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Executive Summary 

This deliverable presents the current activities and interim results of the Task 4.2 of 
the T-NOVA project, focused on the implementation and characterisation of the T-
NOVA’s SDN Control plane.  

Task 4.2 is specifically conceived to develop an SDN control framework allowing the 
management of virtual networks over datacentre physical infrastructures, so as to 
support the deployment of VNF services. To this end, relevant issues related to 
network isolation and traffic steering have been addressed when providing 
connectivity services, handling either WAN or intra-datacentre connections. In this 
context, leveraging on state-of-the-art network virtualisation frameworks, several 
approaches are proposed and detailed. 

In addition, a major activity within this Task concerned the virtualisation of the 
control plane to overcome SDN centralisation issues. Research has focused on load-
balancing mechanisms in distributed-virtualised controllers, with the purpose of 
providing an elastic control plane able to scale with the workload. Moreover, 
experimental analysis on the capability of the SDN controller to ensure persistence of 
the network configuration in case of failures is also treated. 

Specifically, starting from the analysis of the key requirements affecting the SDN 
control plane procedures, a survey of the current state-of-the-art SDN frameworks 
has been conducted, aiming at selecting the reference baseline for the SDN Control 
Plane implementation. Then, the architecture of the Control Plane has been designed, 
identifying  the functional components and additional features required to meet the 
T-NOVA needs. In this regard, several activities focused on the research, design and 
implementation aspects of the Control Plane core functionalities have been carried 
out. They include (i) approaches for steering traffic in SDN networks, (ii) algorithms 
for balancing the workload among multiple controllers, (iii) techniques for providing 
network slicing and isolation with support to QoS, (iv) analysis of the persistency of 
network configuration and, finally, (v) solutions to provide integration of WAN 
connectivity in T-NOVA.  

The content presented in this deliverable reports the progress on the above-
mentioned activities.	
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1. INTRODUCTION 

In the T-NOVA system the SDN Control Plane plays a key role, being responsible at 
southbound for the configuration, management and monitoring of the SDN-
compatible network entities, while supplying northbound the orchestrator and 
management systems with enhanced network connectivity services. 

It is a fact that SDN may benefit NFV applications with a scalable, elastic and on-
demand network infrastructure, leveraging the programmability of the southbound 
network elements. However such elements, both physical and virtualised, need to be 
properly configured to fit the applications’ requirements. This tricky task represents 
the main goal of the SDN Control Plane. 

In this regard, leveraging existing SDN management frameworks, Task 4.2 proposes 
to design and develop an enhanced SDN controller for network services provisioning 
to support NFV applications. The activities within the task have been split in three 
main working areas:  

• Programmatic network control:  Dynamic and intelligent control of network 
resources, as well as flexible establishment of service function chaining 
through configuration of policies for steering network traffic. 

• Network virtualisation: It concerns the deployment of virtual networks 
supporting QoS and overlay encapsulation, through a deep analysis of 
frameworks (i.e. Open vSwitch), protocols (i.e. Openflow [MAB+08]) and 
tunnelling solutions (i.e. NVGRE, VxLAN). The final aim is to provide an open, 
flexible and extensible interface for the instantiation, configuration and 
monitoring of isolated virtual networks.  

• Control Plane virtualisation: It refers to the virtualisation of the network 
controller to ensure reliability and high availability in large-scale scenarios, as 
well as persistency of the network configuration. For these purposes, cloud 
computing capabilities combined with clustered approaches have been 
investigated in order to ensure elasticity, auto-scaling and load balancing of 
the SDN control plane. 

Within T4.2, the work initially focused on determining the SDN platform best fitting 
the T-NOVA requirements. The selection was carried out after a thorough analysis of 
the current SDN controller implementations, the features they offer, the mechanisms 
they support for enhanced network services (i.e. slicing, traffic steering, QoS), the way 
they approach the distribution of the control workload.  

Starting from the requirements laid out in D2.32 [D2.32], a high-level overall 
architecture is proposed and functional components are detailed. Then, considering  
the state-of-the-art solutions for the SDN control plane, the identification of missing 
functionalities and the investigation of potential extensions to be implemented in T-
NOVA resulted in  different research and development activities. 
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2. T-NOVA REQUIREMENTS 

The activity started with the identification of key requirements affecting the network 
controller procedures and mechanisms. The table below provides a summary of the 
high-level requirements identified in T-NOVA concerning the SDN Control Plane. The 
full list of requirements has been collected and documented in detail in Deliverable 
2.32 [D2.32].  

Requirement Description 

Network connectivity and 
isolation 

Applications and services should be connected to isolated 
networks, making sure that processing of packets on each 
network is independent of all the others. 

Resource Monitoring The provision of monitoring information should make 
management and orchestration entities aware of status and 
performance of the network infrastructure 

QoS support Applications and services should have specific performance 
needs, requiring mechanisms for QoS provisioning over the 
network infrastructure. 

Performance In large-scale scenarios with many nodes to be controlled, 
the control plane may suffer slower performance in terms of 
processed requests per second/average response time. So, 
mechanisms to limit this issue should be provided.   

Scalability The control plane should adapt to a variety of applications 
and scale according to their network load. This means that in 
some cases a distributed control plane may be required; 
therefore the T-NOVA control plane must be able to 
accommodate this requirement.  

Robustness/Fault 
tolerance 

Through redundancy mechanisms, it must be guaranteed that 
the controller does not represent a single point of failure. 

Service chaining support The network controller must be able to dynamically enforce 
and modify the chaining of network service functions, by 
properly steering the data traffic. 

Inter-datacentre 
connectivity 

The solution adopted for the control plane should be able to 
support inter-datacenter (inter-DC) connectivity by enforcing 
tunnelling rules and establishing trunks to allow network 
continuity, as in many practical cases this will be required due 
to the physical dispersion of resources. 

Table 2-1 Key requirements for the SDN Control Plane 

3. REFERENCE SDN CONTROLLERS  
As briefly introduced, a deep investigation and analysis of a set of SDN controllers 
available in the state of the art has been carried out, in order to select a solid 
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reference baseline for the T-NOVA SDN control plane development. The aim was to 
identify a starting point of work to be properly extended in support of the specific T-
NOVA requirements.  

The analysis was performed in two stages. First, a wide set of controllers has been 
selected, including most of the currently available commercial and open-source SDN 
frameworks, and qualitatively evaluated at a very high level in order to extract a 
subset of candidate controllers. Then, a subsequent phase focused on a detailed 
feature-based comparison of the selected controllers. 

In the following sections, an overview of the available SDN control plane is presented, 
including both commercial and open-source solutions, as input of the preliminary 
analysis that was carried out. 

3.1. Commercial solutions 

Alcatel Lucent Nuage VSP  

Nuage Networks VSP (Virtualised Services Platform) [NUAGE] has an architecture 
based on three components: 

• VSD (policy and analytics engine) 
• VSC (control plane) 
• VRS (forwarding plane) 

 

Figure 3-1 Nuage VSP architecture 

 

VSD is the upper layer, providing service definition, policy establishment, service 
templating and all the analytics functions, including reporting. It is alike the SDN 
application layer in OpenDaylight. VSC is the actual SDN controller, providing 
features like auto-discovery and tenant slicing. VRS is the L2-L4 virtual switch, based 
on Open vSwitch, providing tunnel encapsulation and programmed by VSC via 
Openflow.   

Nuage VSP has control of the whole underlying network, allowing to manage traffic 
flows even over the transport layer, interconnecting virtual machines residing in 
different nodes or sites.  

Nuage VSP exploits a Neutron plugin, connecting to VSD via a REST API. Plus, there is 
a Nuage VRS agent on each Nova node, which monitor VM lifetime events and 
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configure the network topology accordingly. Once an event is captured (e.g., a new 
VM instantiation), the VRS agent requests configuration information from VSC. If VSC 
is already aware of the VM, it will supply all the necessary configuration information 
via Openflow. If this is a new VM, VSC will request policy information from VSD. VM 
configuration includes tunnel configuration for traffic between hypervisors and other 
components, carried via VXLAN between VSP components or MPLS over GRE for 
compatibility with Provider Edge (PE) routers. 

Nuage VSP is also part of the HPE Distributed Cloud Networking (DCN) network 
virtualisation solution for service providers. HPE DCN creates a secure virtual network 
overlay across distributed datacentre sites. Nuage VSP is the DCN component 
federating SDN implementations in individual data centers, to create an uber-SDN 
overlay across the wide area. 

Figure 3-2 Nuage Neutron plugin 

 

HPE ContexNet 

ContexNet [HPECTX] is an OpenDaylight-based carrier grade distributed SDN fabric 
running on off-the-shelf computing platforms and fully hypervisor-agnostic. It allows 
to create a full service abstraction layer on top of legacy networks, allowing for 
instance a customised SFC by classifying and steering the traffic according to the 
specific user flow. It exploits a distributed controller and a set of virtual switches to 
implement global load balancing (covering physical and virtual resources).  

The overlay abstraction layer enables a centralised policy-based control of the 
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network, regardless the actual physical placement of virtual machines and endpoints. 
It is in-network, with Openflow switches in charge of traffic encapsulation-
decapsulation, and a set of APIs enabling fine-grained traffic control.  

Figure 3-3 HPE ContextNet 

 

Juniper Contrail  

Contrail [JUNICON] consists of two main components: a Controller and a vRouter. 
The Controller is logically centralised but physically distributed, and it also embeds 
the management and analytics functionalities. vRouter runs in the hypervisor, and is 
similar to Open vSwitch, but it also provides routing services.  

The Contrail model is similar to MPLS L3VPN and EVPN (for layer 3 and 2 overlays). In 
the forwarding plane, it supports MPLS over GRE/UDP and VxLAN. As control plane 
protocol, it uses BGP + Netconf. Finally, the protocol between Controller and 
vRouter(s) is XMPP.  

The physical nodes hosting a distributed Contrail controller can be of three types: 
configuration nodes (dealing with the management layer), control nodes 
(implementing the logically centralised function of the Control Plane), and analytics 
nodes (monitoring data collection, processing and presentation). 

 
Figure 3-4 - Contrail architecture 

VMware NSX 

VMware NSX is a network virtualisation platform using flow-based forwarding via 
Openflow to instantiate the network flows. Flow forwarding exposes various L2-L4 
header fields, along with Layer 1 logical and physical interfaces. It is based on a 
vSwitch embedded in the ESX hypervisor, attached to the actual NSX controller. NSX 
builds tunnels between different vSwitches using VxLAN originating and terminating 
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in VxLAN Tunnel Endpoints (VTEPs). The VTEPs connect each vSwitch to the IP 
network. 

In the NSX architecture, when a VM boots its host registers with the NSX controller. 
The controller consults a table that identifies the tenant, and returns the topology the 
host should participate in to the vSwitch. The key identifier for virtual isolation is the 
VNI, which maps to a tenant's VxLAN-segmented topology. Layer 3 forwarding 
between broadcast domains is supported at the edge of the NSX network in the 
vSwitch. This is performed by ARPs being punted to the controller and looking up the 
location of the destination MAC and destination VTEP in a host table in the controller.  

If the host is not found, the traffic can be dropped or forwarded to a BUM traffic 
service node. Host discovery is forwarded to the VTEPs in the tenant tunnel overlay 
with multicast.  

 

 

 

3.2. Open source solutions 

Besides the commercial solutions, a set of available open-source SDN controllers was 
identified during the evaluation phase.  

Beacon  

Open-source controller developed by Stanford University [BEACON], implemented in 
Java. It offers support for the Openflow v1.0 protocol. Beacon is not actively 
developed at this time.  

Floodlight 

Open-source controller developed by Big Switch Networks [FLOODLIGHT], 
implemented in Java. It offers support for the Openflow v1.0 protocol and a Neutron 
plug-in for OpenStack support. Floodlight is not actively developed at this time. 

Maestro 

Open-source controller developed by Rice University [ZC11], implemented in Java. It 
offers support for the Openflow v1.0 protocol. Maestro is not actively developed at 
this time. 

MUL  

Open-source controller developed by Kulcloud [MUL], implemented in C. It offers 
support for the Openflow v1.0, Openflow v1.3 and Openflow v1.4. MUL is actively 
developed at this time. 

Nodeflow  

Open-source controller developed by CISCO [NODEFLOW], implemented in 
Javascript. Nodeflow is not actively developed at this time. 

NOX  
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Open-source controller developed by Nicira Networks [NOX], implemented in C++ 
and Python. It offers support for the Openflow v1.0 protocol. NOX is not actively 
developed at this time. 

ONOS  

Open-source SDN controller platform developed by ON.LAB [ONOS][BGH+14]. 
ONOS is designed for high availability, performance and scalability within Service 
Provider network. ONOS is actively developed at this time.. 

OpenContrail  

SDN platform released by Juniper Networks [JUNIOPENC], as open source 
counterpart of the commercial Contrail solution. The OpenContrail Controller, which 
is part of the platform, is implemented in Python, while the projects comprising 
OpenContrail are implemented in various programming languages (Python, C++ and 
JavaScript). It offers OpenStack support but the current version lacks of Openflow 
support. OpenContrail is actively developed at this time. 

OpenIRIS  

Open-source controller developed by ETRI [OPENIRIS], implemented in Java. It offers 
support for the Openflow v1.0 to v1.3. OpenIRIS is actively developed at this time. 

OpenDaylight  

Open-source platform for network programmability developed by Linux Foundation 
[ODL], implemented in Java. It offers support for OF v1.0 to 1.4, as well as OpenStack 
support via Neutron plugin. OpenDaylight is actively developed at this time. 

POX  

Open-source controller developed by Nicira Networks [POX], implemented in Python. 
It offers support for the Openflow v1.0 protocol. POX is not actively developed at this 
time. 

Ryu  

Open-source controller developed by NTT, implemented in Python. It offers support 
for OF vv1.0, 1.2, 1.3 and 1.4, as well as OpenStack support. Ryu is actively developed 
at this time. 

Trema  

Open-source controller developed by NEC [TREMA], implemented in C and Ruby. It 
offers support for the Openflow v1.0, Openflow v1.2 and Openflow v1.3.X   protocol 
and a Neutron plug-in for OpenStack support. Trema is actively developed. 

 

3.3. Comparison and selection of the reference baseline 

The controller selection phase was driven by a feature-based comparison of the 
available solutions [KZM+14], whereby the first discriminating criterion was to 
consider only those under active development and released as open-source software. 
Then, key aspects in the choice were the modularity and the extensibility of their 
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architecture, to be easily enhanced in support of novel functions, as well as the 
openness of northbound interfaces, for new APIs to be exposed without the need of 
tweaking internal controller services.  

Therefore, leveraging also on the consortium’s hands-on experience with various 
controllers, OpenDaylight (Lithium release) and ONOS (Cardinal 1.2 release) were 
selected as candidate controllers for the final evaluation phase, considering the latest 
stable versions available at the time. For a detailed description of both ONOS and 
OpenDaylight, please refer to Section 4.6 of D2.32.  

The final comparison involving the two selected SDN controllers resulted in a 
qualitative analysis of their main features, mainly focusing on the capabilities required 
by the T-NOVA system. A summary of such a qualitative comparison is reported in 
Table 3-1.  

 

 

Feature OpenDaylight Lithium ONOS Cardinal 1.2 

Modular and 
extensible 

architecture 

Yes. Built on top of Karaf,  an OSGi 
framework, ODL provides dynamic 

module loading 

Yes. Built on top of Karaf,  an OSGi 
framework, ONOS provides 

dynamic module loading 

Network 
virtualisation 

support 

Yes. Different built-in solutions 
(VTN, DOVE, OVSDB)  

Not built-in. External frameworks 
(OpenVirtex) address network 

virtualisation 

Service 
Insertion and 

Chaining 

Preliminary implementation 
available (ODL SFC project) 

Not yet available. Implementation 
on-going (see ONOSFW project) 

VIM 
integration 

Fully integrated in Openstack 
through the Neutron (ML2 Plugin)  

Not yet available. Implementation 
on-going (see ONOSFW project) 

Openflow 
support 

1.0-1.4 1.0-1.3 

Clustering 
support 

Clustering support for multi-
controller deployments 

Clustering support for multi-
controller deployments 

Documentation Very extensive and detailed Enough information available 

Table 3-1 SDN Controllers Features Comparison 

In the light of above, the final choice between OpenDaylight and ONOS fell on the 
OpenDaylight Lithium platform for the great interest and development it is 
undergoing and its numerous features matching the T-NOVA requirements. 

