
	

	

	

	

	 	

Deliverable	D4.41	

Monitoring	and	Maintenance	-	
Interim	

	 	

Editor	 G.	Gardikis	(SPH)	

Contributors	 I.	Koutras,	G.	Mavroudis,	S.	Costicoglou	(SPH),		G.	
Dimosthenous,	D.	Christofi	(PTL),	M.	Di	Girolamo	(HPE),	K.	
Karras	(FINT),	G.	Xilouris,	E.	Trouva	(NCSRD),	M.	Arnaboldi	
(ITALTEL),	P.	Harsh	(ZHAW),	E.	Markakis	(TEIC)	

Version	 1.0	

Date	 November	30th,	2015	

Distribution	 PUBLIC	(PU)	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
2	

Executive	Summary	

This	 deliverable	 is	 an	 interim	 report	 of	 the	 work	 currently	 being	 carried	 out	 in	 Task	 4.4	
(Monitoring	and	Maintenance).	The	task	focuses	on	the	implementation	and	integration	of	a	
monitoring	 framework,	 able	 to	 extract,	 process	 and	 communicate	monitoring	 information	
from	both	physical	and	virtual	nodes	as	well	as	VNFs	at	IVM	level.	

The	first	step	is	the	consolidation	of	IVM	requirements,	as	expressed	in	Deliverable	D2.32,	in	
order	to	derive	the	specific	requirements	for	the	monitoring	framework.	The	latter	include:	
monitoring	 of	 all	 NFVI	 domains	 (hypervisor/compute/storage/network)	 as	 well	 as	 VNF	
applications;	processing	and	generation	of	events	and	alarms;	communication	of	monitoring	
information	as	well	as	events/alarms	to	the	Orchestrator	in	a	scalable	manner.	

In	parallel,	a	comprehensive	survey	of	cloud	and	network	monitoring	tools	is	performed,	in	
order	to	identify	technologies	which	can	be	re-used	for	VIM	monitoring.	Special	emphasis	is	
put	 on	 frameworks	 which	 integrate	 smoothly	 with	 Openstack,	 in	 particular	 Openstack	
Telemetry/Ceilometer,	Monasca,	Gnocchi,	Cyclops,	Zabbix,	Nagios	as	well	as	relevant	OPNFV	
projects	(Doctor	and	Prediction).	It	seems	that	most	of	the	existing	technological	enablers	for	
VIM	monitoring,	can	only	partially	address	all	the	aforementioned	challenges	in	a	lightweight	
and	resource-efficient	manner.	Although	most	of	them	are	indeed	open	and	modular,	they	
are	 already	 quite	 complicated	 and	 resource-demanding	 and	 therefore	 further	 expanding	
them	to	cover	these	needs	would	require	considerable	effort	and	would	raise	efficiency	issues.	
We	thus	propose	a	“clean-slate”	approach	towards	NFV	monitoring	at	VIM	level,	exploiting	
only	some	basic	enablers	and	adding	only	the	required	functionalities.	

The	T-NOVA	VIM	monitoring	framework	is	introduced	as	a	contribution	towards	this	direction.	
The	 framework	 is	 built	 around	 the	 VIM	Monitoring	Manager	 (VIM	MM),	which	 is	 the	 key	
component	 devoted	 to	 monitoring	 at	 VIM	 level.	 The	 VIM	 MM	 exploits	 OpenStack	 and	
OpenDaylight	 APIs	 to	 retrieve	 a	 set	 of	metrics	 for	 both	 physical	 and	 virtual	 nodes,	 which	
should	be	sufficient	for	most	NFV	handling	requirements.	However,	in	order	to	gain	a	more	
detailed	insight	on	the	VNF	status	and	operation,	a	Monitoring	Agent,	based	on	the	collectd	
framework,	is	also	introduced	in	each	VNF	VM,	collecting	a	large	variety	of	metrics	at	frequent	
intervals.	

The	VIM	MM	consists	of	the	following	components:	

• Openstack	and	OpenDaylight	connectors,	used	to	periodically	poll	the	two	platforms	
via	their	monitoring	APIs.		

• A	VNF	Application	connector,	which	accepts	data	periodically	dispatched	by	the	VNF	
application.	These	metrics	are	specific	to	each	VNF.	

• A	time-series	database	(InfluxDB)	for	data	persistence.	

• An	alarming/anomaly	detection	engine	–currently	under	development-	which	utilises	
statistical	 methods	 based	 on	 pre-defined	 but	 also	 dynamic	 thresholds	 in	 order	 to	
identify	 possible	 anomalies	 in	 the	 NFV	 service	 and	 to	 produce	 the	 corresponding	
alarms/events	to	be	forwarded	to	the	Orchestrator/VNFM.	

• A	 Graphical	 User	 Interface	 (GUI),	 based	 on	 Grafana,	 which	 visualizes	 the	 stored	
metrics	and	presents	them	as	live,	time-series	graphs.		

• A	 Northbound	 API,	 which	 communicates	 selected	 metrics	 and	 events	 to	 the	
Orchestrator	 and,	 in	 turn,	 to	 the	 VNF	 Manager(s).	 The	 provided	 REST	 API	 allows	
metrics	to	be	communicated	in	either	push	or	pull	mode.	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
3	

The	 VIM	monitoring	 framework	 is	 integrated,	 validated,	 evaluated	 and	 released	 as	 open-
source	in	the	frame	of	the	project.	

It	is	concluded	that,	with	the	proposed	approach,	the	goal	of	delivering	an	effective,	efficient	
and	scalable	monitoring	solution	for	the	T-NOVA	IVM	layer	 is	achieved.	The	solution	under	
development	 is	 able	 to	 expose	 to	 the	 Orchestrator	 and	 to	 the	 Marketplace	 enhanced	
awareness	 of	 the	 IVM	 status	 and	 resources,	 while	 at	 the	 same	 time	 keeping	 the	
communication	and	signalling	overhead	at	minimum.	

The	next	 steps	 in	 implementation	 involve	 the	 finalization	of	 the	Orchestrator	API	with	 the	
alarming	functionality,	the	integration	of	OpenDaylight,	as	well	as	the	anomaly	detection	part.	
These	advances	will	be	reflected	in	the	final	version	of	this	deliverable.	

		

	

	

	

	 	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
4	

	

Table	of	Contents	

1.	INTRODUCTION	..	6	

2.	REQUIREMENTS	OVERVIEW	AND	CONSOLIDATION	...	7	

3.	TECHNOLOGIES	AND	FRAMEWORKS	FOR	NFV	MONITORING	..	9	

3.1.	OPENSTACK	TELEMETRY/CEILOMETER	..	9	
3.2.	MONASCA	...	11	
3.3.	GNOCCHI	...	13	
3.4.	CYCLOPS	..	14	
3.5.	ZABBIX	..	15	
3.6.	NAGIOS	...	15	
3.7.	OPNFV	PROJECTS	..	16	

3.7.1.	Doctor	..	16	
3.7.2.	Prediction	..	17	

3.8.	OPENDAYLIGHT	MONITORING	...	17	
3.9.	OTHER	RELEVANT	MONITORING	FRAMEWORKS	...	18	
3.10.	TECHNOLOGY	SELECTION	AND	JUSTIFICATION	...	18	

4.	THE	T-NOVA	VIM	MONITORING	FRAMEWORK	...	21	

4.1.	ARCHITECTURE	AND	FUNCTIONAL	ENTITIES	..	21	
4.2.	MONITORING	METRICS	LIST	..	22	

4.2.1.	Generic	metrics	..	22	
4.2.2.	VNF-specific	metrics	..	24	

4.3.	VNF	MONITORING	AGENT	...	28	
4.4.	COLLECTION	OF	VNF-SPECIFIC	METRICS	..	29	
4.5.	MONITORING	OF	FPGA-BASED	VNFS	..	30	
4.6.	VIM	MONITORING	MANAGER	ARCHITECTURE	AND	COMPONENTS	...	31	

4.6.1.	VIM	MM	Architecture	..	31	
4.6.2.	Interfaces	to	cloud	and	network	controllers	..	34	
4.6.3.	Northbound	API	to	Orchestrator	...	34	
4.6.4.	Anomaly	detection	..	37	
4.6.5.	Time-series	Database	..	37	
4.6.6.	Graphical	user	interface	..	38	

4.7.	PACKAGING,	DOCUMENTATION	AND	OPEN-SOURCE	RELEASE	..	38	

5.	VALIDATION	...	40	

5.1.	FUNCTIONAL	TESTING	..	40	
5.2.	BENCHMARKING	...	42	
5.3.	FULFILLMENT	OF	REQUIREMENTS	...	43	

6.	CONCLUSIONS	AND	FUTURE	WORK	..	45	

7.	REFERENCES	...	46	

8.	LIST	OF	ACRONYMS	..	48	

9.	ANNEX	I:	SURVEY	OF	RELEVANT	IT/NETWORK	MONITORING	TOOLS	49	

9.1.1.	IT/Cloud	monitoring	..	49	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
5	

9.1.2.	Network	Monitoring	..	51	
	

	

	 	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	

6	

1. INTRODUCTION		

This	 deliverable	 is	 an	 interim	 report	 of	 the	 work	 currently	 being	 carried	 out	 in	 Task	 4.4	
(Monitoring	and	Maintenance).	Task	4.4	focuses	on	the	implementation	and	integration	of	a	
monitoring	 framework,	 able	 to	 extract,	 process	 and	 communicate	monitoring	 information	
from	 both	 physical	 and	 virtual	 nodes	 as	 well	 as	 VNFs	 at	 IVM	 level.	 In	 other	 words,	 the	
operational	scope	of	the	monitoring	framework	being	developed	in	Task	4.4	corresponds	to	
the	 two	 lower	 layers	 of	 the	 T-NOVA	architecture,	 namely	 the	NFVI	 and	VIM.	 The	metrics1	
collected,	along	with	alarms/events	generated,	are	in	turn	communicated	to	the	upper	layers	
(Orchestrator	and	Marketplace),	so	that	the	latter	have	a	comprehensive	view	of	the	status	of	
the	infrastructure	resources	as	well	as	the	network	services	running	on	them.	

The	present	document	is	structured	as	follows:	

• Chapter	 2	 overviews	 and	 consolidates	 the	 T-NOVA	 system	 and	 IVM	 requirements	
which	directly	or	indirectly	affect	the	monitoring	framework.	

• Chapter	3	presents	a	 survey	of	 the	most	prominent	enabling	 technologies	 for	NFV	
monitoring,	 as	well	 as	 relevant	Openstack,	 OpenDaylight	 and	OPNFV	 projects	 and	
presents	a	justification	for	the	technologies	used.	

• Chapter	 4	 presents	 the	 architecture	 and	 the	 functional	 blocks	 of	 the	 T-NOVA	VIM	
monitoring	framework.	

• Chapter	5	presents	the	testing	and	validation	of	the	framework	against	specific	test	
cases.	

• Finally,	Chapter	6	concludes	the	document.	

	

	

	

																																																													
1	It	must	be	clarified	that	Task	4.4	focuses	on	the	collection	of	dynamic	metrics,	i.e.	metrics	which	change	frequently	
in	relation	to	resource	usage.	Static	information	reflecting	the	status	and	capabilities	of	infrastructure,	e.g.	number	
of	 installed	 compute	 nodes,	 processing	 resources	 per	 node	 etc.	 are	 assumed	 to	 be	 handled	 by	 Task	 3.2	
(Infrastructure	Repository).	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
7	

2. REQUIREMENTS	OVERVIEW	AND	CONSOLIDATION			

Deliverable	D2.32	[D232]	has	defined	and	identified	architectural	concepts	and	requirements	
for	the	IVM	(NFVI	and	VIM)	layers.	The	technical	requirements	which	drive	the	specification	
and	development	of	the	T-NOVA	monitoring	framework	can	be	directly	derived/inherited	by	
the	specific	 IVM	requirements.	Table	1	below	identifies	the	 IVM	requirements	that	–either	
directly	or	indirectly-	are	associated	to	IVM	monitoring,	focusing	on	NFVI-PoP	resources	and	
describes	 how	 each	 of	 these	 are	 translated	 to	 a	 specific	 requirement	 for	 the	 monitoring	
framework.	

Table	1.	IVM	requirements	which	affect	the	monitoring	framework	

IVM	
Req.ID	

IVM	Requirement	
Name	 Requirement	for	the	Monitoring	Framework	

VIM.1	
Ability	to	handle	
heterogeneous	
physical	resources	

The	MF	must	provide	a	vendor	agnostic	mechanism	for	
physical	resource	monitoring.	

VIM.2	

Ability	to	provision	
virtual	instances	of	the	
infrastructure	
resources	

The	MF	must	be	able	to	report	the	status	of	virtualized	
resources	as	well	as	from	physical	resources	in	order	to	
assist	placement	decisions	

VIM.3	 API	Exposure	 The	MF	must	provide	an	interface	to	the	Orchestrator	for	
the	communication	of	monitoring	metrics.	

VIM.6	

Translation	of	
references	between	
logical	and	physical	
resource	identifiers	

The	MF	must	re-use	resource	identifiers	when	linking	
metrics	to	resources.	

VIM.8	 Control	and	
Monitoring	

The	MF	must	monitor	in	real	time	the	physical	network	
infrastructure	as	well	as	the	vNets	instantiated	on	top	of	it,	
providing	measurements	of	the	metrics	relevant	to	service	
level	assurance.	

VIM.9	 Scalability	 The	MF	must	keep	up	with	dynamic	increase	of	the	number	
of	resources	to	be	monitored	

VIM.18	 Query	API	and	
Monitoring	

The	MF	must	provide	an	API	for	communicating	metrics	(in	
either	push	or	pull	mode)	

VIM.21	 Virtualised	
Infrastructure	Metrics	

The	MF	must	collect	performance	and	utilisation	metrics	
from	the	virtualised	resources	in	the	NFVI.	

C.7	 Compute	Domain	
Metrics	 The	MF	must	collect	compute	domain	metrics.	

C.12	 Hardware	accelerator	
metrics	 The	MF	must	collect	hardware	accelerator	metrics	

H.1	 Compute	Domain	
Metrics	 The	MF	must	collect	compute	metrics	from	the	Hypervisor.	

H.2	 Network	Domain	
Metrics	

The	MF	must	collect	network	domain	metrics	from	the	
Hypervisor.	

H.12	 Alarm/Error	Publishing	 The	MF	must	process	and	dispatch	alarms.	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
8	

N.5	 Usage	monitoring	 The	MF	must	collect	metrics	from	physical	and	virtual	
networking	devices.	

N.8	 SDN	Management	 The	MF	must	leverage	SDN	monitoring	capabilities.	

	

By	consolidating	the	aforementioned	requirements,	it	becomes	clear	that	the	basic	required	
functionalities	of	the	IVM	monitoring	framework	are	as	follows:	

1. Collection	of	IT	and	networking	metrics	from	virtual	and	physical	devices	of	the	NFVI.	
It	 should	 be	 noted	 that	 at	 the	 IVM	 level,	metrics	 correspond	 only	 to	 physical	 and	
virtual	 nodes	 and	 are	 not	 associated	 to	 services	 since	 the	 VIM	 does	 not	 have	
knowledge	 of	 the	 end-to-end	 Network	 Service.	 Metrics	 are	 mapped	 to	 Network	
Services	at	Orchestrator	level;	

2. Processing	and	generation	of	events	and	alarms;	

3. Communication	of	monitoring	information	and	events/alarms	to	the	Orchestrator	in	
a	scalable	manner;	

The	following	chapter	overviews	several	technological	frameworks	for	NFV	monitoring	which	
could	be	partially	exploited	towards	fulfilling	these	requirements.	

	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
9	

3. TECHNOLOGIES	AND	FRAMEWORKS	FOR	NFV	MONITORING		

This	chapter	presents	a	brief	overview	of	the	most	relevant	monitoring	frameworks	which	can	
be	applied	to	the	NFV	domain.	This	section	mostly	focuses	on	monitoring	tools	which	provide	
a	satisfactory	degree	of	integration	with	OpenStack	and	can	be	extended	for	NFV	monitoring;	
a	more	comprehensive	survey	of	other,	most	generic	IT	and	network/SDN	monitoring	tools	
can	be	found	in	Annex	2.	

3.1. OpenStack	Telemetry/Ceilometer		

The	 goal	 of	 the	 Telemetry	 project	 within	 OpenStack	 [Telemetry],	 is	 to	 reliably	 collect	
measurements	of	the	utilisation	of	physical	and	virtual	resources,	comprising	deployed	clouds,	
store	such	data	 for	offline	usage,	and	 trigger	actions	on	 the	occurrence	of	given	events.	 It	
includes	three	different	services	(Aodh,	Ceilometer	and	Gnocchi	–	see	Sec.	3.3),	providing	the	
different	 stages	of	 the	data	monitoring	 functional	 chain:	Aodh	delivers	alarming	 functions,	
Ceilometer	deals	with	data	collection,	Gnocchi	provides	a	time-series	database	with	resource	
indexing.	

