

Deliverable D4.31

SDK for SDN

Editor I. Trajkovska (ZHAW)

Contributors I. Trajkovska, D. Baudinot, P. Harsh, Luca Del Vecchio (ZHAW),
A. Marcarini (ITALTEL), D. Christofi (PTL), Evangelos Markakis
(TEIC), Kimon Karras (FINT), Luca Galluppi (HP)

Version 1.0

Date December 30th, 2015

Distribution PUBLIC (PU)

Ref. Ares(2016)2347437 - 20/05/2016

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

2

Executive Summary

This deliverable presents the current results and activities in the Task4.3 dedicated to
the activity of developing software development kit - SDK for SDN. Networking in
cloud datacentres currently bases on technology and protocols that were not
designed for cloud environments at the first place. This has lead to unnecessary
overhead and complexity in all phases of a cloud service. For instance, tunnelling
protocols generate inherent cascading and encapsulation especially in multi tenant
systems. The problem is further increased by the vendor specific configuration
requirements and heterogeneous architectures. This complexity leads to systems that
are hard to reason about, prone to errors, energy inefficient and difficult to configure
and maintain. From a network application developer point of view, this is inefficient
since it injects additional overhead and impedes a transparent application
development. SDN reduces that complexity by not only unifying and centralizing the
network configuration, but also by cutting down the protocol overhead. To address
this challenge, Task 4.3 SDK for SDN is primarily focused on creating pack of libraries,
which exploit the power of SDN to enable cloud native networking systems in line
with the operator’s technical and business requirements.

This document is organized as follows: Section 1 introduces the SDN adoption inside
the datacentre deployments of Google and Facebook, including the details on their
specific implementations with customized network features. Section 2 provides a
discussion on the network virtualization trends as a way to demonstrate the SDN
capabilities in traditional communication providers’ environments such as Telco and
Internet service providers (ISPs). OPNFV is described as a potentially leading
community to stimulate adoption of software-defined networking (SDN) and network
functions virtualisation (NFV). We then describe OpenStack Networking and
OpenDaylight as main technological enables used in this task. Section 3 updates the
initially defined SDK requirements, described in the T-Nova first year’s deliverable
D4.01, based on the lessons learnt and the current implementation of the SDK. A
comprehensive State of the Art of the actual SDKs for SDN in the industry is
presented and their features are compared and contrasted to the SDK developed
within this task. Starting from the baseline principle for non-tunnelling multi-tenant
support, some currently existing industrial implementations of tenant segregation are
included. To confirm furthermore the importance of novel approaches to tenant
isolation in datacentre cloud environment, we review the academic results and
performance evaluations on similar technologies to ours. In Section 4, the ZHAW on
premise SDN testbed is depicted as a basic testing environment for the
implementations and the applications developed for the SDK. Section 5 contains the
core specification of the SDK along with the architectural diagrams, offering UML
representation of the currently developed SDK libraries and description for the API to
be released. We focus on the internal components, their functionality and rationale,
but we also relate the SDK northbound interface to the main building components of
T-Nova such as the Orchestrator, the IVM and the SDN controller.

Section 5 furthermore explains the main idea behind the application driven approach,
focusing on Service Function Chaining as crucial use case to further strengthen the
SDN argument and validation in in cloud datacentres and generally in the entire T-

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

3

Nova eco system. At the end it includes some basic measurements and analysis to
confirm the idea behind the implementation and to reason about the possible issues
and challenges. Via the discussion we trace the way for the next months’ advances
within the scope of the SDK. Finally the main goal of Section 6 is to relate the
importance of the SDK developed in T-Nova to parallel solutions currently under
development (or in consideration) in domains other then a cloud data centres. Being
currently hot topics in the industry, those technologies where SDN has already took
off are highly relevant for the SDK for SDN developed in T-Nova.

Table of Contents

INDEX OF TABLES .. 6	

1. INTRODUCTION .. 7	

1.1. NETWORKING IN DATACENTRES .. 7	
1.1.1. SDN in Google Data Centres .. 7	
1.1.2. SDN in Facebook Data Centres .. 9	

2. TECHNOLOGICAL ENABLERS FOR SDK4SDN .. 12	

2.1. NETWORK FUNCTION VIRTUALIZATION TRENDS .. 12	
2.2. OPEN PLATFORM FOR NFV (OPNFV) .. 13	
2.3. OPENSTACK NETWORKING .. 15	
2.4. OPENDAYLIGHT ... 15	

3. SDK FOR SDN REQUIREMENTS .. 17	

3.1. COMMON SDK COMPONENTS ... 18	
3.2. SDK FOR SDN IMPLEMENTATIONS .. 18	

3.2.1. SDNApp-SDK .. 18	
3.2.2. HP’s SDK .. 19	
3.2.3. Junos space SDK .. 20	
3.2.4. Cisco onePK .. 21	
3.2.5. NetIDE ... 22	
3.2.6. PLUMgrid SDK .. 23	
3.2.7. SDK for SDN in T-Nova .. 25	

3.3. NON GRE/VXLAN ISOLATION: DRAWBACKS AND CHALLENGES .. 25	
3.4. SOLUTIONS FOR TENANT ISOLATION IN OPEN STACK ... 29	

3.4.1. Midonet .. 29	
3.4.2. Nuage Networks & Arista .. 30	
3.4.3. Distributed Overlay Virtual Ethernet (DOVE) .. 31	
3.4.4. Calico project .. 32	

4. SDN TESTBED ENVIRONMENT ... 34	

4.1. NETWORK ... 35	
4.2. SWITCH / SDN CONTROLLER NODE .. 35	
4.3. OPENDAYLIGHT NODE .. 35	
4.4. NEUTRON & ODL INTEGRATION .. 35	

5. SDN4SDK ARCHITECTURE SPECIFICATION ... 37	

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

4

5.1. COMPONENTS & INTERFACES ... 37	
5.1.1. Dependencies ... 37	
5.1.2. External Interfaces .. 38	
5.1.3. Internal Components .. 40	
5.1.4. API Description .. 41	

5.2. APPLICATION DRIVEN DESIGN APPROACH ... 42	
5.2.1. Isolation .. 43	
5.2.2. Resilience ... 43	
5.2.3. Service Function Chaining ... 44	
5.2.4. Rationale and next steps .. 48	

5.3. IMPLEMENTATION ... 48	
5.3.1. Source Code .. 48	
5.3.2. Deployment ... 50	
5.3.3. Discussion .. 50	

5.4. DEMOS, TESTS & MEASUREMENTS .. 51	
5.4.1. SFC demo with T-Nova VNF ... 51	
5.4.2. Initial measurement scenarios ... 54	

6. SDN INTER-DOMAIN SOLUTIONS ... 56	

6.1. SDN FOR DOCKER CONTAINERS .. 56	
6.2. SDN IN MULTIPLE CONNECTED DATACENTRES ... 57	
6.3. SDN IN LTE & SMALL DATACENTERS ... 58	
6.4. SDN FOR ROBOTICS ... 59	
6.5. SDN FOR FPGA DEVICES .. 60	
6.6. KERNEL-BASED SDK: IO VISOR PROJECT ... 61	

7. CONCLUSION & NEXT STEPS ... 63	

8. REFERENCES ... 64	

9. LIST OF ACRONYMS .. 68	

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

5

Index of Figures

Figure 1-1: Google’s SDN networking virtualization stack .. 8	
Figure 1-2: Network performance (baseline vs Andromeda) ... 9	
Figure 1-3: Typical Facebook pod .. 10	
Figure 1-4: Facebook networking fabric design ... 11	
Figure 2-1: Types of function virtualization in a CPE [4] .. 13	
Figure 2-2: OPNFV technical overview [9] ... 14	
Figure 2-3: Projects and components in OpenDaylight Lithium .. 16	
Figure 3-1: SDNApp-SDK architecture [13] .. 19	
Figure 3-2: SDNApp-SDK architecture ... 20	
Figure 3-3: Junos Space SDK architecture [14] .. 21	
Figure 3-4: onePK architecture [15] ... 21	
Figure 3-5: Cisco’s onePK deployment options [16] ... 22	
Figure 3-6: NetIDE Network Topology editor [19] ... 23	
Figure 3-7: PLUMgrid SDK architecture [20] .. 24	
Figure 3-8: Overlay vs Non-Overlay comparison in network virtualization 26	
Figure 3-9: Multi-tenant scenario implementation using FlowVisor 27	
Figure 3-10: MidoNet components [21] .. 29	
Figure 3-11: Nuage virtualized platform architecture .. 30	
Figure 4-1: ZHAW SDN testbed architecture ... 34	
Figure 5-1: SDK for SDN architectural components and external interfaces 38	
Figure 5-2: SDK for SDN internal components ... 40	
Figure 5-3: A reference development process for the SDK .. 42	
Figure 5-4: Simple SFC scenario: two endpoints and one VNF in same Open Stack
node ... 45	
Figure 5-5: UML diagram of the Network Graph components ... 49	
5-6: UML diagram of the flow related components .. 50	
Figure 5-7: Open Flow based chaining using traffic classifier VNF 52	
Figure 5-8: Open Flow based SFC using multiple instances of T-Nova vTC VNF 53	
Figure 6-1: Data Centre Interconnect (DCI) using Contrail ... 58	
Figure 6-2: IO Visor project placement inside ONE .. 61	
Figure 6-3: Left: The eBPF framework for networking. Right: Workflow from the IO
Visor SDK-driven development ... 62	

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

6

INDEX OF TABLES

Table 3-1: SDK for SDN functional requirements ... 18	
Table 3-2: SoTA SDKs main features comparison .. 24	
Table 3-3: Comparison of different networking approaches ... 29	
Table 4-1: OVS bridges and interfaces on each Open Stack node 36	
Table 5-1: SDK API description .. 42	
Table 5-2: Comparative latency values for GRE and direct L2 forwarding 54	
Table 5-3: Comparative throughput values for GRE and direct L2 forwarding 55	

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

7

1. INTRODUCTION

In the current era of virtualisation where there is a focus is on maximising the
utilisation of hardware resources by deploying multiple services / applications (ideally
with mutually orthogonal workload characterization). Virtualisation in the cloud
brings an additional dimension - self-management and programmable access to
desired slices of compute/storage/network resources from a shared pool of available
resources. While programmable capabilities have been strictly limited in the
virtualisation layer (for example: network virtualisation typically means the creation of
software isolation capabilities over existing hardware resources) the programmability
of the physical network topology has lagged even further behind. Software defined
networks (SDNs) provide an approach to support unified programmability of not only
the virtual network elements but also the physical network elements supporting the
virtualized elements in a cloud environment. In a datacentre environment where the
physical links’ dimensions are minimal, and the physical environment is strictly
controlled, the use of SDN allows the datacentre operator to optimise link capacities
by removing or minimising protocol overheads which are unnecessary in this type of
controlled environment. Additionally, the focus in a datacentre primarily remains on
switching rather than routing and most of the widely deployed communication
protocols focus on routing creating opportunities for potential optimizations. The
overheads resulting from packet fragmentation and reassembly can be decreased. In
addition the implementation of a new protocol in line with the cloud datacentre
architecture is also possible. To further strength the arguments already presented, in
the virtualized layer, where the typical network requirements are for ensuring process
isolation scope for optimization exists. Task 4.3 SDK for SDN is primarily focused on
compiling a set of common libraries that would empower a datacentre application
developer to easily develop and implement network optimisations in line with the
operator’s technical and business requirements. Big datacentre operators such as
Facebook and Google have being using SDN for a number of years to fine-tune their
network deployments to bring them closer to a distributed computing everything
philosophy. The following subsections examine those real-world use-cases to further
strengthen the SDN argument and validation of the need for deployment and proper
exploitation in cloud datacentres.

1.1. Networking in Datacentres

1.1.1. SDN in Google Data Centres

Google has been employing SDN in their datacentres for many years. Their
networking infrastructure has long been designed using merchant silicon from
various vendors instead of relying on standard commercial of the shelf (COTS)
network hardware. Designing their own hardware and software means they are freed
from the usual network protocol stacks and can implement their own variations to
suit their specific datacentre needs. Their network has evolved from Firehouse DC
design to the current Jupiter design [1] that offers 1 Petabits/sec bisection bandwidth

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

8

in a Clos topology arrangement of switches that is centrally managed by their own
network control software [2]. Their network deployment is logically a big switching
fabric that is closer to their distributed software architectures than any other router-
centric networking topology. Their cloud SDN networking virtualisation stack is called
Andromeda shown in Figure 1-1.

Figure 1-1: Google’s SDN networking virtualization stack

Andromeda not only orchestrates the virtual networking needs of the VMs in the
Google Compute Engine (GCE), but also orchestrates the top-of-the-rack (TOR)
switches, network peering edges, border routers which are part of their physical
network fabric. Since they have full software control on all levels of the networking
fabric, from low-level hardware to high-level software, they don't have to make
compromises and can achieve the full potential of the available network resources.
Using Andromeda and a custom Linux port that utilises the full capabilities of their
SDN fabric, they are able to improve the TCP throughput substantially (see Figure 1-
2).

