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Executive Summary 

This deliverable presents the current results and activities in the Task4.3 dedicated to 
the activity of developing software development kit - SDK for SDN. Networking in 
cloud datacentres currently bases on technology and protocols that were not 
designed for cloud environments at the first place. This has lead to unnecessary 
overhead and complexity in all phases of a cloud service. For instance, tunnelling 
protocols generate inherent cascading and encapsulation especially in multi tenant 
systems. The problem is further increased by the vendor specific configuration 
requirements and heterogeneous architectures. This complexity leads to systems that 
are hard to reason about, prone to errors, energy inefficient and difficult to configure 
and maintain. From a network application developer point of view, this is inefficient 
since it injects additional overhead and impedes a transparent application 
development. SDN reduces that complexity by not only unifying and centralizing the 
network configuration, but also by cutting down the protocol overhead. To address 
this challenge, Task 4.3 SDK for SDN is primarily focused on creating pack of libraries, 
which exploit the power of SDN to enable cloud native networking systems in line 
with the operator’s technical and business requirements. 

This document is organized as follows: Section 1 introduces the SDN adoption inside 
the datacentre deployments of Google and Facebook, including the details on their 
specific implementations with customized network features. Section 2 provides a 
discussion on the network virtualization trends as a way to demonstrate the SDN 
capabilities in traditional communication providers’ environments such as Telco and 
Internet service providers (ISPs). OPNFV is described as a potentially leading 
community to stimulate adoption of software-defined networking (SDN) and network 
functions virtualisation (NFV). We then describe OpenStack Networking and 
OpenDaylight as main technological enables used in this task. Section 3 updates the 
initially defined SDK requirements, described in the T-Nova first year’s deliverable 
D4.01, based on the lessons learnt and the current implementation of the SDK. A 
comprehensive State of the Art of the actual SDKs for SDN in the industry is 
presented and their features are compared and contrasted to the SDK developed 
within this task. Starting from the baseline principle for non-tunnelling multi-tenant 
support, some currently existing industrial implementations of tenant segregation are 
included. To confirm furthermore the importance of novel approaches to tenant 
isolation in datacentre cloud environment, we review the academic results and 
performance evaluations on similar technologies to ours. In Section 4, the ZHAW on 
premise SDN testbed is depicted as a basic testing environment for the 
implementations and the applications developed for the SDK. Section 5 contains the 
core specification of the SDK along with the architectural diagrams, offering UML 
representation of the currently developed SDK libraries and description for the API to 
be released. We focus on the internal components, their functionality and rationale, 
but we also relate the SDK northbound interface to the main building components of 
T-Nova such as the Orchestrator, the IVM and the SDN controller.  

Section 5 furthermore explains the main idea behind the application driven approach, 
focusing on Service Function Chaining as crucial use case to further strengthen the 
SDN argument and validation in in cloud datacentres and generally in the entire T-
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Nova eco system. At the end it includes some basic measurements and analysis to 
confirm the idea behind the implementation and to reason about the possible issues 
and challenges. Via the discussion we trace the way for the next months’ advances 
within the scope of the SDK. Finally the main goal of Section 6 is to relate the 
importance of the SDK developed in T-Nova to parallel solutions currently under 
development (or in consideration) in domains other then a cloud data centres. Being 
currently hot topics in the industry, those technologies where SDN has already took 
off are highly relevant for the SDK for SDN developed in T-Nova.  
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1. INTRODUCTION 

In the current era of virtualisation where there is a focus is on maximising the 
utilisation of hardware resources by deploying multiple services / applications (ideally 
with mutually orthogonal workload characterization). Virtualisation in the cloud 
brings an additional dimension - self-management and programmable access to 
desired slices of compute/storage/network resources from a shared pool of available 
resources. While programmable capabilities have been strictly limited in the 
virtualisation layer (for example: network virtualisation typically means the creation of 
software isolation capabilities over existing hardware resources) the programmability 
of the physical network topology has lagged even further behind. Software defined 
networks (SDNs) provide an approach to support unified programmability of not only 
the virtual network elements but also the physical network elements supporting the 
virtualized elements in a cloud environment. In a datacentre environment where the 
physical links’ dimensions are minimal, and the physical environment is strictly 
controlled, the use of SDN allows the datacentre operator to optimise link capacities 
by removing or minimising protocol overheads which are unnecessary in this type of 
controlled environment. Additionally, the focus in a datacentre primarily remains on 
switching rather than routing and most of the widely deployed communication 
protocols focus on routing creating opportunities for potential optimizations. The 
overheads resulting from packet fragmentation and reassembly can be decreased. In 
addition the implementation of a new protocol in line with the cloud datacentre 
architecture is also possible. To further strength the arguments already presented, in 
the virtualized layer, where the typical network requirements are for ensuring process 
isolation scope for optimization exists. Task 4.3 SDK for SDN is primarily focused on 
compiling a set of common libraries that would empower a datacentre application 
developer to easily develop and implement network optimisations in line with the 
operator’s technical and business requirements. Big datacentre operators such as 
Facebook and Google have being using SDN for a number of years to fine-tune their 
network deployments to bring them closer to a distributed computing everything 
philosophy. The following subsections examine those real-world use-cases to further 
strengthen the SDN argument and validation of the need for deployment and proper 
exploitation in cloud datacentres. 

1.1. Networking in Datacentres 

1.1.1. SDN in Google Data Centres 

Google has been employing SDN in their datacentres for many years. Their 
networking infrastructure has long been designed using merchant silicon from 
various vendors instead of relying on standard commercial of the shelf (COTS) 
network hardware. Designing their own hardware and software means they are freed 
from the usual network protocol stacks and can implement their own variations to 
suit their specific datacentre needs. Their network has evolved from Firehouse DC 
design to the current Jupiter design [1] that offers 1 Petabits/sec bisection bandwidth 
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in a Clos topology arrangement of switches that is centrally managed by their own 
network control software [2]. Their network deployment is logically a big switching 
fabric that is closer to their distributed software architectures than any other router-
centric networking topology. Their cloud SDN networking virtualisation stack is called 
Andromeda shown in Figure 1-1. 

 

Figure 1-1: Google’s SDN networking virtualization stack 

 

 
Andromeda not only orchestrates the virtual networking needs of the VMs in the 
Google Compute Engine (GCE), but also orchestrates the top-of-the-rack (TOR) 
switches, network peering edges, border routers which are part of their physical 
network fabric. Since they have full software control on all levels of the networking 
fabric, from low-level hardware to high-level software, they don't have to make 
compromises and can achieve the full potential of the available network resources. 
Using Andromeda and a custom Linux port that utilises the full capabilities of their 
SDN fabric, they are able to improve the TCP throughput substantially (see Figure 1-
2). 
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Figure 1-2: Network performance (baseline vs Andromeda) 

 
The Google SDN use case clearly shows the capability of SDN to create a holistic as 
well as a synergistic effect upon the overall software architectures and the underlying 
networking fabric in a datacentre environment. Below we provide Facebook’s analysis 
to further strengthen this argument. 

 

1.1.2. SDN in Facebook Data Centres 

Facebook has seen a tremendous explosion in their network traffic due to an ever-
increasing user base. Their data centres across the globe now support more than 1.5 
billion active users’ worldwide [3], Facebook’s internal traffic called machine-to-
machine traffic is orders of magnitude higher than user generated traffic. While 
designing their network to satisfy ever increasing capacity needs for their distributed 
applications, Facebook’s network team realised that cluster-based designs have a 
fundamental flaw that limits the cluster sizes to the port densities in the top-of-the 
rack switches. With ever increasing inter-cluster traffic demands, more ports start to 
be consumed which reduces the cluster sizes. So the scalable approach Facebook 
engineers took into account was to divide the data centre network into a set of pods 
and cores, where each pod consisting of 48 machines is served by 4 top-of-rack 
switches in (3+1) configuration as shown below in Figure 1-3 and Figure 1-4. 
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Figure 1-3: Typical Facebook pod 

 
Their data centre fabric treats each networking hardware as a virtual cluster, wherein 
all their routing needs are served through BGP4 protocol. They manage all the 
routing rules centrally via a custom built centralised BGP controller. The routing in 
their datacentre is fully controlled in their custom software. Furthermore only 
essential protocol elements are implemented to remove any inefficiency from the 
protocol itself. 
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Figure 1-4: Facebook networking fabric design 

 
Management of network hardware elements is also fully automated and is controlled 
by their software based management service, which automatically identifies a newly 
added box and the role assigned to it and configures it without any network engineer 
involvement. With everything controlled in software, the various elements of a virtual 
cluster can now be placed in any physical location in their datacentre, which makes 
the manageability simpler. This clearly shows the advantages of SDN approach that 
can support datacentre flexibility in a simplified manner. 

The two SDN use cases by leading service providers show the benefits that SDN can 
bring in order to achieve efficiency in datacentre management along with traffic 
optimizations capabilities. The SDK for SDN delivered by this task will provide a set of 
building blocks for performing fundamental tasks, which can be used by datacentre 
application developers to build customised solutions to optimise their data centres as 
per required business and deployed application use cases. 
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2. TECHNOLOGICAL ENABLERS FOR SDK4SDN 

2.1. Network Function Virtualization Trends 

Continuing from the previous chapter, let's now look at the potential usefulness of 
SDN capabilities in traditional communication providers’ environments such as Telco 
and Internet service providers (ISPs). With rising CAPEX+OPEX costs and reducing 
revenue margins, connectivity service providers (Telcos, ISPs, etc.) have now realised 
the significance of rapid development and deployment cycles. Coupled with the 
power of virtualisation that enables better consolidation and possible reductions in 
cost, the spike in interest surrounding NFV and the increase in standardisation efforts 
is not a surprise. With the advent of NFV, which drives migration from proprietary 
hardware boxes to NFs running as software processes in VMs in cloud / datacentre, 
the importance of SDN becomes more significant. Now virtual machines can be 
migrated and relocated to different locations depending on the outcome of 
optimisation algorithm, therefore there is a need for dynamic flow management. 
Furthermore, SDN northbound interfaces could provide more control to Network 
Application developers in the form of well-defined abstractions for faster and easier 
application development. This form of capability will act as a catalyst for network 
innovations. Optimisation algorithms would converge faster with NFV and SDN 
deployments as the global network state would no longer be discovered via a 
distributed slow-converging process, but would be maintained in the SDN 
controllers. Analysing the needs in typical network application use cases one could 
clearly identify the need for SDK for SDN in NFV centric R&D strategies. NF 
virtualisation requirement analysis also suggests the need for some SDK. One type of 
relocation could be called full virtualisation where the full functionality is virtualised 
and the function could be moved around on a dynamic basis in response to 
operational network conditions or SLA’s etc. Another approach is partial virtualisation 
where a part of the functionality is kept in the physical hardware and the remaining 
functionality is separated and maintained in virtual elements within the datacentre. A 
prominent example of this approach is Customer Premise Equipment (CPE) 
virtualisation and relocation, Figure 2-1. 
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Figure 2-1: Types of function virtualization in a CPE [4] 

 

There are a large number of NFs that could potentially be virtualised into VNFs, 
including: 

• Switch, routers, NAT, etc. 
• Firewalls, virus scanners, spam classifiers, etc. 
• HSS, MME, eNodeB, NodeB, RNC, etc. 
• Rating, charging, billing functions, AAA, etc. 

