

Deliverable D4.22

SDN Control Plane – Final

Editor Letterio Zuccaro (CRAT)

Contributors F. Cimorelli, F. Delli Priscoli, F. Liberati, R. Baldoni, A.
Pietrabissa, V. Suraci, S. Mascolo, D. Gheorghita (CRAT), G.
Xilouris, C. Sakkas (NCSRD), B. Parreira, J. Silva, J. Carapinha
(PTIn), I. Trajkovska, D. Baudinot (ZHAW), S. De Domenico, B.
Coffano, M. Di Girolamo (HPE), A. Abujoda (LUH)

Version 1.0

Date 30th April, 2016

 PUBLIC (PU)

Ref. Ares(2016)2344864 - 20/05/2016

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

2

Executive Summary

This deliverable presents the current activities and interim results of the Task 4.2 of
the T-NOVA project, focused on the implementation and characterisation of the T-
NOVA’s SDN Control plane.

Task 4.2 is specifically conceived to develop an SDN control framework allowing the
management of virtual networks over datacentre physical infrastructures, so as to
support the deployment of VNF services. To this end, relevant issues related to
network isolation and traffic steering have been addressed when providing
connectivity services, handling either WAN or intra-datacentre connections. In this
context, leveraging on state-of-the-art network virtualisation frameworks, several
approaches are proposed and detailed.

In addition, a major activity within this Task concerned the virtualisation of the
control plane to overcome SDN centralisation issues. Research has focused on load-
balancing mechanisms in distributed-virtualised controllers, with the purpose of
providing an elastic control plane able to scale with the workload. Moreover,
experimental analysis on the capability of the SDN controller to ensure persistence of
the network configuration in case of failures is also treated.

Specifically, starting from the analysis of the key requirements affecting the SDN
control plane procedures, a survey of the current state-of-the-art SDN frameworks
has been conducted, aiming at selecting the reference baseline for the SDN Control
Plane implementation. Then, the architecture of the Control Plane has been designed,
identifying the functional components and additional features required to meet the
T-NOVA needs. In this regard, several activities focused on the research, design and
implementation aspects of the Control Plane core functionalities have been carried
out. They include (i) approaches for steering traffic in SDN networks, (ii) algorithms
for balancing the workload among multiple controllers, (iii) techniques for providing
network slicing and isolation with support to QoS, (iv) analysis of the persistency of
network configuration and, finally, (v) solutions to provide integration of WAN
connectivity in T-NOVA.

The content presented in this deliverable reports the progress on the above-
mentioned activities.	

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

3

Table of Contents

1. INTRODUCTION .. 8	

2. T-NOVA REQUIREMENTS ... 9	

3. REFERENCE SDN CONTROLLERS ... 9	

3.1. COMMERCIAL SOLUTIONS .. 10	
3.2. OPEN SOURCE SOLUTIONS ... 13	
3.3. COMPARISON AND SELECTION OF THE REFERENCE BASELINE ... 14	

4. T-NOVA SDN CONTROL PLANE ... 17	

4.1. FUNCTIONAL ARCHITECTURE ... 17	
4.1.1. Virtualised SDN Control Plane ... 19	

4.2. RELEVANT FEATURES IN T-NOVA CONTEXT ... 20	
4.3. TRAFFIC STEERING MECHANISMS IN VIRTUALISED NETWORK .. 21	

4.3.1. Service Function Chaining ... 21	
4.3.2. T-NOVA approach for SFC based on OpenFlow .. 27	
4.3.3. Alternative approaches to traffic steering .. 28	

4.4. LOAD BALANCING IN MULTICONTROLLER SCENARIOS ... 40	
4.4.1. Clustering Service in OpenDaylight .. 41	
4.4.2. Experimental plan ... 42	
4.4.3. Load balancing algorithm .. 44	
4.4.4. Implementation ... 47	
4.4.5. Evaluation results .. 49	
4.4.6. Role-based load balancing .. 50	

4.5. NETWORK ISOLATION AND QOS SUPPORT ... 53	
4.5.1. Network Isolation .. 54	
4.5.2. QoS Support .. 57	
4.5.3. QoS Considerations .. 65	

4.6. PERSISTENCY OF NETWORK CONFIGURATION .. 66	
4.7. INTER-DC/WAN INTEGRATION - WAN INFRASTRUCTURE CONNECTION MANAGER

(WICM) .. 68	
4.7.1. Overview .. 68	
4.7.2. WICM Architecture ... 71	
4.7.3. WICM API .. 72	
4.7.4. WICM Dependencies .. 73	
4.7.5. WICM Demonstration .. 73	
4.7.6. Extensions to the basic WICM scenario ... 76	