The	 actual	 data	 collection	 service	 in	 the	 Telemetry	 project	 is	 Ceilometer.	 Ceilometer	 is	 an	
OpenStack	service	which	performs	collection	of	data,	normalizes	and	duly	transforms	them,	
making	 them	 available	 to	 other	 services	 (starting	 from	 the	 Telemetry	 ones).	 Ceilometer	
efficiently	 collects	 the	metering	 data	 of	 virtual	 machines	 (VMs)	 and	 the	 computing	 hosts	
(Nova),	the	network,	the	Operating	System	images	(Glance),	the	disk	volumes	(Cinder),	the	
identities	 (Keystone),	 the	 object	 storage	 (Swift),	 the	 orchestration	 (Heat),	 the	 energy	
consumption	(Kwapi)	and	also	user-defined	meters.	

	
Figure	1.	OpenStack	Telemetry/Ceilometer	architecture	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
10	

	

Figure	1	depicts	an	overall	summary	of	the	Telemetry/Ceilometer	logical	architecture.	Each	of	
the	Telemetry	services	are	designed	to	scale	horizontally.	Additional	workers	and	nodes	can	
be	 added	 depending	 on	 the	 expected	 load.	 The	 system	 consists	 of	 the	 following	 basic	
components:	

• Polling	agents;	these	are:	
o compute	 agents	 (ceilometer-agent-compute):	 they	 run	 on	 each	 compute	

node	and	poll	for	resource	utilisation	statistics;	
o central	 agents	 (ceilometer-agent-central):	 it	 runs	 on	 one	 or	 more	 central	

management	 servers	 to	poll	 for	 resource	utilisation	 statistics	 for	 resources	
not	tied	to	instances	or	compute	nodes;	

• Notification	agents;	these	run	on	one	or	more	central	management	servers	to	monitor	
the	message	queues	(for	notifications	and	for	metering	data	coming	from	the	agent);		

• Collectors	(ceilometer-collector):	designed	to	gather	and	record	event	and	metering	
data	created	by	notification	and	polling	agents.	

• Databases,	 containing	 Events,	 Meters	 and	 Alarms;	 these	 are	 capable	 of	 handling	
concurrent	writes	 (from	one	or	more	 collector	 instances)	 and	 reads	 (from	 the	API	
module);	

• An	Alarm	 Evaluator	 and	Notifier	 (ceilometer-alarm-notifier):	 Runs	 on	 one	 or	more	
central	 management	 servers	 to	 allow	 configuration	 of	 alarms	 based	 on	 threshold	
evaluation	 for	a	 collection	of	 samples.	 This	 functionality	 is	now	undertaken	by	 the	
Aodh	module,	as	will	be	described	later.	

• An	API	module	(ceilometer-api):	Runs	on	one	or	more	central	management	servers	to	
provide	access	to	the	data	from	the	data	store.	

Ceilometer	offers	two	independent	ways	to	collect	metering	data,	allowing	easy	integration	
of	any	Openstack-related	project	which	needs	to	be	monitored:		

• By	listening	to	events	generated	on	the	notification	bus,	transformed	into	Ceilometer	
samples.	This	is	the	preferred	method	of	data	collection,	since	it	is	the	most	simple	
and	straightforward.	It	requires,	however,	that	the	monitored	entity	uses	the	bus	to	
publish	events,	which	may	not	be	the	case	for	all	OpenStack-related	projects.	

• By	polling	information	via	the	APIs	of	monitored	components	at	regular	intervals	to	
collect	 information.	 The	 data	 are	 usually	 stored	 in	 a	 database	 and	 are	 available	
through	the	Ceilometer	REST	API.	This	method	is	least	preferred	due	to	the	inherent	
difficulty	in	making	such	a	component	resilient.	

Each	meter	measures	 a	 particular	 aspect	 of	 resource	 usage	 or	 on-going	 performance.	 All	
meters	have	a	string	name,	a	unit	of	measurement,	and	a	type	indicating	whether	values	are	
monotonically	 increasing	 (cumulative),	 interpreted	 as	 a	 change	 from	 the	 previous	 value	
(delta),	 or	 a	 standalone	 value	 relating	 only	 to	 the	 current	 duration	 (gauge).	 Samples	 are	
individual	data	points	associated	with	a	particular	meter	and	have	a	timestamp	and	a	value.	
The	aggregation	of	a	set	of	samples	for	a	specified	duration	(start-end	time)	is	called	a	statistic.	
Each	statistic	has	also	an	associated	time	period,	which	is	a	repeating	interval	of	time	that	the	
samples	 are	 grouped	 for	 aggregation.	 Currently	 there	 are	 five	 aggregation	 functions	
implemented:	count,	max,	min,	avg	and	sum.	

Another	feature	of	Telemetry	is	alarming,	which	used	to	be	internal	to	Ceilometer,	but	moved	
to	a	separate	project,	Aodh	[Aodh].	An	alarm	is	a	set	of	rules	defining	a	monitor	of	a	statistic	
that	will	trigger	when	a	threshold	condition	is	breached.	An	alarm	can	be	set	on	a	single	meter,	
or	on	a	combination	of	meters	and	can	have	three	states:	

• alarm	(the	threshold	condition	is	breached)	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
11	

• ok	(the	threshold	condition	is	not	met)	
• insufficient	data	(not	enough	data	has	been	gathered	to	determine	if	the	alarm	should	

fire	or	not).	

The	transition	to	these	states	can	have	an	associated	action,	which	is	either	writing	to	a	log	
file	 or	 an	 http	 post	 to	 a	 URL.	 The	 concept	 of	meta-alarm	 is	 also	 supported;	meta-alarms	
aggregate	over	the	current	state	of	a	set	of	other	basic	alarms	combined	via	a	logical	operator	
(AND/OR).	For	example,	a	meta-alarm	could	be	triggered	when	three	basic	alarms	become	
active	at	the	same	time.	

3.2. Monasca		

Monasca	 [Monasca]	 is	 an	 OpenStack	 project,	 aiming	 at	 developing	 an	 open-source	multi-
tenant,	highly	scalable,	performant,	fault-tolerant	monitoring-as-a-service	solution,	which	is	
integrated	within	the	OpenStack	framework.	Monasca	uses	a	REST	API	for	high-speed	metrics	
processing	and	querying,	and	has	a	streaming	alarm	and	notification	engine.	Monasca	is	being	
developed	by	HPE,	Rackspace	and	IBM.	

Monasca	is	conceived	to	scale	up	to	service	provider	level	of	metrics	throughput	(in	the	order	
of	100,000	metrics/sec).	 The	Monasca	architecture	 is	natively	designed	 to	 support	 scaling,	
performance	and	high-availability.	Retention	period	of	historical	data	is	not	less	than	one	year.	
Storage	of	metrics	 values,	 and	metrics	database	query,	use	an	HTTP	REST	API.	Monasca	 is	
multi-tenant,	 and	 exploits	 OpenStack	 authentication	 mechanisms	 (Keystone)	 to	 control	
submission	and	access	to	metrics.		

The	metric	definition	model	consists	of	a	(key,	value)	pair	named	dimension.	Basic	threshold-
based	real-time	alarms	are	available	on	metrics.	Furthermore,	complex	alarm	events	can	be	
defined	end	instrumented,	based	on	a	simple	description	grammar	with	specific	expressions	
and	operators.		

Monasca	 agents	 embed	 a	 number	 of	 built-in	 system	and	 service	 level	 checks,	 plus	Nagios	
checks	and	statsd.	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
12	

	
Figure	2.	Monasca	architecture	

Monasca	 agents	 are	 Python	 based,	 and	 consist	 of	 several	 sub-components	 and	 supports	
system	metrics,	such	as	cpu	utilization	and	available	memory,	Nagios	plugins,	statsd	and	many	
built-in	checks	for	services	such	as	MySQL,	RabbitMQ,	and	many	others.	

The	REST	API	provides	an	exhaustive	set	of	functions:	

• Real-time	storage	and	querying	of	large	amounts	of	metrics;	
• Statistics	query	for	metrics;	
• Alarm	definition	management	(create,	delete,	update);	
• Query	and	cleanup	of	historical	metrics	database;	
• Compound	alarms	definition;	
• Alarm	severity	ranking;	
• Full	storage	of	alarm	transition	pattern;	
• Management	of	alarm	notification	mechanisms;	
• Java	and	Python	API	available	

Published	metrics	and	events	are	pushed	into	a	Kafka2	based	message	queue,	from	which	a	
component	named	Persister	pulls	them	out	and	stores	them	into	the	metrics	database	(HPE	
Vertica,	 InfluxDB	 and	 Cassandra	 are	 supported).	 Other	 engine	 components	 look	 after	
compound	 metric	 creation,	 predictive	 metrics,	 notification,	 and	 alarm	 threshold	
management.		

Monasca	also	includes	a	multi-publisher	plugin	for	OpenStack	ceilometer,	able	to	convert	and	
publish	metric	samples	to	the	Monitoring	API,	plus	an	OpenStack	Horizon	dashboard	as	user	
interface.		

																																																													
2	http://kafka.apache.org/	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
13	

Monasca	 features	 like	 real-time	 alarm	 processing,	 integration	 with	 OpenStack	 and	
scalability/extendibility	make	it	a	monitoring	system	potentially	well	suitable	to	be	employed	
within	NFV	platforms.	

3.3. Gnocchi	

Gnocchi	[Gnocchi]	s	a	project	incubated	under	the	OpenStack	Telemetry	program	umbrella,	
addressing	the	development	of	a	TDBaaS	(Time	Series	Database	as	a	Service)	framework.	Its	
paramount	goal	is	to	fix	the	significant	performance	issues	experienced	by	Ceilometer	in	the	
time	series	data	collection	and	storage.	The	root	cause	of	 such	 issues	 is	 the	highly	generic	
nature	 of	 Ceilometer’s	 data	model,	 which	 gave	 the	 needed	 design	 flexibility	 in	 the	 initial	
OpenStack	 releases,	 but	 imposed	 a	 performance	 penalty	 which	 is	 no	 longer	 deemed	
acceptable	(storing	a	large	amount	of	metrics	on	several	weeks	makes	substantially	collapse	
the	storage	backend).	The	current	data	model	on	one	hand	encompasses	many	options	never	
appearing	 in	 real	 user	 requests,	 on	 the	 other	 hand	 doesn't	 handle	 use	 cases	 which	 are	
overcomplex	or	too	slow	to	be	run.		From	the	aforementioned	remarks,	the	idea	of	a	brand	
new	 solution	 for	metrics	 sample	 collection	was	 ignited,	which	brought	 to	 the	 inception	of	
Gnocchi.	

Diving	 deeper	 into	 the	 problem,	 whereas	 event	 collection	 model	 in	 Ceilometer	 is	 pretty	
robust,	metrics	 collection	and	 storage	 suffers	 the	aforementioned	performance	 flaws.	 The	
root	of	the	problem	is	in	the	free	form	metadata	associated	to	each	metric,	storing	a	bevy	of	
redundant	 information	 which	 is	 hard	 to	 efficiently	 query.	 Gnocchi	 proposes	 a	 faster	 and	
scalable	pair	of	time	series	storage/resource	indexer,	with	a	REST	API	returning	an	entity	(the	
measured	 thing)	 and	 a	 resource	 (information	 metadata).	 Differently	 from	 Ceilometer,	 in	
Gnocchi	data	stores	are	separated	for	metrics	and	metadata.		

	
Figure	3.	Gnocchi	architecture	

The	storage	driver	(abstracted)	is	in	charge	of	metrics	storage.	Aggregated	metrics	are	actually	
pre-aggregated	before	the	storage	operation	occurs,	based	on	the	user	request	at	entity	time	
creation.	The	canonical	 implementation	of	 time	series	data	 (TSD)	 storage	uses	Pandas	and	
Swift.		

The	indexer	driver	(abstracted	as	well)	uses	SQLAlchemy,	to	exploit	the	speed	and	indexable	
nature	of	SQL,	very	well	fitting	indexing	storage.	In	Gnocchi	vision,	there	will	be	predefined	
resource	 schemas	 (image,	 instance,…)	 to	 improve	 indexing	 and	 querying	 at	 the	maximum	
extent.	

Additional	 functional	 updates	 envisioned	 in	 Gnocchi	 include	 configurable	 per	 time-series	
retention	policies.	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
14	

In	future	perspective,	Gnocchi	API	should	be	transitioned	to	Ceilometer	API	V3,	and	its	TSDB	
interaction	fully	moved	into	the	Ceilometer	collector.	In	an	initial	phase,	Gnocchi	should	be	
integrated	 as	 self-standing	 code	 inside	 the	 Ceilometer	workflow	 (via	 Ceilometer	 Database	
Dispatcher).	

3.4. Cyclops		

Cyclops	 [Cyclops]	 is	 a	 generic	 rating-charging-billing	 (rcb)	 framework	 that	 allows	 arbitrary	
pricing	 and	 billing	 strategies	 to	 be	 implemented.	 The	 business	 rules	 are	 registered	 and	
processed	inside	of	a	Drools	BPM	rule	engine	[Drools].	The	framework	itself	is	organized	as	a	
set	of	micro-services	with	clear	separation	of	functionalities	and	communication	among	them	
carried	over	well	defined	RESTful	interfaces.	

	

	
Figure	4.	Cyclops	architecture	

	

Figure	 4	 above	 shows	 the	 key	 micro	 services	 and	 modules	 that	 make	 up	 the	 Cyclops	
framework.	A	brief	explanation	of	each	module	is	described	next:	

• udr	μ-service:	 this	service	 is	 responsible	of	metric	collection	 for	natively	supported	
cloud	 platforms,	 currently	 OpenStack	 and	 CloudStack	 are	 supported.	 The	 metric	
collection	drivers	for	other	popular	frameworks	including	PaaS	as	public	cloud	vendors	
are	in	the	plans.	It	also	persists	the	collected	metrics	data	into	TSDB	(InfluxDB	0.9.x	
data	store).	For	non-natively	supported	applications,	it	processes	the	metrics	pushed	
into	the	messaging	queues	as	and	when	they	arrive	thus	enabling	the	framework	to	
support	all	sorts	of	composite	and	converged	billing	needs.	

• rc	μ-service:	the	rating	and	charging	service	processes	the	udr-records	and	transforms	
them	into	charge-records	with	cost	details.	The	rating	part	of	the	service	generates	/	
fetches	 the	 rate	value	 for	 identified	services	or	 resources	 that	 form	 in	 the	product	
portfolio	of	any	provider.	The	 rating	 rules	are	processed	 through	drools	BPM	rules	
engine,	 enabling	 providers	 to	 activate	 dynamic	 rating	 and	 maximize	 the	 revenue	
potential	of	their	portfolio	while	maintaining	consumer	satisfaction	and	loyalty.	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
15	

• billing	μ-service:	as	the	name	suggests,	this	service	processes	and	aggregates	all	the	
charge	records	created	by	rc	μ-service;	 furthermore	 it	processes	any	SLA	violations	
and	associated	penalties	for	a	specified	time	period.	This	service	also	processes	any	
pending	 service	 credits,	 discounts	 and	 seasonal	 offers	 and	 applicable	 regional	 tax	
rates	before	generating	the	final	bill	document.	

• Auth-n/z	μ-service:	Cyclops	micro-services	validate	API	requests	using	secure	tokens.	

• Messaging	service:	 this	 feature	allows	external	non-natively	supported	applications	
and	platforms	to	send	in	their	usage	metrics	data	for	further	processing	by	the	Cyclops	
framework.		

• Dashboard:	 this	 module	 provides	 a	 rich	 graphical	 user	 interface	 for	 customers	 to	
manage	and	view	their	usage	charts	and	bills,	and	allows	admins	to	control	various	
parameters	of	the	framework	and	also	manage	the	pricing	and	billing	rules.	

As	the	framework	is	implemented	as	a	distributed	platform,	the	health	status	monitoring	of	
various	service	is	critical.	For	this,	currently	Sensu	[Sensu]	is	used	to	track	the	aliveness	of	each	
service.	 Sensu	 could	 also	 be	 used	 to	 manage	 the	 data	 collection	 tasks	 scheduling	 and	
triggering.	 Although	 the	 framework	 designers	 are	 migrating	 towards	 a	 self-contained	
scheduler	for	their	data	collection	and	processing	requirements.	The	usage	metrics	collection	
depends	heavily	on	the	granularity	of	the	service	monitoring	implementation.		

3.5. Zabbix		

Zabbix	[Zabbix]	is	an	open	source,	general-purpose,	enterprise-class	network	and	application	
monitoring	 tool	 that	 can	 be	 customised	 for	 use	 with	 OpenStack.	 It	 can	 be	 used	 to	
automatically	 collect	 and	 parse	 data	 from	 monitored	 cloud	 resources.	 It	 also	 provides	
distributed	monitoring	with	centralised	Web	administration,	a	high	level	of	performance	and	
capacity,	 JMX	 monitoring,	 SLAs	 and	 ITIL	 KPI	 metrics	 on	 reporting,	 as	 well	 as	 agent-less	
monitoring.	An	OpenStack	Telemetry	plugin	for	Zabbix	is	already	available.	