These are just a partial list from the commonly utilised functions in a provider’s setup, 
while potential for virtualisation of many more exists. A suitable SDK will accelerate 
this process by enabling network developers to design innovative network 
applications with appropriate interfaces to an SDN controller, and with this providing 
fine-grained control of the underlying network fabric. Increased SDN activity in this 
space is a clear indication of a concerted push in this direction. ETSI NVF-ISG, ETSI 
MEC ISG, Broadband Forum (BBF) and efforts in the open source communities such 
as OPNFV, OpenStack, Open vSwitch, DPDK, ODP are some healthy indicators for 
that. 

2.2. Open Platform for NFV (OPNFV) 

The Linux Foundation created the OPNFV initiative in 2014 right after the creation of 
the OpenDaylight Project in April 2013 as a leading framework to boost adoption of 
software-defined networking (SDN) and network functions virtualisation (NFV) [5] [6] 
[7] [8]. OPNFV is a carrier-grade, integrated, open source platform to accelerate the 
introduction of new NFV products and services, by essentially bringing together 
service and NFV providers, cloud and infrastructure vendors, developers’ 
communities, and customers into a new NFV ecosystem. OPNFV was motivated by 
the European Telecommunications Standards Institute and ETSI NFV to achieve 
consistency among open standards in terms of performance and interoperability 
among virtualised network infrastructures. OPNFV promotes an open source network 
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aimed at accelerating innovation and collaboration between the participating 
communities based on current technological enablers. 

The first milestone of OPNFV is the creation of NFV Infrastructure (NFVI) and 
Virtualized Infrastructure Management (VIM) using building blocks from upstream 
projects.  

Figure 2-2 shows a diagram of the ETSI NFV architecture marking the initial focus 
area of the OPNFV group and the two building blocks: NFV and NFVI. 

NFVI: Provides access to basic resources—compute, storage and networking—
through hypervisors and SDN functions.   

VIM: Manages the NVFI and provides the management capability required to deploy 
applications running in a virtual environment, commonly referred to as VNFs (virtual 
network functions). 

 

Figure 2-2: OPNFV technical overview [9] 

 

Currently, there are 45approved projects in OPNFV categorized as: Requirements, 
Integration and Testing, Collaborative Development, and Documentation. Two of the 
most relevant projects to the activities in Task 4.3 are: (1) OpenStack Based VNF 
Forwarding Graph and (2) Service Function Chaining. The first one leverages the 
OpenStack work on VNFFG (Service Function Chain) and ONF Openflow work on 
service chaining, in order to achieve automatic set up of end-to-end VNF services 
through VNFFG so different tenants’ flows can be steered through different 
sequences of VNFs (Service Function). The second project is focused on creating a 
link between two Linux Foundation projects, OpenDaylight (ODL) and OPNFV. The 
goal is to provide service chaining capabilities in the OPNFV platform, i.e. an ordered 
set of abstract service functions (e.g. NAT, load balancing, QoS and firewall) and 
ordering constraints that must be applied to packets and/or frames and/or flows 
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selected as a result of classification [10]. More details on OPNFV were described in 
D2.32. 

2.3. OpenStack Networking  

OpenStack is an open source (Apache 2.0) IaaS stack with a modular and open 
architecture. Specifically Neutron, the networking service, abstracts the underlying 
network via virtual network components and its plugin architecture. This allows very 
close integration with an SDN controller, such that most of the networking logic is 
OpenFlow enabled. The exception to this are the iptables firewall rules such as the 
interfaces and IP namespaces that provide L3 routing for external access of the 
instances. The rest of the OpenStack networking is implementation agnostic, which 
enables the full power of OpenFlow within an OpenStack network. More details on 
OpenStack Neutron and networking can be found in the following references [11]. 

 

 

2.4. OpenDaylight  

OpenDaylight (ODL) [12] is an open source framework focused on facilitating an SDN 
programmability platform for network developers, end-users and customers. ODL 
supports a variety of networking projects, standards and protocols and has already 
taken a leading role in the SDN world. 

Twelve founding members have actively supported OpenDaylight. It is organised in a 
modular way consisting of various components. ODL allows the inclusion of north or 
southbound projects, standards and protocols due to its extensibility. It is based on 
Apache Karaf – a small OSGi based runtime that provides a lightweight container 
onto which various components and applications can be deployed. It acts as 
ecosystem provider for ODL application. Using Karaf one can import different 
bundles in the runtime controller environment to achieve a specific functionality. 

OpenDaylight is an obvious choice as an open source (EPL-1.0) SDN controller. It 
provides modularity via Apache Karaf. The required features for SDK4SDN include 
OVS, Neutron and OpenFlow integration. Especially Neutron integration has matured 
over the last three versions (Hydrogen, Helium and Lithium) in documentation and in 
stability, which is a prerequisite for a stable and reliable abstraction on top of 
standard OpenDaylight features. 

Figure 2-3 below shows the integral components of the ODL project in the current 
Lithium release, together will the supported northbound applications and 
southbound protocols.  
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Figure 2-3: Projects and components in OpenDaylight Lithium 
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3. SDK FOR SDN REQUIREMENTS  

The initial requirements for the SDK for SDN within T-Nova were listed in the 
Deliverable 4.1. This current deliverable describes the SDK progress as it was agreed 
and formulated after the Rome GA meeting in April 2015.   

The major changes in this task concern the formerly described SDK scope "to provide 
high-level framework on top of existing SDN-controllers." After the amendment 
changes with respect to Task 4.3, the SDK changed the focus to exclusive support on 
OpenDaylight as unique entity to control the physical network infrastructure. 
OpenDaylight has emerged as de facto controller in the past couple of years with 
continuous engagement from the fast growing community to date. The increased 
number of leading and parallel ODL projects, along with the support of several SDN 
standards and protocols, had evolved ODL beyond only being SDN controller to a 
complete framework for network programmability and NFV support. Comparing the 
primary depicted modules of the SDK architecture to the currently deployed ODL 
libraries, we identified many overlaps across the scope of the ODL project and the 
actual T-Nova SDK. With this respect, a deeper analysis of the ODL development 
progress and scope has urged this task to reconsider the need for multi-controller 
API extensions and interfaces to be supported by the SDK. Instead, we can reference 
the ODL dependencies in the SDK rather than reinventing the technology and 
therefore omit redeployment of already existing code and tools.  

We followed however the generic guidelines for design and developing SDK for SDN 
as described in Deliverable 4.1. Table 3-1 represents the updated requirements that 
are vital for the SDK in the current T-Nova vision along with the crucial requirements 
described by the DoW and the T-Nova consortium. 
 

Requirement 
Name 

Requirement Description Justification of 
Requirement 

Category 

SDK4SDN-
OpenDayLight 

SDK for SDN MUST support 
OpenDaylight 

Comes from the 
T-Nova 
consortium 

Functional 

SDK4SDN-
Testing 

SDK for SDN MUST provide 
testing capabilities  

Comes from SDK-
general 

Functional 

SDK4SDN-Diff- 
Open Flow 

SDK for SDN MUST expose 
Open Flow differences in a 
safe manner  

Comes from DoW Functional 

SDK4SDN-
Source-CODE 

SDK for SDN MUST be 
available open source  

Comes from DoW Functional 

SDK4SDN-
Libraries 

SDK for SDN SHALL provide 
all the necessary 

Comes from DoW Functional 
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dependencies and tools in 
order Developers can 
Validated its installation 

SDK4SDN-SFC-
Support 

SDK for SDN MUST provide 
capability to enable SFC 

Comes from SDK-
general 

Functional 

SDK4SDN-Java-
API 

SDK for SDN MUST provide 
a Java API 

Comes from ODL Functional 

SDK4SDN-
Remote-API 

SDK for SDN MUST provide 
a remote API 
(REST/RPC/CQRS) 

Comes from SDK-
general 

Functional 

SDK4SDN-
Documentation 

SDK for SDN MUST provide 
sufficient documentation 

Comes from SDK-
general 
 

Non-
functional 

SDK4SDN-Path-
Connection 

SDK for SDN SHALL provide 
end-to-end connection flow 
programming capabilities 

Comes from SDK-
general 

Functional 

SDK4SDN-
Default-
Implementation 

SDK for SDN SHOULD 
provide working default 
implementations for SFC 
and connection based flow 
programming 

Comes from SDK-
general 

Functional 

Table 3-1: SDK for SDN functional requirements 

3.1. Common SDK components  

In networking, Software Development Kits (SDK) represents a set of software 
development tools that allows the creation of networking applications within the 
scope of certain network operative system, or networking infrastructure (like 
datacenter deployment). The SDK can be provided as an isolated piece of software 
(open source component in the SDN community) or as a proprietary component 
offered by the creators of specific networking technologies or products. 

It is very common, that SDK includes an IDE (integrated development environment). 
The IDE main function is to provide a centralized programming interface and it often 
contains a terminal, editor, GUI (graphical user interface), debugging tool, and a 
compiler to create an application out of the code. Most of the SDKs contain a sample 
code to show the developers a way to use particular programs or libraries from the 
SDK. There are also SDKs that offer parts of GUIs, like buttons or icons, as well as 
technical documentation and tutorials. Usually, SDK is offered as free component so 
that the developers can relay on it for easy application creation for the company.  

3.2. SDK for SDN implementations 

3.2.1. SDNApp-SDK 

Several companies and the community are taking the challenge to write SDK for SDN 
recently. One of them is OpenDaylight with their “SDNApp-SDK”, Figure 3-1. 
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OpenDaylight describes the pain-points that occur when writing an SDN-Application 
and how they want to fix them with a Software Development Kit. 

The main principles of the SDNApp-SDK are to provide guidelines for SDN-
Application development framework. It also helps the developers to reuse and 
enhance existing code. With the SDNApp-SDK, OpenDaylight wants to make a 
common platform to validate applications that are written in OpenDaylight. The ODL 
community wants a framework that enables application management. The 
components included in the SDK version within the ODL Beryllium release are the 
following: data modelling, Inter-working with 3rd party tools, database services, 
application management, keeper services, build, deploy and sample code. 

 

Figure 3-1: SDNApp-SDK architecture [13] 

 

3.2.2. HP’s SDK 

HP also provides SDN Development Kit, Figure 3-2, with the tree main features that 
are, “Create”, “Test” and “Validate”. HP’s SDK for SDN helps to simply set up a 
developer environment and to create applications on the top of their own SDN 
controller (HP VAN SDN Controller). The SDK component includes: APIs and 
documentation, programmers’ guide, GUI Framework and Sample code. 
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Figure 3-2: SDNApp-SDK architecture 

 

3.2.3. Junos space SDK 

Juniper Networks space SDK is an open, network-centric application development 
toolkit designed to enable developers to use the information embedded in the 
network to create unique, differentiated applications quickly, easily, and 
economically. It facilitates the data extraction to be later used in applications and also 
tends to provide a good end-user experience. Some of the network features include: 
real-time policy management, energy usage and tracking, custom workflows, network 
insight for business intelligence, correlation of user subscribed services, and policy 
and QoS management, as shown in Figure 3-3. 
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Figure 3-3: Junos Space SDK architecture [14] 

 

3.2.4. Cisco onePK 

Cisco’s onePK, Figure 3-4, is a toolkit for development, as well as automation and 
rapid service creation. It is designed for flexibility and can integrate with PyCharm, 
PyDev, Eclipse, IDLE, NetBeans, and more. OnePk supports common languages like 
Java, C and Python. It can run on every server or directly on a network. OnePk uses 
APIs to serve the business needs of the costumers.  

 

Figure 3-4: onePK architecture [15] 
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Cisco’s onePK can be deployed in three different ways: Process Hosting, Blade 
Hosting and End-node Hosting. In the Figure 3-5, the three ways are displayed in 
detail. 