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

9

Figure 1-2: Network performance (baseline vs Andromeda)

The Google SDN use case clearly shows the capability of SDN to create a holistic as
well as a synergistic effect upon the overall software architectures and the underlying
networking fabric in a datacentre environment. Below we provide Facebook’s analysis
to further strengthen this argument.

1.1.2. SDN in Facebook Data Centres

Facebook has seen a tremendous explosion in their network traffic due to an ever-
increasing user base. Their data centres across the globe now support more than 1.5
billion active users’ worldwide [3], Facebook’s internal traffic called machine-to-
machine traffic is orders of magnitude higher than user generated traffic. While
designing their network to satisfy ever increasing capacity needs for their distributed
applications, Facebook’s network team realised that cluster-based designs have a
fundamental flaw that limits the cluster sizes to the port densities in the top-of-the
rack switches. With ever increasing inter-cluster traffic demands, more ports start to
be consumed which reduces the cluster sizes. So the scalable approach Facebook
engineers took into account was to divide the data centre network into a set of pods
and cores, where each pod consisting of 48 machines is served by 4 top-of-rack
switches in (3+1) configuration as shown below in Figure 1-3 and Figure 1-4.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

10

Figure 1-3: Typical Facebook pod

Their data centre fabric treats each networking hardware as a virtual cluster, wherein
all their routing needs are served through BGP4 protocol. They manage all the
routing rules centrally via a custom built centralised BGP controller. The routing in
their datacentre is fully controlled in their custom software. Furthermore only
essential protocol elements are implemented to remove any inefficiency from the
protocol itself.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

11

Figure 1-4: Facebook networking fabric design

Management of network hardware elements is also fully automated and is controlled
by their software based management service, which automatically identifies a newly
added box and the role assigned to it and configures it without any network engineer
involvement. With everything controlled in software, the various elements of a virtual
cluster can now be placed in any physical location in their datacentre, which makes
the manageability simpler. This clearly shows the advantages of SDN approach that
can support datacentre flexibility in a simplified manner.

The two SDN use cases by leading service providers show the benefits that SDN can
bring in order to achieve efficiency in datacentre management along with traffic
optimizations capabilities. The SDK for SDN delivered by this task will provide a set of
building blocks for performing fundamental tasks, which can be used by datacentre
application developers to build customised solutions to optimise their data centres as
per required business and deployed application use cases.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

12

2. TECHNOLOGICAL ENABLERS FOR SDK4SDN

2.1. Network Function Virtualization Trends

Continuing from the previous chapter, let's now look at the potential usefulness of
SDN capabilities in traditional communication providers’ environments such as Telco
and Internet service providers (ISPs). With rising CAPEX+OPEX costs and reducing
revenue margins, connectivity service providers (Telcos, ISPs, etc.) have now realised
the significance of rapid development and deployment cycles. Coupled with the
power of virtualisation that enables better consolidation and possible reductions in
cost, the spike in interest surrounding NFV and the increase in standardisation efforts
is not a surprise. With the advent of NFV, which drives migration from proprietary
hardware boxes to NFs running as software processes in VMs in cloud / datacentre,
the importance of SDN becomes more significant. Now virtual machines can be
migrated and relocated to different locations depending on the outcome of
optimisation algorithm, therefore there is a need for dynamic flow management.
Furthermore, SDN northbound interfaces could provide more control to Network
Application developers in the form of well-defined abstractions for faster and easier
application development. This form of capability will act as a catalyst for network
innovations. Optimisation algorithms would converge faster with NFV and SDN
deployments as the global network state would no longer be discovered via a
distributed slow-converging process, but would be maintained in the SDN
controllers. Analysing the needs in typical network application use cases one could
clearly identify the need for SDK for SDN in NFV centric R&D strategies. NF
virtualisation requirement analysis also suggests the need for some SDK. One type of
relocation could be called full virtualisation where the full functionality is virtualised
and the function could be moved around on a dynamic basis in response to
operational network conditions or SLA’s etc. Another approach is partial virtualisation
where a part of the functionality is kept in the physical hardware and the remaining
functionality is separated and maintained in virtual elements within the datacentre. A
prominent example of this approach is Customer Premise Equipment (CPE)
virtualisation and relocation, Figure 2-1.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

13

Figure 2-1: Types of function virtualization in a CPE [4]

There are a large number of NFs that could potentially be virtualised into VNFs,
including:

• Switch, routers, NAT, etc.
• Firewalls, virus scanners, spam classifiers, etc.
• HSS, MME, eNodeB, NodeB, RNC, etc.
• Rating, charging, billing functions, AAA, etc.

These are just a partial list from the commonly utilised functions in a provider’s setup,
while potential for virtualisation of many more exists. A suitable SDK will accelerate
this process by enabling network developers to design innovative network
applications with appropriate interfaces to an SDN controller, and with this providing
fine-grained control of the underlying network fabric. Increased SDN activity in this
space is a clear indication of a concerted push in this direction. ETSI NVF-ISG, ETSI
MEC ISG, Broadband Forum (BBF) and efforts in the open source communities such
as OPNFV, OpenStack, Open vSwitch, DPDK, ODP are some healthy indicators for
that.

2.2. Open Platform for NFV (OPNFV)

The Linux Foundation created the OPNFV initiative in 2014 right after the creation of
the OpenDaylight Project in April 2013 as a leading framework to boost adoption of
software-defined networking (SDN) and network functions virtualisation (NFV) [5] [6]
[7] [8]. OPNFV is a carrier-grade, integrated, open source platform to accelerate the
introduction of new NFV products and services, by essentially bringing together
service and NFV providers, cloud and infrastructure vendors, developers’
communities, and customers into a new NFV ecosystem. OPNFV was motivated by
the European Telecommunications Standards Institute and ETSI NFV to achieve
consistency among open standards in terms of performance and interoperability
among virtualised network infrastructures. OPNFV promotes an open source network

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

14

aimed at accelerating innovation and collaboration between the participating
communities based on current technological enablers.

The first milestone of OPNFV is the creation of NFV Infrastructure (NFVI) and
Virtualized Infrastructure Management (VIM) using building blocks from upstream
projects.

Figure 2-2 shows a diagram of the ETSI NFV architecture marking the initial focus
area of the OPNFV group and the two building blocks: NFV and NFVI.

NFVI: Provides access to basic resources—compute, storage and networking—
through hypervisors and SDN functions.  

VIM: Manages the NVFI and provides the management capability required to deploy
applications running in a virtual environment, commonly referred to as VNFs (virtual
network functions).

Figure 2-2: OPNFV technical overview [9]

Currently, there are 45approved projects in OPNFV categorized as: Requirements,
Integration and Testing, Collaborative Development, and Documentation. Two of the
most relevant projects to the activities in Task 4.3 are: (1) OpenStack Based VNF
Forwarding Graph and (2) Service Function Chaining. The first one leverages the
OpenStack work on VNFFG (Service Function Chain) and ONF Openflow work on
service chaining, in order to achieve automatic set up of end-to-end VNF services
through VNFFG so different tenants’ flows can be steered through different
sequences of VNFs (Service Function). The second project is focused on creating a
link between two Linux Foundation projects, OpenDaylight (ODL) and OPNFV. The
goal is to provide service chaining capabilities in the OPNFV platform, i.e. an ordered
set of abstract service functions (e.g. NAT, load balancing, QoS and firewall) and
ordering constraints that must be applied to packets and/or frames and/or flows

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

15

selected as a result of classification [10]. More details on OPNFV were described in
D2.32.

2.3. OpenStack Networking

OpenStack is an open source (Apache 2.0) IaaS stack with a modular and open
architecture. Specifically Neutron, the networking service, abstracts the underlying
network via virtual network components and its plugin architecture. This allows very
close integration with an SDN controller, such that most of the networking logic is
OpenFlow enabled. The exception to this are the iptables firewall rules such as the
interfaces and IP namespaces that provide L3 routing for external access of the
instances. The rest of the OpenStack networking is implementation agnostic, which
enables the full power of OpenFlow within an OpenStack network. More details on
OpenStack Neutron and networking can be found in the following references [11].

2.4. OpenDaylight

OpenDaylight (ODL) [12] is an open source framework focused on facilitating an SDN
programmability platform for network developers, end-users and customers. ODL
supports a variety of networking projects, standards and protocols and has already
taken a leading role in the SDN world.

Twelve founding members have actively supported OpenDaylight. It is organised in a
modular way consisting of various components. ODL allows the inclusion of north or
southbound projects, standards and protocols due to its extensibility. It is based on
Apache Karaf – a small OSGi based runtime that provides a lightweight container
onto which various components and applications can be deployed. It acts as
ecosystem provider for ODL application. Using Karaf one can import different
bundles in the runtime controller environment to achieve a specific functionality.

OpenDaylight is an obvious choice as an open source (EPL-1.0) SDN controller. It
provides modularity via Apache Karaf. The required features for SDK4SDN include
OVS, Neutron and OpenFlow integration. Especially Neutron integration has matured
over the last three versions (Hydrogen, Helium and Lithium) in documentation and in
stability, which is a prerequisite for a stable and reliable abstraction on top of
standard OpenDaylight features.

Figure 2-3 below shows the integral components of the ODL project in the current
Lithium release, together will the supported northbound applications and
southbound protocols.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

16

Figure 2-3: Projects and components in OpenDaylight Lithium

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

17

3. SDK FOR SDN REQUIREMENTS

The initial requirements for the SDK for SDN within T-Nova were listed in the
Deliverable 4.1. This current deliverable describes the SDK progress as it was agreed
and formulated after the Rome GA meeting in April 2015.

The major changes in this task concern the formerly described SDK scope "to provide
high-level framework on top of existing SDN-controllers." After the amendment
changes with respect to Task 4.3, the SDK changed the focus to exclusive support on
OpenDaylight as unique entity to control the physical network infrastructure.
OpenDaylight has emerged as de facto controller in the past couple of years with
continuous engagement from the fast growing community to date. The increased
number of leading and parallel ODL projects, along with the support of several SDN
standards and protocols, had evolved ODL beyond only being SDN controller to a
complete framework for network programmability and NFV support. Comparing the
primary depicted modules of the SDK architecture to the currently deployed ODL
libraries, we identified many overlaps across the scope of the ODL project and the
actual T-Nova SDK. With this respect, a deeper analysis of the ODL development
progress and scope has urged this task to reconsider the need for multi-controller
API extensions and interfaces to be supported by the SDK. Instead, we can reference
the ODL dependencies in the SDK rather than reinventing the technology and
therefore omit redeployment of already existing code and tools.

We followed however the generic guidelines for design and developing SDK for SDN
as described in Deliverable 4.1. Table 3-1 represents the updated requirements that
are vital for the SDK in the current T-Nova vision along with the crucial requirements
described by the DoW and the T-Nova consortium.

Requirement
Name

Requirement Description Justification of
Requirement

Category

SDK4SDN-
OpenDayLight

SDK for SDN MUST support
OpenDaylight

Comes from the
T-Nova
consortium

Functional

SDK4SDN-
Testing

SDK for SDN MUST provide
testing capabilities

Comes from SDK-
general

Functional

SDK4SDN-Diff-
Open Flow

SDK for SDN MUST expose
Open Flow differences in a
safe manner

Comes from DoW Functional

SDK4SDN-
Source-CODE

SDK for SDN MUST be
available open source

Comes from DoW Functional

SDK4SDN-
Libraries

SDK for SDN SHALL provide
all the necessary

Comes from DoW Functional

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

18

dependencies and tools in
order Developers can
Validated its installation

SDK4SDN-SFC-
Support

SDK for SDN MUST provide
capability to enable SFC

Comes from SDK-
general

Functional

SDK4SDN-Java-
API

SDK for SDN MUST provide
a Java API

Comes from ODL Functional

SDK4SDN-
Remote-API

SDK for SDN MUST provide
a remote API
(REST/RPC/CQRS)

Comes from SDK-
general

Functional

SDK4SDN-
Documentation

SDK for SDN MUST provide
sufficient documentation

Comes from SDK-
general

Non-
functional

SDK4SDN-Path-
Connection

SDK for SDN SHALL provide
end-to-end connection flow
programming capabilities

Comes from SDK-
general

Functional

SDK4SDN-
Default-
Implementation

SDK for SDN SHOULD
provide working default
implementations for SFC
and connection based flow
programming

Comes from SDK-
general

Functional

Table 3-1: SDK for SDN functional requirements

3.1. Common SDK components

In networking, Software Development Kits (SDK) represents a set of software
development tools that allows the creation of networking applications within the
scope of certain network operative system, or networking infrastructure (like
datacenter deployment). The SDK can be provided as an isolated piece of software
(open source component in the SDN community) or as a proprietary component
offered by the creators of specific networking technologies or products.