5. VALIDATION TESTS ... 80	

5.1. SDN CONTROL PLANE ... 80	
5.2. SERVICE FUNCTION CHAINING .. 82	

5.2.1. SFC in the scope of T-NOVA and demonstration details 82	
5.2.2. SDK for SDN (Netfloc) directed chain graph ... 83	

6. CONCLUSIONS ... 86	

7. LIST OF ACRONYMS .. 87	

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

4

8. REFERENCES ... 90	

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

5

Index of Figures

Figure 3-1 Nuage VSP architecture ... 10	
Figure 3-2 Nuage Neutron plugin .. 11	
Figure 3-3 HPE ContextNet ... 12	
Figure 3-4 - Contrail architecture ... 12	
Figure 4-1 T-NOVA SDN Control Plane Architecture ... 17	
Figure 4-2 Virtualised SDN Control Plane Architecture ... 19	
Figure 4-3 Example of SFC .. 21	
Figure 4-4 SFC project inside the ODL - High Level Architecture .. 23	
Figure 4-5 Example of SFC approach based on NSH protocol ... 24	
Figure 4-6 Non-NSH approach for SFC based on MAC/VLAN matching 24	
Figure 4-7 Flow programming based SFC approach based on VTN in ODL 26	
Figure 4-8 OSGi overview .. 29	
Figure 4-9 Example of OpenStack configuration ... 32	
Figure 4-10 Forwarding graph ... 33	
Figure 4-11 Example of service chaining through source routing 35	
Figure 4-12 Source routing architecture ... 36	
Figure 4-13 Source routing switch forwarding rate .. 38	
Figure 4-14 Setup time per flow. .. 39	
Figure 4-15 Testing environment ... 42	
Figure 4-16 Testing scenarios .. 43	
Figure 4-17 95-percentile response time comparison between the different
configurations .. 43	
Figure 4-18 Throughput comparison between different configurations 44	
Figure 4-19 Load Balancing Algorithm .. 46	
Figure 4-20 Migration protocol ... 47	
Figure 4-21 Main interactions among the bundles of interest in OpenDaylight 48	
Figure 4-22 Bundles interaction during a switch migration ... 49	
Figure 4-23 Mean response time comparison before and after load balancing event 49	
Figure 4-24 Openflow Roles in OpenDaylight ... 50	
Figure 4-25 Load balancing reference scenario .. 51	
Figure 4-26 Load Balancer Web GUI (before balancing) ... 53	
Figure 4-27 Load Balancer Web GUI (after balancing) ... 53	
Figure 4-28 VTN Mapping of physical network to virtual networks 56	
Figure 4-29 Simple VTN port mapping .. 56	
Figure 4-30 VLAN VTN port mapping .. 57	
Figure 4-31 Flow filters: (a) Simple filter, (b) QoS filter .. 57	
Figure 4-32 Prioritising Traffic in VTN .. 60	
Figure 4-33 Three color marker in VTN.. 60	
Figure 4-34 BW Policing example .. 65	
Figure 4-34 Testbed configuration .. 67	
Figure 4-35 T-NOVA service: end-to-end view ... 68	
Figure 4-36 NFVI-PoP and WAN integration with WICM ... 69	
Figure 4-37 WICM procedure .. 71	
Figure 4-38 WICM Architecture .. 71	
Figure 4-39 WICM demonstration scenario ... 74	

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

6

Figure 4-40 NFVI-PoP VLANs and connectivity with external network 75	
Figure 4-41 Traffic flows in br-wicm .. 75	
Figure 4-42 NFVI PoP in remote location – first approach ... 77	
Figure 4-43 NFVI PoP in remote location – second approach .. 77	
Figure 4-44 Multiple NFVI-PoP scenario ... 78	
Figure 4-45 Overall multi-domain multi-PoP scenario .. 79	
Figure 5-1 SDN Control Plane testbed ... 80	
Figure 5-2 SFC flows installed on OpenStack Control Node ... 82	
Figure 5-3 T-NOVA SFC pilot setup ... 84	
Figure 5-4 Chain1: ICMP traffic output from User1 captured in User2 85	
Figure 5-5 Chain2: Video output in User2 without redirection (left) and with
redirection, i.e. SFC steered traffic (right) .. 85	
Figure 5-6 SFC flows installed on OpenStack Network Node ... 86	
Figure 5-7 SFC flows installed on Switch ... 86	

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

7

Index of Tables

Table 2-1 Key requirements for the SDN Control Plane ... 9	
Table 3-1 SDN Controllers Features Comparison .. 15	
Table 4-1 SDN Control Plane Functional Components .. 18	
Table 4-2 Mapping between T-NOVA SDN Control Plane and OpenDaylight 21	
Table 4-3 Java classes implementing traffic steering ... 30	
Table 4-4 Traffic Steering available operations ... 32	
Table 4-5 Flow setup time ... 39	
Table 4-6 Role Manager APIs ... 52	
Table 4-7 VTN abstraction components .. 55	
Table 4-8 VTN Filter Actions ... 61	
Table 4-9 VNFD/VLD examples for QoS configuration. ... 66	
Table 4-10 WICM Resource states ... 72	
Table 4-11 WICM APIs – Single PoP scenario .. 73	
Table 4-12 WICM Software dependencies .. 73	
Table 4-13 WICM APIs – MultiPoPs scenario ... 79	

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

8

1. INTRODUCTION

In the T-NOVA system the SDN Control Plane plays a key role, being responsible at
southbound for the configuration, management and monitoring of the SDN-
compatible network entities, while supplying northbound the orchestrator and
management systems with enhanced network connectivity services.

It is a fact that SDN may benefit NFV applications with a scalable, elastic and on-
demand network infrastructure, leveraging the programmability of the southbound
network elements. However such elements, both physical and virtualised, need to be
properly configured to fit the applications’ requirements. This tricky task represents
the main goal of the SDN Control Plane.

In this regard, leveraging existing SDN management frameworks, Task 4.2 proposes
to design and develop an enhanced SDN controller for network services provisioning
to support NFV applications. The activities within the task have been split in three
main working areas:

• Programmatic network control: Dynamic and intelligent control of network
resources, as well as flexible establishment of service function chaining
through configuration of policies for steering network traffic.

• Network virtualisation: It concerns the deployment of virtual networks
supporting QoS and overlay encapsulation, through a deep analysis of
frameworks (i.e. Open vSwitch), protocols (i.e. Openflow [MAB+08]) and
tunnelling solutions (i.e. NVGRE, VxLAN). The final aim is to provide an open,
flexible and extensible interface for the instantiation, configuration and
monitoring of isolated virtual networks.