 

 

Figure 3-5: Cisco’s onePK deployment options [16] 

 

3.2.5. NetIDE 

NetIDE is a European project from the FP7 framework [17], aimed to deliver an IDE 
integrated in Eclipse [18] as a single integrated development environment to support 
the development life-cycle of network controller programs and SDN environments. 
Figure 3-6 shows an example NetIDE network topology editor within Eclipse. 

NetIDE features four objectives that are described on their website and are also listed 
here:   

• Defines a platform agnostic representation format for network applications. 
• Delivers a prototype IDE and associated tools that support the SDN 

development life cycle. 
• Develops a prototype of a run-time environment (NetIDE Network Engine) 

that supports open & proprietary SDN controllers. 
• Promotes the establishment of an Open SDN Model based on an Open 

Community of developers. 



T-NOVA | Deliverable D4.31  SDK for SDN 

© T-NOVA Consortium  
 

23 

 

Figure 3-6: NetIDE Network Topology editor [19] 

 

Unlike the netIDE integrated environment, the T-Nova Task 4.3 SDK for SDN is 
focused on datacentre network and build on the top of the OpenDaylight modular 
controller. NetID focuses on comprehensive network programming over multiple 
SDN controllers, whereas the SDK offers libraries for the network programmers who 
require tools for optimizing network and minimizing inefficiencies due to protocol 
encapsulation in Open Stack environments. Moreover the SDK developed in T-Nova 
aims to offer coherent communication with the main T-Nova building blocks such as 
the VIM and the TeNOR orchestrator via RESTful APIs with the objective to offer a 
seamless SDN support to the users of the T-Nova services. 

 

3.2.6. PLUMgrid SDK  

The PLUMgrid SDK [20] is a Language-based SDK to enable third-party developers 
and community to build distributed functions on top of IO Visor technology. Figure 
3-7 depicts the key components of the PLUMgrid platform that include: PLUMgrid 
director, virtual domains, IO Visor, APIs, network functions and the SDK.  

With the PLUMgrid SDK the software engineers can create their own APIs and 
network functions easily. The main components from the SDK are object models and 
libraries as well as compilers and domain specific languages. Using the SDK, network 
functions can be deployed and/or developed on their own PLUMgrid Platform at run-
time and without having to reboot. 
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Figure 3-7: PLUMgrid SDK architecture [20] 

Table 3-2 summarizes the main features of the described SDKs and the SDK being 
developed in T-Nova. 

 

SDN 
SDKs 

Supported features 

REST 
API 

GUI 
SAMPLE 
CODE 

DOCUMENTATION SFC RESILIENCE 
NETWORK 
TENANT 

ISOLATION 

SDNApp-
SDK 

 

x x x ? ? ? x 

Junos 
space 
SDK 

x x x ? ? x ? 

Cisco 
onePK 

 

x x x x ? x ? 

NetIDE x x x x ? ? ? 

HP SDK ? x x x  x ? 

T-Nova 
SDK for 
SDN 

x x x x x x x 

Table 3-2: SoTA SDKs main features comparison 
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3.2.7. SDK for SDN in T-Nova 

 

The T-Nova SDK for SDN differs from the other SDKs mentioned above in the end-to-
end based network discovery that is offered per tenant base. The main features are 
similar for all of the SDKs, however the approach to offer the network abstraction to 
directly enable isolation - is different. The SDK for SDN includes a network graph 
library as well as an Open Flow plugin LLDP discovery service, interfaces and their 
implementations. This is to establish an end-to-end SDN based network discovery 
per tenant base in Open Stack datacenters. It also contains interfaces to retrieve all 
the information needed for a current host in OpenStack and also creates and 
traverses the path between two termination points. SDK for SDN is completely SDN-
based and relies exclusively on the Open Flow protocol to create abstractions of the 
underlying network.  

 

One step towards data centre optimized traffic 

The two-year time span from the initial DoW Task 4.3 description brings significant 
novelty in the SDN and ODL. The T-Nova SDK for SDN is aimed to serve as a tool 
rather than to be a solution itself.  It bases on the emerging concepts in the 
community, and follows real use cases from providers and enterprises working with 
SDN, in order to: 

• Define a set of SDN enabled libraries for creating novel networking 
applications inside Open Stack environment. 

• Provide a support for Datacenter network control on physical L2 layer. 
• Provide alternative SDN solutions to the existing networking protocols for 

optimized DC traffic. 

For instance, tenant segregation in OpenStack hosts is an imperative for security and 
performance. To provide this, the current OpenStack Neutron ML2 plugin uses 
tunnelling and tagging techniques such as GRE and VxLAN. The drawback of applying 
these isolation mechanisms is an increased overhead due to a header encapsulation. 
Overcoming complexity in large-scale cloud environments of several hundred hosts 
and tenants is essential in order to enable efficient networking, improved datacentre 
orchestration, and optimized applications on the top of that infrastructure. The next 
section elaborates in details, the drawbacks and the challenges of avoiding the 
current tunnelling mechanisms. 

 

3.3. Non GRE/VxLAN Isolation: Drawbacks and Challenges 

In a cloud environment, one of the key aspects is to guarantee isolation between 
customers also in the networking resources. The adopted approach in network 
virtualization solutions is to build overlay networks with technologies like VXLAN or 
GRE on top of the underlay physical network. The overlay networks are by design 



T-NOVA | Deliverable D4.31  SDK for SDN 

© T-NOVA Consortium  
 

26 

isolated customer networks, because they are only logical topologies built on top of a 
shared underlay physical network. 

Even if the popularity and the adoption of the overlay paradigm has grown 
significantly during the last few years, because it can be implemented on top of a 
traditional IP-based underlay networks, overlay technics introduce non-negligible 
drawbacks on performance, in particular when data chunk size exceeds 2902 bytes 
due to IP fragmentations. There is a lot of academic research that highlight the 
performance issue as presented in Figure 3-8. 

 

Figure 3-8: Overlay vs Non-Overlay comparison in network virtualization 

 

In a pure OpenFlow SDN architecture, where users can directly access and manipulate 
the forwarding plane of the network devices, an SDN-based approach has been 
adopted by academic and also commercial solutions to create isolated networks. 
Among the academic examples, it’s worth mentioning the “Non-Tunneling Edge-
Overlay Model using OpenFlow” proposed by researchers from Nagoya Institute of 
Technology [1]. Among the commercial solutions, we report the Extensible Network 
Controller (XNC – adopted by Cisco) [2] and FlowVisor (an open source Open-Flow 
controller) [3]. All of them will be briefly described in the following. 

Non-Tunneling Edge-Overlay Model proposes to replace source /destination MAC 
addresses of the frames transmitted by virtual machines with physical servers 
addresses. Such substitution is performed by the virtual switch. The modified 
destination address is then restored at receiver side. The solution ensures address 
space isolation of each VM, and reduces the number of MAC addresses that the 
physical switches have to learn. Moreover, it requires less CPU usage compared to 
GRE/VXLAN tunneling, and facilitates VMs migration. 

Cisco XNC is an Open-Flow Controller based on OpenDaylight plus other features 
and applications like Monitor Manager, Topology-Independent Forwarding (TIF), and 
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Network Slicing. Topology-Independent Forwarding provides the capability to set up 
your own path that will be used by data-flow (layer 3 or 4) on the network.  Besides 
setting up the forwarding path, a TIF policy defines some properties, which describe 
how the traffic will be routed between source and destination.  Network Slicing 
makes available the partition of the network based on physical or logical rules 
assigned to users. A slice provides an isolated network to users assigned to it. The 
granularity of a slice could be from a Network device to a specific Flow identified by a 
source and a destination IP. 

FlowVisor is an open source Open Flow controller designed with multitenancy and 
virtualization paradigms in mind. Into the SDN framework, FlowVisor acts as a 
controller of controllers; it brings almost a virtualization layer between the (unique) 
network infrastructure and the (multiple) network controllers intelligence, offering 
with its proxy services each “slice” a personalized, surrogated, view of the 
infrastructure, and in turn hiding the infrastructure to the multiple controllers working 
over it. The high potential of this proxy controller approach is that it breaks usual 
complexity of networking scenarios, giving tools to work into its simple pieces, where 
complexity is often just the exception management of individually simpler tasks. 
Figure 3-9 describes a possible scenario of a FlowVisor implementation where 
different customers’ VMs share a common subnet, and every IP node has a unique IP 
address. The components are 4 FL (Backend controller), 1 FV (FlowVisor), 1 GW, 1 
DHCP server. Different tenants isolation is achieved by means of flow inhibition 
policies configured into general front-end controller and specific customer back-end 
controllers: 

 

 

Figure 3-9: Multi-tenant scenario implementation using FlowVisor 

 

Table 3-3 provides a comparison of the different networking approaches with the 
following key criteria: 

• Isolation à identify how the solution implements the isolation between 
tenants 
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• Scalability à identify if the solution can be used in a large system like a 
cloud environment 

• Performance à the level of performance of the solution 
• Provisioning à identify the interface for the provisioning/decommission of 

new configurations 
• Programmability à identify the ability to customize network behavior on 

specific conditions 
• Granularity à identify the minimum element unit on which the operation 

could be performed 
• Hardware Constraint à identify if there is some constraint on the hardware 

infrastructure 

 

 

 VLAN VXLAN/GRE CISCO XNC FlowVisor 

Isolation VLAN ID VLAN ID Network 
endpoint 
independent 

Network 
endpoint 
independent 

Scalability Limited Unlimited  Unlimited Unlimited 

Performance BEST IN 
CLASS 

GOOD Even if 
encapsulation/ 
decapsulation 

Require more 
compute 
operation, it 
can be 
optimized by 
relying on 
hardware 
offloading 
itechniques, 
on compliant 
NICs 

 

GOOD but 
could be a 
problem if 
the flow 
table grows 
too much 

GOOD but 
could be a 
problem if 
the flow 
table grows 
too much 

Provisioning CLI CLI / REST API REST API REST API 

Programmability Not 
available 

Not available Each flow 
can be 
routed on 
specific path 

Each flow 
can be 
routed on 
specific path 

Granularity L2 
Segment  

L2 Segment  Flow with 
endpoints 
source-
destination 

Flow with 
endpoints 
source-
destination 
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and ports and ports 

Hardware 
Constraint 

No No, VTEP can 
be 
implemented 
in SW 

HW must 
support a 
pure SDN 
with Open 
Flow 
support 

HW must 
support a 
pure SDN 
with Open 
Flow 
support 

Table 3-3: Comparison of different networking approaches 

3.4. Solutions for Tenant Isolation in Open Stack 

3.4.1. Midonet 

MidoNet [21] decouples IaaS cloud from network hardware, creating a software 
abstraction layer between end hosts and physical network. This network abstraction 
layer allows the cloud operator to move what have traditionally been hardware-based 
network appliances into a software-based multi-tenant virtual domain. 

MidoNet allows users to build isolated networks in software and overlays the existing 
network hardware infrastructure. All component of Midonet are shown on 3-10. 

Tenant isolation: provided by L3 network isolation (see Logical Switching) 

 

Features: Fully virtualized Layer 2 to 4 Networking - MidoNet helps create switches, 
routers, DHCP, NAT, load balancers and firewalls among other network services.  

 

 

Figure 3-10: MidoNet components [21] 
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Logical Switching:  

• Distributed virtual switching, Layer 2 (Data Link Layer) over Layer 3 (Network 
Layer), decoupled from the physical network without limitations of convention 
VLANs.  