Using	 Zabbix	 the	 administrator	 can	 monitor	 servers,	 network	 devices	 and	 applications,	
gathering	statistics	and	performance	data.	Monitoring	performance	indicators	such	as	CPU,	
memory,	 network,	 disk	 space	 and	processes	 can	be	 supported	 through	an	 agent,	which	 is	
available	 as	 a	 native	 process	 for	 Linux,	 UNIX	 and	Windows	 platforms.	 For	 the	 OpenStack	
infrastructure	it	can	currently	monitor:	

● Core	 OpenStack	 services:	 Nova,	 Keystone,	 Neutron,	 Ceilometer	 (OpenStack	
Telemetry),	Horizon,	Cinder,	Glance,	Swift	Object	Storage,	and	OVS	(Open	vSwitch)	

● Core	 infrastructure	 components:	 MySQL,	 RabbitMQ,	 HAProxy,	 memchached,	 and	
libvirtd.	

● Operating	system	statistics:	Disk	I/O,	CPU	load,	free	RAM,	etc.	
Zabbix	is	not	limited	to	OpenStack	cloud	infrastructures:	it	can	be	used	to	monitor	VMware	
vCenter	 and	 vSphere	 installations	 for	 various	 VMware	 hypervisor	 and	 virtual	 machine	
properties	and	statistics.	

3.6. Nagios		

Nagios	is	an	open	source	tool	that	provides	monitoring	and	reporting	for	network	services	and	
host	 resources	 [Nagios].	 The	 entire	 suite	 is	 based	 on	 the	 open-source	 Nagios	 Core	which	
provides	 monitoring	 of	 all	 IT	 infrastructure	 components	 -	 including	 applications,	 services,	
operating	 systems,	 network	protocols,	 system	metrics,	 and	network	 infrastructure.	Nagios	
does	not	come	as	a	one-size-fits-all	monitoring	system	with	thousands	of	monitoring	agents	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
16	

and	monitoring	functions;	it	is	rather	a	small,	lightweight	system	reduced	to	the	bare	essential	
of	 monitoring.	 It	 is	 also	 very	 flexible	 since	 it	 makes	 use	 of	 plugins	 in	 order	 to	 setup	 its	
monitoring	environment.	

Nagios	 Fusion	 enables	 administrators	 to	 gain	 insight	 into	 the	 health	 of	 the	 organisation's	
entire	network	through	a	centralised	view	of	their	monitored	infrastructure.	In	addition,	they	
can	automate	the	response	to	various	incidents	through	the	usage	of	Nagios	Incident	Manager	
and	Reactor.	The	Network	Analyser,	which	is	part	of	the	suite,	provides	an	extensive	view	of	
all	network	traffic	sources	and	potential	security	 threats	allowing	administrators	 to	quickly	
gather	high-level	 information	regarding	the	status	and	utilisation	of	the	network	as	well	as	
detailed	 data	 for	 complete	 and	 thorough	 network	 analysis.	 All	 monitoring	 information	 is	
stored	 in	 the	 Log	 Server	 that	 provides	 monitoring	 of	 all	 mission-critical	 infrastructure	
components	–	including	applications,	services,	operating	systems,	network	protocols,	systems	
metrics,	and	network	infrastructure.	

Nagios	and	Telemetry	are	quite	complementary	products	which	can	be	used	in	an	integrated	
solution.	 The	 ICCLab,	 which	 operates	 within	 the	 ZHAW’s	 Institute	 of	 Applied	 Information	
Technology,	has	developed	a	Nagios	plugin	which	can	be	used	to	capture	metrics	through	the	
Telemetry	API,	thus	allowing	Nagios	to	monitor	VMs	inside	OpenStack.	Finally,	the	Telemetry	
plugin	can	be	used	to	define	thresholds	and	triggers	in	the	Nagios	alerting	system.	

3.7. OPNFV	Projects		

3.7.1. Doctor	

Doctor	 (Fault	 Management)	 [Doctor]	 is	 an	 active	 OPNFV	 requirements	 project.	 Started	
December	2014,	its	aim	is	to	build	fault	management	and	maintenance	framework	for	high	
availability	of	Network	Services	on	top	of	virtualized	infrastructure.	The	project	is	supported	
by	engineers	from	several	major	telecom	vendors	as	well	as	telco	providers.	

So	 far,	 the	 project	 has	 produced	 a	 report	 deliverable	 which	 was	 very	 recently	 released	
(October	2015)	[DoctorDel].	This	report	identifies	use	cases	and	requirements	for	an	NFV	fault	
detection	and	management	system.	In	specific,	the	following	requirements	are	identified	for	
a	VIM-layer	monitoring	system:	

• Monitoring	of	resources	

• Detection	of	unavailability	and	failures	

• Correlation	and	Cognition	(especially	correlation	of	faults	among	resources)	

• Notification	by	means	of	alarms	

• Fencing,	i.e.	isolation	of	a	faulty	resource	

• Recovery	actions	

Doctor	 has	 also	 specified	 an	 architectural	 blueprint	 for	 the	 fault	 management	 functional	
blocks	within	the	NFV	infrastructure,	as	shown	in	Figure	5.	In	particular,	it	is	envisaged	that	
certain	functionalities	for	control,	monitoring,	notification	and	inspection	need	to	be	included	
in	the	VIM.	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
17	

	
Figure	5.	Doctor	functional	blocks	

As	a	first	implementation	proposal,	the	report	proposes	to	re-use	and	integrate	some	off-the	
shelf	 solutions	 for	 these	 functionalities,	 namely	 Ceilometer	 (see	 Sec.	 3.1)	 for	 the	Notifier,	
Zabbix	(see	Sec.	3.5)	for	the	Monitor	and	Monasca	(see	Sec.	3.2)	for	the	Inspector.	

However,	 it	 is	 evident	 that	 integrating	 these	 frameworks	 results	 in	 considerable	 overlaps,	
since	many	functionalities	are	present	in	all	of	them	(e.g.	metrics	collection,	storage,	alarming	
etc.)	 and	 thus	 may	 produce	 an	 unnecessarily	 complex	 and	 overprovisioned	 system.	 In	
addition,	some	key	requirements	mentioned	in	the	document,	such	as	correlation	and	root	
cause	detection	are	not	covered	by	the	present	versions	of	these	frameworks.	

3.7.2. Prediction		

Data	 Collection	 for	 Failure	 Prediction	 [Prediction]	 is	 another	 OPNFV	 project,	 aiming	 to	
implement	a	system	for	predicting	failures.	Notifications	produced	can	be	dispatched	to	the	
fault	management	system	(see	previous	section),	so	that	the	latter	can	proactively	respond	to	
faults,	before	these	actually	happen.	

The	scope	of	the	project	is	very	promising	indeed	and	also	very	relevant.	However,	its	progress	
seems	 quite	 limited	 for	 the	 time	 being.	 The	 plan	 is	 to	 introduce	 just	 the	 data	 collection	
capabilities	in	OPNFV	Release	2.	

	

3.8. OpenDaylight	monitoring		

Since	OpenDaylight	has	been	selected	as	the	SDN	network	controller	for	T-NOVA,	it	is	relevant	
to	investigate	the	monitoring	capabilities	it	provides.	

The	 OpenDaylight	 Statistics	 Manager	 module,	 implements	 statistics	 collection,	 sending	
statistics	 requests	 to	 all	 enabled	 nodes	 (managed	 switches)	 and	 storing	 responses	 in	 the	
statistics	operational	subtree.	The	Statistics	Manager	collects	information	on	the	following:	

• node-connector	(switch	port)	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
18	

• flow	
• meter	
• table	
• group	statistics	

In	the	Hydrogen	and	Helium	releases,	monitoring	metrics	were	exposed	via	the	northbound	
Statistics	REST	API.		

The	Lithium	release	introduces	the	Model-Driven	Service	Abstraction	Layer	(MDSAL),	which	
stores	status-related	data	in	the	form	of	a	document	object	model	(DOM),	known	as	a	“data	
tree.”	MDSAL	's	RESTful	 interfaces	for	configuration	and	monitoring	are	designed	based	on	
RESTCONF	protocol.	These	interfaces	are	generated	dynamically	at	runtime	based	on	YANG	
models	that	define	its	data.	

3.9. Other	relevant	monitoring	frameworks		

Apart	from	the	frameworks	surveyed	in	the	present	sections,	there	exists	a	large	number	of	
IT/Cloud	and	Network/SDN	monitoring	tools,	many	of	them	open-source,	which	could	be	re-
used	 as	 components	 of	 an	NFV	monitoring	 platform.	 Some	 of	 the	most	 popular	 tools	 are	
presented	in	Figure	6,	and	are	briefly	overviewed	in	Annex	I.	

	
Figure	6.	Other	relevant	Cloud/SDN	Monitoring	frameworks	

While	most	of	these	frameworks	require	considerable	effort	in	order	to	be	adapted	to	suit	the	
needs	of	NFV	monitoring,	there	are	certain	components	which	are	quite	mature	and	can	be	
reused.	 For	 example,	 in	 T-NOVA,	 the	 collectd	 module	 (the	 core	 version)	 is	 adopted	 as	
monitoring	agent	for	VNFs	and	compute	nodes,	as	will	be	described	in	the	next	section.	

3.10. Technology	selection	and	justification		

With	 regard	 to	 the	 basic	 functionalities	 identified	 in	 Section	 2	 as	 requirements	 for	 VIM	
monitoring,	metrics	collection	(Functionality	1)	can	already	be	achieved	by	re-using	a	number	
of	the	pre-existing	monitoring	mechanisms	for	virtualised	infrastructures,	as	surveyed	in	the	
following	section.	Apart	from	selecting	and	properly	integrating	the	appropriate	technologies	
and	possibly	selecting	the	appropriate	set	of	metrics,	 limited	progress	beyond	the	state-of-
the-art	should	be	expected	in	this	field.	

Shinken Icinga Zenoss Ganglia

StackTach Healthmon SeaLion MonALISA

collectd,	
StatsD	and	
Graphite

vSphere Amazon	
CloudWatch OpenNetMon

Payless DCM Flowsense

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
19	

On	 the	 other	 hand,	 the	 actual	 challenges	 and	 envisaged	 innovation	 of	 the	 monitoring	
framework	are	seen	to	be	associated	with	Functionalities	2	and	3.	Specifically,	the	following	
challenges	have	been	identified:	

• Events	and	alarms	generation:		Moving	beyond	the	typical	approach,	which	is	found	
in	most	monitoring	systems	and	is	based	on	static	thresholds	(i.e.	generate	an	alarm	
when	a	metric	has	 crossed	a	pre-defined	 threshold)	 the	aim	 is	 to	 study	and	adopt	
more	 dynamic	 methods	 for	 fault	 detection.	 Such	 methods	 should	 be	 based	 on	
statistical	 methods	 and	 self-learning	 approaches,	 identifying	 outliers	 in	 system	
behaviour	and	triggering	alarms	reactively	or	even	proactively	(e.g.	before	the	actual	
fault	has	occurred).	This	anomaly	detection	procedure,	in	the	context	of	T-NOVA,	can	
clearly	benefit	from	the	fact	that	the	monitored	services	are	composed	of	VNFs	rather	
than	 generic	 VMs.	 As	 virtual	 appliances	 dedicated	 to	 traffic	 processing,	 VNFs	 are	
expected	to	expose	some	common	characteristics	(e.g.	the	CPU	load	is	expected	to	
proportionally	rise,	not	necessarily	linearly,	with	the	increase	of	processed	traffic).	A	
significant	 deviation	 from	 this	 correlation	 could,	 for	 example,	 indicate	 a	 potential	
malfunction.	

• Communication	with	 the	Orchestrator:	With	 this	 functionality,	 scalability	 is	 the	key	
requirement	 that	 needs	 to	 be	 fulfilled.	 In	 an	 operational	 environment,	 the	
Orchestrator	 is	 expected	 to	 manage	 tens	 or	 hundreds	 of	 NFVI-PoPs	 (or	 even	
thousands,	if	micro-data	centres	distributed	in	the	access	network	are	envisaged).	It	
is	 thus	 impossible	 for	 the	 Orchestrator	 to	 handle	 the	 full	 set	 of	 metrics	 from	 all	
managed	physical	and	virtual	nodes.	The	challenge	is	to	optimise	the	communication	
of	monitoring	information	to	the	Orchestrator	so	that	only	necessary	information	is	
transmitted.	This	optimisation	does	not	only	imply	fine-tuning	of	polling	frequency,	
careful	definition	of	a	minimal	set	of	metrics	or	proper	design	of	the	communication	
protocol,	 but	 also	 requires	 an	 intelligent	 aggregation	 procedure	 at	 VIM	 level.	 This	
procedure	should	achieve	the	grouping/aggregation	of	various	metrics	from	different	
parts	of	the	infrastructure	as	well	as	of	alarms,	and	the	dynamic	identification	of	the	
information	that	is	of	actual	value	to	the	Orchestrator.	

To	achieve	the	aforementioned	innovations,	Task	4.4	work	plan	involves	in	its	initial	stage	the	
establishment	of	a	baseline	framework	which	fulfils	the	basic	functionalities	by	collecting	and	
communicating	 metrics	 and,	 as	 a	 second	 step,	 the	 study,	 design	 and	 incorporation	 of	
innovative	techniques	for	anomaly	detection	and	metrics	aggregation.	

There	are	many	alternative	ways	towards	this	direction,	whose	assessment	is	overviewed	in	
the	following	table.	

	

Table	2.	Assessment	of	various	implementation	choices	for	VIM	monitoring	

Implementation	 choice	 for	 T-
NOVA	VIM	monitoring	

Pros	 Cons	

Integration	of	required	
functionalities	(push	meters,	
statistical	processing,	
integration	of	guest	OS	and	VNF	
metrics)	into	Ceilometer	and	
Aodh.	

Direct	integration	into	
Openstack,	contribution	to	a	
mainstream	project.	Takes	
advantage	of	Ceilometer’s	
open	and	modular	
architecture.	

Will	require	intrusive	
interventions	into	
Ceilometer.	Solution	will	be	
Openstack-specific	and	also	
version-specific.	Also,	
Ceilometer	suffers	specific	
scalability	issues.	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
20	

Adoption	of	Monasca,	with	
some	extensions	(push	meters,	
statistical	processing,	
integration	of	guest	OS	and	VNF	
metrics)	

Monasca	is	a	complete	
monitoring	system	with	
remarkable	scalability	and	
also	quite	mature.	Its	REST	
API	already	provides	an	
exhaustive	set	of	functions.	
Monasca	has	an	open	and	
modular	architecture.	

Monasca	is	quite	complex	
and	resource-demanding,	
involving	many	capabilities	
which	are	not	required	in	T-
NOVA,	given	that	metrics	
are	also	processed	at	
Orchestrator.	Requires	a	
special	monitoring	agent	
(monasca-agent).		

Extension	of	Gnocchi	(as	a	
TDBaaS	framework)	with	all	
necessary	communication	and	
processing	tools		

Gnocchi	is	quite	mature	and	
advancing	rapidly,	is	also	well	
integrated	with	Ceilometer	to	
provide	scalability.	

Will	need	to	implement	
several	extensions	for	
communication	and	
processing,	since	Gnocchi	
mainly	provides	a	storage	
solution.	

Extension	of	Cyclops	with	all	
necessary	communication	and	
processing	tools	

Quite	mature	solution,	know-
how	available	within	T-NOVA	
consortium	(Cyclops	is	
developed	by	ZHAW)	

Will	require	extensive	
modification	since	Cyclops	is	
mostly	a	rating-charging-
billing	platform.	

Extension	of	Nagios	or	Zabbix	
with	all	necessary	
communication	and	processing	
tools	

Both	are	well-proven	
monitoring	frameworks	and	
provide	support	for	multiple	
systems	and	applications	

Nagios	and	Zabbix	already	
involve	many	features	and	
capabilities	which	are	not	
needed	in	T-NOVA,	and	thus	
their	extension	would	be	
inefficient,	also	requiring	
several	modifications.	

Integration	of	specific	enablers	
(agent,	time-series	DB,	existing	
APIs)	into	a	new	framework.	

Will	result	in	a	tailored	
solution	for	T-NOVA	needs.	
Lightweight	and	directly	
configurable.	

Some	functionalities	(such	
as	alarming)	will	have	to	be	
redeveloped	from	scratch.	

	

It	seems	that	most	of	the	existing	technological	enablers	for	VIM	monitoring,	as	previously	
overviewed,	can	only	partially	address	all	the	aforementioned	challenges	in	a	lightweight	and	
resource-efficient	manner.	Although	most	 of	 them	are	 indeed	open	and	modular	 (such	 as	
Monasca),	they	are	already	quite	complicated	and	resource-demanding	and	therefore	further	
expanding	 them	 to	 cover	 these	 needs	 would	 require	 considerable	 effort	 and	would	 raise	
efficiency	 issues.	We	 argue	 that	 a	 “clean-slate”	 approach	 towards	NFV	monitoring	 at	 VIM	
level,	exploiting	some	basic	enablers	and	adding	only	the	required	functionalities,	is	a	more	
optimized	approach.	

The	VIM	monitoring	 framework,	which	we	describe	 in	 the	next	 section,	 aims	 to	provide	 a	
lightweight	and	NFV-tailored	contribution	towards	this	direction.	

