, VNF samples are gathered periodically, and when the
Mahalanobis distance of a sample exceeds the operating threshold, an anomaly is
indicated. In order to reduce the number of false alarms, it might be decided that
an alarm is triggered only if a number of consecutive high deviations are detected.

For the VIM Monitoring Manager to use this method, it is essential to know a priori for
each VNF (or, more precisely, VNFC) the metrics to be used, the covariance matrix and
the operating threshold.

Similarly to the linear regression mentioned in the previous section, the application of
the Mahalanobis distance also assumes linear dependence between metrics. If this is
not the case, as aforementioned, a transformation should be applied.

4.6.6. Graphical user interface

The main interface of the VIM Monitoring Framework is the HTTP API of the backend,
as described in Sec. 4.6.3. During the development of the monitoring framework, the
VNF developers have, however, requested for a graphical way of accessing the
monitoring data their VNF instances and VNF applications more specifically, produce.
This lead to the integration of a Grafana server. Grafana [Grafana] is a graph builder for
visualising time series metrics. It supports InfluxDB as a data source and thus, it is easy
to visualise all the available measurements directly from the database.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium

48

Figure 13. Visualization of measurements with Grafana

4.7. Packaging, documentation and open-source release

In an effort to contribute to maximising the impact of T-NOVA on the NFV community,
the T-NOVA monitoring framework is released [GH-VIM] under the GNU
General Public License v3.013. Interested stakeholders and prospective contributors are
welcome to download and do pull requests on the public GitHub repository14. The plan
is to move the project to the overall T-NOVA Github account, as soon as the latter
becomes available.

A Docker image containing node and the application is also provided inside this
repository. A Docker image allows the seamless usage of the backend in any OpenStack
deployment, regardless of deploying it on a physical or virtual machine. Most of the
configuration parameters are exposed in Docker environment variables and can be set
up during container creation. A YAML file (docker-compose.yml) is also provided inside
the repository, so that users can combine the VIM monitoring backend, InfluxDB and
Grafana in the same way the backend is being developed and tested.

For further documentation of the backend, please refer to the README file15 and the
documentation directory16 of the repository. The information will be kept up-to-date
while development progresses. For the API documentation, please refer to the /docs
endpoint of a working deployment, where the Swagger-UI is hosted.

13 https://github.com/spacehellas/tnova-vim-backend/blob/master/LICENSE.txt
14 https://github.com/spacehellas/tnova-vim-backend
15 https://github.com/spacehellas/tnova-vim-backend/blob/master/README.md
16 https://github.com/spacehellas/tnova-vim/blob/master/documentation

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
49

5. VALIDATION

5.1. Functional testing

For the purpose of functional testing and benchmarking of the current release of the
T-NOVA VIM monitoring framework, the latter was integrated into the T-NOVA IVM
testbed as shown in Figure 14 below.

Figure 14. Testbed configuration for testing VIM Monitoring

The VIM Monitoring Manager was deployed as a Docker container in a separate
physical host, as part of the VIM management and monitoring framework. It interfaced
with Openstack for the collection of metrics via Ceilometer.

The workload to produce the metrics was the latest version of the vTC (virtual Traffic
Classifier) VNF, deployed in a VM. The vTC used the Python library provided (see Sec.
4.4) in order to dispatch VNF metrics to the VIM MM. At the same time, the collectd
agent was also installed in the VNF VM, to dispatch generic metrics.

In order to emulate realistic operational conditions, a traffic generator hosted in a
separate VM was used to play back a real network traffic dump containing a mix of
various services.

Behind the VIM Mon. Mgr. two clients were used; one for accessing the metrics via the
REST API and a second one accessing the web-based GUI.

5.1.1. Metrics acquisition and integration test

The chosen functional test intended to validate most of the functional capabilities of
the VIM MM, namely:

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
50

• Interfacing with Ceilometer

• Collection of agent metrics

• Collection of VNF metrics

• Persistence of measurements

• GUI operation

The GUI was configured by the user to display the following metrics, integrated in a
single view:

• VNF CPU utilization, retrieved from Openstack

• VNF memory usage and network traffic (cumulative packet count), as reported
by guest OS via the monitoring agent

• VNF-specific metrics. Specifically, the vTC is able to report the packet rate of
different applications detected e.g. Skype, Bittorrent, Dropbox, Google, Viber
etc.)

Figure 15. End-to-end functional test: the VIM MM GUI screenshot, integrating metrics

from various sources

It was verified that the multiple samples were collected and displayed properly. The
validity of the measurements was verified by accessing the console view of the VNF
VM and:

• Checking the system metrics via command-line tools (top, netstat etc.)

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
51

• Checking the vTC VNF logs which contained periodic dumps of the VNF metrics
(per-application rate). It is clarified that what is tested here is the ability to
communicate and collect metrics and not the accuracy of the vTC.

System stability was also checked by allowing the system to run continuously; the vTC
and VIM MM was found to be operating normally after more than two days of uptime
and continuous operation, until it was manually stopped.

5.1.2. Northbound API tests

All methods exposed by the northbound API were tested and the reception of the
proper reply was verified. In specific, the following functionalities were tested:

• Listing of available measurement types

• Getting the latest measurements

• Fetching individual generic metrics

• Fetching individual VNF-specific metrics

• Subscribing to measurements

• Listing subscriptions

• Deleting subscriptions

• Creating alarm triggers

• Listing alarm triggers

• Deleting alarm triggers

The sample responses which were derived via the tests, along with the REST calls which
created them, are listed in detail in Annex II.