• Control Plane virtualisation: It refers to the virtualisation of the network
controller to ensure reliability and high availability in large-scale scenarios, as
well as persistency of the network configuration. For these purposes, cloud
computing capabilities combined with clustered approaches have been
investigated in order to ensure elasticity, auto-scaling and load balancing of
the SDN control plane.

Within T4.2, the work initially focused on determining the SDN platform best fitting
the T-NOVA requirements. The selection was carried out after a thorough analysis of
the current SDN controller implementations, the features they offer, the mechanisms
they support for enhanced network services (i.e. slicing, traffic steering, QoS), the way
they approach the distribution of the control workload.

Starting from the requirements laid out in D2.32 [D2.32], a high-level overall
architecture is proposed and functional components are detailed. Then, considering
the state-of-the-art solutions for the SDN control plane, the identification of missing
functionalities and the investigation of potential extensions to be implemented in T-
NOVA resulted in different research and development activities.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

9

2. T-NOVA REQUIREMENTS

The activity started with the identification of key requirements affecting the network
controller procedures and mechanisms. The table below provides a summary of the
high-level requirements identified in T-NOVA concerning the SDN Control Plane. The
full list of requirements has been collected and documented in detail in Deliverable
2.32 [D2.32].

Requirement Description

Network connectivity and
isolation

Applications and services should be connected to isolated
networks, making sure that processing of packets on each
network is independent of all the others.

Resource Monitoring The provision of monitoring information should make
management and orchestration entities aware of status and
performance of the network infrastructure

QoS support Applications and services should have specific performance
needs, requiring mechanisms for QoS provisioning over the
network infrastructure.

Performance In large-scale scenarios with many nodes to be controlled,
the control plane may suffer slower performance in terms of
processed requests per second/average response time. So,
mechanisms to limit this issue should be provided.

Scalability The control plane should adapt to a variety of applications
and scale according to their network load. This means that in
some cases a distributed control plane may be required;
therefore the T-NOVA control plane must be able to
accommodate this requirement.

Robustness/Fault
tolerance

Through redundancy mechanisms, it must be guaranteed that
the controller does not represent a single point of failure.

Service chaining support The network controller must be able to dynamically enforce
and modify the chaining of network service functions, by
properly steering the data traffic.

Inter-datacentre
connectivity

The solution adopted for the control plane should be able to
support inter-datacenter (inter-DC) connectivity by enforcing
tunnelling rules and establishing trunks to allow network
continuity, as in many practical cases this will be required due
to the physical dispersion of resources.

Table 2-1 Key requirements for the SDN Control Plane

3. REFERENCE SDN CONTROLLERS
As briefly introduced, a deep investigation and analysis of a set of SDN controllers
available in the state of the art has been carried out, in order to select a solid

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

10

reference baseline for the T-NOVA SDN control plane development. The aim was to
identify a starting point of work to be properly extended in support of the specific T-
NOVA requirements.

The analysis was performed in two stages. First, a wide set of controllers has been
selected, including most of the currently available commercial and open-source SDN
frameworks, and qualitatively evaluated at a very high level in order to extract a
subset of candidate controllers. Then, a subsequent phase focused on a detailed
feature-based comparison of the selected controllers.

In the following sections, an overview of the available SDN control plane is presented,
including both commercial and open-source solutions, as input of the preliminary
analysis that was carried out.

3.1. Commercial solutions

Alcatel Lucent Nuage VSP

Nuage Networks VSP (Virtualised Services Platform) [NUAGE] has an architecture
based on three components:

• VSD (policy and analytics engine)
• VSC (control plane)
• VRS (forwarding plane)

Figure 3-1 Nuage VSP architecture

VSD is the upper layer, providing service definition, policy establishment, service
templating and all the analytics functions, including reporting. It is alike the SDN
application layer in OpenDaylight. VSC is the actual SDN controller, providing
features like auto-discovery and tenant slicing. VRS is the L2-L4 virtual switch, based
on Open vSwitch, providing tunnel encapsulation and programmed by VSC via
Openflow.

Nuage VSP has control of the whole underlying network, allowing to manage traffic
flows even over the transport layer, interconnecting virtual machines residing in
different nodes or sites.

Nuage VSP exploits a Neutron plugin, connecting to VSD via a REST API. Plus, there is
a Nuage VRS agent on each Nova node, which monitor VM lifetime events and

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

11

configure the network topology accordingly. Once an event is captured (e.g., a new
VM instantiation), the VRS agent requests configuration information from VSC. If VSC
is already aware of the VM, it will supply all the necessary configuration information
via Openflow. If this is a new VM, VSC will request policy information from VSD. VM
configuration includes tunnel configuration for traffic between hypervisors and other
components, carried via VXLAN between VSP components or MPLS over GRE for
compatibility with Provider Edge (PE) routers.

Nuage VSP is also part of the HPE Distributed Cloud Networking (DCN) network
virtualisation solution for service providers. HPE DCN creates a secure virtual network
overlay across distributed datacentre sites. Nuage VSP is the DCN component
federating SDN implementations in individual data centers, to create an uber-SDN
overlay across the wide area.

Figure 3-2 Nuage Neutron plugin

HPE ContexNet

ContexNet [HPECTX] is an OpenDaylight-based carrier grade distributed SDN fabric
running on off-the-shelf computing platforms and fully hypervisor-agnostic. It allows
to create a full service abstraction layer on top of legacy networks, allowing for
instance a customised SFC by classifying and steering the traffic according to the
specific user flow. It exploits a distributed controller and a set of virtual switches to
implement global load balancing (covering physical and virtual resources).

The overlay abstraction layer enables a centralised policy-based control of the

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

12

network, regardless the actual physical placement of virtual machines and endpoints.
It is in-network, with Openflow switches in charge of traffic encapsulation-
decapsulation, and a set of APIs enabling fine-grained traffic control.