	

	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
21	

4. THE	T-NOVA	VIM	MONITORING	FRAMEWORK		

4.1. Architecture	and	functional	entities		

The	overall	architecture	of	the	T-NOVA	VIM	monitoring	framework	can	be	defined	by	taking	
into	account	the	technical	requirements,	as	 identified	 in	Section	2,	as	well	as	the	technical	
choices	made	for	the	NFVI	and	VIM	infrastructure.	The	specification	phase	has	concluded	that	
the	OpenStack	platform	will	be	used	for	the	control	of	the	virtualised	IT	infrastructure,	as	well	
as	the	OpenDaylight	controller	for	the	management	of	the	SDN	network	elements.	

In	 this	 context,	 it	 is	 proper	 to	 leverage	 the	 OpenDaylight	 (Statistics	 API)	 and	 OpenStack	
(Telemetry	API)	 capabilities	 for	 collecting	metrics,	 rather	 than	directly	 polling	 the	network	
elements	and	the	hypervisors	at	NFVI	layer,	respectively.	

Theoretically,	it	would	be	possible	for	the	Orchestrator	to	directly	poll	the	cloud	and	network	
controllers	 of	 each	 NFVI-PoP	 and	 retrieve	 resource	 metrics	 respectively.	 This	 approach,	
although	simple	and	straightforward,	would	only	poorly	address	 the	challenges	outlined	 in	
Section	 3.10	 and	 in	 particularly	 would	 introduce	 significant	 scalability	 issues	 on	 the	
Orchestrator	side.	

Thus,	 it	 seems	 appropriate	 to	 introduce	 a	mediator/processing	 entity	 at	 the	 VIM	 level	 to	
collect,	consolidate,	process	metrics	and	communicate	them	to	the	Orchestrator.	We	call	this	
entity	VIM	Monitoring	Manager	(VIM	MM),	as	a	stand-alone	software	component.	As	justified	
in	Sec.	3.10,	VIM	MM	is	re-designed	and	developed	in	T-NOVA	as	a	novel	component,	without	
depending	on	the	modification	of	existing	monitoring	frameworks.	

With	regard	to	the	collection	of	monitoring	information,	OpenStack	and	OpenDaylight	already	
provide	a	rich	set	of	metrics	for	both	physical	and	virtual	nodes,	which	should	be	sufficient	for	
most	T-NOVA	requirements.	However,	in	order	to	gain	a	more	detailed	insight	on	the	VNF	and	
the	NFVI	status	and	operation,	we	consider	advisable	to	also	collect	a	rich	set	of	metrics	from	
the	guest	OS	of	the	VNF	container	(VM)	-	including	information	which	cannot	be	obtained	via	
the	hypervisor	–	as	well	as	the	compute	node	itself.		

For	this	purpose,	we	introduce	an	additional	VNF	Monitoring	Agent,	deployed	within	the	VNF	
VMs.	The	agent	intends	to	augment	VNF	monitoring	capabilities,	by	collecting	a	large	variety	
of	metrics,	as	declared	 in	 the	VNF	Descriptor	document	 (VNFD)	of	each	VNF	and	also	at	a	
higher	temporal	resolution	compared	to	Ceilometer.		

The	monitoring	 agent	 can	 be	 either	 pre-installed	 in	 the	 VNF	 image	 or	 installed	 upon	 VNF	
deployment.	It	must	be	noted,	however,	that	in	some	cases	the	presence	of	an	agent	might	
not	 be	 desirable	 by	 the	 VNF	 developer	 for	 several	 reasons	 (e.g.	 resource	 constraints,	
incompatibilities	etc.).	In	this	case,	the	system	can	also	work	in	agent-less	mode,	solely	relying	
on	Ceilometer	data	for	VNFs	which	do	not	have	an	agent	installed.	

In	addition	to	collecting	generic	VNF	and	infrastructure	metrics,	the	VIM	MM	is	also	expected	
to	 retrieve	VNF-specific	metrics	 from	 the	VNF	application	 itself.	 For	 this	purpose,	we	have	
developed	specific	lightweight	libraries	(currently	in	Python,	but	planned	to	expand	to	other	
languages),	which	can	be	used	by	the	VNF	developer	to	dispatch	application-specific	metrics	
to	the	VIM	MM.	

Although	traditionally	the	VNF	metrics	are	supposed	to	be	directly	sent	to	the	VNF	Manager,	
for	 the	 sake	 of	 simplicity	 we	 chose	 to	 exploit	 the	 already	 established	 VIM	 monitoring	
framework	to	collect	and	forward	VNF	metrics	to	the	VNF	Manager	through	the	VIM,	rather	
than	implement	a	second	parallel	“monitoring	channel”.	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
22	

Based	on	the	design	choices,	outlined	above,	the	architecture	of	the	T-NOVA	VIM	monitoring	
framework	can	be	defined	as	shown	in	Figure	7	below.	

	

	
Figure	7.	Overview	of	the	VIM	monitoring	modules	

The	VIM	MM	aggregates	metrics	by	polling	the	cloud	and	network	controllers	and	by	receiving	
additional	 information	 from	 the	 monitoring	 agents	 as	 well	 as	 the	 VNF	 applications,	
consolidates	these	metrics,	produces	events/alarms	if	appropriate	and	communicates	them	
to	the	Orchestrator.	For	the	sake	of	scalability	and	efficiency,	it	was	decided	that	metrics	will	
be	 pushed	 by	 the	 VIM	 MM	 to	 the	 Orchestrator,	 rather	 than	 being	 polled	 by	 the	 latter.	
Moreover,	 the	 process	 of	metrics	 collection/communication	 and	 event	 generation	 can	 be	
partially	configured	by	the	Orchestrator	via	a	relevant	configuration	service	to	be	exposed	by	
the	VIM	MM.	More	details	on	the	introduced	modules	can	be	found	in	the	sections	to	follow.	

	

4.2. Monitoring	metrics	list		

4.2.1. Generic	metrics		

A	 crucial	 task	 when	 defining	 the	 T-NOVA	 approach	 for	monitoring	 is	 the	 identification	 of	
metrics	 that	 need	 to	 be	 collected	 from	 the	 virtualised	 infrastructure.	 Although	 the	 list	 of	
metrics	that	are	available	via	the	existing	controllers	can	be	quite	extensive,	it	is	necessary,	
for	the	sake	of	scalability	and	efficiency,	to	restrict	this	list	to	include	only	the	information	that	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
23	

is	actually	needed	for	the	implementation	of	the	T-NOVA	Use	Cases,	as	defined	in	Deliverable	
D2.1.	Table	3	belows	summarises	a	list	of	such	metrics,	which	are	“generic”	in	the	sense	that	
they	 are	 not	 VNF	 application-specific3.	 This	 list	 is	 meant	 to	 be	 continuously	 updated	
throughout	the	project	in	order	to	align	with	the	technical	capabilities	and	requirements	of	
the	components	under	development	and	the	use	cases	which	are	implemented.		

Table	3.	List	of	generic	monitoring	metrics	

Domain	 Metric	 Units	 Origin	 Relevant	UCs	

VM/VNF		 CPU	utilisation	(user	&	
system)	

	%	 VNF	Mon.Agent	 UC3,	UC4		

VM/VNF	 RAM	allocated		 MB	 VNF	Mon.Agent	 UC3,	UC4	

VM/VNF	 RAM	available		 MB		 VNF	Mon.Agent	 UC3,	UC4	

VM/VNF	 Disk	read/write	rate		 MB/s	 VNF	Mon.Agent	 UC3,	UC4	

VM/VNF	 Disk	read/write	rate		 Ops/s	 VNF	Mon.Agent	 UC3,	UC4	

VM/VNF	 Network	Interface	in/out	
bitrate	

Mbps	 VNF	Mon.Agent	 UC3,	UC4	

VM/VNF	 Network	Interface	in/out	
packet	rate	

pps	 VNF	Mon.Agent	 UC3,	UC4	

VM/VNF	 No.	of	processes		 #	 VNF	Mon.Agent	 UC4		

Compute	Node		 CPU	utilisation		 	%		 OS	Telemetry	 UC2,	UC3,	UC4		

Compute	Node	 RAM	available		 MB	 OS	Telemetry	 UC2,	UC3,	UC4	

Compute	Node	 Disk	read/write	rate	 MB/s	 OS	Telemetry	 UC3,	UC4	

Compute	Node	 Network	i/f	in/out	rate	 Mbps	 OS	Telemetry	 UC3,	UC4	

Storage	(Volume)		 Read/write	rate		 MB/s		 OS	Telemetry	 UC3,	UC4	

Storage	(Volume)		 Free	space		 GB		 OS	Telemetry	 UC2,	UC3,	UC4	

Network	
(virtual/physical	
switch)	

Port	in/out	bit	rate		 Mbps	 ODL	Statistics		 UC2,	UC3,	UC4	

Network	
(virtual/physical	
switch)	

Port	in/out	packet	rate		 pps		 ODL	Statistics		 UC3,	UC4	

Network	
(virtual/physical	
switch)	

Port	in/out	drops		 #		 ODL	Statistics		 UC3,	UC4	

	

With	regard	to	metrics	 identification,	a	very	relevant	reference	 is	the	ETSI	GV	NFV-INF	010	
document	[NVFINF010]	which	was	released	December	2014.	This	document	aims	at	defining	
and	describing	metrics	which	relate	to	the	service	quality,	as	perceived	by	the	NFV	Consumer.	
These	metrics	are	overviewed	in	the	table	below.	

	

																																																													
3	Please	refer	to	Sec.	4.2.2	for	a	list	of	VNF-specific	metrics.	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
24	

Table	4.	NFV	Service	Quality	Metrics	(Source:	[NFVINF010])	

	
It	can	be	seen	that,	apart	from	the	service	latency	metrics	which	are	related	to	the	provisioning	
and/or	reconfiguration	of	the	service	and	essentially	refer	to	the	response	of	management	
commands	 (e.g.	 VM	 start),	 the	 rest	metrics	 can	 be	 directly	 or	 indirectly	 derived	 from	 the	
elementary	metrics	identified	in	Table	3	as	well	as	the	events/alarms	associated.	However,	it	
is	up	to	the	Orchestrator,	which	has	a	complete	view	of	the	service,	to	assemble/exploit	VIM	
metrics	in	order	to	derive	the	service	quality	metrics	to	be	exposed	to	the	SP	and	the	Customer	
via	the	Dashboard.	These	metrics	will	be	used	as	input	to	enforce	the	Service	Level	Agreement	
(SLA)	that	will	be	finally	evaluated	at	Marketplace	level	for	the	applicability	of	possible	rewards	
to	the	customer	in	case	of	failure	(see	D6.4	–	SLAs	and	billing).	

	

4.2.2. VNF-specific	metrics		

Apart	from	the	generic	metrics	identified	in	the	previous	section,	each	VNF	generates	specific	
dynamic	metrics	to	monitor	its	internal	status	and	performance.		

These	metrics:	

• are	specified	inside	the	VNF	Descriptor	(VNFD)	as	monitoring-parameters		(both	for	
the	VDUs	and	 for	 the	whole	VNF)	 to	define	 the	expected	performance	of	 the	VNF	
under	certain	resource	requirements.	

• are	sent	by	the	VNF	application	to	the	VIM	Monitoring	Manager,	either	via	the	agent	
or	directly	(see	details	in	Sec.	4.4)	

• are	 processed,	 aggregated	 and	 forwarded,	 if	 required,	 to	 the	 upper	 layers	
(Orchestrator	and	Marketplace).			

At	the	Orchestration	level,	some	of	the	VNF-specific	metrics	can	be	used	for	automating	the	
selection	of	the	most	efficient	VNF	flavour	in	terms	of	usage	of	resources,	to	achieve	a	given	
SLA	(for	example	using	automated	scaling	procedures	–	see	D3.3).			

At	 the	Marketplace	 level,	 those	 VNF-specific	metrics	 that	may	 be	 part	 of	 the	 SLA	 agreed	
between	 SP	 and	 customer	 will	 be	 evaluated	 for	 business	 and	 commercial	 clauses	 (e.g:		
penalties,	rewards,	etc.)	that	will	finally	impact	in	the	billing	procedure	(see	D6.4)	

The	subsections	to	follow	overview	a	list	of	VNF-specific	metrics	for	each	of	the	VNFs	being	
developed	in	T-NOVA.	The	lists	which	follow	are	tentative	and	are	meant	to	be	continuously	
updated	as	the	VNF	applications	evolve.	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
25	

Please	also	note	that	most	of	these	metrics	refer	to	the	specific	functionality	of	each	VNF	as	
well	 as	 its	 component	 software	modules.	 For	 a	 detailed	 description	 of	 the	 T-NOVA	 VNFs,	
please	refer	to	Deliverable	D5.32	[D532].	

4.2.2.1.	 vSBC	metrics	

The	vSBC	components	(VNFCs)	able	to	generate	metrics	are:		LB,	IBCF,	BGF	and	O&M	(please	
refer	to	[D532]	for	more	details).	

These	data	are	collected	by	the	O&M	component,	and	sent	to	the	Monitoring	Manager	via	
the	monitoring	agent,	using	the	SNMP	protocol.	

The	following	table	sums	up	the	VNF-specific	metrics	for	the	vSBC	functions.	

	

Table	5.	vSBC	monitoring	metrics	

Metric	 Unit	 Notes	

Total	number	of	SIP	
sessions/transactions	

Count	-Incremental	 Generated	by	the	LB	and	IBCF	
component	

Number	of	failed	SIP	
sessions/transactions	due	to	vSBC	
internal	problems		

Count	-Incremental	 This	counter	doesn’t	include	
incoming	incorrect	SIP		Requests,	
or	failures	coming	from	external	
network	

Incoming	RTP	data	throughput	
(incoming	bandwidth	
consumption)	

Count	-Incremental	 Number	of	incoming	RTP	
packets/bytes.		

Generated	by	the	BGF	component	

Outgoing	RTP	data	throughput	
(outgoing	bandwidth	
consumption)	

Count	-Incremental	 Number	of	outgoing	RTP	
packets/bytes.		

Generated	by	the	BGF	component	

RTP	frame	loss		 Average	%	 Due	either	to	source	filtering,	or	to	
failing	a	source	address/port	
check,	or	if	the	flow	rate	exceeds	
the	pre-determined	bandwidth	
Context	

Latency		 msec	(Average	value)	 Average	transmission	delay.	

Generated	by	the	BGF	component	

Interarrival		jitter		 msec	(Average	value)	 Average	inter-packet	arrival	jitter.	

	Generated	by	the	BGF	component	

Number	of	transcoding/transrating	
procedures	

Count	-Incremental	 Generated	by	the	BGF	component	

Number	of	failed	
transcoding/transrating		
procedures	due	to	vSBC	internal	
problems	

Count	-Incremental	 Generated	by	the	BGF	component	

	

We	point	out	that:	

• the	first	two	metrics	(SIP	sessions)	are	related	to	the	control	plane	monitoring	
• the	rest	metrics	are	related	to	the	media	plane	monitoring	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
26	

At	the	receipt	of	a	new	SNMP	GET	request	coming	from	the	monitoring	agent,	all	these	metrics	
are	reset,	while	their	enhancement	starts	again.	

These	metrics	may	be	strongly	influenced	by:		

• incoming	packet	sizes(i.e	:	64,	128,	256,……,	1518	byte)	
• hardware	and	software	acceleration	technologies	(i.e:		DPDK	or	GPU).		In	particular	

the	GPU	hardware	accelerators	might	be	used,	in	tandem	with	standard	processors,	
in	case	of	intensive	processing	(i.e:		video	trascoding/transrating).	

	

4.2.2.2.	 vTC	metrics	

Table	6	overviews	the	metrics	reported	by	the	virtual	Traffic	Classifier	VNF	(vTC).	

	

Table	6.	vTC	monitoring	metrics	

Metric	 Unit	 Notes	

Packets	per	second	 Count	-	average	 Packets	processed	by	the	TC	
Flows	per	second	 Count	-	average	 Discrete	flows	per	second	

Total	flows	 Count	-	incremental	 The	number	of	unique	total	flows	
recognized	

Application	Protocols	 Count	-	incremental	 The	number	of	different	
applications	detected	

Throughput	 Mbits/sec	 The	traffic	in	Mbits	processed	by	
the	vTC	per	second	

	

4.2.2.3.	 vSA	metrics	

The	metrics	reported	by	the	virtual	Security	Appliance	(vSA)	are	shown	in	Table	7.	The	vSA	
metrics	correspond	to	the	two	vSA	components	(snort	and	pfsense).	

Table	7.	vSA	monitoring	metrics	

Metric	 Unit	 Notes	

Number	of	errors	coming	in/	going	
out	of		the	wan/lan	interface	of	
pfsense	

Count	-	incremental	 Four	metrics	(with	prefix	
'vsa_pfsense_'):	
lan_inerrs,	lan_outerrs,	
wan_inerrs,	wan_outerrs	

Number	of	bytes	coming	in/	going	
out	of		the	wan/lan	interface	of	
pfsense	

Count	-	incremental	 Four	metrics	(with	prefix	
'vsa_pfsense_'):	
lan_inbytes,	lan_outbytes,	
wan_inbytes,	wan_outbytes	

Number	of	packets	coming	in/	
going	out	of		the	wan/lan	interface	
of	pfsense	

Count	-	incremental	 Four	metrics	(with	prefix	
'vsa_pfsense_'):	
lan_inpkts,	lan_outpkts,	
wan_inpkts,	wan_outpkts		

State	table	size	of	pfsense	 Count	 -	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
27	

Percent	of	dropped	packets,	
generated	by	snort		

Percent	(%)	 -	

Number	of	alerts	per	second,	
generated	by	snort	

Percent	(%)	 -	

vSA	throughput,	generated	by	
snort				

Kbits/sec	 -	

Pfsense	uptime	 String	 For	example:	01	Hour	17	Minutes	
51	Seconds	

	

	

	

4.2.2.4.	 vHG	metrics	

Table	8	summarises	the	virtual	Home	Gateway	(vHG)	metrics.	