It is very common, that SDK includes an IDE (integrated development environment).
The IDE main function is to provide a centralized programming interface and it often
contains a terminal, editor, GUI (graphical user interface), debugging tool, and a
compiler to create an application out of the code. Most of the SDKs contain a sample
code to show the developers a way to use particular programs or libraries from the
SDK. There are also SDKs that offer parts of GUIs, like buttons or icons, as well as
technical documentation and tutorials. Usually, SDK is offered as free component so
that the developers can relay on it for easy application creation for the company.

3.2. SDK for SDN implementations

3.2.1. SDNApp-SDK

Several companies and the community are taking the challenge to write SDK for SDN
recently. One of them is OpenDaylight with their “SDNApp-SDK”, Figure 3-1.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

19

OpenDaylight describes the pain-points that occur when writing an SDN-Application
and how they want to fix them with a Software Development Kit.

The main principles of the SDNApp-SDK are to provide guidelines for SDN-
Application development framework. It also helps the developers to reuse and
enhance existing code. With the SDNApp-SDK, OpenDaylight wants to make a
common platform to validate applications that are written in OpenDaylight. The ODL
community wants a framework that enables application management. The
components included in the SDK version within the ODL Beryllium release are the
following: data modelling, Inter-working with 3rd party tools, database services,
application management, keeper services, build, deploy and sample code.

Figure 3-1: SDNApp-SDK architecture [13]

3.2.2. HP’s SDK

HP also provides SDN Development Kit, Figure 3-2, with the tree main features that
are, “Create”, “Test” and “Validate”. HP’s SDK for SDN helps to simply set up a
developer environment and to create applications on the top of their own SDN
controller (HP VAN SDN Controller). The SDK component includes: APIs and
documentation, programmers’ guide, GUI Framework and Sample code.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

20

Figure 3-2: SDNApp-SDK architecture

3.2.3. Junos space SDK

Juniper Networks space SDK is an open, network-centric application development
toolkit designed to enable developers to use the information embedded in the
network to create unique, differentiated applications quickly, easily, and
economically. It facilitates the data extraction to be later used in applications and also
tends to provide a good end-user experience. Some of the network features include:
real-time policy management, energy usage and tracking, custom workflows, network
insight for business intelligence, correlation of user subscribed services, and policy
and QoS management, as shown in Figure 3-3.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

21

Figure 3-3: Junos Space SDK architecture [14]

3.2.4. Cisco onePK

Cisco’s onePK, Figure 3-4, is a toolkit for development, as well as automation and
rapid service creation. It is designed for flexibility and can integrate with PyCharm,
PyDev, Eclipse, IDLE, NetBeans, and more. OnePk supports common languages like
Java, C and Python. It can run on every server or directly on a network. OnePk uses
APIs to serve the business needs of the costumers.

Figure 3-4: onePK architecture [15]

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

22

Cisco’s onePK can be deployed in three different ways: Process Hosting, Blade
Hosting and End-node Hosting. In the Figure 3-5, the three ways are displayed in
detail.

Figure 3-5: Cisco’s onePK deployment options [16]

3.2.5. NetIDE

NetIDE is a European project from the FP7 framework [17], aimed to deliver an IDE
integrated in Eclipse [18] as a single integrated development environment to support
the development life-cycle of network controller programs and SDN environments.
Figure 3-6 shows an example NetIDE network topology editor within Eclipse.

NetIDE features four objectives that are described on their website and are also listed
here:

• Defines a platform agnostic representation format for network applications.
• Delivers a prototype IDE and associated tools that support the SDN

development life cycle.
• Develops a prototype of a run-time environment (NetIDE Network Engine)

that supports open & proprietary SDN controllers.
• Promotes the establishment of an Open SDN Model based on an Open

Community of developers.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

23

Figure 3-6: NetIDE Network Topology editor [19]

Unlike the netIDE integrated environment, the T-Nova Task 4.3 SDK for SDN is
focused on datacentre network and build on the top of the OpenDaylight modular
controller. NetID focuses on comprehensive network programming over multiple
SDN controllers, whereas the SDK offers libraries for the network programmers who
require tools for optimizing network and minimizing inefficiencies due to protocol
encapsulation in Open Stack environments. Moreover the SDK developed in T-Nova
aims to offer coherent communication with the main T-Nova building blocks such as
the VIM and the TeNOR orchestrator via RESTful APIs with the objective to offer a
seamless SDN support to the users of the T-Nova services.

3.2.6. PLUMgrid SDK

The PLUMgrid SDK [20] is a Language-based SDK to enable third-party developers
and community to build distributed functions on top of IO Visor technology. Figure
3-7 depicts the key components of the PLUMgrid platform that include: PLUMgrid
director, virtual domains, IO Visor, APIs, network functions and the SDK.

With the PLUMgrid SDK the software engineers can create their own APIs and
network functions easily. The main components from the SDK are object models and
libraries as well as compilers and domain specific languages. Using the SDK, network
functions can be deployed and/or developed on their own PLUMgrid Platform at run-
time and without having to reboot.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

24

Figure 3-7: PLUMgrid SDK architecture [20]

Table 3-2 summarizes the main features of the described SDKs and the SDK being
developed in T-Nova.

SDN
SDKs

Supported features

REST
API

GUI
SAMPLE
CODE

DOCUMENTATION SFC RESILIENCE
NETWORK
TENANT

ISOLATION

SDNApp-
SDK

x x x ? ? ? x

Junos
space
SDK

x x x ? ? x ?

Cisco
onePK

x x x x ? x ?

NetIDE x x x x ? ? ?

HP SDK ? x x x x ?

T-Nova
SDK for
SDN

x x x x x x x

Table 3-2: SoTA SDKs main features comparison

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

25

3.2.7. SDK for SDN in T-Nova

The T-Nova SDK for SDN differs from the other SDKs mentioned above in the end-to-
end based network discovery that is offered per tenant base. The main features are
similar for all of the SDKs, however the approach to offer the network abstraction to
directly enable isolation - is different. The SDK for SDN includes a network graph
library as well as an Open Flow plugin LLDP discovery service, interfaces and their
implementations. This is to establish an end-to-end SDN based network discovery
per tenant base in Open Stack datacenters. It also contains interfaces to retrieve all
the information needed for a current host in OpenStack and also creates and
traverses the path between two termination points. SDK for SDN is completely SDN-
based and relies exclusively on the Open Flow protocol to create abstractions of the
underlying network.

One step towards data centre optimized traffic

The two-year time span from the initial DoW Task 4.3 description brings significant
novelty in the SDN and ODL. The T-Nova SDK for SDN is aimed to serve as a tool
rather than to be a solution itself. It bases on the emerging concepts in the
community, and follows real use cases from providers and enterprises working with
SDN, in order to:

• Define a set of SDN enabled libraries for creating novel networking
applications inside Open Stack environment.

• Provide a support for Datacenter network control on physical L2 layer.
• Provide alternative SDN solutions to the existing networking protocols for

optimized DC traffic.

For instance, tenant segregation in OpenStack hosts is an imperative for security and
performance. To provide this, the current OpenStack Neutron ML2 plugin uses
tunnelling and tagging techniques such as GRE and VxLAN. The drawback of applying
these isolation mechanisms is an increased overhead due to a header encapsulation.
Overcoming complexity in large-scale cloud environments of several hundred hosts
and tenants is essential in order to enable efficient networking, improved datacentre
orchestration, and optimized applications on the top of that infrastructure. The next
section elaborates in details, the drawbacks and the challenges of avoiding the
current tunnelling mechanisms.

3.3. Non GRE/VxLAN Isolation: Drawbacks and Challenges

In a cloud environment, one of the key aspects is to guarantee isolation between
customers also in the networking resources. The adopted approach in network
virtualization solutions is to build overlay networks with technologies like VXLAN or
GRE on top of the underlay physical network. The overlay networks are by design

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

26

isolated customer networks, because they are only logical topologies built on top of a
shared underlay physical network.

Even if the popularity and the adoption of the overlay paradigm has grown
significantly during the last few years, because it can be implemented on top of a
traditional IP-based underlay networks, overlay technics introduce non-negligible
drawbacks on performance, in particular when data chunk size exceeds 2902 bytes
due to IP fragmentations. There is a lot of academic research that highlight the
performance issue as presented in Figure 3-8.

Figure 3-8: Overlay vs Non-Overlay comparison in network virtualization

In a pure OpenFlow SDN architecture, where users can directly access and manipulate
the forwarding plane of the network devices, an SDN-based approach has been
adopted by academic and also commercial solutions to create isolated networks.
Among the academic examples, it’s worth mentioning the “Non-Tunneling Edge-
Overlay Model using OpenFlow” proposed by researchers from Nagoya Institute of
Technology [1]. Among the commercial solutions, we report the Extensible Network
Controller (XNC – adopted by Cisco) [2] and FlowVisor (an open source Open-Flow
controller) [3]. All of them will be briefly described in the following.

Non-Tunneling Edge-Overlay Model proposes to replace source /destination MAC
addresses of the frames transmitted by virtual machines with physical servers
addresses. Such substitution is performed by the virtual switch. The modified
destination address is then restored at receiver side. The solution ensures address
space isolation of each VM, and reduces the number of MAC addresses that the
physical switches have to learn. Moreover, it requires less CPU usage compared to
GRE/VXLAN tunneling, and facilitates VMs migration.

Cisco XNC is an Open-Flow Controller based on OpenDaylight plus other features
and applications like Monitor Manager, Topology-Independent Forwarding (TIF), and

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

27

Network Slicing. Topology-Independent Forwarding provides the capability to set up
your own path that will be used by data-flow (layer 3 or 4) on the network. Besides
setting up the forwarding path, a TIF policy defines some properties, which describe
how the traffic will be routed between source and destination. Network Slicing
makes available the partition of the network based on physical or logical rules
assigned to users. A slice provides an isolated network to users assigned to it. The
granularity of a slice could be from a Network device to a specific Flow identified by a
source and a destination IP.

FlowVisor is an open source Open Flow controller designed with multitenancy and
virtualization paradigms in mind. Into the SDN framework, FlowVisor acts as a
controller of controllers; it brings almost a virtualization layer between the (unique)
network infrastructure and the (multiple) network controllers intelligence, offering
with its proxy services each “slice” a personalized, surrogated, view of the
infrastructure, and in turn hiding the infrastructure to the multiple controllers working
over it. The high potential of this proxy controller approach is that it breaks usual
complexity of networking scenarios, giving tools to work into its simple pieces, where
complexity is often just the exception management of individually simpler tasks.
Figure 3-9 describes a possible scenario of a FlowVisor implementation where
different customers’ VMs share a common subnet, and every IP node has a unique IP
address. The components are 4 FL (Backend controller), 1 FV (FlowVisor), 1 GW, 1
DHCP server. Different tenants isolation is achieved by means of flow inhibition
policies configured into general front-end controller and specific customer back-end
controllers:

Figure 3-9: Multi-tenant scenario implementation using FlowVisor

Table 3-3 provides a comparison of the different networking approaches with the
following key criteria:

• Isolation à identify how the solution implements the isolation between
tenants

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

28

• Scalability à identify if the solution can be used in a large system like a
cloud environment

• Performance à the level of performance of the solution
• Provisioning à identify the interface for the provisioning/decommission of

new configurations
• Programmability à identify the ability to customize network behavior on

specific conditions
• Granularity à identify the minimum element unit on which the operation

could be performed
• Hardware Constraint à identify if there is some constraint on the hardware

infrastructure

 VLAN VXLAN/GRE CISCO XNC FlowVisor

Isolation VLAN ID VLAN ID Network
endpoint
independent

Network
endpoint
independent

Scalability Limited Unlimited Unlimited Unlimited

Performance BEST IN
CLASS

GOOD Even if
encapsulation/
decapsulation

Require more
compute
operation, it
can be
optimized by
relying on
hardware
offloading
itechniques,
on compliant
NICs

GOOD but
could be a
problem if
the flow
table grows
too much

GOOD but
could be a
problem if
the flow
table grows
too much

Provisioning CLI CLI / REST API REST API REST API

Programmability Not
available

Not available Each flow
can be
routed on
specific path

Each flow
can be
routed on
specific path

Granularity L2
Segment

L2 Segment Flow with
endpoints
source-
destination

Flow with
endpoints
source-
destination

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

29

and ports and ports

Hardware
Constraint

No No, VTEP can
be
implemented
in SW

HW must
support a
pure SDN
with Open
Flow
support

HW must
support a
pure SDN
with Open
Flow
support

Table 3-3: Comparison of different networking approaches

3.4. Solutions for Tenant Isolation in Open Stack

3.4.1. Midonet

MidoNet [21] decouples IaaS cloud from network hardware, creating a software
abstraction layer between end hosts and physical network. This network abstraction
layer allows the cloud operator to move what have traditionally been hardware-based
network appliances into a software-based multi-tenant virtual domain.

MidoNet allows users to build isolated networks in software and overlays the existing
network hardware infrastructure. All component of Midonet are shown on 3-10.