Figure 3-3 HPE ContextNet

Juniper Contrail

Contrail [JUNICON] consists of two main components: a Controller and a vRouter.
The Controller is logically centralised but physically distributed, and it also embeds
the management and analytics functionalities. vRouter runs in the hypervisor, and is
similar to Open vSwitch, but it also provides routing services.

The Contrail model is similar to MPLS L3VPN and EVPN (for layer 3 and 2 overlays). In
the forwarding plane, it supports MPLS over GRE/UDP and VxLAN. As control plane
protocol, it uses BGP + Netconf. Finally, the protocol between Controller and
vRouter(s) is XMPP.

The physical nodes hosting a distributed Contrail controller can be of three types:
configuration nodes (dealing with the management layer), control nodes
(implementing the logically centralised function of the Control Plane), and analytics
nodes (monitoring data collection, processing and presentation).

Figure 3-4 - Contrail architecture

VMware NSX

VMware NSX is a network virtualisation platform using flow-based forwarding via
Openflow to instantiate the network flows. Flow forwarding exposes various L2-L4
header fields, along with Layer 1 logical and physical interfaces. It is based on a
vSwitch embedded in the ESX hypervisor, attached to the actual NSX controller. NSX
builds tunnels between different vSwitches using VxLAN originating and terminating

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

13

in VxLAN Tunnel Endpoints (VTEPs). The VTEPs connect each vSwitch to the IP
network.

In the NSX architecture, when a VM boots its host registers with the NSX controller.
The controller consults a table that identifies the tenant, and returns the topology the
host should participate in to the vSwitch. The key identifier for virtual isolation is the
VNI, which maps to a tenant's VxLAN-segmented topology. Layer 3 forwarding
between broadcast domains is supported at the edge of the NSX network in the
vSwitch. This is performed by ARPs being punted to the controller and looking up the
location of the destination MAC and destination VTEP in a host table in the controller.

If the host is not found, the traffic can be dropped or forwarded to a BUM traffic
service node. Host discovery is forwarded to the VTEPs in the tenant tunnel overlay
with multicast.

3.2. Open source solutions

Besides the commercial solutions, a set of available open-source SDN controllers was
identified during the evaluation phase.

Beacon

Open-source controller developed by Stanford University [BEACON], implemented in
Java. It offers support for the Openflow v1.0 protocol. Beacon is not actively
developed at this time.

Floodlight

Open-source controller developed by Big Switch Networks [FLOODLIGHT],
implemented in Java. It offers support for the Openflow v1.0 protocol and a Neutron
plug-in for OpenStack support. Floodlight is not actively developed at this time.

Maestro

Open-source controller developed by Rice University [ZC11], implemented in Java. It
offers support for the Openflow v1.0 protocol. Maestro is not actively developed at
this time.

MUL

Open-source controller developed by Kulcloud [MUL], implemented in C. It offers
support for the Openflow v1.0, Openflow v1.3 and Openflow v1.4. MUL is actively
developed at this time.

Nodeflow

Open-source controller developed by CISCO [NODEFLOW], implemented in
Javascript. Nodeflow is not actively developed at this time.

NOX

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

14

Open-source controller developed by Nicira Networks [NOX], implemented in C++
and Python. It offers support for the Openflow v1.0 protocol. NOX is not actively
developed at this time.

ONOS

Open-source SDN controller platform developed by ON.LAB [ONOS][BGH+14].
ONOS is designed for high availability, performance and scalability within Service
Provider network. ONOS is actively developed at this time..

OpenContrail

SDN platform released by Juniper Networks [JUNIOPENC], as open source
counterpart of the commercial Contrail solution. The OpenContrail Controller, which
is part of the platform, is implemented in Python, while the projects comprising
OpenContrail are implemented in various programming languages (Python, C++ and
JavaScript). It offers OpenStack support but the current version lacks of Openflow
support. OpenContrail is actively developed at this time.

OpenIRIS

Open-source controller developed by ETRI [OPENIRIS], implemented in Java. It offers
support for the Openflow v1.0 to v1.3. OpenIRIS is actively developed at this time.

OpenDaylight

Open-source platform for network programmability developed by Linux Foundation
[ODL], implemented in Java. It offers support for OF v1.0 to 1.4, as well as OpenStack
support via Neutron plugin. OpenDaylight is actively developed at this time.

POX

Open-source controller developed by Nicira Networks [POX], implemented in Python.
It offers support for the Openflow v1.0 protocol. POX is not actively developed at this
time.

Ryu

Open-source controller developed by NTT, implemented in Python. It offers support
for OF vv1.0, 1.2, 1.3 and 1.4, as well as OpenStack support. Ryu is actively developed
at this time.

Trema

Open-source controller developed by NEC [TREMA], implemented in C and Ruby. It
offers support for the Openflow v1.0, Openflow v1.2 and Openflow v1.3.X protocol
and a Neutron plug-in for OpenStack support. Trema is actively developed.

3.3. Comparison and selection of the reference baseline

The controller selection phase was driven by a feature-based comparison of the
available solutions [KZM+14], whereby the first discriminating criterion was to
consider only those under active development and released as open-source software.
Then, key aspects in the choice were the modularity and the extensibility of their

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

15

architecture, to be easily enhanced in support of novel functions, as well as the
openness of northbound interfaces, for new APIs to be exposed without the need of
tweaking internal controller services.

Therefore, leveraging also on the consortium’s hands-on experience with various
controllers, OpenDaylight (Lithium release) and ONOS (Cardinal 1.2 release) were
selected as candidate controllers for the final evaluation phase, considering the latest
stable versions available at the time. For a detailed description of both ONOS and
OpenDaylight, please refer to Section 4.6 of D2.32.