Table	8.	vHG	monitoring	metrics	

Metric	 Unit	 Notes	

Total	size	swift	node	 Bytes	 From	Swift	

Total	objects	stored	 Count	-	incremental	 From	Swift	

Total	versions	stored	 Count	-	incremental	 From	Frontend	xml	file	

Total	unique	URLs	stored	 Count	-	incremental	 From	Frontend	xml	file	

Total	rules	 Count	-	incremental	 From	Frontend	xml	file	

Average	time	for	transcoding	 Seconds	 From	workers	

	

4.2.2.5.	 vProxy	metrics	

The	metrics	reported	by	the	virtual	proxy	(vProxy)	VNF	are	summarized	in	Table	9.	Most	of	
them	are	bound	to	the	specific	proxy	implementation	(squid),	but	can	be	extended	to	match	
other	implementations	as	well.	

Table	9.	vProxy	monitoring	metrics	

Metric	 Unit	 Notes	

Number	of	HTTP	requests	received	 Count	-	incremental	 The	number	of	HTTP	requests	
received	by	Squid	since	the	last		
measurement	

Cache	hits	percentage	 Percent	(%)	 The	percentage	of	HTTP	requests	
that	result	in	a	cache	hit	for	the	
last	5	minutes.	It	also	includes	
cases	in	which	Squid	validates	a	
cached	response	and	receives	a	
304	(Not	Modified)	reply.	

Memory	hits	percentage	 Percent	(%)	 The	percentage	of	all	cache	hits	
that	were	served	from	memory	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
28	

(hits	that	are	logged	as	
TCP_MEM_HIT	in	Squid’s	logs)	

Disk	hits	percentage	 Percent	(%)	 The	percentage	of	all	cache	hits	
that	were	served	from	disk	(hits	
that	are	logged	as	TCP_HIT	in	
Squid’s	logs)	

Cache	disk	utilization	 Percent	(%)	 The	amount	of	disk	currently	being	
used	by	the	cached	objects	divided	
by	the	total	amount	of	disk	that	
can	be	allocated	for	caching.		

Cache	memory	utilization	 Percent	(%)	 The	amount	of	memory	(RAM)	
currently	being	used	by	the	cached	
objects	divided	by	the	maximum	
amount	of	memory	that	can	be	
allocated	for	caching.	

Number	of	users	accessing	the	
proxy	

Count	 Squid	assumes	that	each	user	has	
a	unique	IP	address	

	

4.3. VNF	Monitoring	Agent	

The	VNF	Monitoring	Agent	comes	either	pre-installed	within	the	VM	image	hosting	the	VNFC	
or	installed	upon	VNFC	deployment.	It	will	be	automatically	launched	upon	VNF	start-up	and	
run	continuously	in	the	background.	The	agent	collects	a	wide	range	of	metrics	from	the	local	
OS.		

For	 the	 implementation	of	 the	monitoring	agent,	we	exploit	 the	 the	popular	 collectd-core	
module	[collectd]	(also	see	Annex	I,	Sec.	9.1.1.8.).	Collectd-core	comes	in	a	package	already	
available	 in	 most	 Linux	 distributions	 and	 can	 be	 directly	 installed	 with	 relatively	 minimal	
overhead.		

Given	that	the	list	of	available	collectd	plugins	is	quite	extensive,	we	have	selected	a	basic	set	
of	plugins	to	be	used	in	T-NOVA,	in	order	to	cover	all	generic	metrics,	as	identified	in	Sec.	4.2.1	
but	also	to	capture	most	vital	meters	of	the	system,	without	on	the	other	hand	introducing	
too	much	overhead.	These	plugins,	accompanied	by	a	brief	description	and	the	metrics	which	
are	collected,	are	overviewed	in	Table	10	below.	

	

Table	10.	Collectd	plugins	used	in	T-NOVA	

Plugin	 Description	 Metrics	

CPU	 Collects	the	amount	of	time	spent	by	the	CPU	
in	various	states,	most	notably	executing	user	
code,	executing	system	code,	waiting	for	IO-
operations	and	being	idle.	

• user	
• interrupt	
• softirq	
• steal	
• nice	
• system	
• idle	
• wait	

Memory	 Collects	physical	memory	utilization.	 • used	
• buffered	
• cached	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
29	

• free	

Disk	 Collects	performance	statistics	of	hard-disks	
and,	where	supported,	partitions.	

• octets.read	
• octets.write	
• ops.read	
• ops.write	
• time.read	
• time.write	
• merged.read	
• merged.write	

Interface	 Collects	information	about	the	traffic	(octets	
per	second),	packets	per	second	and	errors	of	
interfaces	

• if_octects.rx	
• if_octects.tx	
• if_packets.rx	
• if_packets.tx	
• if_errors.rx	
• if_errors.tx	

Processes	 Collects	the	number	of	processes,	grouped	by	
their	state	(e.	g.	running,	sleeping,	zombies,	
etc.).	

• ps_state-running	
• ps_state-sleeping	
• ps_state-zombies	
• ps_state-stopped	
• ps_state-paging	
• ps_state-blocked	
• fork_rate	

	

For	the	communication	of	metrics,	the	Monitoring	Agent	features	a	TCP	or	UDP	dispatcher	
which	 pushes	 measurements	 to	 the	 VIM	 MM	 periodically.	 The	 push	 frequency	 will	 be	
configurable	 (either	 manually	 or	 automatically).	 The	 set	 of	 metrics	 (selection	 among	 all	
available	ones)	 to	be	communicated	will	also	vary	among	VNFs,	and	will	be	defined	 in	 the	
VNFD.		

	

4.4. Collection	of	VNF-specific	metrics	

The	VIM	monitoring	framework	provides	several	options	for	collecting	VNF	metrics;	each	VNF	
developer	may	choose	the	most	appropriate	option	which	suits	their	requirements,	policies	
and	constraints.	

The	 direct	 communication	 method	 involves	 the	 VNF	 application	 itself	 reporting	 selected	
metrics	as	key-value	pairs	to	the	VIM	MM	at	arbitrary	 intervals.	For	this	purpose,	we	have	
developed	 a	 set	 of	 lightweight	 libraries	 (currently	 in	 Python	 and	 Java)	 which	 the	 VNF	
provider/developer	can	integrate	in	the	application.	This	way,	the	VNFP	can	use	the	methods	
provided	 to	 easily	 and	 quickly	 dispatch	 internal	 application	 metrics	 without	 knowing	 the	
internals	and	interfaces	of	the	monitoring	framework.		

The	 indirect	 communication	 method	 implies	 that	 all	 VNF	 metrics	 are	 collected	 by	 the	
monitoring	agent	(collectd)	by	means	of	plugins.	This	can	be	done	in	three	alternative	ways:	

1. Using	the	collectd	“Snmp”	plugin.	This	option	is	appropriate	in	cases	when	the	VNF	
already	 exposes	 an	 SNMP	 service.	 In	 this	 case,	 the	 metrics	 to	 be	 collected	 are	
described	by	a	Management	Information	Base	(MIB).		The	MIB	includes	the	VNF/VDU	
identifiers,	 and	 uses	 a	 hierarchical	 namespace	 containing	 object	 identifiers	 (OIDs);	
each	OID	identifies	a	variable	that	can	be	read	via	the	SNMP	protocol	(see	RFC	2578).	
The	T-NOVA	agent	(collectd)	issues	standard	SNMP	GET	requests	periodically	to	the	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
30	

VNF	 SNMP	 service	 for	 these	 specific	OIDs	 and	 gets	 back	 the	 values,	which	 in	 turn	
communicates	to	the	VIM	MM.		

2. Using	the	collectd	“Tail”	plugin.	This	is	the	simplest	method	which	requires	minimal	
integration	with	the	VNF.	With	this	approach,	the	VNF	application	dumps	metrics	as	
entries	in	a	log	file	with	known	format.	The	collectd	Tail	plugin	parses	the	log	file	after	
each	update,	extracts	the	metrics	and	communicates	to	the	VIM	MM.	

3. Using	the	collectd	“Custom”	plugin.	This	is	the	most	complicated	method	and	requires	
the	VNFP	to	develop	a	special	collectd	plugin	for	the	VNF.	However,	this	might	be	the	
preferred	choice	for	some	VNFPs	who	in	any	case	want	to	add	collectd	support	in	their	
VNF,	 given	 that	 collectd	 is	 very	 widely	 used	 also	 outside	 T-NOVA	 and	 already	
integrated	with	some	of	the	most	popular	monitoring	frameworks.	

		

4.5. Monitoring	of	FPGA-based	VNFs		

The	 T-NOVA	 project	 attempts	 to	 expand	 the	 NFV	 purview	 to	 heterogeneous	 compute	
architecture	such	as	GPUs	and	FPGAs.	Utilizing	such	specialized	hardware	has	direct	effects	
on	the	monitoring	infrastructure	that	should	be	used	to	support	it.	This	section	explores	the	
corollaries	of	the	use	of	programmable	logic	as	compute	nodes	in	the	T-NOVA	environment.	

Monitoring	 programmable	 logic	 devices	 represents	 unique	 challenges	 in	 comparison	 to	
standard	CPUs.	Many	of	the	notions	present	in	the	latter	are	not	present	in	programmable	
logic	devices	and	furthermore	programmable	logic-based	systems	can	show	large	disparities	
which	makes	the	task	of	providing	one	overarching	concept	exceedingly	difficult.	

As	a	starting	point	 for	our	measurement	architecture	definition	we	use	 the	programmable	
cloud	platform	architecture	introduced	in	D4.1.	In	this	architecture	we	assume	an	FPGA	SoC	
is	 used	 as	 the	 compute	 node.	 An	 FPGA	 SoC	 consists	 of	 a	 Processing	 System	 (PS),	 which	
comprises	one	or	more	CPUs	and	 the	Programmable	Logic	 (PL).	 In	 this	architecture	 the	PS	
execute	 the	OpenStack	worker	 and	any	 software	 requirement	 for	 the	management	of	 the	
programmable	 resources	 available	 in	 the	 PL,	while	 the	 actual	 VNFCs	 to	 be	monitored	 are	
deployed	to	the	PL.		

In	this	scheme	the	monitoring	infrastructure	is	by	necessity	also	divided	into	two	component.	
One	component	resides	in	SW	and	is	executed	in	the	PS.	This	program	collects	statistics	from	
the	HW	components	and	forwards	them	to	the	monitoring	manager	and	can	also	be	used	to	
monitor	the	performance	of	the	PS	if	this	is	desired.	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
31	

	
Figure	8.	Monitoring	architecture	for	the	T-NOVA	FPGA	SoC	

The	 HW	 component	 on	 the	 other	 hand	 is	 responsible	 for	 collecting	 all	 of	 the	 relevant	
parameters	 on	 the	 HW	 side	 and	 forwarding	 them	 to	 the	 software	 component.	 These	
parameters	are	specific	to	each	VNFC	and	thus	it’s	up	to	the	uses	to	provide	the	appropriate	
connections	and	circuits	for	it.	The	FPGA	SoC	platform	provides	the	user	with	infrastructure	
which	can	be	used	to	send	that	data	on	to	the	software	component.		

This	infrastructure	consists	of	a	simple	AXI4	stream	which	the	user	HW	statistics	module	must	
use	 to	 interface	with	 an	 AXI4	 DMA	 engine.	 The	 latter	 is	 responsible	 for	 all	 data	 transfers	
between	the	PS	and	the	PL	and	ensures	high	throughput,	low	latency	transfers	between	the	
two.	The	HW	monitoring	component	share	the	AXI	DMA	with	the	VNFC	also	deployed	on	the	
FPGA.	This	is	enabled	by	using	separate	DMA	channels	for	the	data	transfers,	a	feature	offered	
by	the	AXI	DMA	block	used	in	the	design.	The	DMA	block	offers	one	AXI4S	 interface	for	all	
inputs	and	uses	additional	signal	to	discern	the	user	which	provided	the	data.	It	then	transfers	
that	to	the	appropriate	memory	address	space	from	which	the	SW	monitoring	application	can	
read	the	data.		

This	scheme	provide	a	clear,	expandable,	standard	interface	for	the	HW	VM	to	transfers	its	
monitoring	data	to	the	SW	component	and	a	straightforward	method	for	the	SW	to	read	the	
data	and	perform	any	processing	required	before	sending	it	on	to	the	monitoring	manager.	

	

4.6. VIM	Monitoring	Manager	architecture	and	components		

4.6.1. VIM	MM	Architecture	

Aligned	 with	 the	 requirements	 and	 the	 design	 choices	 set	 in	 the	 previous	 sections,	 the	
functional	components	of	the	VIM	Monitoring	Manager	are	depicted	in	Figure	9	and	described	
in	this	section	and	in	the	ones	which	follow.	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	

32	

	
Figure	9.	VIM	MM	functional	components	

	

The	Monitoring	Backend	is	the	core	component	of	the	monitoring	framework.	It	is	developed	
in	JavaScript	and	uses	the	node.js	[nodejs]	framework	to	run	as	a	server-side	application.	The	
reason	 behind	 this	 choice	 is	 that	 JavaScript	 matches	 an	 asynchronous,	 event-driven	
programming	style,	optimal	for	building	scalable	network	applications.	The	main	functionality	
of	 VIM	MM	 is	 data	 communication	 and	 the	 node.js	 ecosystem	 offers	 several	 services	 to	
facilitate	communication,	especially	via	web	services,	as	well	as	event-driven	networking.	

The	backend	itself	is	divided	to	the	following	modules:	

• Database	connector.	This	module	accesses	the	time-series	database	(see	Sec.	4.6.5)	
in	 order	 to	 write	 and	 to	 read	 measurements.	 This	 module	 uses	 influent4,	 an	
InfluxDB	Javascript	driver.	

• OpenStack	 and	 OpenDaylight	 connectors.	 These	 modules	 perform	 requests	 to	
various	OpenStack	and	OpenDaylight	services	in	order	to	acquire	cloud-	and	network-
related	 metrics	 (see	 Sec.	 4.6.2).	 The	 Openstack	 connector	 communicates	 with	
Keystone,	the	OpenStack	Identity	service,	in	order	to	generate	tokens	that	can	be	used	
for	authentication	and	authorisation	during	the	rest	of	the	OpenStack	queries.	It	polls	
Nova,	the	OpenStack	Compute	service,	in	order	to	get	the	available	instances.	Finally,	
it	polls	Ceilometer,	 the	OpenStack	Telemetry	service,	 in	order	 to	 receive	 the	 latest	
measurements	of	the	instances.	The	request-promise5	npm	(node.js	package)	module	
provides	 here	 the	 HTTP	 client	 to	 perform	 all	 these	 requests.	 The	 OpenDaylight	
connector	is	still	under	development.	

																																																													
4	https://github.com/gobwas/influent	
	
5	https://www.npmjs.com/package/request-promise	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	

33	

• Northbound	REST	API.	This	module	exposes	all	the	recorded	measurements	via	HTTP	
and	offers	the	ability	to	subscribe	to	specific	measurement	events.	hapi.js6	has	been	
used	 as	 a	 framework	 to	 build	 this.	 hapi.js	 plugins	were	 also	 used,	 such	 as	 joi7	 for	
validation,	 hapi-swaggered8	 and	 hapi-swagger9	 for	 Swagger	 documentation	
generation.	See	Sec.	4.6.3	for	more	details.	

• Alarming	and	anomaly	detection.	 This	module,	 still	 under	development,	 performs	
statistical	processing	 in	order	 to	derive	events	and	alarms	 (see	Sec.	4.6.4	 for	more	
details)	

• VNF	 Application	 connector.	 It	 accepts	 data	 periodically	 dispatched	 by	 each	 VNF	
application,	 filters	 them	 and	 stored.	 These	 metrics	 are	 specific	 to	 each	 VNF	 (e.g.	
number	 of	 flows,	 sessions	 etc.).	 The	 list	 of	metrics	 to	 be	 collected	 as	 well	 as	 the	
dispatch	frequency	are	described	in	the	VNF	Descriptor	(VNFD).	

• Configuration.	This	module	allows	the	use	of	local	files	in	order	to	load	settings.	Node-
config10	has	been	used	here	to	define	a	set	of	default	parameters	and	extend	them	
for	 different	 deployment	 environments,	 e.g.,	 development,	 QA,	 staging	 and	
production.	 Configurations	 are	 stored	 in	 configuration	 files	 within	 the	 backend	
application	and	can	be	overridden	and	extended	by	environment	variables.	