For the sake of completeness, it should be noted that, even if Lithium has been 
selected as favourite OpenDaylight release, the implementation and testing activities 
carried out by Task 4.2 and described in the rest of the document, affected also 
previous releases of ODL (i.e. Hydrogen, Helium), as they were preferred for the 
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maturity and reliability of their features at the time they were explored. Similarly, it is 
not excluded the possibility of adopting even more recent releases of ODL for the 
final T-NOVA demonstrator, if they should lead to tangible benefits for the SDN 
Control Plane deployment. 
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4. T-NOVA SDN CONTROL PLANE 

4.1. Functional architecture 

Within Task 4.2, a key activity was focused on the design of a preliminary architecture 
for the network control plane. Such activity concerned the identification of 
components and modules contributing to the accomplishment of the purposes of the 
SDN Control Plane in T-NOVA. 

 

 

 

Figure 4-1 T-NOVA SDN Control Plane Architecture 

 

Figure 4-1 depicts the SDN control plane functional architecture. To this end, a model 
of idealised SDN framework was selected as reference point [NG13] to be further 
extended and properly adapted to fulfill the requirements previously described.  

As already described in Deliverable 4.01, the following table outlines the main 
functional components that have been identified with a brief description of their role 
within the SDN control plane.   
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Component Functionalities 

Topology Manager 

The Topology Manager has to learn and manage topology 
information about devices and their reachability. Information 
gathering about the networks’ elements is essential to 
discover the topology.  

Switch Manager 

The Switch Manager is in charge of storing, managing and 
providing information (e.g. switch id, software version, 
capabilities, etc.) about the network nodes as they are 
discovered. 

Path/Flow Manager 

This module provides the flow programming services including 
forwarding rule installation and removal for the configuration 
of data paths. Used typically when high-level policies specified 
by the northbound are translated into flows by a service 
module (Service Chaining, Slice Manager) that in turn would 
talk to this module to proactively push the flows down to the 
network elements. Path reconfiguration (after network failures 
or VM migration) and QoS support are in charge of this 
module. 

Host Tracker 

The host tracker module learns, statically or dynamically about 
IP hosts in the network. It stores and provides host 
information, such Host's IP address, MAC address, switch ID, 
port, and VLAN. Moreover it periodically refreshes the hosts’ 
data to track the element location (switch, port, MAC, or 
VLAN), and notifies the listening applications to the hosts 
related event. 

Stats Manager This module stores and provides network statistics data with 
different data granularity (flow, port and table statistics). 

vNet Manager 

This functional module allows the creation of multiple, 
isolated, virtual tenant networks on top of a single physical 
network, in order to enable the complete separation between 
the logical and physical plane, hide the complexity of the 
underlying network and also optimizes the network resources 
usage. 

Service Chaining 

This functional module has to manage the deployment of 
services chains as ordered list of a network services (e.g. 
firewalls, load balancers) by configuring accordingly traffic 
steering. 

Connection Manager 
This module manages information regarding the connection 
between the control plane and network entities. It plays a key 
role in multi-controller scenarios. 

Table 4-1 SDN Control Plane Functional Components 
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4.1.1. Virtualised SDN Control Plane 

The SDN paradigm looks highly complementary to NFV having the potential to 
provide a scalable, elastic and on-demand network infrastructure. Additionally, the 
centralised view of the network allows the SDN network controller to make optimal 
forwarding decisions. However, the controller may be subject to overload or failure 
issues and increasing the computational and memory capacity may not be enough. 
These issues have an impact on the control plane reactiveness, and consequently 
degrade the overall network latency. It becomes more evident when the network size 
grows, thus a way to overcome these limitations is needed to make SDN/NFV a pillar 
technology of DC networks. 

In this regard, the concept of a "physically distributed, but logically centralised" 
controller has been investigated so as to develop an instance of the virtualisation 
layer applying for a distributed control of the network elements [ZCD+15]. The 
proposed SDN/NFV Control Plane is based on the virtualisation of the network 
controller through multiple controller instances organised in cluster, while keeping 
the benefits of having a global view of the network by means of a distributed data 
store. The key concept is to deploy each instance of SDN controller on dedicated 
virtual machines, favouring the distribution of the network control workload across 
the cluster. In this way, the controller virtualisation may help in overcoming scalability 
and centralisation issues, which affect the SDN controller performances in large data 
center hosting NFV applications.  

Figure 4-2 Virtualised SDN Control Plane Architecture 

Therefore, the high-level architecture of the SDN Control Plane has been extended to 
support deployments in a large-scale scenario, by introducing the following 
functional components: 
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• Distributed Data Store: it is responsible for consistently maintaining a global 
view (topology and the state of the network) across the control plane 
instances belonging to the cluster. Northbound applications/internal Control 
Plane components can take advantage of the global network view in making 
forwarding and policy decisions 

• Northbound Request Handler: it is mainly in charge of spreading the 
northbound requests among the available controller instances, it is essential 
to make the network control plane accessible through the northbound API as 
a unique single instance. 

• CP Coordinator: it supervises the operation in the cluster. Specifically it has to 
dynamically configure the controller-to-switch connections; decide whether to 
add or remove a controller instance to the cluster depending on the network 
needs. This role is played by one of the instances available in the cluster, by 
means of a procedure of leader election. 

• CP Agent: it collects information about the resource utilisation (CPU load, 
memory usage, control messages arrival rate, etc.) at each Control Plane 
instance and enforces the switch-to-controller instance connection rules used 
by each switch to identify the controller instance/s to which the southbound 
requests must be forwarded. 

 

4.2. Relevant features in T-NOVA context 

As previously mentioned, OpenDaylight has been selected as the reference 
framework for the SDN control plane software implementation in T-NOVA, due to its 
extensible modular architecture, and the wide set of services, appliances and 
northbound primitives available for data centre deployments. Subsequently, the 
selection phase was followed by the identification of missing functionalities and the 
investigation of potential extensions to be implemented in T-NOVA, as reported in 
Table 4-2. 

Functionalities 
in T-NOVA 

Existing modules  Missing features / Potential 
extensions 

Path/Flow Manager Forwarding Rule 
Manager / Flow 

Programmer (ODL) 

QoS support 

Path reconfiguration 

Virtual Network Manager VTN Manager (ODL) None 

Service Chaining SFC (ODL) Traffic steering mechanisms for the 
provisioning of service chains. 

High-Availability Clustering Service 
(ODL) 

Load balancing across clustered 
controllers by properly managing 
connection with the switches. 

Network Configuration 
Persistency 

Clustering Service 
(ODL) 

None 
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Inter-DC/WAN integration None Integration of WAN connectivity 
services and connectivity between data 
centers 

Table 4-2 Mapping between T-NOVA SDN Control Plane and OpenDaylight 

The following sections detail the activities carried out for each identified topic, in 
order to fill the gap with the SDN control plane functionalities requested by the T-
NOVA system. 

4.3. Traffic steering mechanisms in virtualised network 

A key aspect in T-NOVA and, more generally, in the NFV context, is the support to 
the service chaining. It translates into the ability of the SDN Control plane to 
configure network flows in order to steer packets through a sequence of network 
nodes. This section highlights the activities undertaken in this field, starting from 
analysis of the current available solutions, focused on OpenDaylight as selected 
controller. Then, this section presents the approach that has been adopted as the 
most suitable to be implemented in T-NOVA, next to other alternative approaches 
that have been nevertheless studied and examined. 

4.3.1. Service Function Chaining 

Service Function Chaining enables the creation of ordered list of network services, 
called Service Functions (SFs) aimed to be applied over specific set of packets that 
will traverse the path of those functions. The service functions are stitched together in 
overlay on the top of the network forming the so-called a Service Chain. SFC and its 
use cases have been introduced in several IETF RFCs ([SFC00], [SFC03], [SFC04], 
[SFC11], [NSH]).   
 

 
Figure 4-3 Example of SFC 

An example of Service Function Chaining is shown in Figure 4-3. A flow originating 
from endpoint A passes through a network monitoring VNF, a load balancing VNF 
and finally a firewall VNF before arriving at destination point B. 
Today some of the problems the current service deployments encounter on a 
network level include: topological dependencies, complexity in configuration, packet 
classification, agile/elastic service delivery, enforcement of consistent ordering of 
service functions [ODL-SFC1]. Therefore a novel approach is required in order to 
address these challenges from a network point of view. 
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SDN simplifies service chain provisioning and management because the SDN 
controller has a centralised view of the network and thus it facilitates end-to-end 
chains across different network nodes. 
There are several possible approaches to achieve SFC on a network level that address 
the above listed challenges. One is to use encapsulation where the end to end traffic 
is treated as an overlay connection either (1) between the service nodes or (2) 
independent of the network topology. Today a dedicated protocol header (Network 
Service Header) [ODL-NSH] is currently under development as example of an 
encapsulation SFC approach. Network Service Header is an IETF data-plane protocol 
that represents a service path in the network. NSH is expandable header that is 
inserted in the packet via a classifier at the service plane entry and carried along the 
chain. It has a limited lifetime only within the SFC domain. NSH contains two major 
components: Path Information and Metadata. Path Information is akin to a subway 
map: it tells the packets where to go without requiring per flow configuration. 
Metadata is information about the packets, and can be used to define policy for the 
chain.  
The NSH SFC implementation is built on the top of the NSH solution. Some of the 
terminologies (components) introduced by this protocol specification include: 

• Service Function Forwarder (SFF): Switch/Data Plane Node 
• Service Function (SF): any application such as DPI/FW/LB/TIC 
• Service Function Chain (SFC): the intended list of SFs that the packets have to 

traverse in a definite order 
• Service Function Path (SFP): actual instance of the services that are traversed, 

or a specific instance of the SFC 
• Service Classifier: Function that helps in packet classification  
• Metadata: Information that is carried across nodes  
• Network Service Header: SFC encapsulation used by SFC-aware nodes, in case 

of SFC-unaware nodes, SFC-proxy has to be used  
• Nodes could be either SFs or SFFs 

 

4.3.1.1.  SFC support in OpenDaylight 

The OpenDaylight framework (Figure 4-4) includes an SFC project implementation 
that leverages the NSH protocol. It requires augmented version of OVS that tells ODL 
to use the sfcovs southbound protocol to communicate with the actual device. 
 



T-NOVA | Deliverable D4.21  SDN Control Plane 

© T-NOVA Consortium  
 

23 

 
Figure 4-4 SFC project inside the ODL - High Level Architecture 

 

In ODL the SFC data model is defined in Yang files that put the information in the 
MD-SAL at a compile time. RESTCONF APIs and southbound hooks are created from 
Yang. In a typical scenario the client sends packet to SFF which processes and sends it 
to the SF; the SF decrements the index and sends back to SFF; SFF receives the packet 
back from SF and sends it back to client [ODL-SFC2] [ODL-SFC3]. 

Figure 4-5 depicts an example scenario of SFC using the SFC agent from the ODL SFC 
project. It depicts in a graphic way the Service Chain that a client is using. Each 
Service Function adds a different HTTP header and an Apache Web Server detects the 
HTTP headers and returns different web pages. Clients assigned to different Service 
Chains use a web browser to navigate to the same Web Server, but get different 
results depending on the Service Chain used. 

Overall there are several issues of why employing this solution in T-NOVA (that is the 
current NSH OVS implementation as SFF) is not stable at the moment. One includes 
the dynamic process of development and constant improvement and testing of this 
functionality that makes it prone to errors and not fully functional at current stage (it 
was introduces in ODL Lithium recently). Moreover a different, augmented version of 
OVS is required (NSH-aware). To interoperate with the current implementation of 
NSH in OVS the encapsulation used (encapsulate VxLAN-NSH-Ethernet-Legacy) is 
very peculiar - it is VxLAN (not GPE) + NSH over port 6633. This introduces additional 
overheads because the packet the SFF sends back to client is a VxLAN + NSH packet 
and not a plain IP packet.  
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Figure 4-5 Example of SFC approach based on NSH protocol 

 

With SDN it is also possible to do address rewrites along the chain or to simply force 
the routing over a specific path. Ericsson has implementation based on the former 
approach contributed to ODL (Figure 4-6).  

 
Figure 4-6 Non-NSH approach for SFC based on MAC/VLAN matching 
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Their solution does not require NSH encapsulation or other transport tunnelling 
encapsulation such as VxLAN or GRE. Instead, it is based on Openflow 1.3. where the 
L2 reachability of SFs and SFFs is provided in the Yang files of ODL. Here, the packets 
are reclassified at every SFF and the service hop is based on the MAC address of the 
previous hop using the VLAN ID in the packet header. 

4.3.1.2.  Flow programming approach based on Openflow 

The latter option (flow based approach) can be implemented on Open Flow enabled 
switches on the southbound in order to program the SFFs. Such approach has the 
benefit of essentially leaving the datagrams untouched along the chain, while 
providing a routing logic, which does not require the overhead of tunnelling or 
encapsulation. Having the original datagrams along the chain has an additional 
benefit with network functions in particular, because they can rely on seeing 
datagrams as if they would be routed through a chain-less connection. This solutions 
avoids headers, proxies, or additional third party components.  

A flow programming approach (as can be seen through an example on Figure 4-7), 
has been introduced in ODL from the NEC team as alternative solution to the NSH-
based one [OOSC]. It is based on the Virtual Tenant Network (VTN) project that 
provides network virtualisation in OpenStack multi-tenant environment, traffic 
isolation and abstraction of physical network. Some of the key features form this 
project include: ability to insert service functions dynamically; OpenStack integration; 
does not require NSH capability; works with Openflow switches; ability to visualize 
end-to-end flows. It involves two main components: VTN coordinator and VTN 
Manager. The VTN coordinator provides VTN API (Northbound), builds VTN models 
using OpenDaylight API and controls multiple SDN controllers. The VTN Manager 
enables multi-tenancy and end-to-end dynamic path control. The example shown on 
the figure depicts a SFC case based on L3 IP address matching. As alternative to the 
source and destination IP matching and according to the specification, the actions 
can be enforced to other matching criteria enclosed in the Openflow protocol types.   

 

The strong point of this approach is that it has been designed to coexist with 
OpenStack Neutron ML2 Plugin. The disadvantage however is that the agent that 
embraces the virtual graph mapping as well as the chaining logic is proprietary and 
heavily based on the VTN abstraction model. It is yet under development process and 
tightly coupled to the NEC dedicated facilities adopted and designed to fully sport 
this use case within their isolated experimental environment. From here we are not 
able to adapt and leverage this solution for the T-NOVA networking model and 
therefore this approach would not be considered any further as T-NOVA SFC baseline 
model. 
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Figure 4-7 Flow programming based SFC approach based on VTN in ODL 

 

Finally the SFC approach from the OPNFV community is addressed in the projects 
OpenStack Based VNF Forwarding Graph [OPNFV-FG] and Service Function Chaining 
[OPNFV-SFC]. 

Leveraging the OpenStack work on VNFFG (Virtual Network Function Forwarding 
Graph) and ONF Openflow work on service chaining, this project tends to show 
automatic set up of end-to-end VNF services through VNFFG so that different 
tenants’ flows can be steered through different sequence of VNFs (Service Function). 
The second collaborative development project will base on the first one to create a 
link between two Linux Foundation projects, OpenDaylight and OPNFV. It will provide 
service chaining capabilities in the OPNFV platform, i.e. provide ordered set of 
abstract service functions (e.g. NAT, load balancing, QoS, firewall) and ordering 
constraints that must be applied to packets and/or frames and/or flows selected as a 
result of classification [OPNFV-SFC]. 

These projects provide Openflow programmed chains for L2 VLAN and MPLS 
encapsulation. They also follow the VxLAN overlay based service chains for VxLAN-
GPE encapsulation with NSH headers. Some of the additional features that are 
supported are: basic load balancing at SFC in the ODL Lithium release, and 
programmatic service function selection algorithms like round robin, load balanced 
(choose the least loaded service function) or random allocation.  