The final comparison involving the two selected SDN controllers resulted in a
qualitative analysis of their main features, mainly focusing on the capabilities required
by the T-NOVA system. A summary of such a qualitative comparison is reported in
Table 3-1.

Feature OpenDaylight Lithium ONOS Cardinal 1.2

Modular and
extensible

architecture

Yes. Built on top of Karaf, an OSGi
framework, ODL provides dynamic

module loading

Yes. Built on top of Karaf, an OSGi
framework, ONOS provides

dynamic module loading

Network
virtualisation

support

Yes. Different built-in solutions
(VTN, DOVE, OVSDB)

Not built-in. External frameworks
(OpenVirtex) address network

virtualisation

Service
Insertion and

Chaining

Preliminary implementation
available (ODL SFC project)

Not yet available. Implementation
on-going (see ONOSFW project)

VIM
integration

Fully integrated in Openstack
through the Neutron (ML2 Plugin)

Not yet available. Implementation
on-going (see ONOSFW project)

Openflow
support

1.0-1.4 1.0-1.3

Clustering
support

Clustering support for multi-
controller deployments

Clustering support for multi-
controller deployments

Documentation Very extensive and detailed Enough information available

Table 3-1 SDN Controllers Features Comparison

In the light of above, the final choice between OpenDaylight and ONOS fell on the
OpenDaylight Lithium platform for the great interest and development it is
undergoing and its numerous features matching the T-NOVA requirements.

For the sake of completeness, it should be noted that, even if Lithium has been
selected as favourite OpenDaylight release, the implementation and testing activities
carried out by Task 4.2 and described in the rest of the document, affected also
previous releases of ODL (i.e. Hydrogen, Helium), as they were preferred for the

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

16

maturity and reliability of their features at the time they were explored. Similarly, it is
not excluded the possibility of adopting even more recent releases of ODL for the
final T-NOVA demonstrator, if they should lead to tangible benefits for the SDN
Control Plane deployment.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

17

4. T-NOVA SDN CONTROL PLANE

4.1. Functional architecture

Within Task 4.2, a key activity was focused on the design of a preliminary architecture
for the network control plane. Such activity concerned the identification of
components and modules contributing to the accomplishment of the purposes of the
SDN Control Plane in T-NOVA.

Figure 4-1 T-NOVA SDN Control Plane Architecture

Figure 4-1 depicts the SDN control plane functional architecture. To this end, a model
of idealised SDN framework was selected as reference point [NG13] to be further
extended and properly adapted to fulfill the requirements previously described.

As already described in Deliverable 4.01, the following table outlines the main
functional components that have been identified with a brief description of their role
within the SDN control plane.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

18

Component Functionalities

Topology Manager

The Topology Manager has to learn and manage topology
information about devices and their reachability. Information
gathering about the networks’ elements is essential to
discover the topology.

Switch Manager

The Switch Manager is in charge of storing, managing and
providing information (e.g. switch id, software version,
capabilities, etc.) about the network nodes as they are
discovered.

Path/Flow Manager

This module provides the flow programming services including
forwarding rule installation and removal for the configuration
of data paths. Used typically when high-level policies specified
by the northbound are translated into flows by a service
module (Service Chaining, Slice Manager) that in turn would
talk to this module to proactively push the flows down to the
network elements. Path reconfiguration (after network failures
or VM migration) and QoS support are in charge of this
module.

Host Tracker

The host tracker module learns, statically or dynamically about
IP hosts in the network. It stores and provides host
information, such Host's IP address, MAC address, switch ID,
port, and VLAN. Moreover it periodically refreshes the hosts’
data to track the element location (switch, port, MAC, or
VLAN), and notifies the listening applications to the hosts
related event.

Stats Manager This module stores and provides network statistics data with
different data granularity (flow, port and table statistics).

vNet Manager

This functional module allows the creation of multiple,
isolated, virtual tenant networks on top of a single physical
network, in order to enable the complete separation between
the logical and physical plane, hide the complexity of the
underlying network and also optimizes the network resources
usage.

Service Chaining

This functional module has to manage the deployment of
services chains as ordered list of a network services (e.g.
firewalls, load balancers) by configuring accordingly traffic
steering.

Connection Manager
This module manages information regarding the connection
between the control plane and network entities. It plays a key
role in multi-controller scenarios.

Table 4-1 SDN Control Plane Functional Components

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

19

4.1.1. Virtualised SDN Control Plane

The SDN paradigm looks highly complementary to NFV having the potential to
provide a scalable, elastic and on-demand network infrastructure. Additionally, the
centralised view of the network allows the SDN network controller to make optimal
forwarding decisions. However, the controller may be subject to overload or failure
issues and increasing the computational and memory capacity may not be enough.
These issues have an impact on the control plane reactiveness, and consequently
degrade the overall network latency. It becomes more evident when the network size
grows, thus a way to overcome these limitations is needed to make SDN/NFV a pillar
technology of DC networks.

In this regard, the concept of a "physically distributed, but logically centralised"
controller has been investigated so as to develop an instance of the virtualisation
layer applying for a distributed control of the network elements [ZCD+15]. The
proposed SDN/NFV Control Plane is based on the virtualisation of the network
controller through multiple controller instances organised in cluster, while keeping
the benefits of having a global view of the network by means of a distributed data
store. The key concept is to deploy each instance of SDN controller on dedicated
virtual machines, favouring the distribution of the network control workload across
the cluster. In this way, the controller virtualisation may help in overcoming scalability
and centralisation issues, which affect the SDN controller performances in large data
center hosting NFV applications.