5.2. Benchmarking

As aforementioned, apart from the GUI, the VIM also exposes a programmatic interface
(API) to the orchestration and VNFM components. We tested the scalability and
performance of the VIM MM by loading it with a variable number of GET requests,
asking for a single specific metric (CPU load) of the vDPI VNF. We used the httperf
software [httperf] to generate synthetic HTTP GET requests at various rates and
measured the rate of responses received. Then, we repeated the procedure, this time
directly polling Ceilometer for the same metric.

The two sets of measurements were made on platforms with similar hardware
capabilities. The results are depicted in Fig.5.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
52

Figure 16. VIM Monitoring Manager performance

It can be shown that the VIM MM can expose metrics with performance comparable
to native Ceilometer. It also seems to exhibit better stability when overloaded (at more
than 160 requests/sec for the given hardware configuration).

An important added value of VIM MM is the communication overhead, which has been
reduced to the minimum to improve scalability. Figure 17 compares the length (in
bytes) of the responses to a single GET request for a specific metric of a VNF VM (CPU
load, memory utilization and disk usage). The response of Ceilometer is quite verbose,
since it also includes detailed instance information. We try to alleviate this effect by
including in the response body only the absolutely necessary elements, i.e. the metric
name, the value and the timestamp. The result is a decrease in overhead by about 95%.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
53

Figure 17. Length of responses for single-metric requests

It is thus seen that the VIM MM exhibits acceptable performance when it comes to
communicating metrics.

Regarding Ceilometer, however, it must be noted that the performance limitations of
Ceilometer are known and expected to be alleviated in the upcoming releases - and
the Telemetry project is already targeting at fulfilling NFV requirements. In this context,
Ceilometer could also in the near future offer an efficient solution for NFV monitoring,
bringing at the same time strong community support as well as wide industrial uptake,
being a core Openstack component.

5.3. Assessment of anomaly detection methods

Another step in the assessment of the monitoring system is the evaluation of the
anomaly detection mechanism using the two methods described in Sec. 4.6.5. For the
tests, we used a deployed instance of the T-NOVA virtual Traffic Classifier (vTC) VNF.
The VNF was deployed in a “m1.small” flavor, with 2 CPU cores, 4GB of RAM and 40GB
of HDD.

To feed the vTC, we used an actual traffic dump containing a mix of various services,
which was played back (using tcpreplay) at various speeds, ranging from 0 Mbps (no
traffic) to 600 Mbps (maximum) at steps of 60 Mbps. We gathered a set of metrics
originating from the VNF monitoring agent, from Openstack Ceilometer and from the
VNF application itself. In total, 122 samples (metrics vectors) were gathered and form
the dataset which corresponds to the VNF normal operation and which was used to
“train” the anomaly detection algorithms.

The next step is to identify these metrics which can be actually used for the anomaly
detection process. We visually examined, via graphs but also by calculating the

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
54

covariance, the fluctuation of various metrics as a response to the various traffic loads
as well as their cross-correlation. As examples, the following figures depict the variation
of CPU (system + user) and memory usage respectively (dependent variables)
corresponding to the traffic bitrate (independent variable).

Figure 18. Memory used vs. traffic bitrate for the vTC VNF

Figure 19. CPU usage vs. traffic bitrate for the vTC VNF

From Figure 18 it can be deduced that memory utilization does not actually fluctuate
with workload, so it might be more appropriate to be subject to individual, threshold-
based alarming rather than multivariate analysis.

On the other hand, as shown in Figure 19, CPU increases proportionally –almost
linearly- with traffic bitrate (which is expected of course), so it would make sense to
exploit the correlation between these two metrics for anomaly detection. In the
following sections, we use and evaluate the two statistical methods introduced (linear
regression and Mahalanobis distance). For the sake of simplicity, we restrict the analysis
to these two metrics only, which anyway present by far the most value for our analysis

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
55

compared to the rest. However, the methods can be applied as is to an arbitrary
number of metrics.

For the evaluation of each method, we use three quality measures which are commonly
used to assess detection methods:

Precision is defined as the ratio of true positives (alarms which actually corresponded
to an anomaly incident) over all reported positives (i.e. all alarms, including true and
false positives).

Recall is defined as the ratio of true positives over all actual positives (i.e. all anomaly
incidents, including the ones which were not detected).

Finally, F1-score is a single number which combines precision and recall to produce a
single merit score for the detector. It is defined as:

𝐹1 =
2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

5.3.1. Linear regression

The usage of multiple linear regression for VNF anomaly detection was detailed in Sec.
4.6.5.1. and is applied here to the vTC case.

For the evaluation, we consider the CPU usage (%) as dependent variable and the
processed traffic bitrate (Mbps) as independent.

By processing the normal operation dataset and using linear fitting, a predictor for the
CPU usage from the traffic bitrate (BW) can be derived as follows:

𝐶𝑃𝑈 = 0.0107 ∙ 𝐵𝑊 + 1.3

(CPU usage: percent, BW: Mbps)

Using this predictor, the Root Mean Squared Error (RMSE) over the normal dataset was
0.921879. These calculated values (linear model coefficients and RMSE) are the ones to
feed into the model for anomaly detection.