Finally all the previously presented approaches based on the ODL implementation 
lack the support and integration with Open Stack, which is one of the key 
technologies to be used in T-NOVA. The T-NOVA specific Virtual Network Functions 
(VNFs) would be instantiated and deployed on Open Stack VMs and therefore the 
chaining mechanism has to be supported and fully functional with the Open Stack 
networking standards. To apply the NSH solution in Open Stack environment, the SFC 
would need to know the following data form each of the service functions VMs: IP 
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Address, encapsulation details (VxLAN, NSH enabled), OVS switch and port the SF is 
connected to.  

 

4.3.2. T-NOVA approach for SFC based on OpenFlow 

Having analysed the previous solutions on SFC we came to conclusion that at a 
current state, an alternative approach, native to T-NOVA will be the most feasible 
solution. Hereby we summarize the reasons: 

- OpenStack support: current solutions does not allow integration with 
OpenStack and that might require adaptations in order to make it work in 
short term scale. T-Nova uses OpenStack as deployment infrastructure for the 
VNFs. 

- ODL support: this is the de facto controller in T-NOVA and therefore one of 
the requirements is to keep the solution compliant with ODL. 

- T-NOVA requires stable solution that will not depend on proprietary 
implementations of the dependent features. For example the VTN solution (at 
current state) was tested on specifically triggered topology and bases on 
integrating VTN plugin within the ODL controller. 

- T-NOVA requires a simple isolated solution that is robust and independent of 
the work in progress prototypes that require the installation and support of 
specific software libraries, especially based on certain type of hardware 
implementations (like NSH-enhanced OVS), etc.  

- The SFC approach in T-NOVA has to offer integration with the Infrastructure 
Virtualisation Management (IVM) and the Orchestrator (TeNOR) in order to 
expose APIs for VNF placement and virtual network graph definition. As the 
SDK for SDN includes libraries and APIs for establishing specific network 
services, this service can be integrated in seamless fashion with other T-NOVA 
components.  

Currently two SDN-based approaches has been tested on the ZHAW testbed: (1) 
based on SFC specific flows installation along the OVSs (including the physical switch) 
of the nodes (hops) in the service path, (2) based on MAC rewriting.  

To enable these routing rules in an OpenStack environment it is necessary to disable 
the iptables rules which are automatically applied to OpenStack instance ports. These 
rules prevent traffic to pass to and from instances that does not match the instances 
MAC and IP addresses. Service instances have to have two separate interfaces, which 
are dedicated to the service chain mechanism. These interfaces then can only be 
attached to Neutron ports with disabled iptables firewall rules and should only be 
used for the chaining mechanism. Remaining security concerns then have to be 
delegated to flows instantiated for the respective OVS ports. 

For both approaches to work, a requested chain can only be realised if the network is 
fully SDN enabled. The chain routing can then be applied across the whole chain path 
onto the network. The resulting routing flows need to be maintained to reflect 
alterations in the function chain. For the chain routing to be deterministic, a challenge 
to be addressed is the service path identification (service path classification or entity 
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that determines what traffic needs to be chained based on policy) and the service 
hop identification (or a field which keeps track of the chain hops).  

One possible approach to access this in T-NOVA is to use TTL matching and 
modification, since OVS flows can match on the TTL field. It is however currently not 
possible to match the TTL field with standard Open Flow, so we are elaborating about 
using the VLAN ID as a workaround for this purpose, which would be compliant with 
our networking model, since the chain routing does not follow the standard Ethernet 
routing.  

As alternative to this, the second approach was tested in Mininet and proved feasible 
for the established basic scenario of SFC. The idea for the OpenFlow based MAC 
rewriting approach was conducted based on the requirements imposed by the 
testing scenarios using vTC as T-Nova specific VNF.  Our original goal was to 
maintain the packet structure along the service chain as if it would be normally 
forwarded from enpoint to endpoint, which we couldn't do for two reasons: 

- The VNF deployment (physical location of each VNF) may be in a way so we would 
get non-deterministic paths. 

- The introduction of the Traffic Classifier VNF, which has to encode the chosen 
service chain into the datagrams. 

This solution is our way to deal with those problems, but it is not in any way set in 
stone for the SDK but rather shows one possible way we can implement using the 
SDK while having minimal overhead. Other possible solutions could be based on 
tunneling (MPLS/GRE) or other rewrite patterns, which could be implemented using 
the Flow Pattern abstraction of the SDK. 

This problem of SFC have been further addressed in the SDK for SDN part of the WP4 
and detailed in the Deliverables D4.31-Interim [D4.31] and D4.32-Final [D4.32]. 

4.3.3.  Alternative approaches to traffic steering 

4.3.3.1.  OpenStack extension using OpenDaylight 

Besides the above-mentioned approaches, a Traffic Steering extension to OpenStack 
has been implemented and evaluated, allowing the forced redirection of traffic across 
VMs, which indirectly enables the implementation of service function chaining.  

This extension was implemented by extending the OpenStack Neutron API to support 
the definition of classification resources, L2-L4 traffic filters, and a sequence of 
redirections, i.e. a list of Neutron ports in which the packets are forced to pass 
through. Moreover, the OpenStack API itself only provides a means to declare the 
previously mentioned resources; therefore, in order to enforce the necessary 
configurations in OVS (i.e. the default virtual switch implementation used in 
OpenStack), OpenDaylight was chosen. OpenDaylight is capable of programming 
OVS, and features an extension mechanism which was used to support the Traffic 
Steering extension.  

In the following sections the extension mechanism and the Traffic Steering extension 
in OpenDaylight are presented. Additionally, the work realised to extend the 
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Openstack API to support Traffic Steering is described. Finally, an example is provided 
focusing on how the API is used to realize a forwarding graph.  

 

OSGi and OpenDaylight 

In this section the mechanisms to extend OpenDaylight to support traffic steering are 
presented. OpenDaylight includes a modular, pluggable, and flexible controller 
platform at its core. This controller is implemented strictly in software and is 
contained within its own Java Virtual Machine (JVM). Therefore, it can be deployed on 
any hardware and operating system platform that supports Java.  

The controller exposes open northbound APIs which are used by applications. 
OpenDaylight supports the OSGi framework and bidirectional REST for the 
northbound API. 

OSGi is a modular framework that allows for dynamic loading of Java modules. This 
means that applications can be loaded and unloaded, started and stopped without 
interruption of the running JVM platform. This allows applications and protocols to 
plug into the framework to fit different use cases and vendor strategies. These 
modules are called bundles, more specifically they consist of jars with manifest files 
that define what is exported/imported to/from other bundles in addition to other 
details such as bundle name, activator, version etc, see Figure 4-8.  

Figure 4-8 OSGi overview 

A bundle alone can act as a service provider or a service consumer. Services are 
specified by Java interfaces. Bundles can implement this interface and register the 
service with the Service Registry. 

 

Implementation of Traffic Steering bundle 

To add the traffic steering functionality to OpenDaylight, a Maven OSGi project was 
created that, when compiled, creates a bundle dynamically deployable into the 
OpenDaylight controller. Basically, this bundle extends the OpenDaylight Northbound 
REST API to create two new base endpoints: 

• /ts/steering_classifiers/ 
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• /ts/port_chains/ 

These two endpoints provide the Create, Read, Update, Delete (CRUD) functionalities 
to the main objects, Classifiers and PortChains, respectively. 

In order to implement the bundle, an OSGi activator class is needed. The latter 
enables registering a component with the OSGi framework and defines the exposed 
services that will be used in the Northbound API. The rest of the java classes will 
implement the logic of the services themselves and implement the new Northbound 
API resources, see Table 4-3. 

 

Description   Steering_Classifiers Port_chains 

Object Data Model  Classifier.java PortChain.java 

Interface that defines 
the CRUD methods  

IClassifierCRUD.java IPortChainCRUD.java 

Implementation of the 
interface 

ClassifierInterface.java PortChainInterface.java 

Definition and 
implementation of the 
API 

ClassifiersNorthbound.java PortChainNorthbound.java 

Table 4-3 Java classes implementing traffic steering  

 

The OSGi framework allows to share the different services exposed by each module. 
In the module which implements the port chain the following external services are 
needed: 

• OVSDBConfigService: to get OVSDB tables information needed to learn the 
OVS port where the VMs are connected 

• INeutronPortCRUD: to get Neutron ports information and details 
• IForwardingRulesManager: Manager of all the Forwarding Rules, this 

component takes care of forwarding rules and is the one managing conflicts 
between them 

• ISwitchManager: Component holding the inventory information for all the 
known nodes in the controller. All the components that want to have access 
to a port name, node name or any inventory information, will find them by 
querying the SwitchManager.  

The packets can only be manipulated in the OVS, where the flows are installed. The 
OVSDB tables information is used to find and create a map with the connections links 
between the neutron ports and the OVS ports.  The flows are constructed with this 
information in addition to which is defined by the classifiers in the PortChain. One 
important note, since the packets are redirected to a different hop, it is also needed 
to change the packet mac address destination, so it can be accepted by the 
host/function. The IForwardingRulesManager service is used to insert (also to delete 
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and update) a static flow in the OVS for each hop in the chain based on the flow 
configuration built by the previous steps. 

 

OpenStack extension for traffic steering 

This section refers to the traffic steering extension implementation in OpenStack. The 
plugin structure is somewhat alike to ML2 and Group Policy plugins, including a 
steering manager, context objects, driver API, a dummy driver and an OpenDaylight 
driver. Like other Neutron plugins, administrator users will have to enable this plugin 
and the respective driver in Neutron configuration file. This extension has been 
confirmed to work in OpenStack Icehouse version. 

The traffic steering extension in OpenStack consists of two concepts: 

• Traffic Classification - a policy for matching packets, e.g. HTTP traffic, that is 
used for the identification of the appropriate actions to apply to the packets. 
It can be for example an explicit forwarding entry in a network device that 
forwards packets from one address, identified for example by an IP or MAC, 
into the Service Function Chain; 

• Traffic Steering - ability to manipulate the route of traffic, i.e. delivering 
packets from one point to another, at the granularity of subscriber and traffic 
types. Neither the actual network topology nor the overlay transports are 
modified to accomplish this. 

The manipulation of traffic redirection occurs at the port level. For example, all HTTP 
traffic coming from a VM interface is directed to another VM interface instead of 
going to the network gateway. With this in mind two new resources were added to 
Neutron: 

• Steering Classifier - traffic classification which supports the following filters: 
protocol, source/destination MAC address, source/destination IP address and 
source/destination port range; 

• Port-Chain - sequence of traffic redirections. This is done with a dictionary of 
lists of Neutron ports where the dictionary keys are the Neutron port UUIDs. 
Ingress traffic from these ports is steered to all ports in the dictionary value (a 
list of Neutron ports) according to a classification criterion. 

The Traffic Steering API provides a flag that alerts in situations where there is more 
than one path from a source to the same destination, or there is a path that can form 
a loop. Note that when redirecting traffic intended for the network gateway to 
another VM in OpenStack, it is necessary to manipulate the packets so that the VM 
can process the packet. More specifically, the destination MAC address has to be 
replaced with the MAC address of the VM interface. The rule to perform this action is 
automatically inserted in Open vSwitch by the OpenDaylight module. 

The Neutron traffic steering plugin extends the Neutron database and adds two 
tables to store the steering classifiers and the port chains. Similar to other Neutron 
plugins, the traffic steering functionality is exposed in Neutron python client, Neutron 
command-line client and Neutron REST API. See  Table 4-4 for a list of available 
operations. 
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Command line URI HTTP Verb Description 

steering-classifier-
create 

/classifiers POST Create a traffic steering classifier 

steering-classifier-
delete 

/classifier/{id} DELETE Delete a given classifier 

steering-classifier-
list 

/classifiers GET List traffic steering classifiers that 
belong to a given tenant 

steering-classifier-
show 

/classifier/{id} GET Show information of a given classifier 

steering-classifier-
update 

/classifier/{id} PUT Update a given classifier 

port-chain-create /port_chains POST Create a port chain 

port-chain-delete /port_chain/{id} DELETE Delete a port chain 

port-chain-list /port_chains GET List port chains that belong to a given 
tenant 

port-chain-show /port_chain/{id} GET Show information of a given port chain 

port-chain-update /port_chain/{id} PUT Update a port chain 

Table 4-4 Traffic Steering available operations 

Defining a forwarding graph using the Neutron Traffic Steering 
extension 

It is up to the user to instantiate the network service by provisioning a machine and 
configuring the network service software in it, making sure it is attached to a Neutron 
network. 

In the following example, a network configuration is implemented in OpenStack, as 
represented in Figure 4-9. 

 

Figure 4-9 Example of OpenStack configuration 
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Using this setup in OpenStack a forwarding chain will be created (see Figure 4-10), 
which only applies to traffic matching the following classifier:  

• HTTP or FTP traffic type 
• Sent by the host USER (10.0.0.2) 

 

Figure 4-10 Forwarding graph 

 

The classifier needs to be created first to be referenced during the port chain 
creation: 

neutron steering-classifier-create --name FTP --protocol tcp --dst-
ports 20:21 --src-ip 10.0.0.2 

neutron steering-classifier-create --name HTTP --protocol tcp --dst-
ports 80 --src-ip 10.0.0.2 

Finally the port chain is created: 
neutron port-chain --name USER-DPI_AND_FW-CACHE --classifiers 
FTP,HTTP --ports "user_port:dpi_port,fw_port" --ports 
"fw_port:cache_port" 

The traffic originated from the host USER with the matching classifier FTP or classifier 
HTTP will be steered to port fw_port and also to port dpi_port (the packet is 
replicated to the two ports). When packets reach the Firewall, they are forwarded, 
because the Firewall is not the final destination. After leaving the Firewall they can be 
captured in OVS to be steered to the cache_port. If the Cache host is not the 
intended destination, the packets are once again forwarded (repeating the behavior 
previously described for the Firewall host). When the chain is complete the packet 
follows its normal path. 

The following constraints were identified during the development of this module: 

• The bundle was only tested with the first version of OpenDaylight software 
(Hydrogen) because it was the only available at the time. Before this work can 
be used in the new ODL releases, some updates of the source code are 
needed. Also, due to the same reasons it only works with Openflow version 
1.0. 

• OpenDaylight Hydrogen version has some limitations when creating provider 
networks in OpenStack.  

• Because OpenDaylight does not have its own database, once the application 
is terminated the existing runtime data is lost. 

Steering classifiers can only be created using NeutronPorts UUIDs. Because of this, 
incorporating a host located outside of OpenStack in the chain may lead to 
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unpredictable behavior, due to the fact that a virtual node is necessary to receive all 
traffic sent by the real host. 

4.3.3.2.  Source routing for service chaining on datacenter network 

It is a fact that service chaining requires the installation of flow entries in switches 
located in datacenters, such that traffic will traverse the NFs in the exact order 
specified in the service chain. This requirement generates the need to install a large 
number of flow entries in switches, especially with an increasing number of 
customers. This, in turn, can raise a data scalability issue for the T-NOVA system, as 
datacenter switches typically have relatively small flow table size (i.e., several 
thousand entries).  

To mitigate this problem, an alternative solution employs source routing to steer 
traffic through the NFs of a service chain. Source routing embed the path of each 
service chain on the traffic packets headers obviating the need to install flow entries 
in DC switches, i.e., switches forward packets based on the path information carried 
by the packet header. Source routing is an attractive solution for datacenters where 
the number of switches per path is relatively small (typically, there are three switches 
between access gateways and any server in a DC) in comparison to ISP and enterprise 
networks. Furthermore, given that it is performed within the DC and under the 
control of the DC operator, source routing raises less security concerns. For instance, 
only switches and hypervisors (on virtualised servers) managed by the DC operator 
can insert or remove paths from packet headers.  However, source routing raises a set 
of challenges in terms of scalability and performance. In particular, the embedded 
path might increase the packet size beyond maximum allowed length (e.g. 1500 
bytes for Ethernet packets). Therefore, we need to minimize the number of bytes 
consumed to perform source routing per packet. This might entail a trade-off 
between minimizing the state per switch and the source routing header size. 
Furthermore, source routing should provide forwarding rates that are as high as rule-
based forwarding.  