Figure 4-2 Virtualised SDN Control Plane Architecture

Therefore, the high-level architecture of the SDN Control Plane has been extended to
support deployments in a large-scale scenario, by introducing the following
functional components:

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

20

• Distributed Data Store: it is responsible for consistently maintaining a global
view (topology and the state of the network) across the control plane
instances belonging to the cluster. Northbound applications/internal Control
Plane components can take advantage of the global network view in making
forwarding and policy decisions

• Northbound Request Handler: it is mainly in charge of spreading the
northbound requests among the available controller instances, it is essential
to make the network control plane accessible through the northbound API as
a unique single instance.

• CP Coordinator: it supervises the operation in the cluster. Specifically it has to
dynamically configure the controller-to-switch connections; decide whether to
add or remove a controller instance to the cluster depending on the network
needs. This role is played by one of the instances available in the cluster, by
means of a procedure of leader election.

• CP Agent: it collects information about the resource utilisation (CPU load,
memory usage, control messages arrival rate, etc.) at each Control Plane
instance and enforces the switch-to-controller instance connection rules used
by each switch to identify the controller instance/s to which the southbound
requests must be forwarded.

4.2. Relevant features in T-NOVA context

As previously mentioned, OpenDaylight has been selected as the reference
framework for the SDN control plane software implementation in T-NOVA, due to its
extensible modular architecture, and the wide set of services, appliances and
northbound primitives available for data centre deployments. Subsequently, the
selection phase was followed by the identification of missing functionalities and the
investigation of potential extensions to be implemented in T-NOVA, as reported in
Table 4-2.

Functionalities
in T-NOVA

Existing modules Missing features / Potential
extensions

Path/Flow Manager Forwarding Rule
Manager / Flow

Programmer (ODL)

QoS support

Path reconfiguration

Virtual Network Manager VTN Manager (ODL) None

Service Chaining SFC (ODL) Traffic steering mechanisms for the
provisioning of service chains.

High-Availability Clustering Service
(ODL)

Load balancing across clustered
controllers by properly managing
connection with the switches.

Network Configuration
Persistency

Clustering Service
(ODL)

None

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

21

Inter-DC/WAN integration None Integration of WAN connectivity
services and connectivity between data
centers

Table 4-2 Mapping between T-NOVA SDN Control Plane and OpenDaylight

The following sections detail the activities carried out for each identified topic, in
order to fill the gap with the SDN control plane functionalities requested by the T-
NOVA system.

4.3. Traffic steering mechanisms in virtualised network

A key aspect in T-NOVA and, more generally, in the NFV context, is the support to
the service chaining. It translates into the ability of the SDN Control plane to
configure network flows in order to steer packets through a sequence of network
nodes. This section highlights the activities undertaken in this field, starting from
analysis of the current available solutions, focused on OpenDaylight as selected
controller. Then, this section presents the approach that has been adopted as the
most suitable to be implemented in T-NOVA, next to other alternative approaches
that have been nevertheless studied and examined.

4.3.1. Service Function Chaining

Service Function Chaining enables the creation of ordered list of network services,
called Service Functions (SFs) aimed to be applied over specific set of packets that
will traverse the path of those functions. The service functions are stitched together in
overlay on the top of the network forming the so-called a Service Chain. SFC and its
use cases have been introduced in several IETF RFCs ([SFC00], [SFC03], [SFC04],
[SFC11], [NSH]).

Figure 4-3 Example of SFC

An example of Service Function Chaining is shown in Figure 4-3. A flow originating
from endpoint A passes through a network monitoring VNF, a load balancing VNF
and finally a firewall VNF before arriving at destination point B.
Today some of the problems the current service deployments encounter on a
network level include: topological dependencies, complexity in configuration, packet
classification, agile/elastic service delivery, enforcement of consistent ordering of
service functions [ODL-SFC1]. Therefore a novel approach is required in order to
address these challenges from a network point of view.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

22

SDN simplifies service chain provisioning and management because the SDN
controller has a centralised view of the network and thus it facilitates end-to-end
chains across different network nodes.
There are several possible approaches to achieve SFC on a network level that address
the above listed challenges. One is to use encapsulation where the end to end traffic
is treated as an overlay connection either (1) between the service nodes or (2)
independent of the network topology. Today a dedicated protocol header (Network
Service Header) [ODL-NSH] is currently under development as example of an
encapsulation SFC approach. Network Service Header is an IETF data-plane protocol
that represents a service path in the network. NSH is expandable header that is
inserted in the packet via a classifier at the service plane entry and carried along the
chain. It has a limited lifetime only within the SFC domain. NSH contains two major
components: Path Information and Metadata. Path Information is akin to a subway
map: it tells the packets where to go without requiring per flow configuration.
Metadata is information about the packets, and can be used to define policy for the
chain.
The NSH SFC implementation is built on the top of the NSH solution. Some of the
terminologies (components) introduced by this protocol specification include:

• Service Function Forwarder (SFF): Switch/Data Plane Node
• Service Function (SF): any application such as DPI/FW/LB/TIC
• Service Function Chain (SFC): the intended list of SFs that the packets have to

traverse in a definite order
• Service Function Path (SFP): actual instance of the services that are traversed,

or a specific instance of the SFC
• Service Classifier: Function that helps in packet classification
• Metadata: Information that is carried across nodes
• Network Service Header: SFC encapsulation used by SFC-aware nodes, in case

of SFC-unaware nodes, SFC-proxy has to be used
• Nodes could be either SFs or SFFs

4.3.1.1. SFC support in OpenDaylight

The OpenDaylight framework (Figure 4-4) includes an SFC project implementation
that leverages the NSH protocol. It requires augmented version of OVS that tells ODL
to use the sfcovs southbound protocol to communicate with the actual device.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

23

Figure 4-4 SFC project inside the ODL - High Level Architecture

In ODL the SFC data model is defined in Yang files that put the information in the
MD-SAL at a compile time. RESTCONF APIs and southbound hooks are created from
Yang. In a typical scenario the client sends packet to SFF which processes and sends it
to the SF; the SF decrements the index and sends back to SFF; SFF receives the packet
back from SF and sends it back to client [ODL-SFC2] [ODL-SFC3].