To assess the method, we need to drive the vTC into an abnormal state. While, as also
mentioned, it is hard to predict and reproduce all anomalies, we used two specific
scenarios:

1. VNF application fault; the vTC application was manually suspended, although the
VNF still forwarded the traffic.

2. Process malfunction; a dummy process in parallel with the vTC application was
initiated to consume extra CPU resources, emulating either a malicious intervention
or a malfunctioning application.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
56

In addition to the 122 samples corresponding to the normal operation, we also
gathered 14 samples of each of the anomalous scenarios and used the linear regression
method to detect the abnormality. We used three different detection thresholds,
corresponding to the RMSE multiplied by 2, 4 and 6. The results shown in the table
below refer to all 150 samples overall (normal operation & 2 anomaly scenarios).

Table 11. Performance of the linear regression-based detector

Detection threshold 2RMSE 4RMSE 6RMSE

Precision 84.4% 100.0% 100.0%

Recall 100.0% 92.6% 88.9%

F1-score 0.915254 0.961538 0.941176

It can be deduced that a selection of 4RMSE as detection threshold yields a satisfactory
tradeoff between precision and recall. The threshold can be further adjusted according
to the requirements of the NFV service (e.g. minimization of either missed incidents or
false alarms) as well as the exact types of anomalies which need to be tracked.

5.3.2. Mahalanobis distance

The usage of the Mahalanobis distance for VNF anomaly detection was detailed in Sec.
4.6.5.2. and is applied here to the vTC case.

For the evaluation, we consider the same pair of metrics: CPU usage (%) and processed
traffic bitrate (Mbps). Unlike the previous method, there is no need to identify metrics
as dependent or independent.

By processing the normal operation dataset, we calculate in turn:

• the mean of each metric

• the covariance matrix and its inverse

• the Mahalanobis distance of each sample of the normal dataset

• the standard deviation (σ) of the distances

The metric means, inverse of covariance matrix and standard deviation σ are the
parameters to feed into the detector.

To assess the method, we use the same induced anomalies as described in the previous
section. Overall we have again 150 samples corresponding to normal and abnormal
operation. As detection thresholds, we use the standard deviation σ of the normal
dataset multiplied by 2, 4 and 6. The results are shown in the table below.

Table 12. Performance of the Mahalanobis distance-based detector

Detection threshold 2σ 4σ 6σ

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
57

Precision 40.9% 87.1% 100.0%

Recall 100.0% 100.0% 96.3%

F1-score 0.580645 0.931034 0.981132

It can be seen that, using 6σ as threshold, the detector presents satisfactory
performance.

Overall, via the evaluation of the two methods it can be deduced that, even under this
limited assessment in two specific scenarios, they can be quite useful in detecting
outliers in VNF operation and thus quickly identifying anomalies. They both exhibit
similar performance and also introduce little computational overhead, suitable for real-
time operation. Crucial aspects for the success of the method are: the proper selection
of metrics to be used, an exhaustive measurement campaign for the normal operation
dataset under diverse conditions and also a careful selection of the detection threshold.

5.4. Fulfillment of requirements

Following the successful execution of the aforementioned validation and assessment
tests, the table below explains how the implemented and tested VIM monitoring
framework eventually fulfills (or is planned to fulfill) the requirements which were set
in Section 2.

Table 13. Compliance to requirements

Requirement for the
Monitoring Framework

Status Justification

The MF must provide a vendor
agnostic mechanism for physical
resource monitoring.

Compliance The mechanisms introduced for
measurements collection are vendor
agnostic for most metrics (CPU,
memory, storage, network etc.)

The MF must provide an
interface to the Orchestrator for
the communication of
monitoring metrics.

Compliance The MF exposes a northbound REST
API for metrics/alarms communication
in either push or pull mode.

The MF must re-use resource
identifiers when linking metrics
to resources.

Compliance The VIM MM re-uses the Openstack
UUIDs and hostnames for linking
metrics to resources.

The MF must monitor in real
time the physical network
infrastructure as well as the
vNets instantiated on top of it.

Compliance Network-related measurements are
derived from the monitoring agents
(for network interfaces) and also
OpenDaylight (for virtual links and
networks)

The MF must provide an API for
communicating metrics (in either
push or pull mode)

Compliance The MF exposes a northbound REST
API for metrics/alarms communication
in either push or pull mode.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
58

The MF must collect utilisation
metrics from the virtualised
resources in the NFVI.

Compliance The VIM MM collects metrics from
deployed VMs and established vNets.

The MF must collect compute
domain metrics.

Compliance Direct access to compute domain
metrics is achieved by means of the
collect monitoring agent.

The MF must collect hardware
accelerator metrics

Compliance Hardware accelerator metrics are
accessible by means of specific agent
(collectd) plugins.

The MF must collect compute
metrics from the Hypervisor.

Compliance The VIM MM collects hypervisor
metrics indirectly via the Ceilometer
API.

The MF must collect network
domain metrics from the
Hypervisor.

Compliance The VIM MM collects hypervisor
metrics indirectly via the Ceilometer
API.

The MF must process and
dispatch alarms.

Compliance

The VIM MM allows configuring and
subscribing to alarms.

The MF must collect metrics
from physical and virtual
networking devices.

Compliance

The VIM MM interfaces with
OpenDaylight to collect network
device statistics.

The MF must leverage SDN
monitoring capabilities.