Tenant isolation: provided by L3 network isolation (see Logical Switching)

Features: Fully virtualized Layer 2 to 4 Networking - MidoNet helps create switches,
routers, DHCP, NAT, load balancers and firewalls among other network services.

Figure 3-10: MidoNet components [21]

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

30

Logical Switching:

• Distributed virtual switching, Layer 2 (Data Link Layer) over Layer 3 (Network
Layer), decoupled from the physical network without limitations of convention
VLANs.

• Interconnect with VLAN/VxLAN networks (physical and virtual) via software L2
Gateway Logical Routing

• Routing between virtual networks without exiting the software container

Logical Firewall:

• Distributed Firewall that is integrated with the Linux kernel
• Enforces security policies for high packet processing performance

Logical Layer 4 (Transport Layer) Load Balancer:

• Application Load Balancing in software
• Dynamically scale up and down load balancing with compute

MidoNet uses static NAT to implement floating IP addresses in two ways:

• Bring traffic from an external network to a floating IP address for a tenant
router

• Perform network address translation from the external network's public IP
address to a private IP address and in the reverse direction.

3.4.2. Nuage Networks & Arista		

Nuage Networks Virtual Services Platform [22] overlays all existing virtualized and
non-virtualized server and network resources, Figure 3-11.

Tenant isolation: logical L3 / L2 networks provide isolation and secure multi-tenancy
(see Virtual Routing & Switching).

Figure 3-11: Nuage virtualized platform architecture

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

31

Cloud Consumption interface:

• Orchestrated by cloud platforms (such as CloudStack and OpenStack)
• Provisioned by customers and administrators via open interfaces (such as

OpenStack Horizon)

Flexible Network interface provides:

• Control of virtualized and bare metal resources (such as network equipment
from Alcatel-Lucent, Arista, HP, and others) without requiring upgrades

• Multiple server virtualization environments side-by-side, such as KVM, Docker
containers and VMware

Extensibility and Security interface features enable:

• Integration with applications such as Oracle, third-party Anything-as-a-Service
approaches, security appliances, and operating systems such as Red Hat and
Ubuntu Linux

• Controllable network resources through policies and templates either preset
by the network team or defined via an intuitive UI

• Customization

Operational Scalability interface delivers:

• Efficient, multitenant operations at cloud scale with features such as multicast
and network template capabilities

Features:

Virtual Routing & Switching:

• A module that serves as a virtual endpoint for network services.

Virtualized Services Controller:

• Serves as the robust control plane of the datacenter network, maintaining a
full per-tenant view of network and service topologies.

Virtualized Services Directory

• As a policy, business logic and analytics engine for the abstract definition of
network services.

3.4.3. Distributed Overlay Virtual Ethernet (DOVE)

DOVE provides tunnelling and virtualization technology that allows creation of
network virtualization layers for deploying, controlling, and managing multiple
independent and isolated network applications over a shared physical network
infrastructure [23].

Tenant isolation: logical components of the DOVE architecture (by IBM) are DOVE
controllers and DOVE switches, Figure 3-12. DOVE controllers perform management
functions, and one part of the control plane functions across DOVE switches. DOVE
switches perform the encapsulation of layer 2 frames into UDP packets using
the Virtual Extensible LAN (VxLAN) frame format, and provide virtual interfaces for

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

32

virtual machines to plug into, similarly to how physical Ethernet switches provide
ports for network interface controller (NIC) connections.

Figure 3-12: Open DOVE architecture

Features:

• No dependency on the underlying physical network and protocols
• Use of the existing IP network infrastructure
• No dependency on the IP multicast traffic

3.4.4. Calico project

Calico’s pure L3 approach to data centre networking integrates seamlessly with cloud
orchestration systems to enable secure IP communication between virtual machines,
containers, or bare metal workloads. Calico provides a pure L3 fabric solution for
interconnecting Virtual Machines or Linux Containers (“workloads”). Instead of a
vSwitch, Calico employs a vRouter function in each compute node [24]. Figure 3-13
shows an overview of the addressing and connectivity inside Calico.

Tenant isolation: the vRouter leverages the existing L3 forwarding capabilities of the
Linux kernel, which are configured by a local agent that programs the L3 Forwarding
Information Base with details of IP addresses assigned to the workloads hosted in
that compute node. The local agent also programs Access Control Lists in each
compute node to enforce whatever security policy may be needed, for example to
provide isolation between tenants.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

33

Figure 3-13: Calico addressing and connectivity overview

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

34

4. SDN TESTBED ENVIRONMENT

To be able to develop and test the networking applications for the SDK, SDN testbed
was setup at the ZHAW premises. This architecture allows integrating the innovations
with the fast moving open source community. The testbed was designed upon the
following technological enables:

• Centralized OpenDaylight controller
• OpenStack environment
• Physical and virtual networks fully SDN enabled
• OpenDaylight dynamically loads the SDK applications during runtime

The testbed nodes are provisioned with Foreman, whereas the OpenStack
environment is installed via Packstack. For more details on the provisioning process
please visit Packstack and Foreman node provisioning. The testbed contains five
nodes: OpenStack Compute1, Compute2, Control (Networking) all under the release
of OpenStack Kilo, SDN Control - OpenDaylight Lithium, and SDN Switch running
OpenvSwitch, Figure 4-1.

Figure 4-1: ZHAW SDN testbed architecture

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

35

4.1. Network

The Compute nodes, the OpenStack Control node and the SDN node are all
connected through a network ("physical network" in our case the 10.20.0.0/24 range).

The compute nodes require 1 physical interface for the physical network, later the
OVS' of the compute nodes will have a tunnel port that uses the IP attached to this
interface.

The OpenStack node needs 2 physical interfaces, one is used in the same manner as
the compute node interface, and the other is used by the "external bridge" br-ex,
which interfaces between the "virtual network" of OpenStack and the physical
network through a neutron router.

4.2. Switch / SDN Controller Node

Basic Provisioning and Configuration

The switch machine has multiple physical network interfaces with Ubuntu OS and
OpenvSwitch (OVS) installed. The switch has all physical Interfaces mapped to OVS
ports (p3p1...p3p5). We can control the switching of the physical network through
these OVS ports. To place the switch inside the physical network 10.20.0.0/24 range,
we assigned an IP to the internal port, in this case 10.20.0.108 and associated that IP
to the OVS port br0. This IP connects the bridge to the underlying operating system
and all OVS bridges in the environment to the SDN controller running in the same
machine.

4.3. OpenDaylight node

We installed the Helium release of the OpenDaylight controller. After running it with
./bin/start, we were able to connect to the ODL Karaf interface by running ./bin/client.
The following features have to be installed in ODL in order to be able to work with
Neutron:

feature:install odl-base-all odl-aaa-authn odl-restconf odl-nsf-all odl-adsal-
northbound odl-mdsal-apidocs odl-ovsdb-OpenStack odl-ovsdb-northbound odl-dlux-
core

4.4. Neutron & ODL integration

For the integration of OpenDaylight with Open Stack Neutron the ODL wiki and the
RDO community source was used as a reference point [25], [26].

The general idea is that when ODL is used for the network configuration, it must be
the unique entity for the Open vSwitch configuration to avoid conflict with Neutron ML2
plugin. To achieve a successful integration, a clean state is required by ODL that means
removing previous OpenStack Neutron configurations on the Open vSwitch within the

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

36

compute and the control nodes. This can be simply achieved by turning off Neutron
server on the network controller, and Neutron's Open vswitch agents on all hosts. A
successful state prompts the ODL controller connected on the newly created br-int of the
vSwitch configuration on port 6633 and as OVS as manager of the compute nodes and
the OpenStack node connected on port 6640:

root@maggie-controller ~]# ovs-vsctl show

a86e813d-b897-4caf-a0a3-38a7f000bef7

 Manager "tcp:10.20.0.108:6640"

 is_connected: true

 Bridge br-int

 Controller "tcp:10.20.0.108:6633"

 is_connected: true

The OVS configuration and functionalities provided by the neutron OVS agent are
very well documented. Table 4-1 summarizes the OVS specific bridges and flows for
each of the Open Stack nodes (Compute and Control/Neutron) in the ZHAW testbed
created by ODL as a result of the SDN integration of the Open Stack ML2 plugin. [27]

Node Bridge Type Description

All All Flow
LLDP to
controller

All All Flow Forwarding

All br-int Port Link to br-tun

Compute br-int Port Link to br-ex

Compute br-ex Port Link to br-int

All br-tun Port Link to br-tun

Network br-ex Port Link to router

Network br-int Port Link to DHCP

Compute br-int Port Link to VM

Compute br-int
Port
Configuration

VLAN ID for
Isolation

Compute br-tun Flow
Maps VLAN ID
to tun. ID

All br-tun Flow Broadcast

All br-tun Flow Pipeline flow

Table 4-1: OVS bridges and interfaces on each Open Stack node

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

37

5. SDN4SDK ARCHITECTURE SPECIFICATION

The SDK comprises two main key concepts, one being the network data
representation and the second one - the flow control on the top of the specific
network abstraction.

Network data abstraction

The T-Nova SDK for SDN retrieves information from different ODL service interfaces
in order to be integrated with OpenStack and fully SDN enabled. This data is
combined and represented through a network graph, which can be traversed in order
to find and establish connections. The data representation also makes it
straightforward to reason about the network and its properties because it is a natural
model for networks. Being generic enough and modular permits the SDK to accept
additional modules in future that could add onto it different information in a
contextual fashion.

Flow programming service

While adding use cases in our application driven design it became apparent, that
OpenFlow messages are the core output of SDK for SDN. OpenFlow is very powerful
but at the same time it doesn't provide context over more than one switch. The point
of the abstractions in SDK for SDN is to provide that context and to allow users to
program flows on top of multiple SDN switches.

5.1. Components & Interfaces

SDK for SDN is integrated as a Karaf feature into the OpenDaylight environment. It
registers itself to ODL features via OSGI and depends mainly on the Neutron API, the
OVSDB southbound feature and the OpenFlow plugin.

Some SDK for SDN components such as the Service Chains and the Flow Patterns are
maintained by an external API generated by YANG models and stored in the ODL
data store.

5.1.1. Dependencies

The SDK depends on several OpenDaylight modules. They are described in the
following subsections.

5.1.1.1. OVSDB Southbound

The Network Graphs low-level components are maintained via the OVSDB
Southbound plugin. It communicates with the OpenvSwitches that are connected to
ODL via the management interface. OVSDB Southbound gets OVSDB notifications

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

38

and forwards them to the ODL data store where the SDK listens to node, bridge, port,
and interface changes in the topology.

5.1.1.2. Open Flowplugin LLDP discovery

The topology / links between the bridge ports are discovered via OpenFlow plugin
LLDP applications. This is necessary to generate complete Network Paths in the graph
between connectable host endpoints. Link failure notifications that disrupt Network
Paths trigger new path searches, such that the flow connections can be updated.

5.1.1.3. Neutron API

The host ports are registered at creation time on the Network Graph via the Neutron
API. This allows for proactive flow programming. SDK for SDN does not push flows
reactively via controller messages. It pushes flows as soon as a valid path is
discovered between two or more neutron ports.

5.1.2. External Interfaces

Figure 5-1 depicts the SDK components together with the interfaces to the external
components, application and the T-Nova VIM.

Figure 5-1: SDK for SDN architectural components and external interfaces

5.1.2.1. Flow Patterns

Flow Patterns are template functions that generate Flows. The parameters are
specifically Service Chains, Network Paths or just Bridges. Flow Patterns then bind the
required network components into their flow template. There are default Flow Pattern
implementations for Chains, Paths and Bridges. In addition to that, one can apply
REST/Java calls to those if different flows are required. The main reason for the type
discrimination between chains paths and bridges is the fact that each higher
sequence has a bigger scope to bind parameters. A Flow Bridge Pattern is only aware
of the bridge it is applied to. Flow Path Patterns are aware of all the containing
bridges (namely endpoint bridges and aggregation bridges) and their properties.
Similarly to a path, a Flow Chain Pattern is aware of all the bridges along a chain and
can apply any of the properties to any of the bridge flows. However, what makes a

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

39

chain semantically different from a path is that a chain contains specific service
ingress and egress ports along the network flow.

5.1.2.2. Flow Bridge Pattern Parameters

Flow Bridge Patterns have the scope of a Bridge. Their parameter types are:

• Internal Ports: OVS ports with internal interfaces attached to them. They reach
the host system of the OVS.

• Link Ports: OVS ports that are linked to other OVS ports.
• Host Ports (Neutron Ports): retrieved by the Neutron API

5.1.2.3. Flow Path Pattern Parameters

Flow Path Patterns have the scope of a Network Path. Their parameter types consist
of a structured set of bridges:

• Endpoint Port / Neutron Port: An OVS port to which one of the respective
Hosts is connected.

• Endpoint Bridge: An OVS bridge to which an Endpoint Port is attached.
• Link Port: An OVS port, which is linked to another OVS port.
• Aggregation Bridge: An OVS Bridge linked to another Aggregation Bridge or

to an Endpoint Bridge.