 

Architecture overview 

Consider the example in Figure 4-11 where traffic needs to be steered through three 
NFs deployed on servers within a DC to form a service chain (i.e. traffic should 
traverse NFs in particular order). A straightforward approach is for each service chain 
to install a forwarding entry in each switch on the path connecting the NFs.  Despite 
the simplicity of this approach, it requires maintaining the state of each service chain 
on multiple switches (in this example we need 7 entries for one chain) which limits 
the number of service chains that can be deployed on a DC (since the flow table size 
of each switch is relatively small).  On other hand, by using source routing, the path 
between the NFs can be embedded on the packets header as they arrive to the DC 
(at root switches) requiring no state maintenance on each switch on the path.  

We propose to embed a sequence of switches output port numbers on each packet 
such that each port in this sequence corresponds to a switch on the path. For 
instance, to steer traffic through NF1 and NF2, each packet should carry the sequence 
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of port numbers 1, 3, 5. By reading the port number, the switch learns to which 
output port, it should forward the packet (e.g., switch A will extract and forward 
through port number 1). To allow the switches to identify their corresponding port 
numbers, we add a counter field to the routing header. This counter identifies the 
next port number to be read by the next switch on the path, i.e., the counter field 
specifies the location of the switch corresponding port number from the beginning of 
the routing header.  For example, when reaching switch B, the counter will carry the 
value of 6 indicating that switch B should read the six field on the port number 
starting from the beginning of the routing header (Figure 4-11). The value of the 
counter is decremented at each switch to indicate the next port number to be read. 

 

 

Figure 4-11 Example of service chaining through source routing 

 

To this end, a SDN architecture has been developed for service chaining through 
source routing. The architecture consists of four main components (Figure 4-12): 

1. Access switch: is an Openflow switch which inserts the source routing header on 
each arriving packet based on the configuration provided by the source routing 
controller. In DC, root switches can play the role of access switches. Typically, a DC 
has multiple root switches which enables balancing routing header insertion load 
across multiple access switches. 
2. Source routing controller: provides: (i) topology discovery to keep track of the 
different links and switches on DC network, (ii) path-to-ports translation to identify 
the corresponding switch output ports which form the path between NFs, and (iii) 
flow table configuration to install flows on the access switch to embed source routing 
headers on arriving packets.  
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3. Source routing switch: extracts the output port from the source routing header 
and accordingly forwards the arriving packet. Aggregation and access switches can 
play the role of source routing switches.  
4. Southbound interface: provides an interface for the controller to install 
forwarding rules on access switches and perform topology discovery (i.e., collect 
information about the switches port numbers and active links).  
5. Northbound interface: enables the NFV orchestrator to submit the service chain 
assignment (the assignment of NFs to servers and DC paths) to the source routing 
controller. 

 

Figure 4-12 Source routing architecture 

Embedding the port numbers of the whole path on the arriving packets might 
significantly increase the packet size leading to high bandwidth consumption and/or 
larger packet sizes beyond the maximum length. For instance, a service chain 
consisting of 10 NFs which are assigned to different racks requires a routing header 
with 30 port numbers. Assuming each port number is carried on 8-bits field, a routing 
header adds 30 extra bytes to each arriving packets. This leads to the consumption of 
46% more bandwidth for packets with the size of 64 bytes and to the need for 
fragmentation for packets with a size bigger than 1470 bytes (with Ethernet link).  To 
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overcome this problem, we propose using more than one access switch along the 
path. In this respect, the service chain is divided into pathlets where each pathlet 
starts and ends with an access switch. The location and number of access switches is 
identified by the DC operator based on real world service chains deployment and the 
employed embedding algorithm. By embedding NFs in as small as possible number 
of servers and racks, less number of ports is required for routing traffic and 
subsequently, less number of access switches. An alternative approach is to deploy 
both access switch and source routing functionality within all DC switches, allowing 
the DC operator to dynamically install routing headers on packets in different 
locations of the network. To identify packets reaching the end of their pathlet, we use 
the zero value of the counter field (indicating no further ports to read). While this 
approach provides more flexibility, it increases the complexity of the DC switch 
design.   
 

Implementation  

In this section, we present the implementation of our architecture components: 

Source routing header: To embed the routing header on the service chain packets, 
we use the destination MAC address and further add a VLAN tag and an MPLS label 
stack to each packet. In particular, we encode the port numbers in the destination 
MAC address, the VLAN ID and the MPLS label (Openflow 1.0 which we use for our 
implementation does not allow modifying other VLAN and MPLS fields). By 
combining these fields, we can store 10 port numbers per packet, where each field is 
8 bit long and supports switches with up to 256 ports. To store the counter value, we 
use the TTL field of the MPLS header.  We can further increase the number of 
embedded ports by inserting more MPLS stack labels in each packet.  

Source routing controller: We use POX [POX] to implement the different 
components of our controller. Using Openflow, the controller collects and stores the 
port numbers of each switch. Based on this information, the controller translates the 
service chain path to switch ports. After the translation, the controller ensemble the 
port numbers into a bit vector. This bit vector is further broken down into the MAC 
destination address, the VLAN ID and the MPLS label. This step is followed by 
installing a flow entry in the access switch using OFPT_FLOW_MOD message. This 
message carries the flow matching fields (e.g., source/destination IP, 
source/destination port numbers and protocol) as well as the physical output port 
number. 

Access switch: We rely on OpenvSwitch [PPK+09] to embed routing headers on the 
arriving packets. OpenvSwitch exposes an Openflow interface to the controller to 
install forwarding rules which insert the routing headers on the service chain packets 
by adding a VLAN tag and an MPLS label stack to each packet and updating its 
destination MAC address. 

Source routing switch: We extend Click Modular Router [KMC+00] with a new 
element, SourceRouter, which extracts the values of the VLAN ID, MPLS label, MPLS 
TTL and the destination MAC address and subsequently combines them into the 
routing header (see Figure 4-11).  Based on the counter value, the element reads the 
corresponding port number through which the packet is forwarded. By combining 
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our element with Click elements for packet I/O, we implement a source routing 
switch. 
 

Evaluation  

We evaluate our source routing switch on a emulab-based testbed using 3 servers, 
each one equipped with an Intel Xeon E5520 quad-core CPU at 2.26 GHz, 6 GB DDR3 
RAM and a quad 1G port network interface cards (NICs) based on Intel 82571EB. All 
servers run Click Modular router 2.0 on kernel space with Linux kernel 2.6.32. We 
deploy our source routing switch on one server and use the other two as source and 
destination to generate and receive traffic, respectively. Since the switch on our 
testbed filters packets with VLAN and MPLS header, we encapsulate our packets in 
IP-in-IP header. We measure the packet forwarding rate of our switch with various 
packet input rates and packet size of 85 bytes including the routing header and the IP 
encapsulation header. We further compare our switch performance with rule-based 
forwarding where we forward packets based on packets' destination IP address using 
a routing table with 380K entries. Figure 4-13 shows that our source routing switch 
achieves more than 30% higher forwarding rate than rule-based routing. This 
performance is achieved using a single CPU core.  
 

 

Figure 4-13 Source routing switch forwarding rate 

 

To evaluate the performance of our controller, we add another server with the same 
specifications to our setup (4 servers in total). We use two servers as traffic source 
and sink and the other two to host the controller and the access switch. Initially, we 
measure the flow setup time (i.e., the time required to insert the source routing 
header at the access switch) which we define as the time elapsed from the flow's first 
packet arrival at the access switch ingress port till its departure from the egress port. 
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Figure 4-14 Setup time per flow. 

As depicted in Figure 4-14, the flow setup time does not change significantly across 
the various flow arrival rates. We further break down the setup time into multiple 
components. In particular, we measure the time required for the source routing 
header computation, the time the control packet takes to traverse the POX and kernel 
stack on the controller server in both directions (between the controller and the 
switch), the RTT (between the controller and the access switch) and the access switch 
processing time. As shown in Table 4-5, source routing header computation 
consumes less than 29% of the total setup time. Instead, most of the setup time is 
spent in POX, kernel stack, and the access switch processing. 
 

Table 4-5 Flow setup time 

Element Time (milliseconds) 
Source	routing	header	computation 0.25 

POX	processing	+	kernel	stack 0.24 
RTT 0.1 

access	switch	processing 0.3 
Total 0.89 

 

We also compare source routing with rule-based forwarding in terms of control 
communication overhead. We first measure the communication overhead on a single 
switch for different flow arrival rates. In this respect, we measure the control traffic 
between the switch and controller per direction (noted as uplink and downlink 
overhead). Our measurements show that both source routing and rule-based 
forwarding consume the same amount of bandwidth at the uplink (Figure 4-15 (a)), 
since both approaches use the same packet size and format (i.e., OFPT_PACKET_IN) to 
transfer the packet fields to the controller. On the other hand, for downlink, source 
routing consumes more bandwidth than rule-based forwarding (Figure 4-15 (b)), due 
to the extra packet fields (i.e., VLAN and MPLS) required to install the source routing 
header. 
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Figure 4-15 Control overhead for a single switch. 

Using the results we obtained for a single switch, we further calculate the 
communication overhead with a diverse number of switches. For our calculation, we 
consider DCs with a fat-tree topology [FAT TREE]. The DC components in a fat-tree 
topology can be modeled based on the number of ports per switch. More precisely, a 
fat-tree topology with k-port switches has (5(𝑘"))/4) switches where 𝑘"/4 of these 
switches are core switches and 𝑘" are aggregation and edge switches. 
 

 

Figure 4-16 Control overhead for multiple switches. 

We calculate the control overhead of source routing and rule-based forwarding for 
fat-tree topologies with a diverse number of ports per switch. As shown in Figure 
4-16, source-routing introduces significantly lower communication overhead in 
comparison to rule-based forwarding. We observe that the savings in communication 
overhead increase with the size of the DC network, since the source routing controller 
needs to communicate only with the core switches of the DC. 
 

4.4. Load balancing in multicontroller scenarios 

The SDN architectural model introduces a single logical node in charge of controlling 
all the data-path layer behaviour. The following section deals with scenarios where 
multiple controllers cooperate in a cluster, in order to provide scaling capabilities and 
avoid failure issues.  
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In this context, a load balancing algorithm has been proposed, as well as different 
implementation approaches, with the aim of managing the control traffic between 
switches and multiple controllers. Such algorithm aims at balancing the switch-to-
controller connections according to the current controllers’ load estimation. 
Specifically it has to assign each switch to a subset of controllers, of which one will be 
the master, in order to reduce the control traffic load while maintaining resiliency. By 
balancing the load of the controllers, fair exploitation of the control resources is 
achieved which, in turn, increases the overall throughput and minimizes the control 
connection latency. 

 

4.4.1. Clustering Service in OpenDaylight 

The OpenDaylight controller supports a cluster-based HA model where several 
instances of controllers act as a single logical controller, while the global state of the 
network is maintained through a distributed datastore. 

In the Hydrogen release, OpenDaylight included the Clustering Service Provider 
module for this purpose. It provides clustering services to all the functional 
components of the controller as well as to applications running on top of the 
controller. From the northbound side the cluster is accessible via RESTful API and 
each request can land in any controller in the cluster. From southbound, Openflow 
switches would need to explicitly connect to the controllers in the cluster via their IP 
address. In this regard, the Connection Manager is in charge of managing 
connections between the ODL instances and the OF switches. For the time being, the 
connection schemes supported are: SINGLE_CONTROLLER (all the switches connected 
to only one controller) and ANY_CONTROLLER_ONE_MASTER (any switch connected 
to any controller, with only one master). Other connection schemes (i.e. 
ROUND_ROBIN and LOAD_BALANCED) were defined but not yet implemented. In this 
regard, one implementation approach proposed in T-NOVA aims at extending the 
Clustering Service offered by ODL Hydrogen with a load balancing algorithm 
implementing the LOAD_BALANCED connection scheme.   

Starting from Helium, OpenDaylight moved to the popular Akka [AKKA] technology 
to operate in a server cluster configuration, thus dismissing the previous clustering 
implementation. This feature, installed through Karaf, replaces the non-clustered 
datastore access methods with methods that replicate the datastore transaction 
within the configured cluster. The cluster, consisting of at least three physical server 
nodes, is configured to enable coordination between the member nodes. Once the 
configuration process is completed, a cluster leader is elected according to the RAFT 
[RAFT] convergence process, using the Gossip protocol. Therefore, in order to 
integrate load balancing into ODL Helium (and beyond), an alternative 
implementation has been carried out in T-NOVA. This new approach leverages on the 
OpenFlow protocol, which, in version 1.3 [OF1.3], introduced the concept of Role 
(EQUAL/MASTER/SLAVE) of controllers. The main goal is to balance control traffic by 
dynamically assigning the MASTER controller of each switch, as described in Section 
4.4.6. 
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4.4.2. Experimental plan 

In order to evaluate the benefits of having multiple controller instances, a 
preliminary test environment has been setup, using Mininet and OpenDayLight 
(Hydrogen release). 

The testing environment in Figure 4-15 is composed by a SDN controller cluster of 
2 instances and 26 virtual switches created using OpenvSwitch [OVS]. Every switch Si 
is connected to the Si+1 switch and to the host Hi  that simulates the data traffic 
generator. The control traffic is generated by the switch when there is no flow entry 
for an incoming data packet that the host wants to send. Hence, the switch 
encapsulates the data packet in a OF control packet (packet-in) and sends it to its 
controllers. Then, exactly one controller should send a reply message containing the 
flow entry that the switch will install in its table. Let flow-mod be the name of these 
messages.   

 

Figure 4-15 Testing environment 

We performed the test using the following physical devices: n.1 Quad core Intel 
Q8300 machine with 4 GB RAM and a gigabit Ethernet card hosting the Mininet 
network emulator and the tcpdump packet sniffer; n. 2 Quad core AMD Athlon X4 
750K with 8 GB RAM and a gigabit Ethernet card, both running the OpenDaylight 
Hydrogen controller; n. 1 gigabit switch. The performance is measured in the machine 
with Mininet as all packet-in and flow-mod messages pass through its network 
interface (see Figure 4-15).  

 

In Figure 4-16 the testing scenarios are presented. In the configuration (a) all the 
switches are connected to one instance of controller. 
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The scenario (b) is interesting to see what happens when every switch sends the 
packet-in control message to more than one controllers. One controller should 
answer to the request while the other one should ignore it. However, the ignoring 
decision takes some computational resources and we will see the its impact. In (c) 
there are two controllers and the first 13 switches are connected to the first one while 
the remaining ones are connected to the second controller.      

 

 
a. Single connection (One Controller) 

 
b. All connections (Two controllers) 

 
c. Selective connections (Two controllers)  

Figure 4-16 Testing scenarios 

Figure 4-17 depicts the 95-percentile response time of the 3 cases described 
above. 

  

Figure 4-17 95-percentile response time comparison between the different 
configurations 
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We chose to measure the 95 percentile response time instead of the average 
because the latter does not take into account spikes if they are less than 5%. Another 
reason is that the average does not always report the real behavior since it may hide 
a significant higher response time for an important part of the requests. For example, 
a 15 milliseconds 95 percentile response time means that 95% of all responses were 
processed in 15 milliseconds or less. 

We noticed that the difference between the All and the Selective connection case 
becomes relevant when the number of packet-in/s is greater than 40,000. At 50,000 
packet-in/s this difference becomes more significant (about 8 seconds).  

 

Figure 4-18 Throughput comparison between different configurations 

 

Similar results are reported in Figure 4-18. When the network load is high (above 
45000 packets/s) the throughput of the Selective test is the highest one, being 66% 
greater than the one in the All test scenario and 100% greater than the one in the 
Single test scenario. These plots clearly highlight the benefits of a control plane with 
multiple controllers. It is easy to observe that relevant performance boost is obtained 
only under certain level of load. Hence it is important to find the load levels that 
should trigger an increment or a decrease of the number of controllers. Moreover, 
shrinking the cluster when the load drops under some decided value may reduce the 
operational cost. 

The performance gain highlighted by the tests represents a good motivation for 
using multiple controllers. They indicate that increasing the cluster size may improve 
the performance but this could have relevant results only under certain level of load. 