The	default	config	file	is	called	config/default.json	and	the	administrator	may	create	multiple	
files	 in	the	config	directory	with	the	same	format,	which	can	 later	be	used	by	the	backend	
application	if	the	environment	variable	NODE_ENV	is	set	to	the	configuration	file	without	the	
.json	suffix,	e.g.	for	config/production.json	the	following	command	needs	to	be	invoked	on	a	
Bash-compatible	shell:	

export	NODE_ENV=production	

The	configuration	parameters	that	are	currently	available	are	the	following:	

Config	Parameter	 Description	

loggingLevel	 Sets	the	logging	level.	Available	levels	are	debug,	warn	and	info.	

database	 Connection	 information	 for	 the	 time-series	 database.	 Required	
information	should	be	entered	in	the	following	strings:	host,	port,	
username,	password	and	name	(for	the	target	database	name).	

identity	 Connection	 information	 for	 the	 OpenStack	 Keystone	 service.	
Required	information	should	be	entered	in	the	following	strings:	
host,	 port,	 tenantName,	 username	 and	 password.	 It	 should	 be	
noted	 that	 the	 tenant	 whose	 credentials	 must	 have	 sufficient	
privileges	to	access	all	the	necessary	OpenStack	VNF	instances.	

ceilometer	 Connection	 information	 for	 the	 OpenStack	 Ceilometer	 service.	
Required	information	should	be	entered	in	the	following	strings:	
pollingInterval,	host	 and	port.	 The	pollingInterval	 sets	 the	 time	
period	 during	 which	 the	 backend	 polls	 Ceilometer	 for	
measurements.	

																																																													
6	http://hapijs.com/	
7	https://github.com/hapijs/joi	
8	https://github.com/z0mt3c/hapi-swaggered	
9	https://github.com/glennjones/hapi-swagger	
10	https://github.com/lorenwest/node-config	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
34	

nova	 Connection	 information	 for	 the	 OpenStack	 Nova	 service.	
Required	information	should	be	entered	in	the	following	strings:	
host	and	port.	

	

4.6.2. Interfaces	to	cloud	and	network	controllers	

Monitoring	of	computing,	hypervisor	and	storage	status	and	resources	are	performed	directly	
via	the	OpenStack	Ceilometer	framework.	The	VIM	MM	(OpenStack	connector)	periodically	
polls	 the	 Telemetry	 API	 for	metrics	 regarding	 all	 deployed	 physical	 and	 virtual	 resources.	
Although	these	metrics	could	be	retrieved	by	directly	accessing	the	Ceilometer	database,	since	
the	scheme	of	the	latter	may	evolve	in	future	OpenStack	versions,	it	is	more	appropriate	to	
use	the	REST-based	Telemetry	API.	The	VIM	MM	issues	GET	requests	to	the	service	referring	
to	a	specific	resource	and	meter,	and	the	result	are	returned	in	JSON	format.	

Fortunately,	the	Telemetry	support	for	the	hypervisor	selected	for	T-NOVA	(libvirt)	offers	the	
widest	possible	list	of	available	monitoring	metrics,	compared	to	other	hypervisors,	such	as	
Xen	or	vSphere.	

The	current	version	of	the	OpenStack	connector	has	the	following	workflow:	

• Token	management.	Communication	with	the	OpenStack	API	requires	always	a	valid	
token.	The	backend	uses	 the	Openstack	Keystone	 service	 to	acquire	a	 valid	 token,	
which	is	used	for	every	transaction.	The	token	is	being	checked	before	submitting	any	
request	and	if	it	is	expired,	it	gets	renewed.	

• Instance	information	retrieval.	The	backend	does	not	know	a	priori	which	instances	
are	to	be	monitored.	By	posting	a	request	at	the	Nova	API,	it	gets	a	list	of	the	active	
instances	in	order	to	proceed	with	the	measurement	request.	

• Measurement	 retrieval	 Once	 the	 backend	 knows	 the	 existence	 of	 an	 active	
OpenStack	instance,	it	is	able	to	retrieve	specific	measurements	for	it.	Currently	CPU	
utilisation,	 incoming	 and	 outgoing	 bytes	 rate	 are	 supported,	 but	 the	 list	 is	 quickly	
expanded	with	other	metrics	that	OpenStack	Ceilometer	supports.	

This	workflow	is	being	performed	with	a	time	period	that	can	be	set	with	the	pollingInterval	
parameter	as	aforementioned.	

Moreover,	 collecting	metrics	via	 the	API	allows	exploiting	additional	 features	of	Telemetry	
such	as:	

• Meter	grouping:	it	is	possible	to	define	set	of	metrics	and	retrieve	an	entire	set	with	a	
single	query;	

• Sample	processing:	it	is	possible	to	define	basic	aggregation	rules	(average,	max/min	
etc.)	and	retrieve	only	the	aggregate	instead	of	a	set	of	metrics;	

• Alarming:	it	is	possible	to	set	alarms	based	on	thresholds	for	the	collection	of	samples.	
An	alarm	can	depend	on	a	single	meter,	or	a	combination.	The	VIM	MM	may	use	the	
API	to	set	an	alarm	and	define	an	HTTP	callback	service	to	be	called	when	the	alarm	
has	been	set	off.	

	

4.6.3. Northbound	API	to	Orchestrator		

The	 VIM	Monitoring	 Framework	 offers	 a	 Northbound	 API	 to	 the	 Orchestrator	 in	 order	 to	
inform	the	latter	of	the	newest	measurements	and	in	the	future	for	possible	alerts.	An	HTTP	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
35	

RESTful	interface	provides	the	latest	measurements	upon	requests	and	the	ability	to	subscribe	
to	measurements.	

The	latest	draft	of	the	ETSI	NFV	IFA	document	[NFVIFA005]	which	provides	an	insight	to	the	
Or-Vi	 reference	point,	 contains	a	high-level	 specification	of	 the	 requirements	and	 the	data	
structures	which	 need	 to	 be	 adopted	 for	 infrastructure	management	 and	monitoring.	 The	
requirements	related	to	monitoring	can	be	summarized	into	the	following:	

• The	 VIM	 must	 support	 querying	 information	 regarding	 consumable	 virtualised	
resources	

• The	VIM	must	issue	notifications	of	changes	to	information	regarding	resources	

• The	 VIM	 must	 offer	 full	 support	 for	 alarming	 (alarm	 creation/	 modification/	
subscription/	issue/	deletion)	

• The	VIM	must	issue	notifications	for	infrastructure	faults	

The	Northbound	API	provided	by	 the	T-NOVA	VIM	Monitoring	Framework	 intends	 to	align	
with	these	requirements.	

4.6.3.1.	 Querying	

First,	a	set	of	REST	GET	endpoints	support	 the	transmission	of	 the	 latest	measurements	of	
every	available	type	for	every	instance	being	monitored.	

The	 template	 of	 such	 URL	 is	 /api/measurements/{instance}.{type},	 where	 instance	 is	 the	
Universally	Unique	Identifier	(UUID)	given	by	the	OpenStack	deployment	to	the	instance	and	
type	 one	 of	 the	 supported	 measurement	 types.	 The	 currently	 supported	 measurement	
types	are:	

• cpu_util	(CPU	utilisation)	

• cpuidle	(CPU	idle	usage)	

• fsfree	(free	space	on	the	root	filesystem)	

• memfree	(free	memory	space)	

• network_incoming	(the	rate	of	incoming	bytes)	and	

• network_outgoing	(the	rate	of	outgoing	bytes)	

The	format	of	the	answer	is	a	JSON	object	whose	fields	are	the	following:	

• timestamp:	shows	the	timestamp	the	measurement	was	taken	

• value:	shows	the	actual	measurement	value	

• units:	shows	the	measurement	units	

These	endpoints	require	constant	polling	in	order	to	retrieve	their	values.	If	a	system	requires	
a	 constant	 stream	 of	 measurements	 at	 specific	 interval	 times,	 then	 it	 could	 use	 the	
subscription	endpoint.	

4.6.3.2.	 Meters/notifications	push	

The	VIM	MM	enables	a	publish-subscribe	communication	model	for	pushing	of	metrics	and	
events	to	the	Orchestrator.	 In	order	to	subscribe	for	measurement	events,	 it	 is	required	to	
provide	the	following	information	in	the	form	of	a	JSON	object:	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
36	

• types:	This	is	an	array	of	the	measurement	types.	The	supported	types	are	the	same	
ones	as	the	ones	in	the	GET	endpoints.	

• instances:	This	is	an	array	of	the	instances	that	have	to	be	monitored.	The	UUIDs	of	
the	instances	are	also	used	here.	

• interval:	This	is	the	interval	time	the	monitoring	backend	has	to	wait	before	sending	
a	new	set	of	measurements.	The	time	should	be	given	in	minutes.	

• callbackUrl:	This	is	the	URL	the	monitoring	backend	has	to	callback	in	order	to	submit	
the	newest	measurements.	

This	 JSON	 object	 has	 to	 be	 submitted	 as	 a	 payload	 in	 a	 POST	 request	 to	 the	 endpoint	
/api/subscribe.	Upon	transmission,	a	confirmation	message	is	sent	back	as	response	and	after	
the	specified	interval,	a	message	is	given	to	the	callbackUrl,	similar	to	the	ones	one	can	get	
via	the	GET	endpoints.	

4.6.3.3.	 Alarming	

The	VIM	MM	will	offer	methods	for	creating	alarms	and	dispatching	callbacks	whenever	the	
status	of	alarm	changes.	This	feature	is	under	development.	

4.6.3.4.	 API	documentation	

For	the	convenience	of	API	consumers,	a	Swagger-UI	endpoint	is	given	at	/docs,	where	users	
can	refer	to	for	up-to-date	information	(Figure	10)	

	
Figure	10.	Live	API	documentation	via	Swagger	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
37	

	

4.6.4. Anomaly	detection		

For	detecting	critical	situations	and	producing	alarms,	the	T-NOVA	VIM	MM	will	at	first	stage	
support	operations	via	statically	defined	thresholds.	The	Orchestrator	will	use	the	alarming	
methods	(see	Sec.	4.6.3.3.)	to	define	and	modify	alarms.	In	turn	the	VIM	MM	will	check	the	
affected	measurements,	evaluate	the	expressions	given	by	the	rules	and	send	eventually	a	
notification	if	the	expression	is	true.	This	is	a	standard	feature	provided	by	several	monitoring	
frameworks,	as	surveyed	in	Chap.	3	

Going	beyond	this	capability,	anomaly	detection	 i.e.	 identification	of	possible	malfunctions	
without	 pre-defined	 alarm	 thresholds	 is	 a	 very	 promising	 research	 direction	which	 is	 very	
relevant	to	NFV	monitoring.	

In	 the	 T-NOVA	VIM	monitoring	 framework,	 anomaly	detection	will	 be	 incorporated	 to	 the	
alarming	system.	The	VIM	MM	will	use	outlier	detection	methods	to	examine	a	set	of	meters	
and	samples	associated	with	a	resource	and	identify	whether	there	is	a	significant	operation	
from	 the	 “standard”	 operation.	 Some	 of	 the	methods	 for	 outlier	 detection	 which	 will	 be	
investigated	 for	 application	 in	 T-NOVA	 are	 [Hodge04]	 proximity-based	 techniques,	
parametrics	and	non-parametric	methods	as	well	as	neural	networks.	

Both	 semi-supervised	 and	 unsupervised	 approaches	 will	 be	 considered.	 Semi-supervised	
approaches	are	expected	 to	yield	better	 results,	 yet	 their	 application	assumes	 that	proper	
testing	of	the	VNF	will	have	been	preceded,	resulting	into	an	appropriately	sized	dataset	which	
will	correspond	to	“normal”	operation.	

	

4.6.5. Time-series	Database	

Since	 the	 T-NOVA	 VIM	 Monitoring	 Backend	 handles	 primarily	 measurements,	 we	 have	
selected	 a	 time-series	 database	 as	 optimal.	 For	 its	 implementation	we	 have	 opted	 to	 use	
InfluxDB	 [InfluxDB],	 a	 time-series	 database	 written	 in	 Go.	 By	 concentrating	 all	 data	 in	 a	
performant	 DB	 and	 relying	 on	 periodical	 feeds,	 we	 can	 simplify	 workflows,	 reduce	 inter-
component	signaling	and	thus	eliminate	the	need	for	a	message	queue,	which	is	commonly	
used	in	monitoring	frameworks.	

Although,	InfluxDB	is	a	distributed	database,	for	the	time	being	we	are	evaluating	it	on	a	single	
node	until	storage	issues	appear.	

The	 Backend	 requires	 that	 a	 database	 has	 already	 been	 created	 in	 InfluxDB.	 The	 use	 of	 a	
retention	 policy	 is	 also	 highly	 recommended,	 since	 the	 database	 could	 store	 potentially	
multiple	gigabytes	of	measurement	data	every	day.	For	the	development	and	QA	testing	of	
the	backend	we	use	a	retention	policy	of	30	days.	After	30	days	the	measurements	are	erased,	
in	order	to	free	up	disk	and	memory	space.	

Each	meter	 is	stored	 in	a	separate	table,	where	multiple	 instances	may	store	values	of	the	
specific	measurement	type.	In	addition	to	the	actual	value,	a	timestamp	and	an	instance	tag	
are	also	stored,	in	order	to	identify	the	measurement’s	origin	and	time.	Finally,	the	data	type	
of	every	measurement	is	float64.	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	

38	

Queries	are	performed	in	the	Line	protocol11	by	using	the	influent	module.	An	example	query	
is	the	following:	

SELECT	last(value)	FROM	measurementType	WHERE	host='instanceA'	

This	query	retrieves	the	last	measurement	of	a	certain	type	and	a	certain	VNF	instance.	

	

4.6.6. Graphical	user	interface		

The	main	 interface	 of	 the	VIM	Monitoring	 Framework	 is	 the	HTTP	API	 of	 the	 backend,	 as	
described	 in	 Sec.	 4.6.3.	 During	 the	 development	 of	 the	 monitoring	 framework,	 the	
VNF	 developers	 have,	 however,	 requested	 for	 a	 graphical	 way	 of	 accessing	 the	
monitoring	data	their	VNF	instances	and	VNF	applications	more	specifically,	produce.	This	lead	
to	the	integration	of	a	Grafana	server.	Grafana	[Grafana]	is	a	graph	builder	for	visualising	time	
series	metrics.	 It	 supports	 InfluxDB	as	a	data	source	and	thus,	 it	 is	easy	 to	visualise	all	 the	
available	measurements	directly	from	the	database.	

	

	
Figure	11.	Visualization	of	measurements	with	Grafana	

	

4.7. Packaging,	documentation	and	open-source	release		

In	an	effort	to	contribute	to	maximising	the	impact	of	T-NOVA	on	the	NFV	community,	the	T-
NOVA	 monitoring	 framework	 is	 released	 [GH-VIM]	 under	 the	 GNU	
General	 Public	 License	 v3.012.	 Interested	 stakeholders	 and	 prospective	 contributors	 are	
welcome	to	download	and	do	pull	requests	on	the	public	GitHub	repository13.	The	plan	is	to	
move	 the	 project	 to	 the	 overall	 T-NOVA	 Github	 account,	 as	 soon	 as	 the	 latter	 becomes	
available.	

																																																													
11	https://influxdb.com/docs/v0.9/write_protocols/write_syntax.html	
12	https://github.com/spacehellas/tnova-vim-backend/blob/master/LICENSE.txt	
13	https://github.com/spacehellas/tnova-vim-backend	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
39	

A	Docker	image	containing	node	and	the	application	is	also	provided	inside	this	repository.	A	
Docker	 image	 allows	 the	 seamless	 usage	 of	 the	 backend	 in	 any	 OpenStack	 deployment,	
regardless	 of	 deploying	 it	 on	 a	 physical	 or	 virtual	 machine.	 Most	 of	 the	 configuration	
parameters	are	exposed	in	Docker	environment	variables	and	can	be	set	up	during	container	
creation.	A	 YAML	 file	 (docker-compose.yml)	 is	 also	 provided	 inside	 the	 repository,	 so	 that	
users	can	combine	the	VIM	monitoring	backend,	InfluxDB	and	Grafana	in	the	same	way	the	
backend	is	being	developed	and	tested.	

For	 further	 documentation	 of	 the	 backend,	 please	 refer	 to	 the	 README	 file14	 and	 the	
documentation	directory15	of	the	repository.	The	 information	will	be	kept	up-to-date	while	
development	progresses.	For	the	API	documentation,	please	refer	to	the	/docs	endpoint	of	a	
working	deployment,	where	the	Swagger-UI	is	hosted.	

	

																																																													
14	https://github.com/spacehellas/tnova-vim-backend/blob/master/README.md	
15	https://github.com/spacehellas/tnova-vim/blob/master/documentation	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
40	

5. VALIDATION	

5.1. Functional	testing	

For	the	purpose	of	functional	testing	and	benchmarking	of	the	current	release	of	the	T-NOVA	
VIM	monitoring	framework,	the	latter	was	integrated	into	the	T-NOVA	IVM	testbed	as	shown	
in	Figure	12	below.	

	

	
Figure	12.	Testbed	configuration	for	testing	VIM	Monitoring	

	

The	VIM	Monitoring	Manager	was	deployed	as	a	Docker	container	in	a	separate	physical	host,	
as	part	of	the	VIM	management	and	monitoring	framework.	It	interfaced	with	Openstack	for	
the	collection	of	metrics	via	Ceilometer.	