5.1.2.4. Flow Chain Pattern Parameters

Flow Chain Patterns have the scope of a Service Chain. Their API parameter type is:

• An ordered sequence of Neutron Port references
• Odd indices of the sequence map to service ingress ports, even indices map

to service egress ports

Internally the Flow Chain Pattern detects the paths between the services and uses
that as an actual parameter for the template.

5.1.2.5. Service Chain

Service Chains have to be registered via the REST/Java API. A Service Chain composes
of a list (in order) of Neutron ports. The Network Graph is aware where the neutron
ports are, so a Flow Chain Pattern can be applied to it.

5.1.2.6. Dependencies & Linkages with T-Nova Components

On Figure 5-2, we can see the relation with the other T-Nova components as well as
the interfaces the SDK would expose to third party developers. On the northbound
side the SDK will expose APIs to the T-Nova IVM (or TeNOR orchestrator) in order to
receive information about the VNF placement and service description. The
Orchestrator has VNDF (Virtual network function descriptor) to describe the
requirements and the specification of each VNF, and NSD (Network Service
Descriptor) as a service manifest specification for the service required by the network

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

40

developer. This information is later parsed in a metadata file from which a heat
template is generated to spawn the required VMs and deploy the VNFs in the
infrastructure. From the SDK, RESTful northbound APIs will be exposed to the
orchestrator (or VIM) in T-Nova in order to gather the information about the VNFs
endpoints and the service description. For example in the case of SFC, the info to be
included in the request is (1) the Neutron ports of the VNFs (2) the chain path as a
logical subsequent connection between specific neutron ports: [port_A, sfc_1_in,
sfc_1_out, sfc_2_in, sfc_2_out, port_B].

One alternative to implement this is in a proactive way where the SDK queries the
VIM to determine if the client has specified a request for new service (chain). Second
option is to do it in a reactive manner - the information of the new service request is
passed to the SDK during VNF deployment process in Open Stack. The integration is
still under development and will be decided in the near future.

5.1.3. Internal Components

Figure 5-2: SDK for SDN internal components

At its core SDK for SDN is a flow template engine that is aware of logical network
components and their relations. These components mostly get created and updated
from ODL notifications that are described in the Dependencies section and held in
the Network Graph. After the Network Graph discovers these components, they can
be further processes by the Flow Patterns to generate OpenFlow messages.

5.1.3.1. Network Manager

The internal architecture is best described via the data flow. The Network Manager
registers to the notification services of OpenDaylight mentioned in the External APIs
section. It is responsible for state changes in the Network Graph.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

41

5.1.3.2. Network Graph

The Network Graph holds the combined topology information of the OpenDaylight
modules and maps them in the following fashion:

• OVSDB -> switch components (bridges, ports,...)
• Neutron API -> host networking information (IP, MAC,...)
• OpenFlow plugin -> topology / links between bridges

5.1.3.3. Flow Connection Manager

The Flow Connection Manager exposes an API to store and apply Flow Patterns and
Service Chains. It maintains the relations between Patterns and Network components
and pushes flows via the Flow Programmer and handles the state of the flow
programming transactions.

5.1.3.4. Logical Network Components & Flow Patterns

Service Chains, Network Paths and Bridges are logical components to which the flows
can be assigned/installed. They bind the parameters on Flow Patterns, which are flow
template functions specific to a network component type.

5.1.3.5. Flow Programmer

The flow programmer is responsible for merging new flow entries into the ODL data
store, which then get processed and executed by the OpenFlow plugin.

5.1.4. API Description

The API specification and implementation is still under development at the point of
this writing. It is to be expected that it will undergo breaking changes. The API
description gives the direction at which the specification is oriented, Table 5-1.

Name/Resource
API Description Table

Type Description Input Output

NetworkGraph Query
Get the

graph state
/ NetworkGraph

NetworkPath Query

Get a path
between

two
HostPorts

Neutron Ports
(src & dst)

NetworkPath

ServiceChain Query
Get

resource
ID ServiceChain

FlowBridgePattern Query
Get

resource
ID FlowBridgePattern

FlowPathPattern Query
Get

resource
ID FlowPathPattern

FlowChainPattern Query
Get

resource
ID FlowChainPattern

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

42

Apply Pattern Command

Apply
pattern to
network

component

Pattern ID &
Bridge/Chain
ID / Neutron

Ports

Status

Standard Pattern Command

Set the
pattern for
automatic
application

Pattern ID Status

FlowBridgePattern Command
Create a

new pattern
Pattern Status

FlowPathPattern Command
Create a

new pattern
Pattern Status

ServiceChain Command
Create a

new chain
List of Neutron

Ports
Status

Table 5-1: SDK API description

5.2. Application Driven Design Approach

The features of the SDK are derived from real application development use cases
aimed at optimizing datacenter networks, and for supporting applications networking
requirements in the cloud. The SDK will support key T-Nova requirement of service
function chaining (SFC) between multiple NFVs that make up a network service. Other
SDK libraries & features will be derived from DC use cases geared towards
minimizing tunneling overheads, maximizing throughputs, enabling data path
redundancies, to name a few.

Figure 5-3: A reference development process for the SDK

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

43

The SDK design followed a top down approach, Figure 5-3: We analysed the potential
issues that exist in the current datacentre networks in order to use the SDN as a tool
to test and validate solutions to resolve those issues. Based on the analysis some use
cases were established in order to optimize the datacentre networks and facilitate the
development of networking applications. For instance, tenant segregation in
OpenStack hosts is an imperative for security and performance. To provide this, the
current OpenStack Neutron ML2 plugin uses tunnelling and tagging techniques such
as GRE and VxLAN. The trade-off applying these isolation mechanisms is an increased
throughput due to the bigger header that is created as a side effect from the
encapsulation. Overcoming complexity in large-scale cloud environments of several
hundred hosts and one tenant is essential in order to enable: efficient networking,
improved data centre orchestration, and optimized applications on the top of that
infrastructure. The SDK also should support the T-Nova requirements of enabling
service function chaining (SFC) between multiple NFVs in order to create services
offered by the T-Nova Marketplace. Overall the applications we have based the SDK
design on the following:

• Isolation Application: Ensure tenant segregation using novel non-GRE/VxLAN
tunneling mechanism for optimized packet header

• Resilience Application: Provide direct SDN control on a physical level enabling
on-demand switch provision and configuration

• Service Function Chaining: Gather T-Nova specific SFC requirements and
perform traffic classification and steering using the T-Nova deployed NVF

Based on this initial set of applications we derived and defined the required libraries
to be supported in the SDK based on the common functionalities from the use case
applications.

5.2.1. Isolation

The flow-programming model in SDK for SDN is connection based: Appearing Host
Ports are checked against their logical connectivity via the Neutron API. If a
connection is valid between two ports then a connection is established through
specific forwarding flows. Essentially this is a whitelist-based approach to isolation.
The Network Path (Connection) model was derived through analysing what isolation
means in a fully SDN enabled network. In classic networking connections have to be
filtered through tunnelling and VLANs, because the standard, reactive Ethernet switch
is not completely aware of which hosts belong to which IP networks. With a
centralized OpenFlow controller and an API to a datacentre networking service we
have a global and complete view of the desired connections and can quasi whitelist
them via OpenFlow.

5.2.2. Resilience

Normally in a network the scope of each flow is only the bridge it is applied to. But
resilience is harder to achieve because dead end flows can only be detected if the
scope of a flow includes the complete path of a network connection. Alternatively

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

44

forwarding flows can be forgotten (deleted) and reactively replied. Important to note
here are the trade-offs between resilience i.e., automatic link failure recovery time
(increases with flows deletion frequency) and the network performance (decreases
with number of controller messages) [28]. In the SDK for SDN, resilience is achieved
by a combination of several components such as: network path and LLDP modules.
The Network Path model has the scope of a complete connection in the network.
Additionally SDK for SDN depends on OpenDaylight LLDP modules from the
OpenFlow plugin to discover and update the network topology. The Network Graph
in the SDK discovers events for Link updates and failures on an established Network
Path. If such an event occurs, the Network Graph notifies the
FlowConnectionManager, which listens to path updates, that a new pattern needs to
be applied and that the old one needs to be deleted.

5.2.3. Service Function Chaining

The emergence of the NFV concept and the expansion of VNF solutions have enabled
service function chaining (SFC) among virtualized functions as a legitimate use case
for a cloud data centre (DC). Although still in a premature state, applying SFC
concepts in a fully virtualized environment requires changes and adaptations on the
existing protocols in order to be able to apply the same concepts and achieve the
desired behaviour on a network level. A typical burden in environments with fully
virtualized functions running on virtual endpoints is the aggregated protocol
encapsulation in the packets headers that is added as they traverse those endpoints.

Currently there are two key approaches to implement SFC solution in virtualized
scenario: packet based and flow based. The first requires manipulation of the packets,
for instance by introducing some changes in the header field (packet tagging or
rewrites) [29] or simply by applying protocols that introduce one more layer of
abstraction on the top of the existing header fields – designed especially for this type
of service. Such dedicated protocols has been ultimately introduced by Cisco and
leveraged in the Open Daylight (ODL) community to support the ODL SFC integral
project. In this case an additional header called NetworkServiceHeader (NSH), is
introduced in order to enforce end-to-end traffic as an overlay connection above the
service chain path. The problem of such solution is that it alters the datagrams and
this can potentially cause a problem in the case where the VNF that runs on some of
the virtual machine (VM) hops along the chain, requires the datagrams in their
original structure. One example is a virtual function such as vDPI (virtual deep packet
inspection) that requires the packets in their original structure in order to enforce a
correct behaviour. For further elaboration and in depth analysis of the currently
existing SFC solutions among the open source community please refer to T-Nova
Deliverable D4.21, Section 4.3 Traffic steering approaches in virtualized network.

In the Demos and Measurement Section we describe the initial experimentations and
demo created in order to test the feasibility of the previously described Open Flow
based approach. , 5-4 depicts the general idea. In this basic scenario, all the VMs are
collocated on the same physical host. Alice’s and Bob’s VMs are final PoP used in this
scenario as the ingress and egress points for the chain. We used iperf and ping to
establish traffic from Bob’s VM addressing Alice’s as the destination address. We set
up flows on the OVS br-int in order to steer the traffic through the VNF VM based on

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

45

matching the tap interfaces and port form each of the nodes. We previously made a
port mapping based on tcpdump to identify the mapping between the OVS and the
corresponding OpenFlow ports. Some of the flows look like the following:

ovs-ofctl	add-flow	
priority=10,in_port=$bob_of,dl_src=$bob_mac,dl_dst=$alice_mac,actions=output:$vnf_in_of	
ovs-ofctl	add-flow	
priority=10,in_port=$vnf_out_of,dl_src=$bob_mac,dl_dst=$alice_mac,actions=output:$alice
_of	

Figure 5-4: Simple SFC scenario: two endpoints and one VNF in same Open Stack node

As the image shows, the flow has the following direction:

Bob (eht0, bob_tap_tapxxx, bob_if_qvoxxx, bob_of) -> VNF (vnf_in_of, vnf_in_if_qvoxxx,
vnf_in_tap_tapxxx, eth1, eth2, vnf_out_tap_tapxxx, vnf_out_if_qvoxxx, vnf_out_of) ->
Alice (alice_of, alice_if_qvoxxx, alice_tap_tapxxx, eth0)

We defined two network in Neutron sfc_test1 and sfc_test2 for the ingress and egress
raw ports as the vTC VNF requires and run the VNF with the basic functionality of
specifying the packets per second (pps) using the following command:

vtc/PF_RING/userland/examples/pfbridge -a eth1 -b eth2

The VNF reads every incoming packet from interface a (assigned to eth1), and then
sends it out through interface b (assigned to eth2). The VNF pfbridge stands as a link
patch - the packets that reach the VNF will be read and forwarded the other interface.
The output shows the number of packets per second traversing the VNF bridge.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

46

In the first basic scenario we just wanted to prove a feasibility of the flow
programming approach over the OVS bridges and identify possible issues and
challenges that can come up from such an implementation.

The advantage of SDN is that since it is based on the Open Flow (OF) protocol, the
routing can be steered over a specific networking path by programmatically applying
OF based rules (flows) on the SDN controller or the virtual switch (OVS) inside the VM
hosting the VNF. This is the second approach to implement SFC, based on flow
programming rules, that leaves the packets untouched while applying actions on the
OF ports of the switches, in order to gear the desired route of the packets in the
chain. This routing logic is simplified compared to the first one, as it avoids
unnecessary overheads on the top of the already existing ones (ex. in the scenario of
inter tenant communication in OpenStack [30]) and the packets are left intact,
completely agnostic of the existing chain. A solution based on this approach requires
that the network environment is fully SDN capable in order to apply the chain rules
along the full virtual network graph. The resulting routing flows need to be
maintained to reflect alterations in the function chain (e.g. a VNF altering the packet
header could invalid the end-to-end chain).