 

4.4.3. Load balancing algorithm 

As mentioned before, OpenDaylight controller supports several connection schemes 
between control and data planes, i.e. each switch could be statically connected to 
one, more than one or all of the controllers. In this section, we propose a load 
balanced approach providing a dynamic selective switch-controller connection 
scheme.  
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The balancing algorithm dynamically decides the switch-controller mapping aiming 
at optimizing the resource utilisation. In the clustered SDN control plane, at any 
moment there is an elected leader (i.e. an instance of Controller), that performs both 
monitoring and migration operations. It collects load information about every 
Controller in the cluster and then uses it to decide which switches should be moved 
to different controllers. In this implemented version, the monitored data consist of 
the average CPU load and the number of Openflow messages received from every 
switch that the specific Controller is connected to, in a closed time interval. 

It should be taken into account that the decision of finding the best mapping could 
lead to a migration of a very large number of switches, moreover, it would further 
slowdown the system due to the computations needed to solve it, so is preferable to 
migrate a small number of switches. The benefits obtained from the optimal solution 
are not always significant, a 10% imbalance will be hardly noticed in the system 
response time. It should also be considered that the traffic could be highly dynamic 
and the perfect solution could be useless because in a very short period of time the 
load will change and that will trigger a new load balancing operation. The Load 
Balancing algorithm tackles the problem of a potential large number of switch 
migrations and avoids the migration of switches that have a load impact smaller than 
a defined threshold.  

The algorithm receives as input the average load and statistics about every controller. 
By using these monitoring data and a predefined activation threshold (THRESHOLD 
BALANCE), the algorithm compute two set of controller, namely the overloaded and 
the non-overloaded Controllers.  

From the data plane point of view, the switches are assigned to classes of load. The 
load generated by one switch is given by the fraction of number of messages that it 
has sent and the total number of messages that the controller has received from all 
its switches. 

At the core of the algorithm, given a non-overloaded controller Cdst, the algorithm 
tries to act a best-fit technique by transferring switches from an overloaded controller 
Csrc to Cdst, until its load becomes at most the average plus half of the THRESHOLD 
BALANCE. This additional factor aims to decrease the problems caused by 
fragmentation. 
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Figure 4-19 Load Balancing Algorithm 

 

4.4.3.1.  Switch migration 

The number of exchanged control messages between a switch and a controller is 
variable and often unpredictable, it depends on the hosts that connect to this switch. 
Hence, a switch can migrate from one controller to another in such a way that the 
system load remains balanced. Such switch migration feature is fundamental for the 
load balancing functionality. 

The load balancing algorithm generates a set of switch migration operations. Figure 
4-20 represents a migration of a switch (X) between two controllers (A and B).  

The implemented migration algorithm uses the Openflow 1.0 feature. Such protocol 
version implementation does not support roles, however, in the following sections we 
refer to “master” as the controller that should handle all asynchronous Openflow 
messages coming from a certain switch. We assume there is a distributed cache 
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replicated in all controllers that is mainly used to establish which controller must 
answer to asynchronous messages.  

 

 

Figure 4-20 Migration protocol 

The dummy flow is a flow that can be easily distinguished from the normal flows 
which are installed in the switches. When it is received by a switch it changes its 
master. In particular, the match that identifies the dummy-flow have the initial master 
and final master as source and destination addresses. The concept of dummy-flow 
has also been proposed in [DHM+13]. 

As shown in Figure 4-20, the algorithm starts with the ”Start Migration & X-Do not 
process” message. B should remember that during this migration should not process 
the asynchronous messages received from X until it receives the dummy-flow 
removal message. Controller B should also connect to the switch X. When A receives 
the acknowledgment for the previous operations, it should instead remember to 
process the asynchronous messages and right after that A changes the distributed 
map. Then it requests to B to go ahead and install and remove the dummy-flow. 
Controller B does it and when X removes and notifies the removal, both controller will 
receive and process this event and each of them will continue to use the changed 
map where B is the master of X. 

Such migration protocol guaranties that no duplicated flows are installed and that 
there is always one controller that answers to packet-in messages.  

 

4.4.4. Implementation 

The first implementation of the Load Balancer makes use of features built in the 
OpenDaylight Hydrogen release. Specifically, the following bundles/API are used and 
extended: 
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• Connection Manager - It manages the ‘role’ of each controller instance in the 
cluster. Only two connection schemes were available, namely Single Controller 
and Any Controller. Here the Selective Controller scheme, implemented by the 
switch migration algorithm was added. 

• Openflow Plugin - It is the module that programs the Openflow switches 
throught the Openflow protocol 1.0.  

• OVSDB Plugin - The module responsible for connecting the switches to the 
controllers, for their configuration and for disconnecting them. Such plugin 
was enriched with a function that is able to disconnect a switch from the 
controller. The OVSDB API set were updated with this API and another able to 
allow to connect a switch to another controller. 

In addition to the above bundles, a new one, carrying on the Load Balancer logic was 
developed, responsible for taking all the  balancing-related decisions. 

Figure 4-21 highlights the interactions among all of the involved bundles. 

 

Figure 4-21 Main interactions among the bundles of interest in OpenDaylight 

A migration is requested by the cluster coordinator (or cluster leader), that is also the 
one that collects all the load statistics and decides which switch should change its 
master.  

Figure 4-22 illustrates how the controllers A (initial Master), B (final Master), and C 
(coordinator) communicate between them. Controller A or B could also be the cluster 
coordinator. In the figure there is the interaction among system components during a 
switch migration. From the Load Balancer bundle, the cluster coordinator contacts 
the TCP migration servers in the controller A that is overloaded and in controller B 
that is not overloaded. The OVSDB Plugin connects and disconnects (if needed) the 
switch that is being migrated. 

Every controller has a migration server that receives migration requests from the 
coordinator. It is implemented and runs in the Openflow Plugin bundle. The TCP 
migration server can receive ”Start migration” and ”Install and remove dummy-flow”.  

The TCP migration client is the one that makes the migrations requests. It is 
implemented and run in the Load Balancer bundle. For every migration there are 2 
clients: one that communicates with the current master and one with the target 
master. 
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Figure 4-22 Bundles interaction during a switch migration 

4.4.5. Evaluation results 

This section outlines the test performed by the Load Balancer to measure the overall 
performance in specific conditions. In the following, the response time before and 
after the activation of the Load Balancer algorithm is plotted.  

In every test, the system is imbalanced in the first half of the total test time, then the 
load balancing is activated, this in order to measure the improvements brought by 
the auto-balancing. We measure the 95 percentile response time before and after the 
activation. For the sake of simplicity, every switch sends an equal amount of packet-in 
(reported on the X axis).  

The test results are illustrated in Figure 4-23. 

 

 

 

Figure 4-23 Mean response time comparison before and after load balancing event 

 

The differences between the two scenarios are noticeable, such differences become 
huge when the controllers - without Load Balancer - reach their point of saturation (ie 
they process the max number of Openflow messages per second). In the latter 
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scenario, the Load Balancer algorithm aims to increase the overall controller cluster 
throughput by distributing the load generated by a single switch across the instances. 

4.4.6. Role-based load balancing 

4.4.6.1.  Overview 

In order to endow more recent OpenDaylight releases (Helium and beyond) with load 
balancing capabilities, an alternative solution has been implemented. It leverages the 
Openflow protocol which, starting from version 1.3, regulated a new architectural 
model by introducing the concept of role (MASTER, SLAVE and EQUAL) of a 
controller.  

This new model enables two modes of operations when multiple controllers connect 
to the switches: equal and master/slave. In equal interaction, there can be more than 
one controller with EQUAL role for a switch. These controllers may receive and 
respond to any of the events belonging to that switch. On the contrary, in 
master/slave interaction, for each switch, only one MASTER, responsible for all the 
events corresponding to that switch, must exist, whereas the SLAVE controllers can be 
more than one but they do not receive any events. 

The OpenDaylight controller supports both equal and master/slave operations. 
Specifically, the Openflow Plugin is the module in charge of statically assigning the 
controllers’ roles and providing mechanisms to manage this information within the 
cluster (Figure 4-24) 

 

 
Figure 4-24 Openflow Roles in OpenDaylight 

Following the role-based approach, the proposed implementation aims at 
dynamically changing the controllers‘ roles (MASTER/SLAVE) of each switch so as to 
balance the cluster workload, in an easier way than connecting/disconnecting 
switches using OVSDB (as done in the previous implementation). This makes the 
migration mechanism more efficient and, at the same time, reduces significantly the 
network control traffic. 
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4.4.6.2.  Implementation  

The implementation of the role-based load balancing relies on existing features built 
in the OpenDaylight Lithium, together with components developed from scratch.  

The reference scenario is depicted in Figure 4-25. 

 

 
Figure 4-25 Load balancing reference scenario 

 

Specifically, the following existing ODL features have been used and extended: 

• OpenFlow Plugin (OF Plugin) 
This module has been extended to allow the configuration of the switch 
ownership on-demand and to manage external Role Messages through Java 
interfaces 

• Forwarding Rule Manager (FRM) 
This module has been extended to support the on-demand switch ownership 
change in order to re-route internally a request 

• Statistics Manager (Stats Manager) 
The Statistics has been enhanced to collect and expose per-switch OpenFlow 
statistics. 

 

In addition, the following components have been implemented: 

• Role Manager  
The Role Manager is an ODL bundle which exposes RESTful API to 
northbound applications and, in particular, to the Load Balancer for 
configuring the controller role and providing statistics data of each switch. 
The description of the REST interface is available in the table below: 
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URI Method Parameter Description 

/set-switch-
role 

POST Switch IDs, 
OpenFlow-Role 

Enforces the given OpenFlow-
Role  for the target switches on 
the invoked controller instance. 

/get-switch-
role 

POST Switch IDs Returns the OpenFlow-Role of 
the target switches for the 
invoked controller instance. 

/get-switch-
stats 

POST Switch IDs Returns aggregated per-switch 
OpenFlow statistics (messages 
sent/received) of the target 
switches for the invoked 
controller instance. 

Table 4-6 Role Manager APIs 

• Load Balancer 
The Load Balancer is a stand-alone Java application in charge of monitoring 
each controller of the cluster and determining the best controller-to-switch 
mapping according to the workload. It also provides a web GUI to display the 
roles mapping assignments within the cluster. 

 

4.4.6.3.  Evaluation 

The role-based implementation of the load balancer has been evaluated on a test-
bed composed by a cluster of 3 OpenDaylight controllers connected to a Mininet 
network of 16 Openflow (v1.3) switches. The aim of the test was to demonstrate the 
load balancer capability of providing the switch-to-controller mapping that equally 
distributes the workload of the cluster.  

Once started, the Load Balancer triggers the Stats Manager of each controller to get 
updated information about the machine resources usage (CPU/RAM) and the 
exchanged Openflow traffic. Then it computes the best switch-to-controller mapping 
on the basis of the load information, as detailed in Section 4.4.3. Finally, it applies the 
mapping by dynamically changing the controller roles for each switch, through the 
Role Manager interfaces. 

Figure 4-26 shows the assignments statically done by the ODL cluster when it starts 
and connects to the Mininet network. Each blue block represents a running controller 
instance, including the switches to which the instance is connected. The light yellow 
items represent Openflow switches, whose controller has a SLAVE role, while the 
green items are switches whose controller is MASTER. In the case represented in 
Figure 4-26, the network switches are connected to all the controllers belonging to 
the cluster but the first controller acts passively since it has no switches under its 
(master) control.  
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Figure 4-26 Load Balancer Web GUI (before balancing) 

Figure 4-27 outlines the role assignment after the activation of the load balancer. 
Specifically, a subset of switches are moved to the first instance of the controller by 
changing its role, so as to balance the load of the switches on the cluster. 

 
Figure 4-27 Load Balancer Web GUI (after balancing) 

Further details on the tests performed, as well as the source code of the developed 
components, are available at the public repository [LBGIT]. 

4.5. Network isolation and QoS support 

The NFV Infrastructure as envisaged by T-NOVA is a product of integrating 
Openstack and OpenDaylight. As the current support for network isolation and QoS 
support are not well integrated, two are the current options that are under test in the 
frame of Task 4.2. The first option is to use the current integration provided by the 
neutron ML2 plugin for interfacing of Neutron with OpenDaylight controller or re-use 
the above solution but also interface directly with the SDN Controller and the OVS 
instances for reasons that will be explained in this section. The trade-off between the 
aforementioned solutions is that the first is simpler to implement, as the APIs and 
interfaces used are between the Orchestrator and those provided by the Openstack, 
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however the functionalities and QoS capabilities currently supported are somewhat 
limited. On top of that the network resource management currently supported by the 
first option is limited to policing ingress traffic at the Cloud Neutron Node external 
interface. This sections discusses early effort in assessing the situation w.r.t network 
isolation and QoS support.  

4.5.1. Network Isolation  

Network isolation for a multitenant environment is the efficient isolation in the 
network namespace in order different tenants to be able to create isolated networks 
segments reusing addressing segments operating in a completely isolated manner. 
Note should be added in the fact that this isolation does not mean strict isolation 
also in the network resources. This will be attempted through resource management 
schemes, integrated to future Openstack versions, via integration of QoS mechanisms 
already available or planned at OpenDaylight (i.e ODL Lithium Reservation Project 
[ODL-RESERV]) and OVS components.  

4.5.1.1.  Openstack supported Network Isolation 

OpenStack has been designed to be a multi-tenant environment. Users can co-exist 
within the same OpenStack environment and share compute, storage, and network 
resources or they can have dedicated compute, storage, and network resources 
within the same OpenStack environment. A user can create Neutron tenant networks 
that are completely isolated from any Neutron tenant network created by any other 
user, even if the users are sharing resources. The network isolation is a feature that 
does not require intervention from a Systems Administrator. This functionality is 
possible through the use of Network Namespaces, a feature implemented in the 
Linux kernel. When two users create two different Neutron tenant networks, a 
Network Namespace is created for each one. When the users create OpenStack 
instances and attach those instances to their respective Neutron tenant network, only 
those instances within the same Network Namespace can communicate with each 
other, even if the instances are spread across OpenStack compute nodes. This is very 
similar to having two physical Layer 2 networks that have no way of communicating 
with each other until a router is put between them. 

OpenStack supports network isolation through the use of several mechanisms that 
ensure the isolation between different networks. Isolation mechanisms that are 
supported in OpenStack are VLANs (IEEE 802.1Q tagging), VxLANs or L2 tunnels 
using GRE encapsulation. The isolation technique to be used is configured in the 
initial setup. When VLAN tagging is used as an isolation mechanism, a VLAN tag is 
allocated by Neutron from a pre-defined VLAN tags pool and assigned to the newly 
created network. Packets on the specific network contain IEEE 802.1Q headers with a 
specific VLAN tag. By provisioning VLAN tags to the networks, Neutron allows the 
creation of multiple isolated networks on the same physical link.  The main difference 
between OpenStack and other platforms is that the user does not have to deal with 
allocating and managing VLANs to networks. The VLAN allocation and provisioning is 
handled by Neutron, which keeps track of the VLAN tags and is responsible for 
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allocating and reclaiming VLAN tags. Similarly, VxLANs and GRE tunnels are allocated 
and managed automatically by Neutron. 

When OpenStack is integrated with OpenDaylight SDN Controller, the VTN (Virtual 
Tenant Network) framework can be used in order to control and manage the 
networking. VTN creates a virtual networking environment, in which each network 
inside is a different VTN and is managed as an independent network. Features of VTN 
are: 

§ Virtual network provisioning 
§ Add, remove, modify VTN 
§ Add, remove, modify VTN model 

§ Flow control on virtual network 
§ flow filter(pass, abandon, redirect, remarking) 

§ QoS control on virtual network 
§ policing (pass, abandon, penalty) 

§ Virtual network monitoring 
§ Stats info of traffic 
§ Failure event 

 

The components used to create such networks are presented and described in the 
following Table. 

 
Table 4-7 VTN abstraction components 

 

To create an instance of tenant network, as in the following illustrated in Figure 4-28, 
the following actions must be performed in the correct order: 

§ Creation of VTN 
§ Creation of vBridge 
§ Creation of interface 
§ port-mapping 
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Figure 4-28 VTN Mapping of physical network to virtual networks 

There are two types of port mapping available, simple port mapping and VLAN 
mapping. 