The	workload	to	produce	the	metrics	was	the	latest	version	of	the	vTC	(virtual	Traffic	Classifier)	
VNF,	deployed	in	a	VM.	The	vTC	used	the	Python	library	provided	(see	Sec.	4.4)	in	order	to	
dispatch	VNF	metrics	to	the	VIM	MM.	At	the	same	time,	the	collectd	agent	was	also	installed	
in	the	VNF	VM,	to	dispatch	generic	metrics.	

In	order	to	emulate	realistic	operational	conditions,	a	traffic	generator	hosted	in	a	separate	
VM	was	used	to	play	back	a	real	network	traffic	dump	containing	a	mix	of	various	services.	

Behind	the	VIM	Mon.	Mgr.	two	clients	were	used;	one	for	accessing	the	metrics	via	the	REST	
API	and	a	second	one	accessing	the	web-based	GUI.	

The	chosen	functional	test	intended	to	validate	most	of	the	functional	capabilities	of	the	VIM	
MM,	namely:	

• Interfacing	with	Ceilometer	

• Collection	of	agent	metrics	

• Collection	of	VNF	metrics	

• Persistence	of	measurements	

• GUI	operation	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
41	

The	GUI	was	configured	by	the	user	to	display	 the	following	metrics,	 integrated	 in	a	single	
view:	

• VNF	CPU	utilization,	retrieved	from	Openstack	

• VNF	memory	usage	 and	network	 traffic	 (cumulative	 packet	 count),	 as	 reported	by	
guest	OS	via	the	monitoring	agent	

• VNF-specific	metrics.	Specifically,	the	vTC	is	able	to	report	the	packet	rate	of	different	
applications	detected	e.g.	Skype,	Bittorrent,	Dropbox,	Google,	Viber	etc.)	

	
Figure	13.	End-to-end	functional	test:	the	VIM	MM	GUI	screenshot,	integrating	metrics	from	various	

sources	

It	was	verified	that	the	multiple	samples	were	collected	and	displayed	properly.	The	validity	
of	the	measurements	was	verified	by	accessing	the	console	view	of	the	VNF	VM	and:	

Checking	the	system	metrics	via	command-line	tools	(top,	netstat	etc.)	

Checking	 the	 vTC	 VNF	 logs	 which	 contained	 periodic	 dumps	 of	 the	 VNF	 metrics	 (per-
application	 rate).	 It	 is	 clarified	 that	what	 is	 tested	 here	 is	 the	 ability	 to	 communicate	 and	
collect	metrics	and	not	the	accuracy	of	the	vTC.	

System	stability	was	also	checked	by	allowing	the	system	to	run	continuously;	the	vTC	and	
VIM	 MM	 was	 found	 to	 be	 operating	 normally	 after	 more	 than	 two	 days	 of	 uptime	 and	
continuous	operation,	until	it	was	manually	stopped.	

	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
42	

5.2. Benchmarking	

As	aforementioned,	apart	from	the	GUI,	the	VIM	also	exposes	a	programmatic	interface	(API)	
to	the	orchestration	and	VNFM	components.	We	tested	the	scalability	and	performance	of	
the	VIM	MM	by	loading	it	with	a	variable	number	of	GET	requests,	asking	for	a	single	specific	
metric	 (CPU	 load)	 of	 the	 vDPI	 VNF.	 We	 used	 the	 httperf	 software	 [httperf]	 to	 generate	
synthetic	HTTP	GET	requests	at	various	rates	and	measured	the	rate	of	responses	received.	
Then,	we	repeated	the	procedure,	this	time	directly	polling	Ceilometer	for	the	same	metric.		

The	two	sets	of	measurements	were	made	on	platforms	with	similar	hardware	capabilities.	
The	results	are	depicted	in	Fig.5.	

	
Figure	14.	VIM	Monitoring	Manager	performance	

	

It	can	be	shown	that	the	VIM	MM	can	expose	metrics	with	performance	comparable	to	native	
Ceilometer.	 It	 also	 seems	 to	 exhibit	 better	 stability	 when	 overloaded	 (at	 more	 than	 160	
requests/sec	for	the	given	hardware	configuration).	

An	 important	 added	 value	 of	 VIM	 MM	 is	 the	 communication	 overhead,	 which	 has	 been	
reduced	to	the	minimum	to	improve	scalability.	Figure	15	compares	the	length	(in	bytes)	of	
the	responses	to	a	single	GET	request	for	a	specific	metric	of	a	VNF	VM	(CPU	load,	memory	
utilization	and	disk	usage).	The	response	of	Ceilometer	is	quite	verbose,	since	it	also	includes	
detailed	instance	information.	We	try	to	alleviate	this	effect	by	including	in	the	response	body	
only	the	absolutely	necessary	elements,	i.e.	the	metric	name,	the	value	and	the	timestamp.	
The	result	is	a	decrease	in	overhead	by	about	95%.	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
43	

	
Figure	15.	Length	of	responses	for	single-metric	requests	

It	 is	 thus	 seen	 that	 the	 VIM	 MM	 exhibits	 acceptable	 performance	 when	 it	 comes	 to	
communicating	metrics.		

Regarding	 Ceilometer,	 however,	 it	 must	 be	 noted	 that	 the	 performance	 limitations	 of	
Ceilometer	 are	 known	 and	 expected	 to	 be	 alleviated	 in	 the	 upcoming	 releases	 -	 and	 the	
Telemetry	 project	 is	 already	 targeting	 at	 fulfilling	 NFV	 requirements.	 In	 this	 context,	
Ceilometer	 could	 also	 in	 the	 near	 future	 offer	 an	 efficient	 solution	 for	 NFV	 monitoring,	
bringing	at	the	same	time	strong	community	support	as	well	as	wide	industrial	uptake,	being	
a	core	Openstack	component.	

			

5.3. Fulfillment	of	requirements	

Following	the	successful	execution	of	the	aforementioned	validation	and	assessment	tests,	
the	 table	 below	 explains	 how	 the	 implemented	 and	 tested	 VIM	 monitoring	 framework	
eventually	fulfills		(or	is	planned	to	fulfill)	the	requirements	which	were	set	in	Section	2.	

	

Table	11.	Compliance	to	requirements	

Requirement	for	the	Monitoring	
Framework	

Status	 Justification	

The	MF	must	provide	a	vendor	
agnostic	mechanism	for	physical	
resource	monitoring.	

Compliance	 The	mechanisms	introduced	for	
measurements	collection	are	vendor	
agnostic	for	most	metrics	(CPU,	memory,	
storage,	network	etc.)	

The	MF	must	provide	an	interface	
to	the	Orchestrator	for	the	
communication	of	monitoring	
metrics.	

Compliance	 The	MF	exposes	a	northbound	REST	API	
for	metrics/alarms	communication	in	
either	push	or	pull	mode.	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
44	

The	MF	must	re-use	resource	
identifiers	when	linking	metrics	to	
resources.	

Compliance	 The	VIM	MM	re-uses	the	Openstack	
UUIDs	and	hostnames	for	linking	metrics	
to	resources.	

The	MF	must	monitor	in	real	time	
the	physical	network	infrastructure	
as	well	as	the	vNets	instantiated	on	
top	of	it.	

Compliance	
(Planned)	

Network-related	measurements	are	
derived	from	the	monitoring	agents	(for	
network	interfaces)	and	also	
OpenDaylight	(for	virtual	links	and	
networks)	(Feature	under	development)	

The	MF	must	provide	an	API	for	
communicating	metrics	(in	either	
push	or	pull	mode)	

Compliance	 The	MF	exposes	a	northbound	REST	API	
for	metrics/alarms	communication	in	
either	push	or	pull	mode.	

The	MF	must	collect	utilisation	
metrics	from	the	virtualised	
resources	in	the	NFVI.	

Compliance	 The	VIM	MM	collects	metrics	from	
deployed	VMs	and	established	vNets.	

The	MF	must	collect	compute	
domain	metrics.	

Compliance	 Direct	access	to	compute	domain	metrics	
is	achieved	by	means	of	the	collect	
monitoring	agent.	

The	MF	must	collect	hardware	
accelerator	metrics	

Compliance	
(Planned)	

Hardware	accelerator	metrics	are	
accessible	by	means	of	specific	agent	
(collectd)	plugins.	(Feature	under	
development)	

The	MF	must	collect	compute	
metrics	from	the	Hypervisor.	

Compliance	 The	VIM	MM	collects	hypervisor	metrics	
indirectly	via	the	Ceilometer	API.	

The	MF	must	collect	network	
domain	metrics	from	the	
Hypervisor.	

Compliance	 The	VIM	MM	collects	hypervisor	metrics	
indirectly	via	the	Ceilometer	API.	

The	MF	must	process	and	dispatch	
alarms.	

Compliance	
(Planned)	

The	VIM	MM	allows	configuring	and	
subscribing	to	alarms.	

The	MF	must	collect	metrics	from	
physical	and	virtual	networking	
devices.	

Compliance	
(Planned)	

The	VIM	MM	interfaces	with	
OpenDaylight	to	collect	network	device	
statistics.	(Feature	under	development)	

The	MF	must	leverage	SDN	
monitoring	capabilities.	

Compliance	
(Planned)	

The	VIM	MM	collects	(mostly	port)	
statistics	for	SDN	devices	from	
OpenDaylight.	(Feature	under	
development)	

	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
45	

6. CONCLUSIONS	AND	FUTURE	WORK		

This	document	described	the	design	and	development	of	a	monitoring	framework	for	the	T-
NOVA	IVM	layer.	Using	a	comprehensive	state-of-the-art	survey	as	well	as	a	consolidation	of	
T-NOVA	 requirements,	 the	 architecture	 of	 the	 T-NOVA	 VIM	 monitoring	 framework	 was	
specified.	 Taking	 into	 account	 the	 use	 of	 OpenDaylight	 and	 OpenStack	 as	 the	 controller	
technologies	in	the	VIM,	infrastructure	metrics	and	statistics	available	from	these	controllers	
are	 collected.	 Furthermore,	 a	 VNF	 monitoring	 agent	 was	 also	 introduced,	 as	 an	 optional	
component,	collecting	a	rich	set	of	metrics	from	within	VMs	and	VNF	applications.	All	these	
metrics	are	aggregated	and	 filtered	 into	a	centralised	Monitoring	Manager,	which	exposes	
status	and	resource	 information	of	 the	NFVI-PoP	to	the	Orchestrator,	as	configured	by	the	
latter.		

It	is	concluded	that,	with	the	proposed	approach,	the	goal	of	delivering	an	effective,	efficient	
and	scalable	monitoring	solution	for	the	T-NOVA	IVM	layer	 is	achieved.	The	solution	under	
development	 is	 able	 to	 expose	 to	 the	 Orchestrator	 and	 to	 the	 Marketplace	 enhanced	
awareness	 of	 the	 IVM	 status	 and	 resources,	 while	 at	 the	 same	 time	 keeping	 the	
communication	and	signalling	overhead	at	minimum.	

The	 current	 release	 has	 been	 integrated	 with	 the	 T-NOVA	 IVM	 testbed	 and	 has	 been	
demonstrated	 in	 operation	 in	 IEEE	 IM	 2015	 and	 IEEE	 SDN/NFV	 conferences	 as	 part	 of	 an	
integrated	demonstrator	of	the	T-NOVA	project,	monitoring	an	NFV	service	with	the	vTC	VNF.		

The	next	 steps	 in	 implementation	 involve	 the	 finalization	of	 the	Orchestrator	API	with	 the	
alarming	functionality,	the	integration	of	OpenDaylight,	as	well	as	the	anomaly	detection	part.	
These	advances	will	be	reflected	in	the	final	version	of	this	deliverable.	

	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
46	

7. REFERENCES	

[Aodh]	 Openstack	Telemetry	alarming,	https://github.com/openstack/Aodh		

[Cloudwatch]	 Amazon	CloudWatch,	http://aws.amazon.com/cloudwatch		

[Collectd]	 collectd	–	The	system	statistics	collection	daemon,	https://collectd.org/		

[Cyclops]	 Cyclops	framework,	http://icclab.github.io/cyclops/		

[D232]	 M.	 McGrath	 (Ed.)	 et	 al,	 “Specification	 of	 the	 Infrastructure	 Virtualisation,	
Management	and	Orchestration	–	Final”,	T-NOVA	Deliverable	D2.32,	October	
2015	

[D532]	 “Network	Functions	Implementation	and	Testing	–	Final”,	T-NOVA	Deliverable	
D5.32,	June	2016	

[DCM]	 Ye	Yu,	C.	Qian,	and	X.	Li,	"Distributed	and	Collaborative	Traffic	Monitoring	in	
Software	Defined	Networks,"	presented	at	the	ACM	SIGCOMM	Workshop	on	
Hot	 Topics	 in	 Software	 Defined	Networking	 (HotSDN'14),	 Chicago,	 IL,	 USA,	
2014.	

[Doctor]	 OPNFV	 Wiki	 -	 Project:	 Fault	 Management	 (Doctor),	
https://wiki.opnfv.org/doctor		

[DoctorDel]	 Doctor	 Deliverable:	 Fault	 Management	 and	 Maintenance,	 Release	 1.0.0,	
October	 2015,	
http://artifacts.opnfv.org/doctor/DoctorFaultManagementandMaintenance.
pdf		

[Drools]	 Drools	BPM	engine,	http://www.drools.org/		

[Flowsense]	 C.	 Yu,	 C.	 Lumezanu,	 Y.	 Zhang,	 V.	 Singh,	 G.	 Jiang,	 and	 H.	 Madhyastha,	
"FlowSense:	Monitoring	Network	Utilization	with	Zero	Measurement	Cost,"	in	
Passive	and	Active	Measurement.	vol.	7799,	M.	Roughan	and	R.	Chang,	Eds.,	
ed:	Springer	Berlin	Heidelberg,	2013,	pp.	31-41.	

[Ganglia]	 Ganglia	Monitoring	System,	http://ganglia.sourceforge.net		

[GH-VIM]	 https://github.com/spacehellas/tnova-vim-backend		

[Gnocchi]	 Openstack	Gnocchi	project,	https://wiki.openstack.org/wiki/Gnocchi		

[Grafana]	 Grafana:	An	open	source,	feature	rich	metrics	dashboard	and	graph	editor	for	
Graphite,	InfluxDB	&	OpenTSDB,	http://grafana.org/		

[Graphite]	 Graphite:	 A	 Highly	 Scalable	 Real-time	 Graphing	 System,	
https://github.com/graphite-project/graphite-web		

[Hodge04]	 V.	 Hodge	 and	 J.	 Austin,	 “A	 Survey	 of	 Outlier	 Detection	 Methodologies”,	
Artificial	Intelligence	Review	22	(2004),	pp.	85-126	

[httperf]	 https://github.com/httperf/httperf	

[Icinga]	 ICINGA.,	https://www.icinga.org/		

[InfluxDB]	 InfluxDB:	An	open-source,	distributed,	time	series	database	with	no	external	
dependencies,	http://influxdb.com/		

[Monalisa]	 MONitoring	 Agents	 using	 a	 Large	 Integrated	 Services	 Architecture,	
http://monalisa.caltech.edu/monalisa.htm		

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
47	

[Monasca]	 Openstack	Monasca	project,	https://wiki.openstack.org/wiki/Monasca		

[Nagios]	 Nagios	 Is	 The	 Industry	 Standard	 In	 IT	 Infrastructure	 Monitoring,	
http://www.nagios.org/		

[NFVIFA005]		 Network	Functions	Virtualisation	(NFV);	Management	and	Orchestration;	Or-
Vi	reference	point	–	Interface	and	Information	Model	Specification,	work	in	
progress,	November	2015	

[nodejs]	 https://nodejs.org/en/			

[NVFINF010]		 ETSI	 GS	 NFV-INF	 010	 V1.1.1	 (2014-12),	 Network	 Functions	 Virtualisation	
(NFV);	Service	Quality	Metrics			

[OpenNetMon]	N.	L.	M.	van	Adrichem,	C.	Doerr,	and	F.	A.	Kuipers,	"OpenNetMon:	Network	
monitoring	in	OpenFlow	Software-Defined	Networks,"	in	Network	Operations	
and	Management	Symposium	(NOMS),	2014	IEEE,	2014,	pp.	1-8.	

[Payless]	 S.	R.	Chowdhury,	M.	F.	Bari,	R.	Ahmed,	and	R.	Boutaba,	"PayLess:	A	low	cost	
network	monitoring	framework	for	Software	Defined	Networks,"	in	Network	
Operations	and	Management	Symposium	(NOMS),	2014	IEEE,	2014,	pp.	1-9.	