Compliance

The VIM MM collects (mostly port)
statistics for SDN devices from
OpenDaylight.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
59

6. CONCLUSIONS

This document described the design and development of a monitoring framework for
the T-NOVA IVM layer. Using a comprehensive state-of-the-art survey as well as a
consolidation of T-NOVA requirements, the architecture of the T-NOVA VIM
monitoring framework was specified. Taking into account the use of OpenDaylight and
OpenStack as the controller technologies in the VIM, infrastructure metrics and
statistics available from these controllers are collected. Furthermore, a VNF monitoring
agent was also introduced, as an optional component, collecting a rich set of metrics
from within VMs and VNF applications. All these metrics are aggregated and filtered
into a centralised Monitoring Manager, which exposes status and resource information
of the NFVI-PoP to the Orchestrator, as configured by the latter.

It is concluded that, with the proposed approach, the goal of delivering an effective,
efficient and scalable monitoring solution for the T-NOVA IVM layer is achieved. The
developed solution is able to expose to the Orchestrator and to the Marketplace
enhanced awareness of the IVM status and resources, while at the same time keeping
the communication and signalling overhead at minimum.

The current release has been integrated with the T-NOVA IVM testbed and has been
demonstrated in operation in IEEE IM 2015 and IEEE SDN/NFV conferences as part of
an integrated demonstrator of the T-NOVA project, monitoring an NFV service with
the vTC VNF.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
60

7. REFERENCES

[Aodh] Openstack Telemetry alarming, https://github.com/openstack/Aodh

[Cloudwatch] Amazon CloudWatch, http://aws.amazon.com/cloudwatch

[Collectd] collectd – The system statistics collection daemon, https://collectd.org/

[Cyclops] Cyclops framework, http://icclab.github.io/cyclops/

[D232] M. McGrath (Ed.) et al, “Specification of the Infrastructure Virtualisation,
Management and Orchestration – Final”, T-NOVA Deliverable D2.32,
October 2015

[D532] “Network Functions Implementation and Testing – Final”, T-NOVA
Deliverable D5.32, June 2016

[DCM] Ye Yu, C. Qian, and X. Li, "Distributed and Collaborative Traffic
Monitoring in Software Defined Networks," presented at the ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking
(HotSDN'14), Chicago, IL, USA, 2014.

[Doctor] OPNFV Wiki - Project: Fault Management (Doctor),
https://wiki.opnfv.org/doctor

[DoctorDel] Doctor Deliverable: Fault Management and Maintenance, Release 1.0.0,
October 2015,
http://artifacts.opnfv.org/doctor/DoctorFaultManagementandMainten
ance.pdf

[Drools] Drools BPM engine, http://www.drools.org/

[Flowsense] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. Madhyastha,
"FlowSense: Monitoring Network Utilization with Zero Measurement
Cost," in Passive and Active Measurement. vol. 7799, M. Roughan and R.
Chang, Eds., ed: Springer Berlin Heidelberg, 2013, pp. 31-41.

[Ganglia] Ganglia Monitoring System, http://ganglia.sourceforge.net

[GH-VIM] https://github.com/spacehellas/tnova-vim-backend

[Gnocchi] Openstack Gnocchi project, https://wiki.openstack.org/wiki/Gnocchi

[Grafana] Grafana: An open source, feature rich metrics dashboard and graph
editor for Graphite, InfluxDB & OpenTSDB, http://grafana.org/

[Graphite] Graphite: A Highly Scalable Real-time Graphing System,
https://github.com/graphite-project/graphite-web

[Hodge04] V. Hodge and J. Austin, “A Survey of Outlier Detection Methodologies”,
Artificial Intelligence Review 22 (2004), pp. 85-126

[httperf] https://github.com/httperf/httperf

[Icinga] ICINGA., https://www.icinga.org/

[InfluxDB] InfluxDB: An open-source, distributed, time series database with no
external dependencies, http://influxdb.com/

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
61

[Mahalan36] Mahalanobis, Prasanta Chandra (1936). "On the generalised distance in
statistics". Proceedings of the National Institute of Sciences of India 2
(1): 49–55.

[Monalisa] MONitoring Agents using a Large Integrated Services Architecture,
http://monalisa.caltech.edu/monalisa.htm

[Monasca] Openstack Monasca project, https://wiki.openstack.org/wiki/Monasca

[Nagios] Nagios Is The Industry Standard In IT Infrastructure Monitoring,
http://www.nagios.org/

[NFVIFA005] Network Functions Virtualisation (NFV); Management and
Orchestration; Or-Vi reference point – Interface and Information Model
Specification, work in progress, November 2015

[nodejs] https://nodejs.org/en/

[NVFINF010] ETSI GS NFV-INF 010 V1.1.1 (2014-12), Network Functions Virtualisation
(NFV); Service Quality Metrics

[OpenNetMon] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers,
"OpenNetMon: Network monitoring in OpenFlow Software-Defined
Networks," in Network Operations and Management Symposium
(NOMS), 2014 IEEE, 2014, pp. 1-8.

[Payless] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, "PayLess: A low
cost network monitoring framework for Software Defined Networks," in
Network Operations and Management Symposium (NOMS), 2014 IEEE,
2014, pp. 1-9.