• Interconnect with VLAN/VxLAN networks (physical and virtual) via software L2 
Gateway Logical Routing 

• Routing between virtual networks without exiting the software container 

Logical Firewall: 

• Distributed Firewall that is integrated with the Linux kernel 
• Enforces security policies for high packet processing performance 

Logical Layer 4 (Transport Layer) Load Balancer: 

• Application Load Balancing in software 
• Dynamically scale up and down load balancing with compute 

MidoNet uses static NAT to implement floating IP addresses in two ways: 

• Bring traffic from an external network to a floating IP address for a tenant 
router 

• Perform network address translation from the external network's public IP 
address to a private IP address and in the reverse direction. 

3.4.2. Nuage Networks & Arista		

 

Nuage Networks Virtual Services Platform [22] overlays all existing virtualized and 
non-virtualized server and network resources, Figure 3-11. 

Tenant isolation: logical L3 / L2 networks provide isolation and secure multi-tenancy 
(see Virtual Routing & Switching). 

 

 

Figure 3-11: Nuage virtualized platform architecture 
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Cloud Consumption interface:  

• Orchestrated by cloud platforms (such as CloudStack and OpenStack) 
• Provisioned by customers and administrators via open interfaces (such as 

OpenStack Horizon) 

Flexible Network interface provides: 

• Control of virtualized and bare metal resources (such as network equipment 
from Alcatel-Lucent, Arista, HP, and others) without requiring upgrades 

• Multiple server virtualization environments side-by-side, such as KVM, Docker 
containers and VMware 

Extensibility and Security interface features enable: 

• Integration with applications such as Oracle, third-party Anything-as-a-Service 
approaches, security appliances, and operating systems such as Red Hat and 
Ubuntu Linux 

• Controllable network resources through policies and templates either preset 
by the network team or defined via an intuitive UI 

• Customization 

Operational Scalability interface delivers: 

• Efficient, multitenant operations at cloud scale with features such as multicast 
and network template capabilities 

 

Features: 

Virtual Routing & Switching: 

• A module that serves as a virtual endpoint for network services. 

Virtualized Services Controller: 

• Serves as the robust control plane of the datacenter network, maintaining a 
full per-tenant view of network and service topologies.  

Virtualized Services Directory 

• As a policy, business logic and analytics engine for the abstract definition of 
network services. 

3.4.3. Distributed Overlay Virtual Ethernet (DOVE)  

DOVE provides tunnelling and virtualization technology that allows creation of 
network virtualization layers for deploying, controlling, and managing multiple 
independent and isolated network applications over a shared physical network 
infrastructure [23]. 

Tenant isolation: logical components of the DOVE architecture (by IBM) are DOVE 
controllers and DOVE switches, Figure 3-12. DOVE controllers perform management 
functions, and one part of the control plane functions across DOVE switches. DOVE 
switches perform the encapsulation of layer 2 frames into UDP packets using 
the Virtual Extensible LAN (VxLAN) frame format, and provide virtual interfaces for 
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virtual machines to plug into, similarly to how physical Ethernet switches provide 
ports for network interface controller (NIC) connections.  

 

Figure 3-12: Open DOVE architecture 

 

Features: 

• No dependency on the underlying physical network and protocols 
• Use of the existing IP network infrastructure 
• No dependency on the IP multicast traffic 

  

3.4.4. Calico project 

Calico’s pure L3 approach to data centre networking integrates seamlessly with cloud 
orchestration systems to enable secure IP communication between virtual machines, 
containers, or bare metal workloads. Calico provides a pure L3 fabric solution for 
interconnecting Virtual Machines or Linux Containers (“workloads”). Instead of a 
vSwitch, Calico employs a vRouter function in each compute node [24]. Figure 3-13 
shows an overview of the addressing and connectivity inside Calico. 

Tenant isolation: the vRouter leverages the existing L3 forwarding capabilities of the 
Linux kernel, which are configured by a local agent that programs the L3 Forwarding 
Information Base with details of IP addresses assigned to the workloads hosted in 
that compute node. The local agent also programs Access Control Lists in each 
compute node to enforce whatever security policy may be needed, for example to 
provide isolation between tenants. 
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Figure 3-13: Calico addressing and connectivity overview 
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4. SDN TESTBED ENVIRONMENT  

To be able to develop and test the networking applications for the SDK, SDN testbed 
was setup at the ZHAW premises. This architecture allows integrating the innovations 
with the fast moving open source community. The testbed was designed upon the 
following technological enables: 

• Centralized OpenDaylight controller 
• OpenStack environment 
• Physical and virtual networks fully SDN enabled 
• OpenDaylight dynamically loads the SDK applications during runtime 

The testbed nodes are provisioned with Foreman, whereas the OpenStack 
environment is installed via Packstack. For more details on the provisioning process 
please visit Packstack and Foreman node provisioning. The testbed contains five 
nodes: OpenStack Compute1, Compute2, Control (Networking) all under the release 
of OpenStack Kilo, SDN Control - OpenDaylight Lithium, and SDN Switch running 
OpenvSwitch, Figure 4-1. 

 

 

Figure 4-1: ZHAW SDN testbed architecture 
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4.1. Network 

The Compute nodes, the OpenStack Control node and the SDN node are all 
connected through a network ("physical network" in our case the 10.20.0.0/24 range). 

The compute nodes require 1 physical interface for the physical network, later the 
OVS' of the compute nodes will have a tunnel port that uses the IP attached to this 
interface. 

The OpenStack node needs 2 physical interfaces, one is used in the same manner as 
the compute node interface, and the other is used by the "external bridge" br-ex, 
which interfaces between the "virtual network" of OpenStack and the physical 
network through a neutron router. 

 

4.2. Switch / SDN Controller Node 

Basic Provisioning and Configuration 

The switch machine has multiple physical network interfaces with Ubuntu OS and 
OpenvSwitch (OVS) installed. The switch has all physical Interfaces mapped to OVS 
ports (p3p1...p3p5). We can control the switching of the physical network through 
these OVS ports. To place the switch inside the physical network 10.20.0.0/24 range, 
we assigned an IP to the internal port, in this case 10.20.0.108 and associated that IP 
to the OVS port br0. This IP connects the bridge to the underlying operating system 
and all OVS bridges in the environment to the SDN controller running in the same 
machine. 

 

4.3. OpenDaylight node 

We installed the Helium release of the OpenDaylight controller. After running it with 
./bin/start, we were able to connect to the ODL Karaf interface by running ./bin/client. 
The following features have to be installed in ODL in order to be able to work with 
Neutron: 

feature:install odl-base-all odl-aaa-authn odl-restconf odl-nsf-all odl-adsal-
northbound odl-mdsal-apidocs odl-ovsdb-OpenStack odl-ovsdb-northbound odl-dlux-
core  

 

4.4. Neutron & ODL integration 

For the integration of OpenDaylight with Open Stack Neutron the ODL wiki and the 
RDO community source was used as a reference point [25], [26]. 

The general idea is that when ODL is used for the network configuration, it must be 
the unique entity for the Open vSwitch configuration to avoid conflict with Neutron ML2 
plugin. To achieve a successful integration, a clean state is required by ODL that means 
removing previous OpenStack Neutron configurations on the Open vSwitch within the 
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compute and the control nodes. This can be simply achieved by turning off Neutron 
server on the network controller, and Neutron's Open vswitch agents on all hosts. A 
successful state prompts the ODL controller connected on the newly created br-int of the 
vSwitch configuration on port 6633 and as OVS as manager of the compute nodes and 
the OpenStack node connected on port 6640: 

root@maggie-controller ~]# ovs-vsctl show 

a86e813d-b897-4caf-a0a3-38a7f000bef7 

    Manager "tcp:10.20.0.108:6640" 

        is_connected: true 

    Bridge br-int 

        Controller "tcp:10.20.0.108:6633" 

            is_connected: true 

The OVS configuration and functionalities provided by the neutron OVS agent are 
very well documented. Table 4-1 summarizes the OVS specific bridges and flows for 
each of the Open Stack nodes (Compute and Control/Neutron) in the ZHAW testbed 
created by ODL as a result of the SDN integration of the Open Stack ML2 plugin. [27] 

 

Node Bridge Type Description 

All All Flow 
LLDP to 
controller 

All All Flow Forwarding 

All br-int Port Link to br-tun 

Compute br-int Port Link to br-ex 

Compute br-ex Port Link to br-int 

All br-tun Port Link to br-tun 

Network br-ex Port Link to router 

Network br-int Port Link to DHCP 

Compute br-int Port Link to VM 

Compute br-int 
Port 
Configuration 

VLAN ID for 
Isolation 

Compute br-tun Flow 
Maps VLAN ID 
to tun. ID 

All br-tun Flow Broadcast 

All br-tun Flow Pipeline flow 

Table 4-1: OVS bridges and interfaces on each Open Stack node 
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5. SDN4SDK ARCHITECTURE SPECIFICATION 

The SDK comprises two main key concepts, one being the network data 
representation and the second one - the flow control on the top of the specific 
network abstraction. 

 

Network data abstraction 

The T-Nova SDK for SDN retrieves information from different ODL service interfaces 
in order to be integrated with OpenStack and fully SDN enabled. This data is 
combined and represented through a network graph, which can be traversed in order 
to find and establish connections. The data representation also makes it 
straightforward to reason about the network and its properties because it is a natural 
model for networks. Being generic enough and modular permits the SDK to accept 
additional modules in future that could add onto it different information in a 
contextual fashion. 

 

Flow programming service 

While adding use cases in our application driven design it became apparent, that 
OpenFlow messages are the core output of SDK for SDN. OpenFlow is very powerful 
but at the same time it doesn't provide context over more than one switch. The point 
of the abstractions in SDK for SDN is to provide that context and to allow users to 
program flows on top of multiple SDN switches. 

 

5.1. Components & Interfaces 

SDK for SDN is integrated as a Karaf feature into the OpenDaylight environment. It 
registers itself to ODL features via OSGI and depends mainly on the Neutron API, the 
OVSDB southbound feature and the OpenFlow plugin. 

Some SDK for SDN components such as the Service Chains and the Flow Patterns are 
maintained by an external API generated by YANG models and stored in the ODL 
data store. 

5.1.1. Dependencies 

The SDK depends on several OpenDaylight modules. They are described in the 
following subsections. 

5.1.1.1.  OVSDB Southbound 

The Network Graphs low-level components are maintained via the OVSDB 
Southbound plugin. It communicates with the OpenvSwitches that are connected to 
ODL via the management interface. OVSDB Southbound gets OVSDB notifications 
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and forwards them to the ODL data store where the SDK listens to node, bridge, port, 
and interface changes in the topology. 

5.1.1.2.  Open Flowplugin LLDP discovery 

The topology / links between the bridge ports are discovered via OpenFlow plugin 
LLDP applications. This is necessary to generate complete Network Paths in the graph 
between connectable host endpoints. Link failure notifications that disrupt Network 
Paths trigger new path searches, such that the flow connections can be updated. 

5.1.1.3.  Neutron API 

The host ports are registered at creation time on the Network Graph via the Neutron 
API. This allows for proactive flow programming. SDK for SDN does not push flows 
reactively via controller messages. It pushes flows as soon as a valid path is 
discovered between two or more neutron ports. 

5.1.2. External Interfaces 

Figure 5-1 depicts the SDK components together with the interfaces to the external 
components, application and the T-Nova VIM.  

 

Figure 5-1: SDK for SDN architectural components and external interfaces 

5.1.2.1.  Flow Patterns 

Flow Patterns are template functions that generate Flows. The parameters are 
specifically Service Chains, Network Paths or just Bridges. Flow Patterns then bind the 
required network components into their flow template. There are default Flow Pattern 
implementations for Chains, Paths and Bridges. In addition to that, one can apply 
REST/Java calls to those if different flows are required. The main reason for the type 
discrimination between chains paths and bridges is the fact that each higher 
sequence has a bigger scope to bind parameters. A Flow Bridge Pattern is only aware 
of the bridge it is applied to. Flow Path Patterns are aware of all the containing 
bridges (namely endpoint bridges and aggregation bridges) and their properties. 
Similarly to a path, a Flow Chain Pattern is aware of all the bridges along a chain and 
can apply any of the properties to any of the bridge flows. However, what makes a 
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chain semantically different from a path is that a chain contains specific service 
ingress and egress ports along the network flow. 