Simple port mapping maps the VLAN on physical port of specific switch to vBridge 
according to the following Figure (Figure 4-29). Physical ports cannot be mapped to 
physical ports where other OpenFlow switches are connected. 

 

 
Figure 4-29 Simple VTN port mapping 

The VLAN mapping works by mapping any VLAN to the vBridge, as shown in the 
Figure 4-30. When a physical switch is specified, only the VLAN on specified physical 
switch is mapped. When a physical switch is not specified, the VLAN on all managed 
switches are mapped. 

A physical port connected to OpenFlow switch is not in scope for VLAN mapping. 
Also port mapping settings are given priority. VLAN on port mapped physical port is 
not in scope for VLAN mapping. 
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Figure 4-30 VLAN VTN port mapping 

After the virtual networks are created and assigned to the physical network, in each 
virtual interface a flow filter can be applied. Flow filters are used to match specific 
conditions and apply actions and policies. The figure below depicts two cases of filter 
usage.  

 

 

 

 

 

 

4.5.2. QoS Support 

4.5.2.1.  QoS Support at the OVS level 

Since OpenFlow 1.0, queues are supported for rate-limiting egress packets in a switch 
port for QoS implementation. Queues are designed to provide a guarantee on the 
rate of flow of packets placed in the queue. As such, different queues at different 
rates can be used to prioritize "special" traffic over "ordinary" traffic. 

Queues, although very useful, are defined outside the OpenFlow protocol. OpenFlow 
merely provides a wrapper around existing switch queuing mechanisms in order to 
inform the controller of the available queues. Queues must be defined/instantiated at 

 

flow%filter

Create%flow%list
(set%match%condition)

Set%flow%filter%to%
interface
(set%action)

QoS

Create)flow)list
(set)match)condition)

Create)policing)profile
(set)rate,)action)

Set)
policing)profile)to)

interface

 (a) (b) 

Figure 4-31 Flow filters: (a) Simple filter, (b) QoS filter 
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the switch using out of band signalling. This means that queues must set up with 
native OVS commands prior to to using them with OpenFlow. This is analogous to 
adding ports to an OpenFlow instance or virtual switch. 

Moreover, OVS has various ways of providing rate limiting mostly based to the 
available Linux queue disciplines (qdisc) supported by the Linux kernel. In order to 
support statistical QoS schemes or support DifServ based schemes the Hierarchical 
Token Bucket (HTB) scheduler can be used via tc-htb element. Alternatively, the 
available policers or token bucket (TB) schedulers might be used to provide network 
resource guarantees for particular flows on designated OVS ports.  

4.5.2.2.  QoS Support at OpenFlow level 

OpenFlow version 1.3 introduced meters support at the OpenFlow protocol. Meters 
complement the queue framework already in place in OpenFlow, by allowing for the 
rate-monitoring of traffic prior to output. More specifically, with meters, we can 
monitor the ingress rate of traffic as defined by a flow. Flows can direct packets to a 
meter using the goto-meter OpenFlow instruction, where the meter can then perform 
some operation based on the rate it receives packets. 

In turn a configured queue, accepts packets for output and processes them at a 
min/max specified rate. As such, note that meters and queues are complementary 
and are not different implementations of the same thing. A common misconception 
is that meters are a replacement for queues.  

Unlike queues though, which are rather rigid and must be defined by the switch out 
of band (e.g. if using Open vSwitch (OVS) with OVS commands), meters can be 
installed, modified, and removed at runtime using OpenFlow. In fact, we can link 
meters to flows themselves. OpenFlow defines an abstraction called a meter table, 
which simply contains rows of meters. These meters can be manipulated in a similar 
manner to flows. Also like flows, meters receive packets as input and (optionally) send 
packets as output. 

A meter table consists of meter entries, defining per-flow meters. Per-flow meters 
enable OpenFlow to implement various simple QoS operations, such as rate-limiting 
or policing. 

A meter measures the rate of packets assigned to it and enables controlling the rate 
of those packets. Meters are attached directly to flow entries (as opposed to queues 
which are attached to ports). Any flow entry can specify a meter in its instruction set, 
the meter measures and controls the rate of the aggregate of all flow entries to which 
it is attached. Multiple meters can be used in the same table, but in an exclusive way 
(disjoint set of flow entries). Multiple meters can be used on the same set of packets 
by using them in successive flow tables. 

Each meter entry is identified by its meter identifier and contains: 

• meter identifier: a 32-bit unsigned integer uniquely identifying the meter 
• meter bands: an unordered list of meter bands, where each meter band 

specifies the rate of the band and the way to process the packet 
• counters: updated when packets are processed by a meter 
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Each meter may have one or more meter bands. Each band specifies the rate at which 
the band applies and the way packets should be processed. Packet are processed by 
a single meter band based on the current measured meter rate, the meter applies the 
meter band with the highest configured rate that is lower than the current measured 
rate. If the current rate is lower than any specified meter band rate, no meter band is 
applied. 

Each meter band is identified by its rate and contains: 

• band type: defines how packet are processed 
• rate: used by the meter to select the meter band, defines the lowest rate at 

which the band can apply 
• counters: updated when packets are processed by a meter band 
• type specific arguments: some band types have optional arguments 

There is no band type “Required” by this specification. The controller can query the 
switch about which of the “Optional” meter band types it supports. 

• Optional: drop: Drop (discard) the packet. Can be used to define a rate limiter 
band. 

• Optional: dscp remark: decrease the drop precedence of the DSCP field in the 
IP header of the packet. Can be used to define a simple DiffServ policer. 

An example REST API request used at ODL is illustrated below:  

Using PostMan: Set Request Headers 
Content-Type: application/xml 
Accept: application/xml 
Use URL: http://<ip-address>:8080/restconf/config/opendaylight-
inventory:nodes/node/openflow:1/meter/1 
Method:PUT 
Request Body: 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 

<meter xmlns="urn:opendaylight:flow:inventory"> 

    <container-name>abcd</container-name> 

    <flags>meter-burst</flags> 

    <meter-band-headers> 

      <meter-band-header> 

      <band-burst-size>400</band-burst-size> 

                 <band-id>0</band-id> 

                 <band-rate>2048</band-rate> 

                  <dscp-remark-burst-size>5</dscp-remark-burst-size> 

              <dscp-remark-rate>12</dscp-remark-rate> 

                <prec_level>1</prec_level> 

                <meter-band-types> 

  <flags>ofpmbt-dscp-remark</flags> 

              </meter-band-types> 

     </meter-band-header> 

     </meter-band-headers> 

     <meter-id>1</meter-id> 

<meter-name>Foo</meter-name> 

</meter> 
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4.5.2.3.  QoS Support in Virtual Tenant Network (VTN) 

To perform QoS in VTN (Virtual Tenant Network) which works on top of 
OpenDaylight, flow filters must be used. The flow-filter function discards, permits, or 
redirects packets of the traffic within a VTN, according to specified flow conditions. 
Priority and dscp remarking can be performed in VTN.  

The following two figures are examples of different QoS policies used in a VTN. sets 
the dscp to 55 in order to differentiate the selected packets.  

 
Figure 4-32 Prioritising Traffic in VTN 

Figure 4-33 provides a more complicated example which uses three color marking in 
order to apply specific thresholds and limits to the appropriates packets. 

 
Figure 4-33 Three color marker in VTN 

VTN Supported filter actions for the provision of QoS are illustrated in the following 
Table (Table 4-8)  
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Table 4-8 VTN Filter Actions 

 

4.5.2.4.  LibVirt QoS Support 

QoS related information is signalled to libvirt configuration via the <bandwidth> 
element [LIBVIRT]. The element allows setting quality of service for a particular 
network under the constrain that the network type is <forward> i.e route, nat or no 
mode at all. This element is defined as a subelement of a domain’s <interface>, a 
subelement of a <network>, or a subelement of a <portgroup> in a <network>. 
Reciting from the libvirt relevant info page [LIBVIRT]:”As a subelement of a domain's 
<interface>, the bandwidth only applies to that one interface of the domain. As a 
subelement of a <network>, the bandwidth is a total aggregate bandwidth to/from 
all guest interfaces attached to that network, not to each guest interface individually. 
If a domain's <interface> has <bandwidth> element values higher than the 
aggregate for the entire network, then the aggregate bandwidth for the <network> 
takes precedence. This is because the two choke points are independent of each 
other where the domain's <interface> bandwidth control is applied on the interface's 
tap device, while the <network> bandwidth control is applied on the interface part of 
the bridge device created for that network.” 
Inbound and Outbound traffic shaping is supported independently. The supported 
configuration options allowed in the <bandwidth> element are:  

• average i.e. average bitrate for the shaped interface; 
• peak i.e. the maximum rate at which bridge can send data; 
• burst i.e amount of kbytes for a single burst; 
• floor i.e. applicable only for inbound traffic, guarantees minimal throughput 

for shaped interfaces.   
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4.5.2.5.  Openstack QoS Support 

The QoS support in Openstack is a product of the current implemented interfaces 
with the available mechanisms of the components and drivers being utilised, namely 
libvirt, neutron and supported ml2 plugins, OpenDaylight and VTN, and finally OVS.  

OpenStack Liberty release introduces built-in Quality of Service support, a feature 
that allows OpenStack tenant administrators to offer different service levels based on 
application needs and available bandwidth. Within the current Openstack roadmap, 
the focues  is to provide an extensible API and reference implementation that enables 
bandwidth limiting through egress bandwidth limit rules (i.e. rules that apply on the 
traffic exiting the VMs). QoS support in Liberty is perceived as an advanced service 
plug-in that is decoupled from the rest of the Neutron code on multiple levels and it 
is available through the ml2 extension driver[OSTACK-QOS][NEUT-QOS]. 

There are two different ways to apply QoS policies: 

§ Per network: All the ports plugged on the network where the QoS policy is 
applied get the policy applied to them.  

§ Per port: The specific port gets the policy applied, when the port had any network 
policy that one is overridden. 

 
To create a QoS policy, a policy name must be chosen and then used in the following 
command: 

 
After issuing the previous command, we need to configure the bandwidth limit rules 
in the policy, by specifying the maximum kbps and maximum burst (expressed in 
kbytes)1 that are allowed: 

                                                   
1 NOTE: The burst is actually calculated over excess bytes allowed, the printed command has a 
typo.  
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Finally, to associate the created policy with an existing neutron port, use the following 
command with the relevant IDs: 

 

Also rules can be modified in runtime. Rule modifications will be propagated to any 
attached port. 

 

To review the QoS policies, use the following command: 

 

 

To view the details of a specific QoS policy, use the following command: 
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To view a rule of a specific QoS policy, use the following command: 

 

 

Some validation tests were conducted with iperf to verify the application of QoS 
policies. The VM in the following example had an ingress limit of 2 Mbps and the 
traffic generated was in the area of 1 to 5 with 0.5 mbps increment. The following 
figures show that the traffic reaching the server is less or equal than 2 Mbit, thus 
complying with the applied QoS policy. The duration of each iperf measurement was 
10 sec. 
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Figure 4-34 BW Policing example 

The QoS study in the frame of the project is considered as research topic. Extensions 
of the above measurements are considered to be delivered within WP7 frame and 
contributed to Deliverable D7.2.  

4.5.3. QoS Considerations 

From the analysis above, it appears that full QoS support in the Openstack 
environment is only achievable via additional interfacing with the actual components 
that participate in the Openstack environment. The use of SDN in conjunction with 
Openstack allows bigger freedom in the QoS models that maybe supported and 
dynamic and flexible control on the granularity of the solutions. However, Openstack 
environment withholds no knowledge of configurations happening without the use 
of its own APIs. Therefore any QoS scheme to be attempted should be also retained 
and managed by a resource management component operating at the Orchestrator 
level.  

In T-NOVA the QoS specific requirement are declared via the descriptors as adapted 
by ETSI i.e. Network Service Descriptor (NSD), Virtual Network Function Descriptor 
(VNFD) and Virtual Link Descriptor (VLD). The aforementioned descriptor will be 
decomposed by the Orchestrator and HEAT files will be generated and signalled to 
the Virtual Infrastructure Manager (VIM) that are responsible for the resource 
allocation with the designated PoPs (it might be the case where more than one VIM 
will be used considering a multi-PoP environment). The file snippet below reveals the 
VNFD, and VLD parts where the QoS attributes are declared. 
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… 

vitual_links: 

        - vld_id: "vld0" 

      root_requirements: "10Mbps" 

      leaf_requirements: "10Mbps" 

      - qos:  

  average: "5Mbps" 

 peak: "6Mbps" 

 burst: "50" 

… 

… 

vl_id: "mngt" 

          connectivity_type: "E-Line" 

          connection_points_reference: 
["vdu0:mngt0", "vnf0:mngt0"] 

          root_requirement: "10Mbps" 

          leaf_requirement: "10Mbps"  

- qos:  

        average: "5Mbps" 

       peak: "6Mbps" 

       burst: "50" 

           net_segment: "192.168.1.0/24"  

          dhcp: "TRUE" 

Table 4-9 VNFD/VLD examples for QoS configuration. 

Depending on the scenario to be implemented the qos field in the above files needs 
to be expanded in order to support e.g. DiffServ or statistical QoS within the NFVI-
PoP or across the PoP over the WAN. The above scenarios is anticipated to be tackled 
at the final version this deliverable (D4.22).  

4.6. Persistency of Network Configuration 

As stated in previous sections, a distributed control plane is a must in T-NOVA 
framework. Since the T-NOVA control plane is based on OpenDaylight, the several 
SDN controllers are in Clustering Mode. 
Among the advantages of OpenDaylight clustering mode (e.g. High Availability of 
control plane), persistency of network configuration is provided. Data persistence 
means whenever a controller instance is manually restarted or even crashes, any data 
gathered by the controller is not lost, but network configuration is persisted to a 
database. This database can be in the local drive of the server on which the controller 
instance is deployed on, or even in a remote database, in order to also introduce data 
redundancy. 
Thanks to this mechanism, when the functionality of a controller instance is correctly 
restored after a crash, all the data stored on the disk will allow the controller to 
reconstitute the previous network configuration. With network configuration is 
intended the inventory of network equipment, the interconnections, and for each 
switch the list of installed flows, meters and statistics. 
After an initial synchronisation phase with the other cluster members, the restored 
controller instance is fully operational and ready to take in charge the management 
of the switches. 
In order to validate this stated behaviour, a batch of tests was run using three 
instances of OpenDaylight Lithium (each one running in a separate VM) configured as 
a cluster. 

Comment [LZ1]: To be provided by NCSRD 



T-NOVA | Deliverable D4.21  SDN Control Plane 

© T-NOVA Consortium  
 

67 

The orchestration of the aforementioned VMs was performed by OpenStack Liberty 
(community standard flavour). OpenStack Liberty was run in a 4-node configuration 
(Figure 4-35): 

• Controller Node and Network Node were virtual machines on an external 
vSphere farm; 

• Compute Nodes used were HPE Proliant BL465 Gen8. 
 

 
Figure 4-35 Testbed configuration 

To run our tests, an SDN application built over OpenDaylight was run, called 
Persistence Test Application. Thanks to this tool, it is pretty straightforward to test the 
controller behaviour in case of failure verifying the network configuration persistence. 
In particular, it allows users to generate data to be stored, persisted and eventually 
retrieved. 
Our tests were performed with the following configurations: 

• A single instance of OpenDaylight Lithium; 
• A cluster of three instances of OpenDaylight Lithium. 

Clustering mode in OpenDaylight can be also run with a single instance of the 
controller. With this setup, network configuration is still persisted, but now the 
control plane is centralised, with the consequence of becoming a single point of 
failure. Obviously, with a single controller, High Availability is not provided anymore. 
This case is unfeasible with T-NOVA architecture, therefore it was not considered as a 
test scenario. 
The workflow for each test can be divided in the following steps: 

• With the controller correctly working, Persistence Test Application was started; 
• Through this application were created: 

o an additional user, with a name and a set of permissions; 
o a network device, setting for it a name and an IP address. 

• The controller was stopped rebooting the VM hosting it, in order to simulate a 
controller failure; 

• After the controller is restarted, the Performance Test Application was run 
again, checking if the data previously inserted were correctly persisted by the 
controller. 
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As we expected, when OpenDaylight was run in single instance mode, the controller 
reboot caused the loss of the manually inserted network configuration. 
On the contrary, when OpenDaylight was configured to run in clustered mode, data 
manually inserted were correctly persisted and available to be retrieved, even after 
the controller simulated failure. 
 