[Prediction] OPNFV Wiki – Data Collection for Failure Prediction,
https://wiki.opnfv.org/prediction

[Pred-del] OPNFV Prediction Project, Release draft, February 2016,
http://artifacts.opnfv.org/prediction/brahmaputra/prediction_docs/pre
diction_docs.pdf

[SeaLion] Sealion; Quickly Diagnose Problems with you Linux Servers,
https://sealion.com/

[Shinken] Shinken, http://www.shinken-monitoring.org/

[Stacktach] Stacktach, Event-based Monitoring & Billing solution for OpenStack,
https://github.com/rackerlabs/stacktach

[Statsd] StatsD; Simple daemon for easy stats aggregation,
https://github.com/etsy/statsd/

[Telemetry] Openstack Telemetry, https://wiki.openstack.org/wiki/Telemetry

[vSphere] vmware vSphere, http://www.vmware.com/products/vsphere

[Zabbix] ZABBIX, The Enterprise-class Monitoring Solution for Everyone,
http://www.zabbix.com/

[Zenoss] Zenoss User Community, http://www.zenoss.org/

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
62

8. LIST OF ACRONYMS

Acronym Explanation

API Application Programming Interface

CPU Central Processing Unit

DPDK Data Packet Development Kit

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HW Hardware

KPI Key Performance Indicator

NFV Network Functions Virtualisation

NFVI NFV Infrastructure

NFVI PoP NFVI Point-of-Presence

NFVO NFV Orchestrator

OID Object Identifier

OPNFV Open Platform for NFV

OS Operating System

REST Representational State Transfer

SNMP Simple Network Management Protocol

SoC System-on-Chip

VDU Virtual Deployment Unit

VIM Virtualised Infrastructure Manager

VIM MM VIM Monitoring Manager

VM Virtual Machine

VNF Virtual Network Function

VNFD VNF Descriptor

VNFM VNF Manager

VNFP VNF Provider

vTC Virtual Traffic Classifier

YANG Yet Another Next Generation

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
63

9. ANNEX I: SURVEY OF RELEVANT IT/NETWORK

MONITORING TOOLS

This section presents a brief overview of existing frameworks for monitoring virtualized
IT infrastructures as well as SDN-enabled networks, and discusses technologies which
could be partially re-used in T-NOVA.

9.1.1. IT/Cloud monitoring

9.1.1.1. Shinken

Shinken is an open source system and network monitoring application [Shinken]. It is
fully compatible with Nagios plugins. It started as a proof of concept for a new Nagios
architecture, but since the proposal was turned down by the Nagios authors, Shinken
became an independent tool. It is not a fork of Nagios; it is a total rewrite in Python. It
watches hosts and services, gathers performance data and alerts users when error
conditions occur and again when the conditions clear. Shinken's architecture is focused
on offering easier load balancing and high availability capabilities. The main differences
and advantages toward Nagios are:

• A more efficient distributed monitoring and high availability architecture

• Graphite integration in the Web UI

• Better performance, mostly due to the use of a distributed database
(MongoDB)

9.1.1.2. Icinga

Icinga is an open-source network and system monitoring application which was born
out of a Nagios fork [Icinga]. It maintains configuration and plug-in compatibility with
the latter. Its new features are as follows:

• A modern Web 2.0 style user interface;
• An interface for mobile devices;
• Additional database connectors (for MySQL, Oracle, and PostgreSQL);
• RESTful API.

Currently there are two flavours of Icinga that are maintained by two different
development branches: Icinga 1 (the original Nagios fork) and Icinga 2 (where the core
framework is being replacement by a full rewrite).

9.1.1.3. Zenoss

Zenoss is an open source monitoring platform released under the GPLv2 license
[Zenoss] It provides an easy-to-use Web UI to monitor performance, events,
configuration, and inventory. Zenoss is one of the best options for unified monitoring
as it is cloud-agnostic and is open source. Zenoss provides powerful plug-ins named
Zenpacks, which support monitoring on hypervisors (ESX, KVM, Xen and HyperV),

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
64

private cloud platforms (CloudStack, OpenStack and vCloud/vSphere), and public
cloud (AWS). In OpenStack Zenoss integrates with Nova, Keystone and OpenStack
Telemetry.

9.1.1.4. Ganglia

Ganglia is a scalable distributed system monitor tool for high-performance computing
systems such as clusters and grids [Ganglia]. Its structure is based on a hierarchical
design using a tree of point-to-point connections among cluster nodes. Ganglia is
based on an XML data representation, XDR for compact and RRDtool for data storage
and virtualisation. The Ganglia system contains:

1. Two unique daemons, gmond and gmetad
2. A PHP-based web front-end
3. Other small programs

gmond runs on each node to monitor changes in the host state, to announce
applicable changes, to listen to the state of all Ganglia nodes via a unicast or multicast
channel based on installation, and to respond to requests. gmetad (Ganglia Meta
Daemon) polls at regular intervals a collection of data sources, parses the XML and
saves all metrics to round-robin databases. Aggregated XML can then be exported.

The Ganglia web frontend is written in PHP. It uses graphs generated by gmetad and
provides the collected information like CPU utilisation for the past day, week, month,
or year. Ganglia has been used to link clusters across university campuses and around
the world and can scale to handle clusters with 2000 nodes. However, further work is
required in order for it to become more cloud-agnostic.