5.1.2.2.  Flow Bridge Pattern Parameters 

Flow Bridge Patterns have the scope of a Bridge. Their parameter types are: 

• Internal Ports: OVS ports with internal interfaces attached to them. They reach 
the host system of the OVS. 

• Link Ports: OVS ports that are linked to other OVS ports. 
• Host Ports (Neutron Ports): retrieved by the Neutron API 

5.1.2.3.  Flow Path Pattern Parameters 

Flow Path Patterns have the scope of a Network Path. Their parameter types consist 
of a structured set of bridges: 

• Endpoint Port / Neutron Port: An OVS port to which one of the respective 
Hosts is connected. 

• Endpoint Bridge: An OVS bridge to which an Endpoint Port is attached. 
• Link Port: An OVS port, which is linked to another OVS port. 
• Aggregation Bridge: An OVS Bridge linked to another Aggregation Bridge or 

to an Endpoint Bridge. 

5.1.2.4.  Flow Chain Pattern Parameters 

Flow Chain Patterns have the scope of a Service Chain. Their API parameter type is: 

• An ordered sequence of Neutron Port references 
• Odd indices of the sequence map to service ingress ports, even indices map 

to service egress ports 

 

Internally the Flow Chain Pattern detects the paths between the services and uses 
that as an actual parameter for the template. 

5.1.2.5.  Service Chain 

Service Chains have to be registered via the REST/Java API. A Service Chain composes 
of a list (in order) of Neutron ports. The Network Graph is aware where the neutron 
ports are, so a Flow Chain Pattern can be applied to it. 

5.1.2.6.  Dependencies & Linkages with T-Nova Components 

On Figure 5-2, we can see the relation with the other T-Nova components as well as 
the interfaces the SDK would expose to third party developers. On the northbound 
side the SDK will expose APIs to the T-Nova IVM (or TeNOR orchestrator) in order to 
receive information about the VNF placement and service description. The 
Orchestrator has VNDF (Virtual network function descriptor) to describe the 
requirements and the specification of each VNF, and NSD (Network Service 
Descriptor) as a service manifest specification for the service required by the network 
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developer. This information is later parsed in a metadata file from which a heat 
template is generated to spawn the required VMs and deploy the VNFs in the 
infrastructure. From the SDK, RESTful northbound APIs will be exposed to the 
orchestrator (or VIM) in T-Nova in order to gather the information about the VNFs 
endpoints and the service description. For example in the case of SFC, the info to be 
included in the request is (1) the Neutron ports of the VNFs (2) the chain path as a 
logical subsequent connection between specific neutron ports: [port_A, sfc_1_in, 
sfc_1_out, sfc_2_in, sfc_2_out, port_B]. 

One alternative to implement this is in a proactive way where the SDK queries the 
VIM to determine if the client has specified a request for new service (chain). Second 
option is to do it in a reactive manner - the information of the new service request is 
passed to the SDK during VNF deployment process in Open Stack. The integration is 
still under development and will be decided in the near future. 

5.1.3. Internal Components 

 

Figure 5-2: SDK for SDN internal components 

 

At its core SDK for SDN is a flow template engine that is aware of logical network 
components and their relations. These components mostly get created and updated 
from ODL notifications that are described in the Dependencies section and held in 
the Network Graph. After the Network Graph discovers these components, they can 
be further processes by the Flow Patterns to generate OpenFlow messages. 

5.1.3.1.  Network Manager 

The internal architecture is best described via the data flow. The Network Manager 
registers to the notification services of OpenDaylight mentioned in the External APIs 
section. It is responsible for state changes in the Network Graph. 
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5.1.3.2.  Network Graph 

The Network Graph holds the combined topology information of the OpenDaylight 
modules and maps them in the following fashion: 

• OVSDB -> switch components (bridges, ports,...) 
• Neutron API -> host networking information (IP, MAC,...) 
• OpenFlow plugin -> topology / links between bridges 

5.1.3.3.  Flow Connection Manager 

The Flow Connection Manager exposes an API to store and apply Flow Patterns and 
Service Chains. It maintains the relations between Patterns and Network components 
and pushes flows via the Flow Programmer and handles the state of the flow 
programming transactions. 

5.1.3.4.  Logical Network Components & Flow Patterns 

Service Chains, Network Paths and Bridges are logical components to which the flows 
can be assigned/installed. They bind the parameters on Flow Patterns, which are flow 
template functions specific to a network component type. 

5.1.3.5.  Flow Programmer 

The flow programmer is responsible for merging new flow entries into the ODL data 
store, which then get processed and executed by the OpenFlow plugin. 

5.1.4. API Description 

The API specification and implementation is still under development at the point of 
this writing. It is to be expected that it will undergo breaking changes. The API 
description gives the direction at which the specification is oriented, Table 5-1. 

 

Name/Resource 
API Description Table 

Type Description Input Output 

NetworkGraph Query 
Get the 

graph state 
/ NetworkGraph 

NetworkPath Query 

Get a path 
between 

two 
HostPorts 

Neutron Ports 
(src & dst) 

NetworkPath 

ServiceChain Query 
Get 

resource 
ID ServiceChain 

FlowBridgePattern Query 
Get 

resource 
ID FlowBridgePattern 

FlowPathPattern Query 
Get 

resource 
ID FlowPathPattern 

FlowChainPattern Query 
Get 

resource 
ID FlowChainPattern 
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Apply Pattern Command 

Apply 
pattern to 
network 

component 

Pattern ID & 
Bridge/Chain 
ID / Neutron 

Ports 

Status 

Standard Pattern Command 

Set the 
pattern for 
automatic 
application 

Pattern ID Status 

FlowBridgePattern Command 
Create a 

new pattern 
Pattern Status 

FlowPathPattern Command 
Create a 

new pattern 
Pattern Status 

ServiceChain Command 
Create a 

new chain 
List of Neutron 

Ports 
Status 

Table 5-1: SDK API description 

 

5.2. Application Driven Design Approach  

 

The features of the SDK are derived from real application development use cases 
aimed at optimizing datacenter networks, and for supporting applications networking 
requirements in the cloud. The SDK will support key T-Nova requirement of service 
function chaining (SFC) between multiple NFVs that make up a network service. Other 
SDK libraries & features will be derived from DC use cases geared towards 
minimizing tunneling overheads, maximizing throughputs, enabling data path 
redundancies, to name a few. 

 

Figure 5-3: A reference development process for the SDK 
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The SDK design followed a top down approach, Figure 5-3: We analysed the potential 
issues that exist in the current datacentre networks in order to use the SDN as a tool 
to test and validate solutions to resolve those issues. Based on the analysis some use 
cases were established in order to optimize the datacentre networks and facilitate the 
development of networking applications.  For instance, tenant segregation in 
OpenStack hosts is an imperative for security and performance. To provide this, the 
current OpenStack Neutron ML2 plugin uses tunnelling and tagging techniques such 
as GRE and VxLAN. The trade-off applying these isolation mechanisms is an increased 
throughput due to the bigger header that is created as a side effect from the 
encapsulation. Overcoming complexity in large-scale cloud environments of several 
hundred hosts and one tenant is essential in order to enable:  efficient networking, 
improved data centre orchestration, and optimized applications on the top of that 
infrastructure. The SDK also should support the T-Nova requirements of enabling 
service function chaining (SFC) between multiple NFVs in order to create services 
offered by the T-Nova Marketplace. Overall the applications we have based the SDK 
design on the following: 

• Isolation Application:  Ensure tenant segregation using novel non-GRE/VxLAN 
tunneling mechanism for optimized packet header  

• Resilience Application: Provide direct SDN control on a physical level enabling 
on-demand switch provision and configuration 

• Service Function Chaining: Gather T-Nova specific SFC requirements and 
perform traffic classification and steering using the T-Nova deployed NVF 

Based on this initial set of applications we derived and defined the required libraries 
to be supported in the SDK based on the common functionalities from the use case 
applications. 

 

5.2.1. Isolation 

The flow-programming model in SDK for SDN is connection based: Appearing Host 
Ports are checked against their logical connectivity via the Neutron API. If a 
connection is valid between two ports then a connection is established through 
specific forwarding flows. Essentially this is a whitelist-based approach to isolation. 
The Network Path (Connection) model was derived through analysing what isolation 
means in a fully SDN enabled network. In classic networking connections have to be 
filtered through tunnelling and VLANs, because the standard, reactive Ethernet switch 
is not completely aware of which hosts belong to which IP networks. With a 
centralized OpenFlow controller and an API to a datacentre networking service we 
have a global and complete view of the desired connections and can quasi whitelist 
them via OpenFlow. 

5.2.2. Resilience 

Normally in a network the scope of each flow is only the bridge it is applied to. But 
resilience is harder to achieve because dead end flows can only be detected if the 
scope of a flow includes the complete path of a network connection. Alternatively 
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forwarding flows can be forgotten (deleted) and reactively replied. Important to note 
here are the trade-offs between resilience i.e., automatic link failure recovery time 
(increases with flows deletion frequency) and the network performance (decreases 
with number of controller messages) [28]. In the SDK for SDN, resilience is achieved 
by a combination of several components such as: network path and LLDP modules. 
The Network Path model has the scope of a complete connection in the network. 
Additionally SDK for SDN depends on OpenDaylight LLDP modules from the 
OpenFlow plugin to discover and update the network topology. The Network Graph 
in the SDK discovers events for Link updates and failures on an established Network 
Path. If such an event occurs, the Network Graph notifies the 
FlowConnectionManager, which listens to path updates, that a new pattern needs to 
be applied and that the old one needs to be deleted.  

5.2.3. Service Function Chaining 

The emergence of the NFV concept and the expansion of VNF solutions have enabled 
service function chaining (SFC) among virtualized functions as a legitimate use case 
for a cloud data centre (DC). Although still in a premature state, applying SFC 
concepts in a fully virtualized environment requires changes and adaptations on the 
existing protocols in order to be able to apply the same concepts and achieve the 
desired behaviour on a network level. A typical burden in environments with fully 
virtualized functions running on virtual endpoints is the aggregated protocol 
encapsulation in the packets headers that is added as they traverse those endpoints.  

Currently there are two key approaches to implement SFC solution in virtualized 
scenario: packet based and flow based. The first requires manipulation of the packets, 
for instance by introducing some changes in the header field (packet tagging or 
rewrites) [29] or simply by applying protocols that introduce one more layer of 
abstraction on the top of the existing header fields – designed especially for this type 
of service. Such dedicated protocols has been ultimately introduced by Cisco and 
leveraged in the Open Daylight (ODL) community to support the ODL SFC integral 
project. In this case an additional header called NetworkServiceHeader (NSH), is 
introduced in order to enforce end-to-end traffic as an overlay connection above the 
service chain path. The problem of such solution is that it alters the datagrams and 
this can potentially cause a problem in the case where the VNF that runs on some of 
the virtual machine (VM) hops along the chain, requires the datagrams in their 
original structure. One example is a virtual function such as vDPI (virtual deep packet 
inspection) that requires the packets in their original structure in order to enforce a 
correct behaviour. For further elaboration and in depth analysis of the currently 
existing SFC solutions among the open source community please refer to T-Nova 
Deliverable D4.21, Section 4.3 Traffic steering approaches in virtualized network. 