These tests highlighted the importance of running the T-NOVA control plane in a 
distributed environment, in order to have (in addition to High Availability) the 
persistence of network configuration, available to be recovered upon a failure. 
 

4.7. Inter-DC/WAN integration - WAN Infrastructure 
Connection Manager (WICM) 

4.7.1. Overview 

In T-NOVA, a service is composed of two basic components: 

• VNF as-a-Service (VNFaaS), a set of associated VNFs hosted in one or multiple 
NFVI-PoP.  

• A connectivity service, in most cases including one or multiple WAN domains. 

The end-to-end provisioning of the T-NOVA service to a customer in a real scenario 
relies on the proper integration of these two components, as illustrated in Figure 
4-36 for a typical enterprise scenario:  

 
Figure 4-36 T-NOVA service: end-to-end view 

The integration of these two components in T-NOVA is carried out by the SDN-based 
WAN Infrastructure Connection Manager (WICM). The functionality provided by the 
WICM has been initially described in section 3.8 of T-NOVA Deliverable D2.32. In this 
section, WICM design and implementation is reported. 

The WICM is the architectural component that handles the integration of WAN 
connectivity services with the NFVI-PoPs that host the VNFs. To understand the role 
of the WICM, an important concept to be taken into account is the VNF location. As 
described in D2.32, two types of VNF location should be distinguished: 

• Logical VNF location, which corresponds to the point in the customer network 
where the service is installed (typically, a customer attachment point to the 
service provider network); 
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• Physical VNF location, which identifies the actual placement of the VMs that 
support the VNF (NFVI-PoP ID and hosts). 

The logical location is supposed to be decided by the customer and specified at the 
time of service subscription, whereas the physical location is decided by the service 
provider following the service mapping algorithm. 

As noted in D2.32, the role played by the WICM greatly depends on the proximity 
between logical and physical locations, more specifically whether or not they are 
separated by a WAN segment (or, perhaps more precisely, whether or not an existing 
WAN connectivity service is affected by the insertion of the VNF in the data path).  

For the sake of simplicity, the following sections (until 4.7.5) are based on two 
assumptions: 

• VNF logical and physical locations are close to each other, i.e., there is no 
WAN segment in between (case A, following D2.32 section 3.8);  

• The VNFs that compose a network service are located in a single NFVI-PoP. 

Section 4.7.6 will discuss the extensions to the basic model to cover the general case 
where these restrictions do not apply.  

The basic scenario considered in the next few sections is illustrated in Figure 4-37.  

 
Figure 4-37 NFVI-PoP and WAN integration with WICM  

 

A pivotal role in this scenario is played by a WAN switching node, controlled by the 
WICM (WICM node in the figure above), which is in charge of forwarding the traffic 
received from the customer directly to the service provider edge node (if no VNF is 
included in the data path), or to divert it to a nearby NFVI-PoP (if one or more VNFs 
are included in the data path). The same applies to the traffic coming from the WAN 
towards the customer.  
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It is up to the WICM to decide how and when to enforce the rerouting of the 
customer traffic. Typically, the actions performed by the WICM are triggered by the 
subscription of a new VNF service by the customer.  

The sequence of events is as follows: 

1. Through the marketplace dashboard, the customer selects the VNF service 
and the respective location (i.e. the logical location, following the definition 
above).  

2. The marketplace sends the following info to the NFVO: [Customer ID, NAP ID,        
Service ID] 

3. The NFVO decides about service mapping and provides the following 
information to the WICM: 

• Customer ID (same as received from Marketplace) 
• NAP ID (same as received from Marketplace) 
• Service Descriptor 
• NFVI-PoP (if service mapping is executed) 

4. Through consultation of customers’ database, the WICM maps [Customer ID, 
NAP ID] into the concrete network location. This follows the same convention 
used for PoPs, followed by [switch ID, physical port ID, VLAN tag], e.g. GR-
ATH-0012-345-678. 

5. Based on the network location obtained in the previous step, the WICM 
identifies the switch and customer VLAN2 and allocates a VLAN to the 
network segment between the NFVI-PoP GW and the WAN switching node. If 
the customer VLAN is already being used in that segment, the WICM needs to 
allocate a new VLAN and inform the NFVO.  

6. The WICM acknowledges the allocation process success or failure, if 
successful returns the external customer VLAN ID to the NFVO. 

7. The NFVO interacts with VIM to create the NS instance using the VLAN ID 
provided earlier by the WICM.  

8. The VIM acknowledges the NS deployment success or failure to the NFVO. 
Moreover, this step successful conclusion implies that the VNFs are in place 
and ready to start processing the customer’s traffic. 

9. Finally, the NFVO is now able to notify the WICM to start enforcing the 
customer’s traffic redirection and avoid any service loss.  

Figure 4-38 illustrates steps 3 to 9 from the previous sequence of events. 

                                                   
2 This is the VLAN that carries the customer traffic between the CE and the PE network 
elements. 
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Figure 4-38 WICM procedure 

4.7.2. WICM Architecture 

The WICM architecture,  shown in Figure 4-39, is composed of four functional 
components: 

• WICM API - this component provides an interface through which the NFVO 
can make traffic redirection requests 

• WICM DB – the database enables the persistent storage of network services, 
customers logical location, NFVI-PoPs location and other necessary data 
elements. 

• OpenDaylight Controller – this component enables the centralised 
management and control of the network infrastructure. 

• WICM Traffic Redirection Services – this component is responsible for the 
realisation of traffic redirection services received by the API. To enforce the 
services it uses the DB and the OpenDaylight controller. 

• WAN-SW – these represent the network elements that are capable of 
redirecting the customer’s network traffic to a nearby NFVI-PoP. 

 
Figure 4-39 WICM Architecture 

Each WICM connectivity resource has one the following states: 
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State Description 

ALLOCATED The switch logic port is allocated to the resource (VLAN ID), 
but traffic is not yet being redirected. 

ACTIVE Traffic redirection is active. 

ERROR There was a problem in the redirection configuration. 

NOT AVAILABLE It is not possible to allocate the connectivity resource. 

TERMINATING The connectivity resource is being destroyed. 

TERMINATED The connectivity resource is destroyed, traffic redirection is 
disable. 

Table 4-10 WICM Resource states 

When a connectivity creation request is received, the WICM queries the database 
retrieving all used VLANs (either ALLOCATED or ACTIVE states) for the same NFVI-
PoP. If VLANs are available, the resource is registered as ALLOCATED and the VLANs 
returned. Otherwise the resource is registered as NOT AVAILABLE. 

After the successful resource creation, the next step is to activate the traffic 
redirection. When such request is received, the WICM queries the database to 
retrieve the resource information (NAP, NFVI-PoP, VLANs). With this information, the 
WICM requests the SDN controller to put the Openflow rules in place for traffic 
redirection. Once the redirection is in place, the WICM removes the pre-VNFaaS 
Openflow rules, using the SDN controller, to save space in the switch. Finally, the 
resource is set as active. If anything fails, the resource state is set to ERROR and 
Openflow rules for pre-VNFaaS mode are put in place. 

A customer may also wish to unsubscribe VNF services hosted on the NFVI-PoP, 
which implies returning to pre-VNFaaS mode, thus disabling traffic redirection. The 
WICM handles this request by querying the database to retrieve the resource 
information and sets its state as TERMINATING. Then the WICM requests the SDN 
controller to instantiate the pre-VNFaaS forwarding rules and once this rules are in 
place the old rules are deleted. To finish this operation the state of the resource is set 
to TERMINATED.  

 

4.7.3. WICM API 

The description of the REST interface used between the NFVO and the WICM is 
available in the table below: 
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URI Method Parameter Description 

/vnf-connectivity 

 

POST ns_instance_id; 
NAP ID; Service 
Descriptor; NFVI-
PoP ID 

Create a connectivity resource 
reserving two VLAN IDs in WICM. 
Said IDs are returned to the 
NFVO in the response body. 
(Steps 3-4)  

/vnf-connectivity/ 
:ns_instance_id 

GET N.A. Query the status of 
ns_instance_id resource. 

/vnf-
connectivity/:ns_ins
tance_id 

PUT N.A Update ns_instance_id resource, 
enabling traffic redirection. (Steps 
5-6) 

/vnf-
connectivity/:ns_ins
tance_id 

DELETE N.A. Delete ns_instance_id resource, 
disabling traffic redirection. 

Table 4-11 WICM APIs – Single PoP scenario 

4.7.4. WICM Dependencies 

WICM is fully implemented using python 2.7, the database storing all connectivity 
resources information is implemented using MySQL version 5.5 and uses the Lithium 
(3.0.3) version of OpenDaylight requiring the following features: odl-openflowplugin-
all and odl-restconf-all. 

The following python libraries are needed to run the WICM: 

Software library Description 

Flask – 0.10.1 Used to provide the rest API for the orchestrator. 

MySQL-python – 1.2.5 MySQL plugin required for database access. 

SQLAlchemy – 2.0 Object relational mapper. 

requests – 2.7.0 Used to control the SDN. 

Table 4-12 WICM Software dependencies 

 

4.7.5. WICM Demonstration 

In a pre-VNFaaS mode of operation, traffic flows directly from the customer edge to 
the respective provider edge and vice-versa. The introduction of the VNFs raises the 
need to redirect traffic to network functions located in datacenters while still 
maintaining transparency from the customer point of view.  

Figure 4-40 stands as a demonstration scenario for the WICM.  



T-NOVA | Deliverable D4.21  SDN Control Plane 

© T-NOVA Consortium  
 

74 

 
Figure 4-40 WICM demonstration scenario 

The upper block Alex (named after the machine where it is instantiated) contains all 
that is needed for the pre-VNFaaS mode of operation, in this case provider and 
customer edges are in different VLANs as shown in the image. C1 and C2 are 
supposed to be located in the customer domain (br-ce being the equivalent of the 
customer edge node), while S1 and S2 are servers located beyond the provider edge, 
represented by br-pe. S1 communicates with C1, while S2 communicates with C2.   

Alex also contains three interconnected switches: two aggregator switches placed 
one at each edge and one in the middle introduced to act as the VNF gateway. The 
edge switches are responsible for handling VLAN tagging, providing intra-edge 
connectivity and forwarding to the respective complementary edge, through the VNF 
gateway. The responsibilities of VNF GW switch, named br-wicm, encompass 
redirecting traffic to the correct datacenter and then forward the traffic back from the 
datacenter to the correct edge (further explanation will follow on how this is realised). 
When a given edge pair (client/provider) has no active VNFs, the VNF GW defaults to 
VLAN ID switching and forwarding, ensuring that there is no loss of connectivity. This 
last switch is operated by OpenDaylight (ODL), which is controlled by WICM. WICM 
accepts requests to either enable or disable redirection to VNFs from the 
orchestrator.  

The other presented block, named Biker, represents the datacenter where VNFs are 
placed using OpenStack. In this example, for the sake of brevity, only one VNF is used 
instead of a full service chain as it is all that is necessary to verify the correctness of 
the operation performed by the WICM. VNFs in Biker are connected to an OVS switch 
managed by OpenStack’s Neutron.  
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Alex and Biker are connected through a physical wire, where the redirected traffic 
flows. VLANs are used to distinguish which VNF is to be used and also to distinguish 
the direction of the flows. These VLANs are assigned by WICM following a /vnf-
connectivity POST, which returns two IDs for a given redirection request – one for 
client-provider and another for provider-client directions. Considering these IDs, the 
orchestrator instantiates the VNF with two "Provider Network” connections, one for 
each VLAN assigned by WICM. In this example, consider that redirection is enabled 
only the pair C1-S1, with assigned VLAN IDs 1 and 2, as illustrated in Figure 4-41.  

 
Figure 4-41 NFVI-PoP VLANs and connectivity with external network 

Figure 4-42 shows the Openflow flows implemented in the br-wicm, a stylied output 
of the command “ovs-ofctl –O openflow13 dump-flows br-wicm”. Cookie is used to 
represent the type of flow: 

• NFVI (Network Virtual Function Instance): redirection flow 
• NAP (Network Access Point): normal operation 
• DEFAULT: indicating what to if all matches fail. 

Priority is the Openflow priority and match/actions are the implemented Openflow 
rules. 

 
Figure 4-42 Traffic flows in br-wicm 

Analysing each line of the table the packets travel in the following manner: 

1. All incoming traffic from OpenStack (Biker) tagged with VLAN ID 2 is changed 
to VLAN ID 400 and forwarded to the provider aggregator switch. 

2. All incoming traffic from OpenStack (Biker) tagged with VLAN ID 1 is changed 
to VLAN ID 400 and forwarded to the client aggregator switch. 
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3. All incoming traffic from the provider aggregator switch tagged with VLAN ID 
400 is changed to VLAN ID 2 and forwarded to the OpenStack (Biker) for VNF 
processing. 

4. All incoming traffic from the client aggregator switch tagged with VLAN ID 
100 is changed to VLAN ID 1 and forwarded to the OpenStack (Biker) for VNF 
processing. 

5. All incoming traffic from the provider aggregator switch tagged with VLAN ID 
500 is changed to VLAN ID 200 and forwarded to the client aggregator switch. 

6. All incoming traffic from the client aggregator switch tagged with VLAN ID 
200 is changed to VLAN ID 500 and forwarded to the provider aggregator 
switch. 

7. If no rules match, drop the packet. 

The first four lines implement the redirection, cookie NFVI, and the next two lines 
provide simple connectivity for the pair C2-S2. 

4.7.6. Extensions to the basic WICM scenario 

In the previous sections a description of the basic functionality of the WICM has been 
provided following the implementation of the initial prototype. As noted in section 
4.7.1, two assumptions were made to facilitate an early implementation of the WICM 
module:  

• VNF logical and physical locations are close to each other, i.e., there is no 
WAN segment in between;  

• All VNFs that compose a network service are located in a single NFVI-PoP. 

The following sub-sections analyse the requirements to generalize the above 
scenario, where the above restrictions do not apply. For the sake of simplicity, the 
examples analyse the unidirectional flow of traffic, extending to the bidirectional case 
should as simple as of applying the same approach in both directions. 

4.7.6.1.  Remote logical VNF location 

In the case where physical and logical locations of a VNF are different, the connection 
between the WICM switching node and the NFVI-PoP has to be extended across one 
or more WAN domains. Two possible approaches are illustrated in Figure 4-43 and 
Figure 4-44 below, where the traffic flowing from left to right is represented by a red 
dotted line. 

The first case corresponds to the direct replacement of the connection between the 
WICM node and the local NFVI-PoP (represented before in Figure Figure 4-37)  by a 
tunnel that may cross one or several WAN domains and is terminated at another 
WICM node located at, or next to, the remote NFVI-PoP. Traffic leaving the initial 
WICM node is sent to the NFVI-PoP through a tunnel and then sent back to the same 
WICM node. From that point, the normal path to the destination is resumed. This is a 
simple approach, fully transparent from the point of view of the existing WAN service, 
as only the tunnel endpoints are aware of modifications in the path between source 
and destination. The price to pay is routing inefficiency and increased latency 
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motivated by the so-called “tromboning” effect , which is minimized by the 
alternative approach described below.  

  

 
Figure 4-43 NFVI PoP in remote location – first approach 

In the second approach, represented in Figure 4-44, the packets leaving the NFVI-PoP 
are not tunnelled back to the initial WICM node, but rather forwarded directly to the 
final destination. This is a more efficient approach compared to the one described 
above but introduces added complexity, because it is not transparent from the point 
of view of the existing WAN connectivity service 

and would require an overarching orchestration entity to perform integrated control 
of VNF lifecycle and the WAN connectivity service. A detailed discussion of such 
scenario is beyond the scope of this document.   

   

 

 
Figure 4-44 NFVI PoP in remote location – second approach 

4.7.6.2.  Multiple NFVI-PoPs 

Up to now, it has been assumed that all VNFs that compose a network service are 
instantiated in a single NFVI-PoP. However, for several reasons, this may not always 
be the case – it makes sense that different VNFs may be located at different NFVI-
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PoPs, running different VIM instances (This corresponds to the scenario depicted in 
Figure 4-36, in section 4.7.1). 