The objective of this first experimental scenario was to engage as much as possible
from the ready-to-use T-Nova VNFs in order to test the functionality on the ZHAW
testbed and in the established SFC scenario. With this in mind we wanted to pinpoint
potential issues that can interfere with this approach and reiterate on alternative
solutions. Clearly the idea of developing SFC support library in the SDK is mainly
based on the specific T-Nova requirements that originate from the: VNFs,
Orchestrator, IVM and the other components interfacing the SDK. However the
optimal solution should be environment agnostic and must eventually work for any
SFC regardless of the deployment scope. From the direct he vTC VNF implementation
as deep packet inspector nDPI, the vTC permits changes in the header of the packet
by ToS manipulation in order to make specific traffic classification. Therefore the
previously described approach would not be valid for this advanced functionality of
the vTC VNF.

Another potential problem we identified is that the described solution would not
work fully in a scenario where two VNFs are running on the same physical host. The
reason for this is the non-deterministic path (the OVS of the physical host would not
recognize the hop order i.e. which of the two VNFs should the flow go to). Higher
level chaining abstractions and programming languages are needed in order to allow
service developers to programmatically declare the sequence the VNF traffic should
follow, leaving up to the underlying runtime system the actual implementation of
such rules [31] [32]. For the chain routing to be deterministic, there has to be a field
that keeps track of the chain hops. Using the VLAN ID as a workaround for this
purpose could be one possible approach, since the chain routing does not follow the
standard Ethernet routing.

In this initial deployment, we run into a common problem in Open Stack Nova – the
anti-spoofing rules. Nova uses its own or the Neutron’s API for security groups in
order to start an instance. Since these rules are applied by default the initial ping
between Alice and Bob did not work since the packets will be dropped, as they don’t
carry the source MAC or IP address that was allocated to the instance. To enable this

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

47

we had to initially set the --no-security-groups flag (in Open Stack Kilo release). The
drawback is that is works only once after the initial configuration. If the ping is
resumed the rules are reapplied and therefore the iptables have to be manually
manipulated to allow traffic on the 2 chains (in/out) per each of the tap interfaces.
We applied a workaround for this that was proposed as a patch (Noop driver) to the
nova-compute and neutron that stopped the creation of iptables rules [33].

MAC Rewrite Pattern for SFC

Based on the previous discussion about the potential SFC solutions in T-Nova
environment and in order to address the potential obstacles from the discussed
solution, we describe here the flow (Open Flow) pattern that uses MAC address
rewriting to enable SFC forwarding.

Traffic Classification

The solution we propose hereby is to reserve two fields in the MAC address: one for
the chain ID, and the other as a hop counter along the chain. The vTC is responsible
for the initial MAC rewriting. After traffic is classified its destination MAC address is
rewritten to the following format:

Destination MAC = <ID - Chain Identification>:<N - Number of Chain Hops>:00:00:00:00

The resulting virtual MAC address is matched along the Chain Path to forward the
classified traffic to the Nth VNF in the chain:

Destination MAC = <ID>:<N>:00:00:00:00/00:00:FF:FF:FF:FF

Hop Rewrite

On each egress bridge of a specific VNF, there is a rewrite flow that matches the
egress port of the VNF and the virtual destination MAC address and decreases the
Number of Chain Hops by 1. This way the forwarding is always clearly determined.
Forwarding to the next VNF is done via the following matching:

Destination MAC = <ID>:<N - 1>:00:00:00:00/00:00:FF:FF:FF:FF

This happens until N reaches 0.

Endpoint Rewrite

After the last VNF in a chain the packets are resubmitted to the VNF egress bridge (or
sent to an according table). Before being able to reach the endpoint host the
destination MAC address has to be rewritten to its origin. This is done via the
following match:

Destination MAC = <ID>:00:00:00:00:00/00:00:FF:FF:FF:FF

Destination IP = <Destination IP Address of specific Host>

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

48

The controller is aware of the MAC to IP mapping via the Neutron API and can
recover the original destination MAC address. The packet then gets resubmitted and
matches on standard L2 forwarding again.

5.2.4. Rationale and next steps

Our original goal was to maintain the packet structure along the service chain as if it
would have normally been forwarded from endpoint to endpoint. This approach was
not feasible in the current setup from the following two reasons:

• The VNF deployment (physical location of each VNF) may be in such a way
that we would lead to non-deterministic paths (Section 5.2.3).

• The introduction of the Traffic Classifier VNF, because it has to encode the
chosen service chain into the datagrams.

This solution is our way to deal with these problems, but it is not in any way set in
stone for the SDK at the current stage. Rather it shows one possible way we can
implement this using the SDK while having minimal overhead. Other possible
solutions could be based on tunnelling (MPLS/GRE) or other rewrite patterns, which
could be implemented using the Flow Pattern abstraction of the SDK.

5.3. Implementation

5.3.1. Source Code

The SDK for SDN source code is organized mainly into three parts: (1) the Network
Graph components representing the network data, (2) the service listeners and (3) the
Flow Components representing the OpenFlow template engine. Also there is some
organisational glue and I/O handling around it that can be ignored in this section.

5.3.1.1. OpenDaylight OSGI Service Handlers

These handlers can be categorized in three parts:

• OVSDB Southbound handlers: update the graph based on nodes, bridges,
ports updates

• Neutron handlers: update the Host Ports of the graph
• OpenFlow plugin handlers: update the topology links in the graph

5.3.1.2. Graph Components

The following are the components in the Network Graph, Figure 5-5:

• INetworkOperator: graph container
• INodeOperator: represents an OVSDB Node (container for bridges)
• IBridgeOperator: represents an OVDSDB Bridge
• ILinkPort: port which links to another port
• IHostPort: neutron port & OVSDB port attached to nova instance

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

49

• IInternalPort: internal OVSDB port

Figure 5-5: UML diagram of the Network Graph components

5.3.1.3. Flow Components

The following UML depicts the flow related components, Figure 5-6:

• IFlowBridgePattern generate Flows from and for single IBridgeOperators
• IFlowPathPattern generate Flows from and for INetworkPaths which are

mainly IBridgeOperator sequences with end to end connection context
• IFlowChainPattern generate Flows from and for IServiceChain which are

sequences of sequences of IBridgeOperators and chaining context

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

50

5-6: UML diagram of the flow related components

5.3.2. Deployment

1. SDN Network deployments: SDK for SDN only supports OVS based, fully SDN-
enabled networks.

2. OpenStack: SDK for SDN is built and tested for OpenStack Kilo. The default
FlowChainPattern for service chaining was tested by applying the Noop driver for
disabling the IP tables (explained in the section above).

3. OpenStack cleanup: An OpenStack installation has to be cleaned up as described
the OpenDaylight integration manual.

5. OVS setup: In addition to the OVS clean up and the compute node OVS have to be
interfaced to physical NICs.

6. OpenDaylight installation: Use the standard OpenDaylight installation for
OpenStack, but without installing the Karaf features. The only feature which has to be
installed is "SDK for SDN", which will resolve its dependencies automatically.

5.3.3. Discussion

Metering, QoS and Load balancing

The SDK could support Open Flow meters at the same abstraction level as flow
programming. This would allow applications to provide QoS or load balancing. For
example a service chain could be balanced on a network level by adding redundant
VNFs to the same chain hop for slower VNFs and then divide the load by bandwidth
meters. The existing Network Path abstraction fit well into the QoS idea because the
overview of the connection already exists in the SDK.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

51

Regarding dynamic VNF injection, currently the workflow of updating a service chain
would require deleting the one that needs to be updated and creating a new one. We
are considering implementing an update command for service chains when the
specification finalizes.

Service Chains are currently described as flat lists, so branching chains is not possible
without creating two overlapping chains, which could lead to problems in the
network state because overlapping OpenFlow flow mods are not considered unique.
An Open Flow instruction is identified by its matching criteria. In the case when a
network operator would overlap custom flow patterns for two different Service
Chains, then changing one of them in the overlapping section would also change the
other. So to enable branching functionality we need to implement a more general
data structure for the Service Chain API such as a tree and otherwise disallowing /
handling flow overlap so it is clear for the user that changing the state of the Service
Chains only influences one chain at a time.

5.4. Demos, Tests & Measurements

This section describes the initial test case scenarios we performed inside Task 4.3
along with the process of software development. The fist demo is related to the
service function chaining use case based on the flow programming approach. It uses
one of the T-Nova VNFs to make traffic classification and branch the flow in two
different chains. The measurements part includes a basic performance
characterization of the non-tunnelling traffic between two OpenStack VMs. This is
done in terms of comparison between the bandwidth and the latency in case of
conventional GRE based isolation and the non-tunnelling based on Open Flow.

5.4.1. SFC demo with T-Nova VNF

We set up SFC tests with integrated T-Nova VNFs to explore possible flow patterns
and technical challenges. In our test we established two distinct chains that are
separated through the vTC VNF. The flow programming for this SFC example has to
be tightly coupled with the output traffic of the vTC because it will manipulate
packets based on their classification, which then determines the chain matching
pattern via a distinctive property. The distinctive property is this case is the ToS field,
so we forwarded the traffic based on the ToS field from the vTC onwards.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

52

Figure 5-7: Open Flow based chaining using traffic classifier VNF

Figure 5-7 describes the setup of this test. Alice and Bob represent the
communication endpoints. To reach the first VNF in the chain: vTC1, the traffic needs
to be specifically forwarded to it. The first VNF represents a traffic classifier. Note that
this means that SFC forwarding has to be predetermined for an endpoint. Also the
traffic flow is unidirectional in this case. The traffic classifier in this test is
distinguishing between UDP/ICMP and TCP traffic to determine the chain path, which
is then mapped to a ToS field - 8 and 4 respectively.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

53

Figure 5-8: Open Flow based SFC using multiple instances of T-Nova vTC VNF

Figure 5-8 depicts the topology of the scenario along with the placement of the VNF
VMs and the endpoints inside each of the OpenStack nodes on the testbed. In this
scenario we used all the physical nodes of the testbed as hosts of the VNFs and as
explained in the SFC section, we applied the Noop driver to disable the firewall rules
in each of the nodes. As can be seen on the figure, the Linux Bridge along with the
tap interfaces that previously existed inside the hosts has disappeared. This technique
stopped Nova from using the hybrid VIF plugging strategy, where it places a Linux
Bridge in-line between the instance's tap and br-int. Instead, it plugged the VIF
(qvoxxx…) straight into br-int.

This approach has confirmed an evident issue when employing the specific VNF: If
the ToS field is the only distinctive property for the forwarding decisions, then some
paths cannot be deterministically established. To be able to make forwarding
decisions in cases where two chain hops such that "number of hops to VNF B" + 1 <
"number of hops to VNF B" while VNF A and VNF B are on the same switch, there has
to be an additional information: The core of this problem lies in the fact that a
bridge/switch does not have the context of a whole connection path let alone a
chain. So the minimal information, which has to be encoded in the packet needs to
have two components in reduced form, or in other words, a tuple of two values (a, b)
where "a" describes the next hop by uniquely identifying it or by counting the
remaining hops and "b" which either maps to topological switching instructions (like
in source routing) or maps to a unique chain identification.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

54

5.4.2. Initial measurement scenarios

Here we describe the initial set of network characterization measurements we
performed in the case of tenant segregation based on using GRE tunnelling protocol
versus the case when we program the OVS and the switch to establish VM
connection via direct L2 forwarding using Open Flow.

Minimalizing the networking and protocol overhead for isolated traffic in the
datacenter is one of the baseline application use cases for the SDK. We measured the
performance differences between tunnelled GRE VM to VM traffic and direct L2 VM
to VM traffic on our previously described OpenStack testbed. Following are the two
measurement scenarios:

Scenario I: Standard OpenStack + GRE forwarding

The standard GRE network setup is described in the testbed section. In short: The
integration bridge forwards the traffic to the tunnel bridge, where VLAN IDs get
translated to GRE tunnel IDs (and vice versa) for inter node connections.

Scenario II: Direct L2 forwarding

The alternative is to directly attach the external bridge to a NIC on a compute node.
We specifically forwarded the tested traffic though the external bridge and created a
single L2 domain via Open Flow. The traffic is still isolated without using VLAN or GRE
because we are specifically whitelisting the source and destination hardware
addresses.

Latency

The latency was measured via the ping utility. A thousand standard sized packets
where sent with a 0.5s interval. Alice was the receiver and Bob was the sender.

We encountered a significant latency difference gain for the direct L2 forwarding,
Table 5-2.

Type GRE Direct

Min 1.561ms 0.440ms

Max 2.029ms 1.390ms

Avg 1.747ms 1.126ms

Mdev 0.090ms 0.119ms

Table 5-2: Comparative latency values for GRE and direct L2 forwarding

Throughput

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

55

The throughput was measured via the iperf utility with standard packet size and five
times ten seconds of traffic, where Alice (receiving) was the server and Bob the client
(sending).