In the Demos and Measurement Section we describe the initial experimentations and 
demo created in order to test the feasibility of the previously described Open Flow 
based approach. ,  5-4 depicts the general idea. In this basic scenario, all the VMs are 
collocated on the same physical host. Alice’s and Bob’s VMs are final PoP used in this 
scenario as the ingress and egress points for the chain. We used iperf and ping to 
establish traffic from Bob’s VM addressing Alice’s as the destination address. We set 
up flows on the OVS br-int in order to steer the traffic through the VNF VM based on 
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matching the tap interfaces and port form each of the nodes. We previously made a 
port mapping based on tcpdump to identify the mapping between the OVS and the 
corresponding OpenFlow ports. Some of the flows look like the following: 

ovs-ofctl	add-flow	
priority=10,in_port=$bob_of,dl_src=$bob_mac,dl_dst=$alice_mac,actions=output:$vnf_in_of	
ovs-ofctl	add-flow	
priority=10,in_port=$vnf_out_of,dl_src=$bob_mac,dl_dst=$alice_mac,actions=output:$alice
_of	

 

 

Figure 5-4: Simple SFC scenario: two endpoints and one VNF in same Open Stack node 

 

As the image shows, the flow has the following direction:  

Bob (eht0, bob_tap_tapxxx, bob_if_qvoxxx, bob_of) -> VNF (vnf_in_of, vnf_in_if_qvoxxx, 
vnf_in_tap_tapxxx, eth1, eth2,  vnf_out_tap_tapxxx, vnf_out_if_qvoxxx, vnf_out_of) -> 
Alice (alice_of, alice_if_qvoxxx, alice_tap_tapxxx, eth0)  

We defined two network in Neutron sfc_test1 and sfc_test2 for the ingress and egress 
raw ports as the vTC VNF requires and run the VNF with the basic functionality of 
specifying the packets per second (pps) using the following command: 

vtc/PF_RING/userland/examples/pfbridge -a eth1 -b eth2 

The VNF reads every incoming packet from interface a (assigned to eth1), and then 
sends it out through interface b (assigned to eth2). The VNF pfbridge stands as a link 
patch - the packets that reach the VNF will be read and forwarded the other interface. 
The output shows the number of packets per second traversing the VNF bridge. 
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In the first basic scenario we just wanted to prove a feasibility of the flow 
programming approach over the OVS bridges and identify possible issues and 
challenges that can come up from such an implementation. 

The advantage of SDN is that since it is based on the Open Flow (OF) protocol, the 
routing can be steered over a specific networking path by programmatically applying 
OF based rules (flows) on the SDN controller or the virtual switch (OVS) inside the VM 
hosting the VNF. This is the second approach to implement SFC, based on flow 
programming rules, that leaves the packets untouched while applying actions on the 
OF ports of the switches, in order to gear the desired route of the packets in the 
chain. This routing logic is simplified compared to the first one, as it avoids 
unnecessary overheads on the top of the already existing ones (ex. in the scenario of 
inter tenant communication in OpenStack [30]) and the packets are left intact, 
completely agnostic of the existing chain. A solution based on this approach requires 
that the network environment is fully SDN capable in order to apply the chain rules 
along the full virtual network graph. The resulting routing flows need to be 
maintained to reflect alterations in the function chain (e.g. a VNF altering the packet 
header could invalid the end-to-end chain).  

The objective of this first experimental scenario was to engage as much as possible 
from the ready-to-use T-Nova VNFs in order to test the functionality on the ZHAW 
testbed and in the established SFC scenario. With this in mind we wanted to pinpoint 
potential issues that can interfere with this approach and reiterate on alternative 
solutions. Clearly the idea of developing SFC support library in the SDK is mainly 
based on the specific T-Nova requirements that originate from the: VNFs, 
Orchestrator, IVM and the other components interfacing the SDK. However the 
optimal solution should be environment agnostic and must eventually work for any 
SFC regardless of the deployment scope. From the direct he vTC VNF implementation 
as deep packet inspector nDPI, the vTC permits changes in the header of the packet 
by ToS manipulation in order to make specific traffic classification. Therefore the 
previously described approach would not be valid for this advanced functionality of 
the vTC VNF.  

Another potential problem we identified is that the described solution would not 
work fully in a scenario where two VNFs are running on the same physical host. The 
reason for this is the non-deterministic path (the OVS of the physical host would not 
recognize the hop order i.e. which of the two VNFs should the flow go to). Higher 
level chaining abstractions and programming languages are needed in order to allow 
service developers to programmatically declare the sequence the VNF traffic should 
follow, leaving up to the underlying runtime system the actual implementation of 
such rules [31] [32]. For the chain routing to be deterministic, there has to be a field 
that keeps track of the chain hops. Using the VLAN ID as a workaround for this 
purpose could be one possible approach, since the chain routing does not follow the 
standard Ethernet routing. 

In this initial deployment, we run into a common problem in Open Stack Nova – the 
anti-spoofing rules. Nova uses its own or the Neutron’s API for security groups in 
order to start an instance. Since these rules are applied by default the initial ping 
between Alice and Bob did not work since the packets will be dropped, as they don’t 
carry the source MAC or IP address that was allocated to the instance. To enable this 
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we had to initially set the --no-security-groups flag (in Open Stack Kilo release). The 
drawback is that is works only once after the initial configuration. If the ping is 
resumed the rules are reapplied and therefore the iptables have to be manually 
manipulated to allow traffic on the 2 chains (in/out) per each of the tap interfaces. 
We applied a workaround for this that was proposed as a patch (Noop driver) to the 
nova-compute and neutron that stopped the creation of iptables rules [33]. 

MAC Rewrite Pattern for SFC 

Based on the previous discussion about the potential SFC solutions in T-Nova 
environment and in order to address the potential obstacles from the discussed 
solution, we describe here the flow (Open Flow) pattern that uses MAC address 
rewriting to enable SFC forwarding.  

 

Traffic Classification 

The solution we propose hereby is to reserve two fields in the MAC address: one for 
the chain ID, and the other as a hop counter along the chain. The vTC is responsible 
for the initial MAC rewriting. After traffic is classified its destination MAC address is 
rewritten to the following format: 

Destination MAC = <ID - Chain Identification>:<N - Number of Chain Hops>:00:00:00:00 

The resulting virtual MAC address is matched along the Chain Path to forward the 
classified traffic to the Nth VNF in the chain: 

Destination MAC = <ID>:<N>:00:00:00:00/00:00:FF:FF:FF:FF 

Hop Rewrite 

On each egress bridge of a specific VNF, there is a rewrite flow that matches the 
egress port of the VNF and the virtual destination MAC address and decreases the 
Number of Chain Hops by 1. This way the forwarding is always clearly determined. 
Forwarding to the next VNF is done via the following matching: 

Destination MAC = <ID>:<N - 1>:00:00:00:00/00:00:FF:FF:FF:FF 

This happens until N reaches 0. 

 

Endpoint Rewrite 

After the last VNF in a chain the packets are resubmitted to the VNF egress bridge (or 
sent to an according table). Before being able to reach the endpoint host the 
destination MAC address has to be rewritten to its origin. This is done via the 
following match: 

Destination MAC = <ID>:00:00:00:00:00/00:00:FF:FF:FF:FF 

Destination IP = <Destination IP Address of specific Host> 
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The controller is aware of the MAC to IP mapping via the Neutron API and can 
recover the original destination MAC address. The packet then gets resubmitted and 
matches on standard L2 forwarding again. 

5.2.4. Rationale and next steps 

Our original goal was to maintain the packet structure along the service chain as if it 
would have normally been forwarded from endpoint to endpoint. This approach was 
not feasible in the current setup from the following two reasons: 

• The VNF deployment (physical location of each VNF) may be in such a way 
that we would lead to non-deterministic paths (Section 5.2.3). 

• The introduction of the Traffic Classifier VNF, because it has to encode the 
chosen service chain into the datagrams. 

This solution is our way to deal with these problems, but it is not in any way set in 
stone for the SDK at the current stage. Rather it shows one possible way we can 
implement this using the SDK while having minimal overhead. Other possible 
solutions could be based on tunnelling (MPLS/GRE) or other rewrite patterns, which 
could be implemented using the Flow Pattern abstraction of the SDK. 

 

5.3. Implementation 

5.3.1. Source Code 

The SDK for SDN source code is organized mainly into three parts: (1) the Network 
Graph components representing the network data, (2) the service listeners and (3) the 
Flow Components representing the OpenFlow template engine. Also there is some 
organisational glue and I/O handling around it that can be ignored in this section. 

5.3.1.1.  OpenDaylight OSGI Service Handlers 

These handlers can be categorized in three parts: 

• OVSDB Southbound handlers: update the graph based on nodes, bridges, 
ports updates 

• Neutron handlers: update the Host Ports of the graph 
• OpenFlow plugin handlers: update the topology links in the graph 

 

5.3.1.2.  Graph Components  

The following are the components in the Network Graph, Figure 5-5: 

• INetworkOperator: graph container 
• INodeOperator: represents an OVSDB Node (container for bridges) 
• IBridgeOperator: represents an OVDSDB Bridge 
• ILinkPort: port which links to another port 
• IHostPort: neutron port & OVSDB port attached to nova instance 
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• IInternalPort: internal OVSDB port 

 

 

Figure 5-5: UML diagram of the Network Graph components 

 

5.3.1.3.  Flow Components 

The following UML depicts the flow related components, Figure 5-6: 

• IFlowBridgePattern generate Flows from and for single IBridgeOperators 
• IFlowPathPattern generate Flows from and for INetworkPaths which are 

mainly IBridgeOperator sequences with end to end connection context 
• IFlowChainPattern generate Flows from and for IServiceChain which are 

sequences of sequences of IBridgeOperators and chaining context 
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5-6: UML diagram of the flow related components 

5.3.2. Deployment 

1. SDN Network deployments: SDK for SDN only supports OVS based, fully SDN-
enabled networks. 

2. OpenStack: SDK for SDN is built and tested for OpenStack Kilo. The default 
FlowChainPattern for service chaining was tested by applying the Noop driver for 
disabling the IP tables (explained in the section above).  

3. OpenStack cleanup: An OpenStack installation has to be cleaned up as described 
the OpenDaylight integration manual. 

5. OVS setup: In addition to the OVS clean up and the compute node OVS have to be 
interfaced to physical NICs. 

6. OpenDaylight installation: Use the standard OpenDaylight installation for 
OpenStack, but without installing the Karaf features. The only feature which has to be 
installed is "SDK for SDN", which will resolve its dependencies automatically. 

 

5.3.3. Discussion  

Metering, QoS and Load balancing  

The SDK could support Open Flow meters at the same abstraction level as flow 
programming. This would allow applications to provide QoS or load balancing. For 
example a service chain could be balanced on a network level by adding redundant 
VNFs to the same chain hop for slower VNFs and then divide the load by bandwidth 
meters. The existing Network Path abstraction fit well into the QoS idea because the 
overview of the connection already exists in the SDK. 
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Regarding dynamic VNF injection, currently the workflow of updating a service chain 
would require deleting the one that needs to be updated and creating a new one. We 
are considering implementing an update command for service chains when the 
specification finalizes. 

 

Service Chains are currently described as flat lists, so branching chains is not possible 
without creating two overlapping chains, which could lead to problems in the 
network state because overlapping OpenFlow flow mods are not considered unique. 
An Open Flow instruction is identified by its matching criteria. In the case when a 
network operator would overlap custom flow patterns for two different Service 
Chains, then changing one of them in the overlapping section would also change the 
other. So to enable branching functionality we need to implement a more general 
data structure for the Service Chain API such as a tree and otherwise disallowing / 
handling flow overlap so it is clear for the user that changing the state of the Service 
Chains only influences one chain at a time. 