This scenario can be seen as a special case of service function chaining in which the 
several VNF components are spread across multiple NFVI-PoPs. 

To support this scenario, the interface between the orchestrator and the WICM must 
be extended in such a way that an ordered list of NFVI-PoP IDs, not a single NFVI-
PoP ID, is received by the WICM.  

In a multi-NFVI-PoP environment, it makes sense that the functionality of WICM 
node, performing the steering of the traffic across the multiple NFVI-PoP, is 
instantiated at the service provider network edge, as well as at every NFVI-PoP as 
shown in Figure 4-45. It should be noted that the figure only represents the case of 
unidirectional flow from customer site A to B – for the reverse direction, a WICM 
node would also be necessary at the network edge close to customer site B, if traffic 
redirection was required at that point. 

 
Figure 4-45 Multiple NFVI-PoP scenario 

In terms of WICM API, in order to accommodate the extensions described above, the 
only change required to the basic version described in Table 4-11, is that instead of a 
single NFVI-PoP, an ordered list of NFVI-PoPs may be needed, as shown in Table 4-13 
. 
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URI Method Parameter Description 

/vnf-connectivity 

 

POST ns_instance_id; 
NAP ID; Service 
Descriptor; [NFVI-
PoP ID1, …, NFVI-
PoP IDn] 

Create a connectivity resource 
reserving two VLAN IDs in WICM. 
Said IDs are returned to the 
NFVO in the response body. 
(Steps 3-4)  

/vnf-connectivity/ 
:ns_instance_id 

GET N.A. Query the status of 
ns_instance_id resource. 

/vnf-
connectivity/:ns_ins
tance_id 

PUT N.A Update ns_instance_id resource, 
enabling traffic redirection. (Steps 
5-6) 

/vnf-
connectivity/:ns_ins
tance_id 

DELETE N.A. Delete ns_instance_id resource, 
disabling traffic redirection. 

Table 4-13 WICM APIs – MultiPoPs scenario 

With regard to the WICM process described before in Figure 4-38, the only relevant 
difference is that now the orchestrator has to deal with multiple VIM instances (on 
the left hand site of the Figure 4-38). In relation to the interface between the 
orchestrator and the WICM, nothing changes apart from the extension of the API, as 
shown in Table 4-13. 

Going one step further in terms of generality, one may assume that NFVI-PoPs 
hosting VNFs may be located at different administrative domains. Figure 4-46 
provides a general overarching scenario, including multiple NFVI-PoPs located at 
multiple provider domains. Detailed elaboration of this scenario is out of the scope of 
this document. 

 
Figure 4-46 Overall multi-domain multi-PoP scenario 
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5. VALIDATION TESTS 
Besides the testbeds described above, focused on the individual validation of each 
feature developed within Task 4.2, dedicated test environments have been designed 
for enabling the integration of the Control Plane in the T-NOVA IVM layer. 

This section presents the validation tests that have been carried out focusing on the 
SDN Control Plane and the SFC with WICM components. 

 

5.1. SDN Control Plane 

The implemented testbed is depicted in Figure 5-1. 

 
Figure 5-1 SDN Control Plane testbed 

As also reported in D4.52, the testbed comprises two physical nodes, specifically Dell 
PowerEdge T20 equipped with CPU Intel Xeon E3-1225 (Quad core) CPU, 8 GB RAM,  
1TB Hard Disk, 1GB Ethernet port. They both are used to host five virtual machines, 
organized as follows: 

• ODL-H1, ODL-H2, ODL-H3 host three instances of OpenDaylight controller 
(Lithium release) forming a cluster of controllers. 

• ODL-HDEV is used for development and building purposes. It holds the 
OpenDaylight source code which can be built and deployed on the ODL-
H{DEV,1-3} machines. 

• MININET is used to provide a SDN network topology in order to evaluate the 
control plane operations. 

The functional tests were intended to validate the proper functioning of the SDN 
Control Plane, with particular focus on the clustering service, considering two 
different scenarios: one working with a single instance of controller and another one 
working with a cluster of multiple controllers.  
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For this purpose, the following test cases have been identified and then 
implemented:  

Single Instance of Controller 

Aim of the test: This test is responsible for validating the functionality of recovery 
from persistent data when using the clustering service. The test has been carried out 
using a simple Openflow network with three nodes. The OpenDaylight controller is 
connected to the network nodes in order to control them. 

Precondition : A single instance of controller (with clustering service activated) is 
deployed and running (ODL-H1) 

Description of the test:  

1. Start MININET and connect the network to the controller  
2. Check if all nodes and the tables for those nodes are present in the 

operational data using the RESTful interface (RESTCONF) 
3. Stop the controller 
4. Start the controller again 
5. Repeat step 2. 
6. Exit MININET 

Result:  

When the clustering service is activated on the controller instance, the step 2 and the 
step 5 output the same data. So, as explained in section 4.6, the clustering service is 
essential to ensure that the network configurations stored into the persistent local 
data are recovered and applied again into the network nodes. 

Multiple Instances of Controllers 

Aim  of the test: This test is responsible for validating the functionality of high 
availability of the control plane after that the one instance (specifically the leader) of 
the cluster fails. 

Precondition: Multiple instances of controllers (with clustering service activated) are 
deployed and running (ODL-H1, ODL-H2, ODL-H3) 

Description of the test: 

1. Start MININET and connect the network to the cluster 
2. Stop the controller acting as current leader of the cluster (i.e. ODL-H1) 
3. Leader moves to one of the remaining controllers (ODL-H2 becomes the 

new leader) 
4. Use the new leader and continue performing requests (through the RESTful 

interface) for operations on the network.  
5. Exit MININET 

Result: 

The new leader is able to process incoming RESTful requests, making the cluster of 
controllers failure-proof, since it detects the fault and elects a new leader. Therefore, 
this test reveals pivotal role of the clustering service in ensuring high availability of 
the control plane. 
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5.2. Service Function Chaining 

In section 4.3, Service Function Chaining was described as one of the target use cases 
inside the T-NOVA domain. This capability was a reference application in the 
development of the SDK4SDN, called Netfloc (elaborated in details in Deliverable 
[D4.31]). The aim was to demonstrate a first end-to-end scenario that was enabled by 
directly employing its dedicated traffic steering library. Moreover the product of the 
SFC implementation has delivered a successful integration of several T- NOVA 
components into a holistic chaining solution, demonstrated at the Year2 T- NOVA 
review in Brussels. 

5.2.1. SFC in the scope of T-NOVA and demonstration details  

Figure 5-2 depicts the overall scenario. On the left side is the NFVI-PoP, i.e. the cloud 
infrastructure consisting of three OpenStack Nodes, an SDK4SDN (Netfloc) node and 
a physical switch, whereas on the right, the WICM resides with its own SDN controller 
instance. The T-Nova Orchestrator manages the WAN and the NFVI-POP and it is in 
charge of instantiating the VNFs and starting the network services onto the 
underlying infrastructure. On a higher level, once a new client registers in the NFVI 
Marketplace to request for a specific network service, the orchestrator triggers the 
WICM for a new isolated Client ID space. The WICM then creates a client's instance ID 
and reserves VLAN IDs for the clients’ (User1 and User2 in the scenario) network 
service management.  

As detailed in Section 4.7, once the orchestrator receives an approval from the WICM, 
it requests for traffic redirection coming from User1 to User2 to pass via the NFVI 
PoP. The orchestrator is in charge of managing the network services' lifecycle by 
instantiating the required VNFs in the OpenStack Cloud infrastructure and mapping 
the Neutron port IDs of the VNF VMs to the respective service descriptors. The VNFs 
such as the vTC and vTU, are in charge of functions like packet classification, 
enhanced deep packet inspection, video analysis etc., depending on the particular 
service specification.  

 

 
Figure 5-2 SFC flows installed on OpenStack Control Node 
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Once the VNFs have been instantiated and their services successfully started, the 
orchestrator calls the Netfloc Restful API for chain creation in order to request for 
traffic steering along a designated service path. Following are the CREATE and 
DELETE Chain API call examples, according to the SDK4SDN specification: 

CREATE CHAIN API: 

curl	-H	'Content-Type:	application/json'	-X	POST	-d	'{"input":	{neutron-ports	:		"06ba1679-25df-448e-
8755-07bc4a356c85,d481a967-44b6-4e64-9be3-cf49b80702d3,bac1fa34-b515-47e0-9698-
9e70d549330b,d09befd1-385c-4fb5-86bc-debfe6fa31dc"}}'	--verbose	-u	admin:admin	
http://127.0.0.1:8181/restconf/operations/netfloc:create-service-chain	
The Create Chain JSON data consists of a comma separated array of the Neutron port 
IDs that are associated to the ingress/egress pair interfaces residing along the specific 
network path. 

DELETE CHAIN API: 

curl -H 'Content-Type: application/json' -X POST -d '{"input": {service-chain-id : "1"}}' --verbose -
u admin:admin http://127.0.0.1:8181/restconf/operations/netfloc:delete-service-chain 

The Delete Chain JSON data contains the Chain ID, returned by Netfloc on service  
chain creation. 

 

5.2.2. SDK for SDN (Netfloc) directed chain graph 

In depth representation of the prototype scenario is shown in Figure 5-3. User1 and 
User2 are the endpoints in the chain connected to the Pica8 switch that, upon being 
instructed by the WICM, sends to the NVFI PoP bidirectional VLAN tagged traffic (ex. 
ID 400 and 401 for sending and receiving). The OpenStack VMs are hosting the VNFs 
involved in the scenario. The Service Forwarder VM (SF) is the main entry and exit VM 
for the outside traffic into the cloud.  

Figure 5-3 points out a simplified bridge and interface setup in comparison to the 
baseline OpenStack model [OSN].  

This effect is a direct product of using Netfloc as a fully SDN based counterpart of the 
OpenStack ML2 networking service, in order to achieve simplification of the 
tunnelling protocols to grant a tenant isolation. Instead, using fully SDN-enabled L2 
approach, Netfloc ensures tenant isolation implemented in one of its reference SDK 
libraries. 
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Figure 5-3 T-NOVA SFC pilot setup 

 

The lines on Figure 5-3 depict the chain paths (two in the case of the demonstration). 
The yellow line is common for both chains and shows the traffic coming onto the vTC 
ingress port, as a first interface in the chain. From there the vTC classifies the traffic 
and sends it out on two different egress interfaces, eth2 – the blue line and eth3 – the 
red line.  

The blue line follows the ICMP data traffic that is further steered into the vTC-f 
(forwarding VNF) and out of the PoP, whereas the red line shows the UDP video 
traffic that is further steered into the vTU VNF in order to get transcoded. The vTU 
then puts a watermark, before sending the video traffic out. The modified video is 
shown in User2, while the data traffic is captured by using tcpdump command in 
order to verify the distinction between the two network chains, Figure 5-4.  
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Figure 5-4 Chain1: ICMP traffic output from User1 captured in User2 

 

Figure 5-5 shows a video capture as perceived by User2 in two cases: disabled traffic 
redirection by the WICM (left), and enabled traffic redirection  with SFC enforced by 
the SDK4SDN-Netfloc (right). The video used for the test is an excerpt from the 
animated movie “Big Buck Bunny” [BBB].  

 

  
Figure 5-5 Chain2: Video output in User2 without redirection (left) and with redirection, 

i.e. SFC steered traffic (right) 

Furthermore we point out some of the flow actions installed on the SDN switch’s br-
int interface and the Neutron Node’s br-sfc interface in order to follow up the traffic 
steering inside the physical hosts of the SFC-PoP.  

Figure 5-6 shows the flows installed on the Neutron network Node. Since the 
Neutron nodes is the first entry point in the SFC-PoP, the packets coming from 
outside (from User1) are tagged with VLAN numbers assigned by the WICM in the 
Pica8 SDN controller. The packets tagged with VLAN number 400 in this case are the 
packets from User1, whereas the VLAN number 401 packets are coming from User2 
towards User1 for bidirectional communication. 
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Figure 5-6 SFC flows installed on OpenStack Network Node 

 

Finally, Figure 5-7 outlines the SDN switch flows installed automatically by Netfloc on 
service chain creation. They have the highest priority (20) in the instructions set and 
provide MAC rewriting based traffic steering as elaborated in details in Deliverable 
D4.31 [D4.31]. 

 

 
Figure 5-7 SFC flows installed on Switch 

6. CONCLUSIONS  
In this deliverable we reported the results of the activities of research, design and 
implementation done in Task 4.2 "SDN Control Plane" of T-NOVA project. 

The functional architecture of the SDN control plane based on the requirements 
outlined in previous T-NOVA deliverables is described. Analysis of a variety of 
candidate technologies has been carried out in order to identify a suitable solution 
for the SDN controller implementation based on a balanced view of the available and 
missing features. To this end, OpenDaylight has been selected as the Network 
Controller with Virtual Tenant Network (VTN) as the multi-tenant network 
virtualisation framework and Clustering Service for the controller deployment in 
large-scale environments as well as the persistency of the network configuration. 
Several approaches have been investigated to provide traffic steering functionalities 
supporting service function chaining for NFV deployments. In addition, different 
solutions for load balancing in multi-controllers scenarios have been developed. 

Moreover, Task 4.2 have developed experimental plans to evaluate the performance 
of the selected technologies under a number of different scenarios. Test plan have 
been implemented to collect quantitative data in order to evaluate the Controller 
architecture options i.e. single instance vs. clustered, in terms of high availability and 
resiliency of the network controller. Last but not least, WAN Infrastructure Connection 
Manager have been developed in order to provide integration of WAN connectivity 
services. 
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7. LIST OF ACRONYMS 

Acronym Description 

API Application Programming Interface 

ARP Address Resolution Protocol 

BGP Border Gateway Protocol 

BUM Broadcast, Unknown unicast and Multicast 

CP Control Plane 

CPU Central Processing Unit 

CRUD Create, Read, Update, Delete 

DC Data Centre 

DCN Distributed Cloud Networking 

DOVE Distributed Overlay Virtual Ethernet 

DPI Deep Packet Inspection 

FTP File Transfer Protocol 

FW Firewall 

GPE Generic Protocol Extension 

GRE Generic Routing Encapsulation 

GW Gateway 

HA High Availability 

HPE Hewlett Packard Enterprise 

HTTP HyperText Transport Protocol 

IP Internet Protocol 

ISP Internet Service Provider 

IVM Infrastructure Virtualisation Management 

JVM Java Virtual Machine 

L2 Layer 2 

L3 Layer 3 

L4 Layer 4 

LB Load Balancer 

MAC Medium Access Control 
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MD-SAL Model-Driven Service Abstraction Layer 

ML2 Modular Layer 2 

MPLS Multi-Protocol Label Switching 

NAP Network Access Point 

NFV Network Function Virtualisation 

NFVO NFV Orchestrator 

NIC Network Interface Card 

NSH Network Service Header 

NVGRE Network Virtualisation using Generic Routing Encapsulation 

ODL OpenDaylight 

OF Openflow 

OSGi Open Services Gateway initiative 

OVS Open vSwitch 

OVSDB Open vSwitch Database 

POP Point Of Presence 

QOS Quality of Service 

REST Representational State Transfer 

SDK Software Development Kit 

SDN Software Defined Networking 

SF Service Function 

SFC Service Function Chaining 

SFF Service Function Forwarder 

SFP Service Function Path 

TTL Time-To-Live 

UDP User Datagram Protocol 

UUID Universal Unique Identifier 

VIM Virtual Infrastructure Manager 

VLAN Virtual Local Area Network 

VM Virtual Machine 

VNFAAS VNF As A Service 

VNFFG Virtual Network Function Forwarding Graph 

VPN Virtual Private Network 
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VRS Virtualised Routing & Switching 

VSC Virtualised Services Controller 

VSD Virtualised Services Directory 

VSP Virtualised Services Platform 

VTEP VxLAN Tunnel Endpoint 

VTN Virtual Tenant Network 

vTC Virtual Traffic Classifier 

VxLAN Virtual Extensible Local Area Network 

WAN Wide Area Network 

WICM WAN Infrastructure Connection Manager 
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