However the throughput did not change significantly for both TCP and UDP
measurements, Table 5-3.

Protocol GRE Direct

TCP 773Mbits/sec 769Mbits/sec

UDP 421Mbits/sec 420Mbits/sec

Table 5-3: Comparative throughput values for GRE and direct L2 forwarding

We realized that we didn't take enough parameters into consideration, since
throughput and latency are not orthogonal values. To determine the bottleneck(s) we
decided to do an additional test run with a more extensive specification.

The additional parameters, which can influence the effective throughput for the
future testrune, include the following:

• Variable packet sizes
• TCP Segmentation Offloading (TSO) enabled/disabled
• Generic Segmentation Offloading (GSO) enabled/disable

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

56

6. SDN INTER-DOMAIN SOLUTIONS

6.1. SDN for Docker Containers

Currently a large amount of service and software is running on fast and distributed
infrastructures that provide the necessary tools to synchronize among a numerous
data centres. These apps are containerized meaning that the application is written on
the container interface rather than on top of a specific operating system. This allows
easier portability. Containers neither care about the underlying networking
infrastructure nor have direct connection with the SDN infrastructure. However
Docker uses virtual networks to connect containerized applications to the local
network, and it connects containers with other containers on the same host. In this
respect a number of tools are identified such as Flocker [26] or Rancher [27] where
they provide the capability of using virtual overlay networks to connect containers
across hosts and over larger networks (such as data centers, wide area networks and
the Internet).

Furthermore, Docker acquired SocketPlane [28] as much for the talent as the
technology. The latter company chief executive is Madhu Venugopal, a former senior
technical leader at Cisco. SocketPlane, founded in October 2014, has focused on
making it possible to network that thousands of Docker containers do interact with
each other based on the computing task. The containers could host applications on a
PC or data centre server. SocketPlane is developing a hybrid networking model that
builds on SDN principles and applies them to native Docker environments. It is
developing a programmatic platform that puts DevOps in a networking context. In
this respect, SocketPlane builds [29] “VXLAN tunnels between hosts to connect
Docker containers on the same virtual (logical) network with no remote/external SDN
controller needed.” Users will interact with a CLI wrapper for Docker that also controls
how SocketPlane virtual networks are created, deleted and managed. SocketPlane
uses Consul [30] as a lightweight control plane. It connects to the Consul cluster
through Open vSwitch for the network connectivity. Once a Docker host is added, the
agent runs as a Docker instance and connects into the cluster. The container then
looks like a VM.

Additionally, multi-host SDN [34] is now available giving the ability to distributed
applications to use multi-container in order to seamlessly communicate across IP
networks, while being portable across any network infrastructure. This new ability is
providing application portability throughout the application development lifecycle.

Finally the new trend in Docker is the use of the Plugins Mechanism not only for
storage but also for networking plugins incorporating in this way a number of project
and technologies such as Project Calico [35], Nuage Networks [36], Cisco [37],
VMware [38], and Midokura [39]. Docker brings changes that will define a new
generation of networking technologies that leverage containers across multiple
machines and hosts.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

57

6.2. SDN in Multiple Connected Datacentres

A typical scenario where the SDN controller and a respective SDK solution can find
application is between different data centres. An example is OpenContrail – an open
source network virtualization platform for the cloud. It is based on MPLS L3VP EVPN
(for layer 3 and 2 overlays) and it coexists, as a Neutron plugin in OpenStack, with
components such as: (1) vRouter that runs on top of the hypervisor in the host kernel
and holds IP tables for each tenant (2) Contrail [31] agent that communicates to the
SDN control node, passing BGP and Netconf control specific messages via XMPP. In
the forwarding plane, it supports MPLS over GRE/UDP and VXLAN.

The Contrail solution supports function chaining between virtual networks that get
connected as a result of a constraint based policy language. Policy rules look like the
following:

allow any src-vn -> dst-vn svc-1, svc-2

This rule allows all traffic to flow from virtual network src-vn to virtual network dst-vn
and forces the traffic through a service chain that consists of service svc-1 followed
by service svc-2. In the previous example, the rule is applied when any virtual
machine in virtual network src-vn sends traffic to any virtual machine in virtual
network dst-vn. The system is mostly focused on traffic steering i.e injecting the
traffic flows into the right virtual machines using a virtual interface. Virtual machines
provide network services such as firewall, DPI, IDS, IPS, caching, etc. The system
creates additional routing instances for service virtual machines in addition to the
routing instances for tenant virtual machines.

Traffic is steered in the following ways:

• Route targets for route paths are modified in order to influence routing tables
import/export from a routing instance to another routing instance.

• The next hops, labels, or both are modified as they are leaked from routing instance
to routing instance; this is to force traffic to flow through the right sequence of
routing instances and the right sequence of corresponding virtual machines.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

58

Figure 6-1: Data Centre Interconnect (DCI) using Contrail

Data Center Interconnect (DCI) is a Contrail use case, where multiple data centers are
interconnected over a wide area network (WAN), Figure 6-1. Data centers can be in
the following states: active/standby for disaster recovery, temporarily active/active for
disaster avoidance, permanently active/active. In the active/active case, a tenant
might have virtual machines in multiple data centers. DCI puts all the VMs of a given
tenant spread over the data centers on the same virtual tenant network.

DCI must address the following network requirements:

• Enable storage replication
• Allow tenant networks to use overlapping IP address spaces across data

centers
• Provide global load balancing (GLB)
• Allow VM migration across data centers for disaster avoidance

Multiple transport options are available for DCI interconnections, including dark fiber,
SONET/SDH, DWDM, pseudowires, Layer 3 VPNs, EVPNs, etc. Unlike the data center
network, bandwidth is a scarce resource in the DCI WAN, so traffic engineering (TE) is
often exploited to use available resources efficiently.

6.3. SDN in LTE & Small Datacenters

The role of SDN controller gains more presence and importance within the emerging
NFV world. On the other side, the VNFsare the main technological glue between
Telco’s and Clouds in a novel concept of ”cloudifying“ LTE functions as related to
evolved packet core (EPC) and radio access network (RAN). There exist at a current
stage network function deployments (VNFs) and support for components such as
BSS, HSS, RAN, etc. [32]. In the LTE (5G) domain the SDN controller plays a
fundamental role in interconnecting those virtual functions, becoming an entity to
enforce the rules of traffic steering and chaining among a logical network graph, in

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

59

order to achieve certain service functionality. Applying the SFC concept inside a Telco
scope is still a challenging work in progress that is going to be addressed by several
ongoing European projects within the 5GPPP initiative such as SESAME [https://5g-
ppp.eu/sesame/]. Adopting SDN in this mixed ecosystem of both cloudified and
conventional on premise network functions deployed over bare metal, requires
further analysis on the NFV concepts in such a scenario and a careful analysis of the
requirements needed to trigger the desired outcome. The role of the controller in this
holistic approach has been analysed in the literature and some experimental and
industry implementations have already been presented [33] [34] [35] [36] [37].
However in this scenario, SDN based SFC is still an unexplored area, which will be for
instance addressed in the scope of the SESAME project.

Within the open source community like OPNFV, it has recently been stated by
Myung-Soon Park, Head of Emerging Technology R&D Centre from SK Telecom, that
OPNFV plays a fundamental role in the process of adopting and accelerating
"innovative Telco solutions, including 5G, by defining tightly integrated and
standardized environment". This shows that SK Telecom is highly interested in
combining OPNFV with 5G networking. SK Telecom will realize a 5G solution where
OPNFV plays an important role in the 5G era. They see the Arno release to be a good
candidate towards materializing the specifications.

6.4. SDN for Robotics

Robotics is shaping up to be one of the most rapidly developing areas of modern
science and is poised to change the way people go about their daily lives by both
taking up and fundamentally transforming existing jobs but also by creating new
ones. This raises important social and ethical questions, which are outside of the
scope of T-NOVA, but it also raises new challenges in the area of inter-networking of
complex system that include such devices.

Given that robotics includes a very wide swath of application potentially ranging from
autonomous vehicles to military drones and care-taking robots for the elderly it is
only natural that this devices will play varying roles depending on the use case in
which they are applies. Robotics devices will also most likely be end nodes and not
routers in a network, although the latter can’t be completely ruled out, as might be
the case in an ad-hoc network. For the remainder of this section we will treat robotics
devices as potential end nodes in a network.

One of the factors that make SDN lucrative for robotics is the flexibility it can offer in
the face of rapidly changing network topologies. This will almost certainly be the case
since most robotics systems are expected to be highly mobile and change
environments constantly. Imagine, for instance, an autonomous vehicle that drives
into the parking lot of a shopping centre. That vehicle is probably already part of a
couple of separate networks (maybe the owner’s home network, a general road
monitoring and traffic condition update network and the vehicle manufacturer’s
maintenance network) but also needs to be added to the shopping centres network
at that point in time (to receive for example updates on available parking spaces or
shopping offers). Performing these tasks manually for a large volume of vehicles (like
a busy Saturday in any shopping centre) will be impossible. SDN could help automate

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

60

this process by automatically registering the vehicle and setting up the correct
network connectivity and access permissions.

This is just one example that attempts to highlight how SDN could be of great help in
the area of future robotics. It goes without saying that there’s a bunch host of other
examples probably too numerous to list here that can similarly benefit immensely
from the automated network service configuration that SDN can enable.

With this in mind, an SDK for SDN can provide valuable services in this area. One such
service is facilitating debugging and testing of a system, which consists of robotics
devices. Since such a device can be anything, ranging from a small drone to a big and
expensive autonomous vehicle and taking into account that mobility will play a
primary role in such systems, it becomes clear that the prospective developer will not
have access neither to physical hardware for all devices nor to a complete test bed of
the system. Thus an SDK that provides him with debugging capabilities as well as a
simulation & emulation environment for testing of complex scenarios can become a
useful component in such case.

6.5. SDN for FPGA Devices

FPGAs form a special class of devices that can be used within a network. This is
because an FPGA is essentially a blank slate that can be moulded to whatever its user
wants it to be. This means that it’s very possible to create an SND-enabled design
that can be configured remotely over one of the standard SDN protocols.

This is the premise behind Xilinx’s SDNet Error! Reference source not found., which
consists of a Domain Specific Language (DSL) that is used to specify the behaviour of
a system, which is then generated and programmed on the FPGA by a specialized
compiler tool chain. The resulting circuit’s functionality can then be modified by
programming a flow table dynamically as with every router. In this regard the FPGA
has been essentially made into a standard SDN-enabled network device and can be
used like any other switch [40].

What makes FPGAs more flexible than a typical, off-the-shelf switch is that it provides
the means to perform a two-step configuration. The first step, detailed in the
previous paragraph is equivalent to a standard switch. The second step is the
complete reconfiguration of the device hardware to fundamentally alter the device’s
functionality. For instance, the same device could in one moment be an MPLS router
whose flow tables are dynamically manipulated via SDN and then it can be
reprogrammed to be an SDN-enabled BGP router. An FPGA allows for this
dynamically recasting of the hardware in an almost seamless transition from system
to system.

Since FPGA-based network devices like the ones that can be created with SDNet are
currently not compatible with existing SDN standards, SDK for SDN can bring
concrete advantages in wrapping the required SDNet function calls appropriately so
providing a unified interface with other SDN-enabled devices. Furthermore SDK for
SDN can provide tangible benefits on the debugging and testing front by providing
emulation platforms that will allow the developer to test the architectures created

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

61

without having the actual hardware present. This can significantly speed up the
development phase.

6.6. Kernel-based SDK: IO VISOR project

The IO Visor Project is an open source project and gets support from a wide
community of developers. The IO Visor Project enables totally new ways to create
network functions. Figure 6-2 shows where the IO Visor Project stands in the Open
Networking Ecosystem (ONE).

Figure 6-2: IO Visor project placement inside ONE

The main problem IO Visor wants to face is the fact that the Linux kernel isn't
virtualized. This is why the kernel has to handle each request after another. That
means that the kernel has to be recompiled in order to accommodate a new request.
Now what IO Visor wants to achieve is that virtual machines can be added more
spontaneously to the kernel space. This has the impact that developers would be able
to run multiple VNFs together in the kernel with network function virtualization. Also
this would allow creating a complete virtual network that is broad across multiple
compute nodes. In this case data-plane processing would all be done by the kernel.
IO Visor engine is the keyword, which makes mechanism like this possible. These
engines, developer tools and attendant plug-ins are the things that the IO Visor
project wants to achieve. If they succeed, multiple tasks could be done in kernel
space. Figure 6-3 shows on the left side the networking framework, and an example
workflow using the IO Visor SDK, on the right side.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

62

Figure 6-3: Left: The eBPF framework for networking. Right: Workflow from the IO Visor
SDK-driven development

Use Cases: The IO Visor technology has been out and in use for some years now and
there are some use cases, which are implemented or discussed very actively at the
moment. They focus on “Network”, “Security” and “Tracing”.