5.4. Demos, Tests & Measurements 

This section describes the initial test case scenarios we performed inside Task 4.3 
along with the process of software development. The fist demo is related to the 
service function chaining use case based on the flow programming approach. It uses 
one of the T-Nova VNFs to make traffic classification and branch the flow in two 
different chains. The measurements part includes a basic performance 
characterization of the non-tunnelling traffic between two OpenStack VMs. This is 
done in terms of comparison between the bandwidth and the latency in case of 
conventional GRE based isolation and the non-tunnelling based on Open Flow. 

5.4.1. SFC demo with T-Nova VNF 

We set up SFC tests with integrated T-Nova VNFs to explore possible flow patterns 
and technical challenges. In our test we established two distinct chains that are 
separated through the vTC VNF. The flow programming for this SFC example has to 
be tightly coupled with the output traffic of the vTC because it will manipulate 
packets based on their classification, which then determines the chain matching 
pattern via a distinctive property. The distinctive property is this case is the ToS field, 
so we forwarded the traffic based on the ToS field from the vTC onwards. 
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Figure 5-7: Open Flow based chaining using traffic classifier VNF 

 

Figure 5-7 describes the setup of this test. Alice and Bob represent the 
communication endpoints. To reach the first VNF in the chain: vTC1, the traffic needs 
to be specifically forwarded to it. The first VNF represents a traffic classifier. Note that 
this means that SFC forwarding has to be predetermined for an endpoint. Also the 
traffic flow is unidirectional in this case. The traffic classifier in this test is 
distinguishing between UDP/ICMP and TCP traffic to determine the chain path, which 
is then mapped to a ToS field - 8 and 4 respectively. 
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Figure 5-8: Open Flow based SFC using multiple instances of T-Nova vTC VNF 

Figure 5-8 depicts the topology of the scenario along with the placement of the VNF 
VMs and the endpoints inside each of the OpenStack nodes on the testbed. In this 
scenario we used all the physical nodes of the testbed as hosts of the VNFs and as 
explained in the SFC section, we applied the Noop driver to disable the firewall rules 
in each of the nodes. As can be seen on the figure, the Linux Bridge along with the 
tap interfaces that previously existed inside the hosts has disappeared. This technique 
stopped Nova from using the hybrid VIF plugging strategy, where it places a Linux 
Bridge in-line between the instance's tap and br-int. Instead, it plugged the VIF 
(qvoxxx…) straight into br-int. 

This approach has confirmed an evident issue when employing the specific VNF: If 
the ToS field is the only distinctive property for the forwarding decisions, then some 
paths cannot be deterministically established. To be able to make forwarding 
decisions in cases where two chain hops such that "number of hops to VNF B" + 1 < 
"number of hops to VNF B" while VNF A and VNF B are on the same switch, there has 
to be an additional information: The core of this problem lies in the fact that a 
bridge/switch does not have the context of a whole connection path let alone a 
chain. So the minimal information, which has to be encoded in the packet needs to 
have two components in reduced form, or in other words, a tuple of two values (a, b) 
where "a" describes the next hop by uniquely identifying it or by counting the 
remaining hops and "b" which either maps to topological switching instructions (like 
in source routing) or maps to a unique chain identification. 
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5.4.2. Initial measurement scenarios 

Here we describe the initial set of network characterization measurements we 
performed in the case of tenant segregation based on using GRE tunnelling protocol 
versus the case when we program the OVS and the switch to establish VM 
connection via direct L2 forwarding using Open Flow.  

Minimalizing the networking and protocol overhead for isolated traffic in the 
datacenter is one of the baseline application use cases for the SDK. We measured the 
performance differences between tunnelled GRE VM to VM traffic and direct L2 VM 
to VM traffic on our previously described OpenStack testbed. Following are the two 
measurement scenarios: 

 

Scenario I: Standard OpenStack + GRE forwarding 

The standard GRE network setup is described in the testbed section. In short: The 
integration bridge forwards the traffic to the tunnel bridge, where VLAN IDs get 
translated to GRE tunnel IDs (and vice versa) for inter node connections. 

 

Scenario II:  Direct L2 forwarding 

The alternative is to directly attach the external bridge to a NIC on a compute node. 
We specifically forwarded the tested traffic though the external bridge and created a 
single L2 domain via Open Flow. The traffic is still isolated without using VLAN or GRE 
because we are specifically whitelisting the source and destination hardware 
addresses. 

 

Latency 

The latency was measured via the ping utility. A thousand standard sized packets 
where sent with a 0.5s interval. Alice was the receiver and Bob was the sender. 

We encountered a significant latency difference gain for the direct L2 forwarding, 
Table 5-2. 

 

Type GRE Direct 

Min 1.561ms 0.440ms 

Max 2.029ms 1.390ms 

Avg 1.747ms 1.126ms 

Mdev 0.090ms 0.119ms 

Table 5-2: Comparative latency values for GRE and direct L2 forwarding 

Throughput 
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The throughput was measured via the iperf utility with standard packet size and five 
times ten seconds of traffic, where Alice (receiving) was the server and Bob the client 
(sending). 

However the throughput did not change significantly for both TCP and UDP 
measurements, Table 5-3. 

 

Protocol GRE Direct 

TCP 773Mbits/sec 769Mbits/sec 

UDP 421Mbits/sec 420Mbits/sec 

Table 5-3: Comparative throughput values for GRE and direct L2 forwarding 

We realized that we didn't take enough parameters into consideration, since 
throughput and latency are not orthogonal values. To determine the bottleneck(s) we 
decided to do an additional test run with a more extensive specification. 

The additional parameters, which can influence the effective throughput for the 
future testrune, include the following: 

•  Variable packet sizes 
• TCP Segmentation Offloading (TSO) enabled/disabled 
• Generic Segmentation Offloading (GSO) enabled/disable 
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6. SDN INTER-DOMAIN SOLUTIONS  

6.1. SDN for Docker Containers 

 

Currently a large amount of service and software is running on fast and distributed 
infrastructures that provide the necessary tools to synchronize among a numerous 
data centres. These apps are containerized meaning that the application is written on 
the container interface rather than on top of a specific operating system. This allows 
easier portability. Containers neither care about the underlying networking 
infrastructure nor have direct connection with the SDN infrastructure. However 
Docker uses virtual networks to connect containerized applications to the local 
network, and it connects containers with other containers on the same host. In this 
respect a number of tools are identified such as Flocker [26] or Rancher [27] where 
they provide the capability of using virtual overlay networks to connect containers 
across hosts and over larger networks (such as data centers, wide area networks and 
the Internet). 

Furthermore, Docker acquired SocketPlane [28] as much for the talent as the 
technology. The latter company chief executive is Madhu Venugopal, a former senior 
technical leader at Cisco. SocketPlane, founded in October 2014, has focused on 
making it possible to network that thousands of Docker containers do interact with 
each other based on the computing task. The containers could host applications on a 
PC or data centre server. SocketPlane is developing a hybrid networking model that 
builds on SDN principles and applies them to native Docker environments. It is 
developing a programmatic platform that puts DevOps in a networking context. In 
this respect, SocketPlane builds [29] “VXLAN tunnels between hosts to connect 
Docker containers on the same virtual (logical) network with no remote/external SDN 
controller needed.” Users will interact with a CLI wrapper for Docker that also controls 
how SocketPlane virtual networks are created, deleted and managed. SocketPlane 
uses Consul [30] as a lightweight control plane. It connects to the Consul cluster 
through Open vSwitch for the network connectivity. Once a Docker host is added, the 
agent runs as a Docker instance and connects into the cluster. The container then 
looks like a VM. 

Additionally, multi-host SDN [34] is now available giving the ability to distributed 
applications to use multi-container in order to seamlessly communicate across IP 
networks, while being portable across any network infrastructure. This new ability is 
providing application portability throughout the application development lifecycle. 

Finally the new trend in Docker is the use of the Plugins Mechanism not only for 
storage but also for networking plugins incorporating in this way a number of project 
and technologies such as Project Calico [35], Nuage Networks [36], Cisco [37], 
VMware [38], and Midokura [39]. Docker brings changes that will define a new 
generation of networking technologies that leverage containers across multiple 
machines and hosts.  
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6.2. SDN in Multiple Connected Datacentres 

A typical scenario where the SDN controller and a respective SDK solution can find 
application is between different data centres. An example is OpenContrail – an open 
source network virtualization platform for the cloud. It is based on MPLS L3VP EVPN 
(for layer 3 and 2 overlays) and it coexists, as a Neutron plugin in OpenStack, with 
components such as: (1) vRouter that runs on top of the hypervisor in the host kernel 
and holds IP tables for each tenant (2) Contrail [31] agent that communicates to the 
SDN control node, passing BGP and Netconf control specific messages via XMPP. In 
the forwarding plane, it supports MPLS over GRE/UDP and VXLAN. 

The Contrail solution supports function chaining between virtual networks that get 
connected as a result of a constraint based policy language. Policy rules look like the 
following:  

allow any src-vn -> dst-vn svc-1, svc-2 

This rule allows all traffic to flow from virtual network src-vn to virtual network dst-vn 
and forces the traffic through a service chain that consists of service svc-1 followed 
by service svc-2. In the previous example, the rule is applied when any virtual 
machine in virtual network src-vn sends traffic to any virtual machine in virtual 
network dst-vn. The system is mostly focused on traffic steering i.e injecting the 
traffic flows into the right virtual machines using a virtual interface. Virtual machines 
provide network services such as firewall, DPI, IDS, IPS, caching, etc. The system 
creates additional routing instances for service virtual machines in addition to the 
routing instances for tenant virtual machines.  

Traffic is steered in the following ways:  

• Route targets for route paths are modified in order to influence routing tables 
import/export from a routing instance to another routing instance.  

• The next hops, labels, or both are modified as they are leaked from routing instance 
to routing instance; this is to force traffic to flow through the right sequence of 
routing instances and the right sequence of corresponding virtual machines. 
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Figure 6-1: Data Centre Interconnect (DCI) using Contrail 

Data Center Interconnect (DCI) is a Contrail use case, where multiple data centers are 
interconnected over a wide area network (WAN), Figure 6-1. Data centers can be in 
the following states: active/standby for disaster recovery, temporarily active/active for 
disaster avoidance, permanently active/active. In the active/active case, a tenant 
might have virtual machines in multiple data centers. DCI puts all the VMs of a given 
tenant spread over the data centers on the same virtual tenant network. 

DCI must address the following network requirements:  

• Enable storage replication  
• Allow tenant networks to use overlapping IP address spaces across data 

centers  
• Provide global load balancing (GLB) 
• Allow VM migration across data centers for disaster avoidance  

Multiple transport options are available for DCI interconnections, including dark fiber, 
SONET/SDH, DWDM, pseudowires, Layer 3 VPNs, EVPNs, etc. Unlike the data center 
network, bandwidth is a scarce resource in the DCI WAN, so traffic engineering (TE) is 
often exploited to use available resources efficiently. 