9.1.1.5. StackTach

StackTach is a debugging and monitoring utility for OpenStack that can work with
multiple Data Centres, including multi-cell deployment [Stacktach]. It was initially
created as a browser-based debugging tool for OpenStack Nova. Since that time,
StackTach has evolved into a tool that can perform debugging, monitoring and
auditing. StackTach is quickly moving into Metrics, SLA and Monitoring territory with
version 2 and the inclusion of Stacky, the command line interface to StackTach.
StackTach contains a worker that reads notifications from the OpenStack’s RabbitMQ
queues and stores them in a database. From there, StackTach reviews the stream of
notifications to glean usage information and assemble it in an easy-to-query fashion.
Users can inquire on instances, requests, servers, etc. using the browser interface or the
Stacky command line tool. Rackspace is working on StackTach integration with
Telemetry.

9.1.1.6. SeaLion

SeaLion is a cloud-based system monitoring tool for Linux servers. It installs an agent
in the system, which can be run as an unprivileged user [SeaLion]. The agent collects
data at regular intervals across servers and this data will be available on your
workspace. Sealion provides a high-level view (graphical overview) of Linux server

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
65

activity. The monitoring data are transmitted over SSL to the SeaLion servers. The
service provides graphs, charts and access to the raw gathered data.

9.1.1.7. MonALISA

MONitoring Agents using a Large Integrated Services Architecture (MonaLISA) is based
on Dynamic Distributed Service Architecture and is able to provide complete
monitoring, control and global optimisation services for complex systems[Monalisa].
The MonALISA system is designed as a collection of autonomous multi-threaded, self-
describing agent-based subsystems which are registered as dynamic services, and are
able to collaborate and cooperate in performing a wide range of information gathering
and processing tasks.

The agents can analyse and process the information in a distributed way, in order to
provide optimisation decisions in large-scale distributed applications. The scalability of
the system derives from the use of a multithreaded execution engine, that hosts a
variety of loosely coupled self-describing dynamic services or agents, and the ability of
each service to register itself and then to be discovered and used by any other services,
or clients that require such information. The system is designed to easily integrate
existing monitoring tools and procedures and to provide this information in a dynamic,
customised, self-describing way to any other services or clients.

By using MonALISA the administrator is able to monitor all aspects of complex systems,
including:

• System information for computer nodes and clusters;
• Network information (traffic, flows, connectivity, topology) for WAN and LAN;
• Monitoring the performance of applications, jobs or services; and
• End-user systems and end-to-end performance measurements.

9.1.1.8. collectd, StatsD and Graphite

Cloud instances may also be monitored by using a collection of separate open source
tools. collectd is a daemon which collects system performance statistics periodically
and provides mechanisms to store the values in a variety of ways [Collectd]. collectd
gathers statistics about the system it is running on and stores this information. These
statistics can then be used to find current performance bottlenecks (i.e. performance
analysis) and predict future system load (i.e., capacity planning). collectd is written in C
for performance and portability, allowing it to run on systems without scripting
language or cron daemon, such as embedded systems. At the same time it includes
optimisations and features to handle big amounts of data sets. StatsD [Statsd] is a
Node.JS daemon that listens for messages on a UDP to TCP port. StatsD listens for
statistics, like counters and timers and then parses the messages, extracts metrics data,
and periodically flushes the data to other services in order to build graphs. A tool that
can be used to build graphs afterwards is Graphite [Graphite], which is able to store
numeric time-series data and render graphs of the data on demand.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
66

9.1.1.9. vSphere

The vSphere statistics subsystem collects data on the resource usage of inventory
objects [vSphere]. Data on a wide range of metrics is collected at frequent intervals,
processed and archived in a database. Statistics regarding the network utilisation are
collected at Cluster, Host and Virtual Machine levels. In addition vSphere supports
performance monitoring of guest operating systems, gathering statistics regarding
network utilisation among others.

9.1.1.10. Amazon CloudWatch

Amazon CloudWatch is a monitoring service for AWS cloud resources and the
applications running on AWS [Cloudwatch]. It provides real-time monitoring to
Amazon's EC2 customers on their resource utilisation such as CPU, disk and network.
However, CloudWatch does not provide any memory, disk space, or load average
metrics without running additional software on the instance. It was primarily designed
for use with Amazon Elastic Load Balancing and Auto Scaling with load balancing in
mind: the service checks CPU usage on multiple instances and automatically creates
additional ones when the load increases.

9.1.2. Network Monitoring

Network monitoring is a domain that has attracted significant attention from the
research community over the past decades, with well-established technologies and
standards with regard to measurement processes (active and passive) as well as the
communication of monitoring metrics (SNMP, IPFIX, sFlow etc.).

In the context of T-NOVA, where network management, at least within each NFVI-PoP
is based on OpenFlow, the measurement process will leverage OpenFlow’s monitoring
capabilities.

OpenFlow provides the capability to report per-flow and per-port metrics, reported by
the switch itself. These metrics are then collected by the Controller and communicated
to SDN control applications via the northbound API of the Controller it-self (Figure 20).
Almost all SDN controllers offer the capability to expose monitoring metrics, either via
API calls or language bindings. In this respect, the OpenFlow-based architecture
provides the capability to monitor all network elements in a uniform and vendor-
agnostic manner.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
67

Network	Devices

Southbound	API
(OpenFlow)

CONTROLLERS
(NOX,	POX,	OpenDaylight,	Floodlight,	Beacon,	Ryu,	Trema,	Mul,	

Jaxon,	Maestro,	NodeFlow,	Ovs-controller,	NDDI-OESS)

Northbound	API

SDN	Applications

Monitoring

Figure 20. Communication of monitoring metrics in an OpenFlow-enabled architecture

In this context, several monitoring applications have been developed, leveraging
OpenFlow capabilities for integrated network management tasks. Some of these
applications are overviewed in the table below.