Network: In networking, IO Visor Project enables the implementation of advanced
networking functions like L3 and NAT in-kernel that are fully distributed across
unlimited compute nodes and chained in-kernel to create any network topology
which is moving through a virtual or a physical type of deployment.

Security: Micro-segmentation, security groups and full-fledged firewalling are the
security functions that IO Visor Project enables to be implemented in-kernel and
hence distributed. All this is done with providing the optimal point for traffic within
the application.

Tracing: Real-time tracing as well as monitoring applications are widely offered by
the IO Visor Project even with the benefit that they are directly built into the kernel.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

63

7. CONCLUSION & NEXT STEPS

In this deliverable we summarized the work related to implementation of the SDK in
T-Nova Task 4.3 “SDK for SDN”. The architecture of the SDK was described along with
the internal components and the interfaces to the Open Daylight, Open Stack, as well
as some of the T-Nova components. The development approach was described
following the use-case driven design, giving more details on traffic steering
approaches using SDN to support a native Service Function Chaining as initial
showcase for integration of the SDK within the T-Nova environment. Analysis of
existing SDK implementations in SDN was presented and compared to the SDK
developed in T-Nova. We presented extensive State of the Art for the hot
technologies where SDN takes place in order to point out the high need for a
component such as SDK to further support the adoption of SDN in the industry, and
the academy as well. There is high focus yet dedicated on the improvement of the
SDN controller libraries to enable support of the native networking protocols. This
task’s focus instead is beyond the work on the actual SDN tool, and rather devoted to
the exploitation of the current SDN technology in order to bring a bottom up
solution for the companies and the providers to implement an SDN based application
in a straightforward manner, aided by the SDK.

Furthermore the task T4.3 has conducted initial test validation of the current
approach and is currently dedicated on extensive work to apply complete test
scenarios in order to proof and validate the achievements of the SDK compared to
the standard networking implementations.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

64

8. REFERENCES

[1] Google Fellow and Technical Lead for Networking Amin Vahdat. (2015, June)
Cloud Platform. [Online]. http://googlecloudplatform.blogspot.ch/2015/06/A-
Look-Inside-Googles-Data-Center-Networks.html

[2] Google. (2015) [Online].
http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p183.pdf

[3] Facebook. (2015) [Online]. http://www.statista.com/statistics/264810/number-of-
monthly-active-facebook-users-worldwide/

[4] Yaakov Stein. SDN & NFV OpenFlow and ForCES. [Online].
http://ietf.org/edu/tutorials/sdn-nfv-openflow-forces.pdf

[5] OPNFV. [Online]. https://www.opnfv.org/

[6] OPNFV. White paper. [Online].
https://www.opnfv.org/sites/opnfv/files/pages/files/opnfv_whitepaper_092914.pd
f

[7] OPNFV. FAQ [Online]. https://www.opnfv.org/news-faq/faq%20-%20n144

[8] sdxcentral. What is OPNFV. [Online].
https://www.sdxcentral.com/resources/nfv/opnfv/

[9] OPNFV. Technical Overview. [Online]. https://www.opnfv.org/software/technical-
overview

[10
]

IETF. Service Function Chaining (SFC) Architecture. [Online].
https://datatracker.ietf.org/doc/rfc7665/

[11
]

Redhat. [Online]. https://www.rdoproject.org/networking/networking-in-too-
much-detail/

[12
]

OpenDaylight. Lithium. [Online]. https://www.opendaylight.org/lithium

[13
]

OpenDaylight. Project Proposals:SDnApp-SDK. [Online].
https://wiki.opendaylight.org/view/Project_Proposals:SDNApp-SDK

[14
]

Juniper. Junos Space SDK. [Online]. http://www.juniper.net/de/de/products-
services/network-management/junos-space-sdk/

[15
]

Cisco. [Online]. http://blogs.cisco.com/wp-content/uploads/blog5.jpg

[16
]

Sdx central. What is Cisco onePK. [Online].
https://www.sdxcentral.com/resources/cisco/cisco-onepk/

[17 GitHub. [Online]. https://github.com/fp7-netide/IDE

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

65

]

[18
]

eclipse marketplace. NetIDE. [Online].
https://marketplace.eclipse.org/content/netide

[19
]

OpenDaylight. Project Proposals:NetIDE. [Online].
https://wiki.opendaylight.org/view/Project_Proposals:NetIDE

[20
]

PLUMgrid. PLUMgrid Technologies. [Online].
http://www.plumgrid.com/technology/plumgrid-platform/

[21
]

midokura. MidoNet Features. [Online]. http://www.midokura.com/midonet/

[22
]

nuagenetworks. Nuage Networks collaborates with Arista Networks for Open
Networking. [Online]. http://www.nuagenetworks.net/news/nuage-networks-
collaborates-with-arista-networks-for-open-networking/

[23
]

IBM. IBM Distributed Overlay Virtual Ethernet (DOVE) networking. [Online].
http://virtualization.info/en/news/2012/09/ibm-distributed-overlay-virtual-
ethernet-dove-networking.html

[24
]

Calico. Calico. [Online]. http://www.projectcalico.org/

[25
]

OpenDaylight wiki. (2015, Dec.) OpenStack and OpenDayligh integration.
[Online]. https://wiki.opendaylight.org/view/OpenStack_and_OpenDaylight

[26
]

RDO. (2015, Dec.) RDO networking helium-odl-juno-openstack. [Online].
https://www.rdoproject.org/networking/helium-opendaylight-juno-OpenStack/

[27
]

RDO. Networking in too much detail. [Online].
https://www.rdoproject.org/networking/networking-in-too-much-detail/

[28
]

Marcial P Fernandez, "Comparing OpenFlow Controller Paradigms Scalability:
Reactive and Proactive," in 27th International Conference on Advanced
Information Networking and Applications, 2013.

[29
]

OpenDaylight. Service function Chaining in OpenDaylight using NSH protocol.
[Online]. https://wiki.opendaylight.org/view/Service_Function_Chaining:Main

[30
]

Openstack. Overlay encapsulation in DC network. [Online].
http://docs.openstack.org/developer/neutron/devref/openvswitch_agent.html

[31
]

Theophilus Benson, Nick Feamster, and Dave Levin Bilal Anwer, "Programming
slick network functions. In Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research (SOSR '15)," New York, NY, USA, 2015.

[32
]

Riggio et al., "“Programming Wireless Network Functions”, in Proc. Of IEEE NOMS
2016," Instabul, Turkey, 2016.

[33
]

Github. [Online]. https://gist.github.com/djoreilly/db9c2d32a473c6643551

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

66

[34
]

Docker blog. (2015, Dec.) Docker multi-host networking. [Online].
https://blog.docker.com/2015/06/announcing-docker-1-7-multi-host-
networking-plugins-and-orchestration-updates/

[35
]

Project Calico. (2015, Dec.) Project Calico libnetwork. [Online].
http://www.projectcalico.org/calico-docker-1-7-libnetwork/

[36
]

Nuage. (2015, Dec.) Nuage networks. [Online].
http://www.nuagenetworks.net/libnetwork-is-license-to-hyper-scale-for-docker-
and-sdn/

[37
]

Cisco. (2015, Dec.) Cisco DC networks. [Online].
http://blogs.cisco.com/datacenter/docker-and-the-rise-of-microservices

[38
]

VMware. (2015, Dec.) VMware Docker network. [Online].
http://blogs.vmware.com/networkvirtualization/2015/06/vmware-docker-
networking.html

[39
]

Midonet. (2015, Dec.) Midonet Docker networking. [Online].
http://blog.midonet.org/docker-networking-midonet/

[40
]

Xilinx. (2015, Dec.) Xilinx sdnet. [Online]. http://www.xilinx.com/products/design-
tools/software-zone/sdnet.html

[41
]

OPNFV. OPNFV Arno Release. [Online]. https://wiki.opnfv.org/releases/arno

[42
]

OPNFV. Technical Overview. [Online]. https://www.opnfv.org/software/technical-
overview

[43
]

OPNFV. Pharos Project: Community Test Infrastructure. [Online].
https://wiki.opnfv.org/pharos

[44
]

OPNFV. OpenStack Based VNF Forwarding Graph. [Online].
https://wiki.opnfv.org/requirements_projects/openstack_based_vnf_forwarding_g
raph

[45
]

OPNFV. Project: Service Function Chaining. [Online].
https://wiki.opnfv.org/service_function_chaining

[46
]

IETF. Service Function Chaining (SFC) Architecture. [Online].
https://datatracker.ietf.org/doc/rfc7665/

[47
]

PLUMgrid. PLUMgrid Technologies. [Online].
http://www.plumgrid.com/technology/plumgrid-platform/

[48
]

ClusterHQ. About Flocker. [Online]. https://clusterhq.com/flocker/introduction/

[49
]

au courant technology. Docker Virtual Networking with Socketplane.io. [Online].
http://aucouranton.com/2015/01/16/docker-virtual-networking-with-
socketplane-io/

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

67

[50
]

Rancher. Introducing the First Platform for Building a Private Container Service.
[Online]. http://rancher.com/rancher/

[51
]

socketplane. socketplane. [Online]. http://socketplane.io/

[52
]

Consul. CONSUL. [Online]. https://www.consul.io/

[53
]

R., A. Bradai, T. Rasheed, T. Ahmed, K. Slawomir, and J. Schulz-Zander Riggio,
"Virtual Network Functions Orchestration in Wireless Networks," in 11th
International Conference on Network and Service Management (CNSM), Barcelona,
2015.

[54
]

11th International Conference on Network and Service Management (CNSM),
"“SoftAir: A software defined networking architecture for 5G wireless systems“ in
Computer Networks, vol. 85, no.C, pp.1-18," 2015.

[55
]

A. Basta, W. Kellerer, M. Hoffmann, K. Hoffmann, and E.-D. Schmidt, ""A Virtual
SDN-Enabled LTE EPC Architecture: A Case Study for S-/P-Gateways Functions,"
in Future Networks and Services (SDN4FNS)," 2013.

[56
]

Junaid Qadir, Basharat Ahmad, Kok-Lim Alvin Yau, Ubaid Ullah Aqsa Malik, "QoS
in IEEE 802.11-based wireless networks: A contemporary review, Journal of
Network and Computer Applications, Volume 55," 2015.

[57
]

S. Chourasia and K.M. Sivalingam, ""SDN based Evolved Packet Core architecture
for efficient user mobility support," in Network Softwarization (NetSoft)," 2015.

[58
]

Wei Song Jun He, "Smart routing: Fine-grained stall management of video
streams in mobile core networks, Computer Networks, Volume 85," Pages 51-62,
2015.

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

68

9. LIST OF ACRONYMS

Acronym Description

API Application Programming Interface

ARP Address Resolution Protocol

BGP Border Gateway Protocol

BUM Broadcast, Unknown unicast and Multicast

CP Control Plane

CPU Central Processing Unit

CRUD Create, Read, Update, Delete

DC Data Centre

DCN Distributed Cloud Networking

DOVE Distributed Overlay Virtual Ethernet

DPI Deep Packet Inspection

FTP File Transfer Protocol

FW Firewall

GPE Generic Protocol Extension

GRE Generic Routing Encapsulation

GW Gateway

HA High Availability

HPE Hewlett Packard Enterprise

HTTP HyperText Transport Protocol

IP Internet Protocol

ISP Internet Service Provider

IVM Infrastructure Virtualisation Management

JVM Java Virtual Machine

L2 Layer 2

L3 Layer 3

L4 Layer 4

LB Load Balancer

MAC Medium Access Control

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

69

MD-SAL Model-Driven Service Abstraction Layer

ML2 Modular Layer 2

MPLS Multi-Protocol Label Switching

NAP Network Access Point

NFV Network Function Virtualisation

NFVO NFV Orchestrator

NIC Network Interface Card

NSH Network Service Header

NVGRE Network Virtualisation using Generic Routing Encapsulation

ODL OpenDaylight

OF Open Flow

OSGi Open Services Gateway initiative

OVS Open vSwitch

OVSDB Open vSwitch Database

POP Point Of Presence

QOS Quality of Service

REST Representational State Transfer

SDK Software Development Kit

SDN Software Defined Networking

SF Service Function

SFC Service Function Chaining

SFF Service Function Forwarder

SFP Service Function Path

TTL Time-To-Live

UDP User Datagram Protocol

UUID Universal Unique Identifier

VIM Virtual Infrastructure Manager

VLAN Virtual Local Area Network

VM Virtual Machine

VNFAAS VNF As A Service

VNFFG Virtual Network Function Forwarding Graph

VPN Virtual Private Network

T-NOVA | Deliverable D4.31 SDK for SDN

© T-NOVA Consortium

70

VRS Virtualised Routing & Switching

VSC Virtualised Services Controller

VSD Virtualised Services Directory

VSP Virtualised Services Platform

VTEP VXLAN Tunnel Endpoint

VTN Virtual Tenant Network

VXLAN Virtual Extensible Local Area Network

WAN Wide Area Network

WICM WAN Infrastructure Connection Manager