Figure 4-5 depicts an example scenario of SFC using the SFC agent from the ODL SFC
project. It depicts in a graphic way the Service Chain that a client is using. Each
Service Function adds a different HTTP header and an Apache Web Server detects the
HTTP headers and returns different web pages. Clients assigned to different Service
Chains use a web browser to navigate to the same Web Server, but get different
results depending on the Service Chain used.

Overall there are several issues of why employing this solution in T-NOVA (that is the
current NSH OVS implementation as SFF) is not stable at the moment. One includes
the dynamic process of development and constant improvement and testing of this
functionality that makes it prone to errors and not fully functional at current stage (it
was introduces in ODL Lithium recently). Moreover a different, augmented version of
OVS is required (NSH-aware). To interoperate with the current implementation of
NSH in OVS the encapsulation used (encapsulate VxLAN-NSH-Ethernet-Legacy) is
very peculiar - it is VxLAN (not GPE) + NSH over port 6633. This introduces additional
overheads because the packet the SFF sends back to client is a VxLAN + NSH packet
and not a plain IP packet.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

24

Figure 4-5 Example of SFC approach based on NSH protocol

With SDN it is also possible to do address rewrites along the chain or to simply force
the routing over a specific path. Ericsson has implementation based on the former
approach contributed to ODL (Figure 4-6).

Figure 4-6 Non-NSH approach for SFC based on MAC/VLAN matching

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

25

Their solution does not require NSH encapsulation or other transport tunnelling
encapsulation such as VxLAN or GRE. Instead, it is based on Openflow 1.3. where the
L2 reachability of SFs and SFFs is provided in the Yang files of ODL. Here, the packets
are reclassified at every SFF and the service hop is based on the MAC address of the
previous hop using the VLAN ID in the packet header.

4.3.1.2. Flow programming approach based on Openflow

The latter option (flow based approach) can be implemented on Open Flow enabled
switches on the southbound in order to program the SFFs. Such approach has the
benefit of essentially leaving the datagrams untouched along the chain, while
providing a routing logic, which does not require the overhead of tunnelling or
encapsulation. Having the original datagrams along the chain has an additional
benefit with network functions in particular, because they can rely on seeing
datagrams as if they would be routed through a chain-less connection. This solutions
avoids headers, proxies, or additional third party components.

A flow programming approach (as can be seen through an example on Figure 4-7),
has been introduced in ODL from the NEC team as alternative solution to the NSH-
based one [OOSC]. It is based on the Virtual Tenant Network (VTN) project that
provides network virtualisation in OpenStack multi-tenant environment, traffic
isolation and abstraction of physical network. Some of the key features form this
project include: ability to insert service functions dynamically; OpenStack integration;
does not require NSH capability; works with Openflow switches; ability to visualize
end-to-end flows. It involves two main components: VTN coordinator and VTN
Manager. The VTN coordinator provides VTN API (Northbound), builds VTN models
using OpenDaylight API and controls multiple SDN controllers. The VTN Manager
enables multi-tenancy and end-to-end dynamic path control. The example shown on
the figure depicts a SFC case based on L3 IP address matching. As alternative to the
source and destination IP matching and according to the specification, the actions
can be enforced to other matching criteria enclosed in the Openflow protocol types.

The strong point of this approach is that it has been designed to coexist with
OpenStack Neutron ML2 Plugin. The disadvantage however is that the agent that
embraces the virtual graph mapping as well as the chaining logic is proprietary and
heavily based on the VTN abstraction model. It is yet under development process and
tightly coupled to the NEC dedicated facilities adopted and designed to fully sport
this use case within their isolated experimental environment. From here we are not
able to adapt and leverage this solution for the T-NOVA networking model and
therefore this approach would not be considered any further as T-NOVA SFC baseline
model.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

26

Figure 4-7 Flow programming based SFC approach based on VTN in ODL

Finally the SFC approach from the OPNFV community is addressed in the projects
OpenStack Based VNF Forwarding Graph [OPNFV-FG] and Service Function Chaining
[OPNFV-SFC].

Leveraging the OpenStack work on VNFFG (Virtual Network Function Forwarding
Graph) and ONF Openflow work on service chaining, this project tends to show
automatic set up of end-to-end VNF services through VNFFG so that different
tenants’ flows can be steered through different sequence of VNFs (Service Function).
The second collaborative development project will base on the first one to create a
link between two Linux Foundation projects, OpenDaylight and OPNFV. It will provide
service chaining capabilities in the OPNFV platform, i.e. provide ordered set of
abstract service functions (e.g. NAT, load balancing, QoS, firewall) and ordering
constraints that must be applied to packets and/or frames and/or flows selected as a
result of classification [OPNFV-SFC].

These projects provide Openflow programmed chains for L2 VLAN and MPLS
encapsulation. They also follow the VxLAN overlay based service chains for VxLAN-
GPE encapsulation with NSH headers. Some of the additional features that are
supported are: basic load balancing at SFC in the ODL Lithium release, and
programmatic service function selection algorithms like round robin, load balanced
(choose the least loaded service function) or random allocation.

Finally all the previously presented approaches based on the ODL implementation
lack the support and integration with Open Stack, which is one of the key
technologies to be used in T-NOVA. The T-NOVA specific Virtual Network Functions
(VNFs) would be instantiated and deployed on Open Stack VMs and therefore the
chaining mechanism has to be supported and fully functional with the Open Stack
networking standards. To apply the NSH solution in Open Stack environment, the SFC
would need to know the following data form each of the service functions VMs: IP

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

27

Address, encapsulation details (VxLAN, NSH enabled), OVS switch and port the SF is
connected to.