Table 14. OpenFlow monitoring applications

Monitoring
Application

Brief description Control-
ler Used

Open
Source

Available
at

OpenNetMon OpenNetMon [OpenNetMon]
continuously monitors all flows
between predefined link destination
pairs on throughput, packet loss and
delay

POX Yes

ht
tp

s:
//

gi
th

ub
.c

om
/T

U
D

el
ft

N
A

S/
SD

N
-

O
pe

nN
et

M
on

/

Payless Payless [Payless] provides a flexible
RESTful API for flow statistics
collection at different aggregation
levels. It uses an adaptive statistics
collection algorithm that delivers
highly accurate information in real-
time without incurring significant
network overhead.

POX,
NOX,
OpenDay
Light

Yes

ht
tp

://
gi

th
ub

.c
om

/s
rc

v
iru

s/
flo

od
lig

ht
.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
68

DCM DCM [DCM] allows switches to
collaboratively achieve flow-
monitoring tasks and balance
measurement load.

None
(native
OF)

No Not
available

FlowSense FlowSense [Flowsense] achieves a
push-based approach to
performance monitoring in flow-
based networks, where the network
informs of performance changes,
rather than query it.

None
(native
OF)

No Not
available

In addition, many of the monitoring frameworks mentioned in Section 9.1.1 for cloud
infrastructures can be also used for monitoring OpenFlow infrastructures, via the
appropriate plugins.

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
69

10. ANNEX II: VIM MONITORING MANAGER API
REFERENCE

The VIM Monitoring Back-End offers a read-only API mostly on measurement events.
Additionally, support for subscription is included, both for regular measurement events
and alarm triggers.

For accessing the latest, up-to-date API documentation, it is always advisable to consult
the Swagger UI which is available on every back-end deployment at the /docs endpoint
of the HTTP service.

To access the REST-based API, one may also use CLI tools, such as curl or wget. In the
following sections curl is going to be used as an example command and the example
response will be shown.

10.1. Measurement-related methods

10.1.1. List available metrics

GET /measurementTypes

Example:
curl -X GET --header 'Accept: application/json'
'http://monitoring_backend_url/api/measurementTypes'

Example response (truncated):
[
 {
 "endPoint": "cpuidle",
 "description": "Get the latest value of idle CPU usage on a
specific instance"
 },
 {
 "endPoint": "cpu_util",
 "description": "Get the latest value of CPU utilisation on a
specific instance"
 },
 {
 "endPoint": "fsfree",
 "description": "Get the latest root filesystem status on a specific
instance"
 },
 {
 "endPoint": "memfree",
 "description": "Get the latest value of free memory on a specific
instance"
 },
 {
 "endPoint": "network_incoming",
 "description": "Get the latest value of rate of incoming bytes on
a specific instance"

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
70

 },
…

10.1.2. Batch retrieval of latest measurements

POST /measurements

This endpoint serves as a quick way to show multiple measurements from a variable
number of VNFs. The expected response is identical to the response coming from a
subscription event. It uses the following parameters:

{
 "types": [
 "string"
],
 "instances": [
 "string"
]
}

where types are the measurement types as appear in the previous endpoint and
instances are the OpenStack UUIDs of the target VNFs.

Example:
curl -X POST --header 'Content-Type: application/json' --header
'Accept: application/json' -d '{
 "types": [
 "cpu_util", "hits"
],
 "instances": [
 "faeb3e00-12e2-470b-85cf-55f89a30bffa"
]
}' 'http://monitoring_backend_url/api/measurements'

Example response:

[
 {
 "instance": "faeb3e00-12e2-470b-85cf-55f89a30bffa",
 "measurements": [
 {
 "timestamp": "2016-03-03T12:10:13.325115753Z",
 "value": 0.53332637964622,
 "units": "percentage",
 "type": "cpu_util"
 },
 {
 "timestamp": "2016-03-15T13:54:03.399055022Z",
 "value": 0,

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
71

 "units": "percentage",
 "type": "hits"
 }
]
 }
]

10.1.3. Retrieval of individual measurements

Generic measurements contain measurements that every running VNF should report
back to the monitoring back-end.

Example 1: Get the latest value of CPU utilisation on a specific instance
GET /measurements/{instance}.cpu_util

Example:
curl -X GET --header 'Accept: application/json'
'http://monitoring_backend_url/api/measurements/faeb3e00-12e2-470b-
85cf-55f89a30bffa.cpu_util'

Example response:
{
 "timestamp": "2016-03-03T12:10:13.325115753Z",
 "value": 0.53332637964622,
 "units": "percentage"
}

Example 2: Get the latest root filesystem status on a specific instance
GET /measurements/{instance}.fsfree

Example:
curl -X GET --header 'Accept: application/json'
'http://monitoring_backend_url/api/measurements/faeb3e00-12e2-470b-
85cf-55f89a30bffa.fsfree'

Example response:
{
 "timestamp": "2016-02-12T11:15:45.729599Z",
 "value": "17.2",
 "unit": "GB"
}

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
72

10.2. Subscriptions

10.2.1. List all the active subscriptions

GET /subscriptions

Example:
curl -X GET --header 'Accept: application/json'
'http://monitoring_backend_url/api/subscriptions'

Example response:
[
 {
 "id": "_pvr14ogpn",
 "instances": [
 "faeb3e00-12e2-470b-85cf-55f89a30bffa"
],
 "measurementTypes": [
 "cpu_util",
 "hits"
],
 "interval": 5,
 "callbackUrl": "http://callback.url"
 }
]

10.2.2. Subscribe to a measurement event

POST /subscriptions

If one wants to subscribe to a measurement event, then he/she has to use the following
parameters:
{
 "types": [
 "string"
],
 "instances": [
 "string"
],
 "interval": 0,
 "callbackUrl": "string"
}

where types and instances are known from previous examples, while interval is the
interval between sending new measurements in minutes and callbackUrl the callback
URL where the subscription service is supposed to send the measurements.