 

6.3. SDN in LTE & Small Datacenters 

The role of SDN controller gains more presence and importance within the emerging 
NFV world. On the other side, the VNFsare the main technological glue between 
Telco’s and Clouds in a novel concept of ”cloudifying“ LTE functions as related to 
evolved packet core (EPC) and radio access network (RAN). There exist at a current 
stage network function deployments (VNFs) and support for components such as 
BSS, HSS, RAN, etc. [32]. In the LTE (5G) domain the SDN controller plays a 
fundamental role in interconnecting those virtual functions, becoming an entity to 
enforce the rules of traffic steering and chaining among a logical network graph, in 



T-NOVA | Deliverable D4.31  SDK for SDN 

© T-NOVA Consortium  
 

59 

order to achieve certain service functionality. Applying the SFC concept inside a Telco 
scope is still a challenging work in progress that is going to be addressed by several 
ongoing European projects within the 5GPPP initiative such as SESAME [https://5g-
ppp.eu/sesame/]. Adopting SDN in this mixed ecosystem of both cloudified and 
conventional on premise network functions deployed over bare metal, requires 
further analysis on the NFV concepts in such a scenario and a careful analysis of the 
requirements needed to trigger the desired outcome. The role of the controller in this 
holistic approach has been analysed in the literature and some experimental and 
industry implementations have already been presented [33] [34] [35] [36] [37]. 
However in this scenario, SDN based SFC is still an unexplored area, which will be for 
instance addressed in the scope of the SESAME project.  

Within the open source community like OPNFV, it has recently been stated by 
Myung-Soon Park, Head of Emerging Technology R&D Centre from SK Telecom, that 
OPNFV plays a fundamental role in the process of adopting and accelerating 
"innovative Telco solutions, including 5G, by defining tightly integrated and 
standardized environment". This shows that SK Telecom is highly interested in 
combining OPNFV with 5G networking. SK Telecom will realize a 5G solution where 
OPNFV plays an important role in the 5G era. They see the Arno release to be a good 
candidate towards materializing the specifications. 

6.4. SDN for Robotics 

Robotics is shaping up to be one of the most rapidly developing areas of modern 
science and is poised to change the way people go about their daily lives by both 
taking up and fundamentally transforming existing jobs but also by creating new 
ones. This raises important social and ethical questions, which are outside of the 
scope of T-NOVA, but it also raises new challenges in the area of inter-networking of 
complex system that include such devices.  

Given that robotics includes a very wide swath of application potentially ranging from 
autonomous vehicles to military drones and care-taking robots for the elderly it is 
only natural that this devices will play varying roles depending on the use case in 
which they are applies. Robotics devices will also most likely be end nodes and not 
routers in a network, although the latter can’t be completely ruled out, as might be 
the case in an ad-hoc network. For the remainder of this section we will treat robotics 
devices as potential end nodes in a network. 

One of the factors that make SDN lucrative for robotics is the flexibility it can offer in 
the face of rapidly changing network topologies. This will almost certainly be the case 
since most robotics systems are expected to be highly mobile and change 
environments constantly. Imagine, for instance, an autonomous vehicle that drives 
into the parking lot of a shopping centre. That vehicle is probably already part of a 
couple of separate networks (maybe the owner’s home network, a general road 
monitoring and traffic condition update network and the vehicle manufacturer’s 
maintenance network) but also needs to be added to the shopping centres network 
at that point in time (to receive for example updates on available parking spaces or 
shopping offers). Performing these tasks manually for a large volume of vehicles (like 
a busy Saturday in any shopping centre) will be impossible. SDN could help automate 
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this process by automatically registering the vehicle and setting up the correct 
network connectivity and access permissions.  

This is just one example that attempts to highlight how SDN could be of great help in 
the area of future robotics. It goes without saying that there’s a bunch host of other 
examples probably too numerous to list here that can similarly benefit immensely 
from the automated network service configuration that SDN can enable. 

With this in mind, an SDK for SDN can provide valuable services in this area. One such 
service is facilitating debugging and testing of a system, which consists of robotics 
devices. Since such a device can be anything, ranging from a small drone to a big and 
expensive autonomous vehicle and taking into account that mobility will play a 
primary role in such systems, it becomes clear that the prospective developer will not 
have access neither to physical hardware for all devices nor to a complete test bed of 
the system. Thus an SDK that provides him with debugging capabilities as well as a 
simulation & emulation environment for testing of complex scenarios can become a 
useful component in such case. 

 

6.5. SDN for FPGA Devices 

FPGAs form a special class of devices that can be used within a network. This is 
because an FPGA is essentially a blank slate that can be moulded to whatever its user 
wants it to be. This means that it’s very possible to create an SND-enabled design 
that can be configured remotely over one of the standard SDN protocols. 

This is the premise behind Xilinx’s SDNet Error! Reference source not found., which 
consists of a Domain Specific Language (DSL) that is used to specify the behaviour of 
a system, which is then generated and programmed on the FPGA by a specialized 
compiler tool chain. The resulting circuit’s functionality can then be modified by 
programming a flow table dynamically as with every router. In this regard the FPGA 
has been essentially made into a standard SDN-enabled network device and can be 
used like any other switch [40]. 

What makes FPGAs more flexible than a typical, off-the-shelf switch is that it provides 
the means to perform a two-step configuration. The first step, detailed in the 
previous paragraph is equivalent to a standard switch. The second step is the 
complete reconfiguration of the device hardware to fundamentally alter the device’s 
functionality. For instance, the same device could in one moment be an MPLS router 
whose flow tables are dynamically manipulated via SDN and then it can be 
reprogrammed to be an SDN-enabled BGP router. An FPGA allows for this 
dynamically recasting of the hardware in an almost seamless transition from system 
to system.  

Since FPGA-based network devices like the ones that can be created with SDNet are 
currently not compatible with existing SDN standards, SDK for SDN can bring 
concrete advantages in wrapping the required SDNet function calls appropriately so 
providing a unified interface with other SDN-enabled devices. Furthermore SDK for 
SDN can provide tangible benefits on the debugging and testing front by providing 
emulation platforms that will allow the developer to test the architectures created 
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without having the actual hardware present. This can significantly speed up the 
development phase. 

 

6.6. Kernel-based SDK: IO VISOR project 

  

The IO Visor Project is an open source project and gets support from a wide 
community of developers. The IO Visor Project enables totally new ways to create 
network functions. Figure 6-2 shows where the IO Visor Project stands in the Open 
Networking Ecosystem (ONE). 

 

 

Figure 6-2: IO Visor project placement inside ONE 

 

The main problem IO Visor wants to face is the fact that the Linux kernel isn't 
virtualized. This is why the kernel has to handle each request after another. That 
means that the kernel has to be recompiled in order to accommodate a new request. 
Now what IO Visor wants to achieve is that virtual machines can be added more 
spontaneously to the kernel space. This has the impact that developers would be able 
to run multiple VNFs together in the kernel with network function virtualization. Also 
this would allow creating a complete virtual network that is broad across multiple 
compute nodes. In this case data-plane processing would all be done by the kernel. 
IO Visor engine is the keyword, which makes mechanism like this possible. These 
engines, developer tools and attendant plug-ins are the things that the IO Visor 
project wants to achieve. If they succeed, multiple tasks could be done in kernel 
space. Figure 6-3 shows on the left side the networking framework, and an example 
workflow using the IO Visor SDK, on the right side. 
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Figure 6-3: Left: The eBPF framework for networking. Right: Workflow from the IO Visor 
SDK-driven development 

 

Use Cases: The IO Visor technology has been out and in use for some years now and 
there are some use cases, which are implemented or discussed very actively at the 
moment. They focus on “Network”, “Security” and “Tracing”. 

Network: In networking, IO Visor Project enables the implementation of advanced 
networking functions like L3 and NAT in-kernel that are fully distributed across 
unlimited compute nodes and chained in-kernel to create any network topology 
which is moving through a virtual or a physical type of deployment.  

Security: Micro-segmentation, security groups and full-fledged firewalling are the 
security functions that IO Visor Project enables to be implemented in-kernel and 
hence distributed. All this is done with providing the optimal point for traffic within 
the application.  

Tracing: Real-time tracing as well as monitoring applications are widely offered by 
the IO Visor Project even with the benefit that they are directly built into the kernel. 
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7. CONCLUSION & NEXT STEPS 

In this deliverable we summarized the work related to implementation of the SDK in 
T-Nova Task 4.3 “SDK for SDN”. The architecture of the SDK was described along with 
the internal components and the interfaces to the Open Daylight, Open Stack, as well 
as some of the T-Nova components. The development approach was described 
following the use-case driven design, giving more details on traffic steering 
approaches using SDN to support a native Service Function Chaining as initial 
showcase for integration of the SDK within the T-Nova environment. Analysis of 
existing SDK implementations in SDN was presented and compared to the SDK 
developed in T-Nova. We presented extensive State of the Art for the hot 
technologies where SDN takes place in order to point out the high need for a 
component such as SDK to further support the adoption of SDN in the industry, and 
the academy as well. There is high focus yet dedicated on the improvement of the 
SDN controller libraries to enable support of the native networking protocols. This 
task’s focus instead is beyond the work on the actual SDN tool, and rather devoted to 
the exploitation of the current SDN technology in order to bring a bottom up 
solution for the companies and the providers to implement an SDN based application 
in a straightforward manner, aided by the SDK.  

Furthermore the task T4.3 has conducted initial test validation of the current 
approach and is currently dedicated on extensive work to apply complete test 
scenarios in order to proof and validate the achievements of the SDK compared to 
the standard networking implementations.  
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9. LIST OF ACRONYMS 

Acronym Description 

API Application Programming Interface 

ARP Address Resolution Protocol 

BGP Border Gateway Protocol 

BUM Broadcast, Unknown unicast and Multicast 

CP Control Plane 

CPU Central Processing Unit 

CRUD Create, Read, Update, Delete 

DC Data Centre 

DCN Distributed Cloud Networking 

DOVE Distributed Overlay Virtual Ethernet 

DPI Deep Packet Inspection 

FTP File Transfer Protocol 

FW Firewall 

GPE Generic Protocol Extension 

GRE Generic Routing Encapsulation 

GW Gateway 

HA High Availability 

HPE Hewlett Packard Enterprise 

HTTP HyperText Transport Protocol 

IP Internet Protocol 

ISP Internet Service Provider 

IVM Infrastructure Virtualisation Management 

JVM Java Virtual Machine 

L2 Layer 2 

L3 Layer 3 

L4 Layer 4 

LB Load Balancer 

MAC Medium Access Control 
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MD-SAL Model-Driven Service Abstraction Layer 

ML2 Modular Layer 2 

MPLS Multi-Protocol Label Switching 

NAP Network Access Point 

NFV Network Function Virtualisation 

NFVO NFV Orchestrator 

NIC Network Interface Card 

NSH Network Service Header 

NVGRE Network Virtualisation using Generic Routing Encapsulation 

ODL OpenDaylight 

OF Open Flow 

OSGi Open Services Gateway initiative 

OVS Open vSwitch 

OVSDB Open vSwitch Database 

POP Point Of Presence 

QOS Quality of Service 

REST Representational State Transfer 

SDK Software Development Kit 

SDN Software Defined Networking 

SF Service Function 

SFC Service Function Chaining 

SFF Service Function Forwarder 

SFP Service Function Path 

TTL Time-To-Live 

UDP User Datagram Protocol 

UUID Universal Unique Identifier 

VIM Virtual Infrastructure Manager 

VLAN Virtual Local Area Network 

VM Virtual Machine 

VNFAAS VNF As A Service 

VNFFG Virtual Network Function Forwarding Graph 

VPN Virtual Private Network 
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VRS Virtualised Routing & Switching 

VSC Virtualised Services Controller 

VSD Virtualised Services Directory 

VSP Virtualised Services Platform 

VTEP VXLAN Tunnel Endpoint 

VTN Virtual Tenant Network 

VXLAN Virtual Extensible Local Area Network 

WAN Wide Area Network 

WICM WAN Infrastructure Connection Manager 
 

                                                   

 