[Prediction]	 OPNFV	 Wiki	 –	 Data	 Collection	 for	 Failure	 Prediction,	
https://wiki.opnfv.org/prediction		

[SeaLion]	 Sealion;	 Quickly	 Diagnose	 Problems	 with	 you	 Linux	 Servers,	
https://sealion.com/		

[Shinken]	 Shinken,	http://www.shinken-monitoring.org/		

[Stacktach]	 Stacktach,	 Event-based	 Monitoring	 &	 Billing	 solution	 for	 OpenStack,	
https://github.com/rackerlabs/stacktach		

[Statsd]	 StatsD;	 Simple	 daemon	 for	 easy	 stats	 aggregation,	
https://github.com/etsy/statsd/		

[Telemetry]	 Openstack	Telemetry,	https://wiki.openstack.org/wiki/Telemetry		

[vSphere]	 vmware	vSphere,	http://www.vmware.com/products/vsphere		

[Zabbix]	 ZABBIX,	 The	 Enterprise-class	 Monitoring	 Solution	 for	 Everyone,	
http://www.zabbix.com/		

[Zenoss]	 Zenoss	User	Community,	http://www.zenoss.org/		

	

	

	

	 	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
48	

8. LIST	OF	ACRONYMS	

Acronym	 Explanation	

API	 Application	Programming	Interface	

CPU		 Central	Processing	Unit	

DPDK	 Data	Packet	Development	Kit	

FPGA	 Field	Programmable	Gate	Array	

GPU	 Graphics	Processing	Unit	

HW	 Hardware	

KPI	 Key	Performance	Indicator	

NFV	 Network	Functions	Virtualisation	

NFVI	 NFV	Infrastructure	

NFVI	PoP	 NFVI	Point-of-Presence	

NFVO	 NFV	Orchestrator	

OID	 Object	Identifier	

OPNFV	 Open	Platform	for	NFV	

OS	 Operating	System	

REST	 Representational	State	Transfer	

SNMP	 Simple	Network	Management	Protocol	

SoC	 System-on-Chip	

VDU	 Virtual	Deployment	Unit	

VIM		 Virtualised	Infrastructure	Manager	

VIM	MM	 VIM	Monitoring	Manager	

VM	 Virtual	Machine	

VNF		 Virtual	Network	Function	

VNFD	 VNF	Descriptor	

VNFM	 VNF	Manager	

VNFP	 VNF	Provider	

vTC	 Virtual	Traffic	Classifier	

YANG	 Yet	Another	Next	Generation	
	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
49	

9. ANNEX	I:	SURVEY	OF	RELEVANT	IT/NETWORK	MONITORING	
TOOLS	

This	 section	presents	 a	brief	overview	of	existing	 frameworks	 for	monitoring	 virtualized	 IT	
infrastructures	as	well	as	SDN-enabled	networks,	and	discusses	technologies	which	could	be	
partially	re-used	in	T-NOVA.	

9.1.1. IT/Cloud	monitoring	

9.1.1.1.	 Shinken	

Shinken	 is	an	open	source	system	and	network	monitoring	application	 [Shinken].	 It	 is	 fully	
compatible	with	Nagios	plugins.	It	started	as	a	proof	of	concept	for	a	new	Nagios	architecture,	
but	 since	 the	 proposal	 was	 turned	 down	 by	 the	 Nagios	 authors,	 Shinken	 became	 an	
independent	tool.	It	is	not	a	fork	of	Nagios;	it	is	a	total	rewrite	in	Python.	It	watches	hosts	and	
services,	gathers	performance	data	and	alerts	users	when	error	conditions	occur	and	again	
when	the	conditions	clear.	Shinken's	architecture	is	focused	on	offering	easier	load	balancing	
and	high	availability	capabilities.	The	main	differences	and	advantages	toward	Nagios	are:	

• A	more	efficient	distributed	monitoring	and	high	availability	architecture	

• Graphite	integration	in	the	Web	UI	

• Better	performance,	mostly	due	to	the	use	of	a	distributed	database	(MongoDB)	

9.1.1.2.	 Icinga	

Icinga	is	an	open-source	network	and	system	monitoring	application	which	was	born	out	of	a	
Nagios	 fork	 [Icinga].	 It	maintains	configuration	and	plug-in	compatibility	with	the	 latter.	 Its	
new	features	are	as	follows:	

• A	modern	Web	2.0	style	user	interface;	
• An	interface	for	mobile	devices;	
• Additional	database	connectors	(for	MySQL,	Oracle,	and	PostgreSQL);	
• RESTful	API.	

Currently	there	are	two	flavours	of	Icinga	that	are	maintained	by	two	different	development	
branches:	Icinga	1	(the	original	Nagios	fork)	and	Icinga	2	(where	the	core	framework	is	being	
replacement	by	a	full	rewrite).	

9.1.1.3.	 Zenoss	

Zenoss	is	an	open	source	monitoring	platform	released	under	the	GPLv2	license	[Zenoss]	It	
provides	 an	 easy-to-use	 Web	 UI	 to	 monitor	 performance,	 events,	 configuration,	 and	
inventory.	Zenoss	is	one	of	the	best	options	for	unified	monitoring	as	it	is	cloud-agnostic	and	
is	open	source.	Zenoss	provides	powerful	plug-ins	named	Zenpacks,	which	support	monitoring	
on	hypervisors	(ESX,	KVM,	Xen	and	HyperV),	private	cloud	platforms	(CloudStack,	OpenStack	
and	 vCloud/vSphere),	 and	 public	 cloud	 (AWS).	 In	OpenStack	 Zenoss	 integrates	with	Nova,	
Keystone	and	OpenStack	Telemetry.	

9.1.1.4.	 Ganglia	

Ganglia	is	a	scalable	distributed	system	monitor	tool	for	high-performance	computing	systems	
such	as	clusters	and	grids	[Ganglia].	Its	structure	is	based	on	a	hierarchical	design	using	a	tree	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
50	

of	 point-to-point	 connections	 among	 cluster	 nodes.	 Ganglia	 is	 based	 on	 an	 XML	 data	
representation,	XDR	for	compact	and	RRDtool	for	data	storage	and	virtualisation.	The	Ganglia	
system	contains:	

1. Two	unique	daemons,	gmond	and	gmetad	
2. A	PHP-based	web	front-end	
3. Other	small	programs	

gmond	 runs	 on	 each	 node	 to	monitor	 changes	 in	 the	 host	 state,	 to	 announce	 applicable	
changes,	to	listen	to	the	state	of	all	Ganglia	nodes	via	a	unicast	or	multicast	channel	based	on	
installation,	 and	 to	 respond	 to	 requests.	 gmetad	 (Ganglia	Meta	 Daemon)	 polls	 at	 regular	
intervals	a	collection	of	data	sources,	parses	 the	XML	and	saves	all	metrics	 to	 round-robin	
databases.	Aggregated	XML	can	then	be	exported.	

The	Ganglia	web	frontend	is	written	in	PHP.	It	uses	graphs	generated	by	gmetad	and	provides	
the	collected	information	like	CPU	utilisation	for	the	past	day,	week,	month,	or	year.	Ganglia	
has	been	used	to	link	clusters	across	university	campuses	and	around	the	world	and	can	scale	
to	 handle	 clusters	 with	 2000	 nodes.	 However,	 further	 work	 is	 required	 in	 order	 for	 it	 to	
become	more	cloud-agnostic.	

9.1.1.5.	 StackTach	

StackTach	 is	a	debugging	and	monitoring	utility	 for	OpenStack	that	can	work	with	multiple	
Data	Centres,	including	multi-cell	deployment	[Stacktach].	It	was	initially	created	as	a	browser-
based	debugging	tool	for	OpenStack	Nova.	Since	that	time,	StackTach	has	evolved	into	a	tool	
that	 can	 perform	 debugging,	 monitoring	 and	 auditing.	 StackTach	 is	 quickly	 moving	 into	
Metrics,	SLA	and	Monitoring	territory	with	version	2	and	the	inclusion	of	Stacky,	the	command	
line	 interface	 to	 StackTach.	 StackTach	 contains	 a	worker	 that	 reads	 notifications	 from	 the	
OpenStack’s	RabbitMQ	queues	and	stores	them	in	a	database.	From	there,	StackTach	reviews	
the	stream	of	notifications	to	glean	usage	 information	and	assemble	 it	 in	an	easy-to-query	
fashion.	Users	can	inquire	on	instances,	requests,	servers,	etc.	using	the	browser	interface	or	
the	Stacky	command	line	tool.	Rackspace	is	working	on	StackTach	integration	with	Telemetry.	

9.1.1.6.	 SeaLion	

SeaLion	is	a	cloud-based	system	monitoring	tool	for	Linux	servers.	It	installs	an	agent	in	the	
system,	which	can	be	run	as	an	unprivileged	user	[SeaLion].	The	agent	collects	data	at	regular	
intervals	across	servers	and	this	data	will	be	available	on	your	workspace.	Sealion	provides	a	
high-level	 view	 (graphical	 overview)	 of	 Linux	 server	 activity.	 The	 monitoring	 data	 are	
transmitted	over	SSL	to	the	SeaLion	servers.	The	service	provides	graphs,	charts	and	access	to	
the	raw	gathered	data.	

9.1.1.7.	 MonALISA	

MONitoring	Agents	 using	 a	 Large	 Integrated	 Services	Architecture	 (MonaLISA)	 is	 based	on	
Dynamic	Distributed	Service	Architecture	and	is	able	to	provide	complete	monitoring,	control	
and	 global	 optimisation	 services	 for	 complex	 systems[Monalisa].	 The	MonALISA	 system	 is	
designed	 as	 a	 collection	 of	 autonomous	 multi-threaded,	 self-describing	 agent-based	
subsystems	 which	 are	 registered	 as	 dynamic	 services,	 and	 are	 able	 to	 collaborate	 and	
cooperate	in	performing	a	wide	range	of	information	gathering	and	processing	tasks.	

The	agents	can	analyse	and	process	the	information	in	a	distributed	way,	in	order	to	provide	
optimisation	 decisions	 in	 large-scale	 distributed	 applications.	 The	 scalability	 of	 the	 system	
derives	 from	 the	 use	 of	 a	multithreaded	 execution	 engine,	 that	 hosts	 a	 variety	 of	 loosely	
coupled	self-describing	dynamic	services	or	agents,	and	the	ability	of	each	service	to	register	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
51	

itself	and	then	to	be	discovered	and	used	by	any	other	services,	or	clients	that	require	such	
information.	 The	 system	 is	 designed	 to	 easily	 integrate	 existing	 monitoring	 tools	 and	
procedures	and	to	provide	this	information	in	a	dynamic,	customised,	self-describing	way	to	
any	other	services	or	clients.	

By	 using	 MonALISA	 the	 administrator	 is	 able	 to	 monitor	 all	 aspects	 of	 complex	 systems,	
including:	

• System	information	for	computer	nodes	and	clusters;	
• Network	information	(traffic,	flows,	connectivity,	topology)	for	WAN	and	LAN;	
• Monitoring	the	performance	of	applications,	jobs	or	services;	and		
• End-user	systems	and	end-to-end	performance	measurements.	

9.1.1.8.	 collectd,	StatsD	and	Graphite		

Cloud	instances	may	also	be	monitored	by	using	a	collection	of	separate	open	source	tools.	
collectd	is	a	daemon	which	collects	system	performance	statistics	periodically	and	provides	
mechanisms	to	store	the	values	in	a	variety	of	ways	[Collectd].	collectd	gathers	statistics	about	
the	system	it	is	running	on	and	stores	this	information.	These	statistics	can	then	be	used	to	
find	current	performance	bottlenecks	(i.e.	performance	analysis)	and	predict	future	system	
load	(i.e.,	capacity	planning).	collectd	is	written	in	C	for	performance	and	portability,	allowing	
it	to	run	on	systems	without	scripting	language	or	cron	daemon,	such	as	embedded	systems.	
At	the	same	time	it	includes	optimisations	and	features	to	handle	big	amounts	of	data	sets.	
StatsD	[Statsd]	is	a	Node.JS	daemon	that	listens	for	messages	on	a	UDP	to	TCP	port.	StatsD	
listens	for	statistics,	like	counters	and	timers	and	then	parses	the	messages,	extracts	metrics	
data,	and	periodically	flushes	the	data	to	other	services	in	order	to	build	graphs.	A	tool	that	
can	be	used	to	build	graphs	afterwards	is	Graphite	[Graphite],	which	is	able	to	store	numeric	
time-series	data	and	render	graphs	of	the		data	on	demand.	

9.1.1.9.	 vSphere	

The	 vSphere	 statistics	 subsystem	 collects	 data	 on	 the	 resource	 usage	 of	 inventory	 objects	
[vSphere].	Data	on	a	wide	range	of	metrics	is	collected	at	frequent	intervals,	processed	and	
archived	 in	a	database.	Statistics	 regarding	the	network	utilisation	are	collected	at	Cluster,	
Host	 and	Virtual	Machine	 levels.	 In	 addition	 vSphere	 supports	 performance	monitoring	 of	
guest	operating	systems,	gathering	statistics	regarding	network	utilisation	among	others.	

9.1.1.10.	 Amazon	CloudWatch	

Amazon	CloudWatch	 is	a	monitoring	service	 for	AWS	cloud	 resources	and	 the	applications	
running	on	AWS	[Cloudwatch].	It	provides	real-time	monitoring	to	Amazon's	EC2	customers	
on	their	resource	utilisation	such	as	CPU,	disk	and	network.	However,	CloudWatch	does	not	
provide	any	memory,	disk	space,	or	load	average	metrics	without	running	additional	software	
on	 the	 instance.	 It	was	primarily	designed	 for	use	with	Amazon	Elastic	Load	Balancing	and	
Auto	Scaling	with	load	balancing	in	mind:	the	service	checks	CPU	usage	on	multiple	instances	
and	automatically	creates	additional	ones	when	the	load	increases.	

9.1.2. Network	Monitoring	

Network	monitoring	 is	a	domain	 that	has	attracted	significant	attention	 from	the	 research	
community	 over	 the	 past	 decades,	 with	well-established	 technologies	 and	 standards	with	
regard	 to	 measurement	 processes	 (active	 and	 passive)	 as	 well	 as	 the	 communication	 of	
monitoring	metrics	(SNMP,	IPFIX,	sFlow	etc.).	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
52	

In	the	context	of	T-NOVA,	where	network	management,	at	least	within	each	NFVI-PoP	is	based	
on	OpenFlow,	the	measurement	process	will	leverage	OpenFlow’s	monitoring	capabilities.	

OpenFlow	provides	the	capability	 to	report	per-flow	and	per-port	metrics,	 reported	by	the	
switch	itself.	These	metrics	are	then	collected	by	the	Controller	and	communicated	to	SDN	
control	applications	via	the	northbound	API	of	the	Controller	it-self	(Figure	16).	Almost	all	SDN	
controllers	offer	the	capability	to	expose	monitoring	metrics,	either	via	API	calls	or	language	
bindings.	In	this	respect,	the	OpenFlow-based	architecture	provides	the	capability	to	monitor	
all	network	elements	in	a	uniform	and	vendor-agnostic	manner.	

Network	Devices

Southbound	API
(OpenFlow)

CONTROLLERS
(NOX,	POX,	OpenDaylight,	Floodlight,	Beacon,	Ryu,	Trema,	Mul,	

Jaxon,	Maestro,	NodeFlow,	Ovs-controller,	NDDI-OESS)

Northbound	API

SDN	Applications

Monitoring

	
Figure	16.	Communication	of	monitoring	metrics	in	an	OpenFlow-enabled	architecture	

In	this	context,	several	monitoring	applications	have	been	developed,	leveraging	OpenFlow	
capabilities	 for	 integrated	 network	 management	 tasks.	 Some	 of	 these	 applications	 are	
overviewed	in	the	table	below.	

Table	12.	OpenFlow	monitoring	applications	

Monitoring	
Application	

Brief	description	 Control-
ler	Used	

Open	
Source	

Available	
at	

OpenNetMon	 OpenNetMon	[OpenNetMon]	
continuously	monitors	all	flows	between	
predefined	link	destination	pairs	on	
throughput,	packet	loss	and	delay	

POX	 Yes	

ht
tp
s:
//
gi
th
ub

.c
om

/T
U
D

el
ft
N
AS

/S
DN

-
O
pe

nN
et
M
on

/	

T-NOVA	|	Deliverable	D4.41	 	 Monitoring	and	Maintenance	-	Interim	

©	T-NOVA	Consortium	
53	

Payless	 Payless	[Payless]	provides	a	flexible	
RESTful	API	for	flow	statistics	collection	
at	different	aggregation	levels.	It	uses	an	
adaptive	statistics	collection	algorithm	
that	delivers	highly	accurate	information	
in	real-time	without	incurring	significant	
network	overhead.	

POX,	 NOX,	
OpenDayLi
ght	

Yes	

ht
tp
:/
/g
ith

ub
.c
om

/
sr
cv
iru

s/
flo

od
lig
ht
.	

DCM	 DCM	[DCM]	allows	switches	to	
collaboratively	achieve	flow-monitoring	
tasks	and	balance	measurement	load.		

None	
(native	OF)	

No	 Not	
available	

FlowSense	 FlowSense	[Flowsense]	achieves	a	push-
based	approach	to	performance	
monitoring	in	flow-based	networks,	
where	the	network	informs	of	
performance	changes,	rather	than	query	
it.	

None	
(native	OF)	

No	 Not	
available	

	

In	 addition,	 many	 of	 the	 monitoring	 frameworks	 mentioned	 in	 Section	 9.1.1	 for	 cloud	
infrastructures	can	be	also	used	for	monitoring	OpenFlow	infrastructures,	via	the	appropriate	
plugins.	

	

	

		