Example:

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
73

curl -X POST --header 'Content-Type: application/json' --header
'Accept: text/html' -d '{
 "types": [
 "cpu_util", "hits"
],
 "instances": [
 "faeb3e00-12e2-470b-85cf-55f89a30bffa"
],
 "interval": 5,
 "callbackUrl": "http://callback.url"
}' 'http://monitoring_backend_url/api/subscriptions'

Example response:
Your subscription request has been registered successfully under ID
_pvr14ogpn

10.2.3. Delete a specific subscription

DELETE /subscriptions/{id}

Example:
curl -X DELETE --header 'Accept: text/html'
'http://monitoring_backend_url/api/subscriptions/_pvr14ogpn'

Example response:
Subscription was deleted

10.2.4. Get a specific subscription's details

GET /subscriptions/{id}

Example:
curl -X GET --header 'Accept: application/json'
'http://monitoring_backend_url/api/subscriptions/_pvr14ogpn'

Example response:
{
 "instances": [
 "faeb3e00-12e2-470b-85cf-55f89a30bffa"
],
 "measurementTypes": [
 "cpu_util",
 "hits"
],
 "interval": 5,
 "callbackUrl": "http://callback.url"
}

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
74

10.3. Alarm management

10.3.1. List all the active alarm triggers

GET /alarms

Example:
curl -X GET --header 'Accept: application/json'
'http://monitoring_backend_url/api/alarms'

Example response:
[
 {
 "id": "_xvazxyrfc",
 "triggers": [
 {
 "type": "memfree",
 "comparisonOperator": "gt",
 "threshold": 8018198432
 }
],
 "instances": [
 "instance1",
 "instance2"
],
 "callbackUrl": "http://callback_url1"
 },
 {
 "id": "_23zy3xgdg",
 "triggers": [
 {
 "type": "cpu_util",
 "comparisonOperator": "gt",
 "threshold": 0.80
 }
],
 "instances": [
 "instance1",
 "instance2"
],
 "callbackUrl": "http://callback_url2"
 }
]

10.3.2. Create an alarm trigger

POST /alarms

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
75

If one wants to create an alarm trigger, then he/she has to use the following
parameters:
{
 "triggers": [
 {
 "type": "string",
 "comparisonOperator": "string",
 "threshold": 0
 }
],
 "instances": [
 "string"
],
 "callbackUrl": "string"
}

where type, instances and callbackUrl are known from previous examples,
comparisonOperator is "lt" for "less", "le" for "less or equal, "eq" for "equal", "ne" for
"not equal", "ge" for "greater or equal" and "gt" for "greater" and threshold is the value
to be compared with.

Example:
curl -X POST --header 'Content-Type: application/json' --header
'Accept: application/json' -d '{
 "triggers": [
 {
 "type": "memfree",
 "comparisonOperator": "gt",
 "threshold": 8018198432
 }
],
 "instances": [
 "instance1", "instance2"
],
 "callbackUrl": "http://callback_url1"
}' 'http://monitoring_backend_url/api/alarms'

Example response:
{
 "status": "alarm created",
 "id": "_23zy3xgdg"
}

A possible trigger of the alarm in this example should send to http://callback_url1 the
following JSON object:
{
 "measurementType": "memfree",
 "expected": "gt 8018198432",
 "alarmingInstances": [
 {
 "instance": "instance1",
 "value": 8018194432,

T-NOVA | Deliverable D4.42 Monitoring and Maintenance - Final

© T-NOVA Consortium
76

 "time": "2016-04-16T11:39:32.069012Z"
 }
]

}

where measurementType is the measurement type of one trigger, expected is the
condition that was set in that trigger, alarmingInstances are the instances which
triggered the alarm and more specifically, instance is the instance UUID, value is the
measurement value and time the timestamp of the measurement.

10.3.3. Delete a specific alarm trigger

DELETE /alarms/{id}

Example:
curl -X DELETE --header 'Accept: text/html'
'http://monitoring_backend_url/api/alarms/_xvazxyrfc'

Example response:
{
 "id": "_xvazxyrfc",
 "status": "alarm deleted"
}

10.3.4. Get a specific alarm trigger's details

GET /alarms/{id}

Example:
curl -X GET --header 'Accept: application/json'
'http://monitoring_backend_url/api/alarms/_xvazxyrfc'

Example response:
{
 "id": "_xvazxyrfc",
 "triggers": [
 {
 "type": "memfree",
 "comparisonOperator": "gt",
 "threshold": 8018198432
 }
],
 "instances": [
 "archie",
 "archie2"
],
 "callbackUrl": "http://callback_url1"
}