4.3.2. T-NOVA approach for SFC based on OpenFlow

Having analysed the previous solutions on SFC we came to conclusion that at a
current state, an alternative approach, native to T-NOVA will be the most feasible
solution. Hereby we summarize the reasons:

- OpenStack support: current solutions does not allow integration with
OpenStack and that might require adaptations in order to make it work in
short term scale. T-Nova uses OpenStack as deployment infrastructure for the
VNFs.

- ODL support: this is the de facto controller in T-NOVA and therefore one of
the requirements is to keep the solution compliant with ODL.

- T-NOVA requires stable solution that will not depend on proprietary
implementations of the dependent features. For example the VTN solution (at
current state) was tested on specifically triggered topology and bases on
integrating VTN plugin within the ODL controller.

- T-NOVA requires a simple isolated solution that is robust and independent of
the work in progress prototypes that require the installation and support of
specific software libraries, especially based on certain type of hardware
implementations (like NSH-enhanced OVS), etc.

- The SFC approach in T-NOVA has to offer integration with the Infrastructure
Virtualisation Management (IVM) and the Orchestrator (TeNOR) in order to
expose APIs for VNF placement and virtual network graph definition. As the
SDK for SDN includes libraries and APIs for establishing specific network
services, this service can be integrated in seamless fashion with other T-NOVA
components.

Currently two SDN-based approaches has been tested on the ZHAW testbed: (1)
based on SFC specific flows installation along the OVSs (including the physical switch)
of the nodes (hops) in the service path, (2) based on MAC rewriting.

To enable these routing rules in an OpenStack environment it is necessary to disable
the iptables rules which are automatically applied to OpenStack instance ports. These
rules prevent traffic to pass to and from instances that does not match the instances
MAC and IP addresses. Service instances have to have two separate interfaces, which
are dedicated to the service chain mechanism. These interfaces then can only be
attached to Neutron ports with disabled iptables firewall rules and should only be
used for the chaining mechanism. Remaining security concerns then have to be
delegated to flows instantiated for the respective OVS ports.

For both approaches to work, a requested chain can only be realised if the network is
fully SDN enabled. The chain routing can then be applied across the whole chain path
onto the network. The resulting routing flows need to be maintained to reflect
alterations in the function chain. For the chain routing to be deterministic, a challenge
to be addressed is the service path identification (service path classification or entity

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

28

that determines what traffic needs to be chained based on policy) and the service
hop identification (or a field which keeps track of the chain hops).

One possible approach to access this in T-NOVA is to use TTL matching and
modification, since OVS flows can match on the TTL field. It is however currently not
possible to match the TTL field with standard Open Flow, so we are elaborating about
using the VLAN ID as a workaround for this purpose, which would be compliant with
our networking model, since the chain routing does not follow the standard Ethernet
routing.

As alternative to this, the second approach was tested in Mininet and proved feasible
for the established basic scenario of SFC. The idea for the OpenFlow based MAC
rewriting approach was conducted based on the requirements imposed by the
testing scenarios using vTC as T-Nova specific VNF. Our original goal was to
maintain the packet structure along the service chain as if it would be normally
forwarded from enpoint to endpoint, which we couldn't do for two reasons:

- The VNF deployment (physical location of each VNF) may be in a way so we would
get non-deterministic paths.

- The introduction of the Traffic Classifier VNF, which has to encode the chosen
service chain into the datagrams.

This solution is our way to deal with those problems, but it is not in any way set in
stone for the SDK but rather shows one possible way we can implement using the
SDK while having minimal overhead. Other possible solutions could be based on
tunneling (MPLS/GRE) or other rewrite patterns, which could be implemented using
the Flow Pattern abstraction of the SDK.

This problem of SFC have been further addressed in the SDK for SDN part of the WP4
and detailed in the Deliverables D4.31-Interim [D4.31] and D4.32-Final [D4.32].

4.3.3. Alternative approaches to traffic steering

4.3.3.1. OpenStack extension using OpenDaylight

Besides the above-mentioned approaches, a Traffic Steering extension to OpenStack
has been implemented and evaluated, allowing the forced redirection of traffic across
VMs, which indirectly enables the implementation of service function chaining.

This extension was implemented by extending the OpenStack Neutron API to support
the definition of classification resources, L2-L4 traffic filters, and a sequence of
redirections, i.e. a list of Neutron ports in which the packets are forced to pass
through. Moreover, the OpenStack API itself only provides a means to declare the
previously mentioned resources; therefore, in order to enforce the necessary
configurations in OVS (i.e. the default virtual switch implementation used in
OpenStack), OpenDaylight was chosen. OpenDaylight is capable of programming
OVS, and features an extension mechanism which was used to support the Traffic
Steering extension.

In the following sections the extension mechanism and the Traffic Steering extension
in OpenDaylight are presented. Additionally, the work realised to extend the

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

29

Openstack API to support Traffic Steering is described. Finally, an example is provided
focusing on how the API is used to realize a forwarding graph.

OSGi and OpenDaylight

In this section the mechanisms to extend OpenDaylight to support traffic steering are
presented. OpenDaylight includes a modular, pluggable, and flexible controller
platform at its core. This controller is implemented strictly in software and is
contained within its own Java Virtual Machine (JVM). Therefore, it can be deployed on
any hardware and operating system platform that supports Java.

The controller exposes open northbound APIs which are used by applications.
OpenDaylight supports the OSGi framework and bidirectional REST for the
northbound API.

OSGi is a modular framework that allows for dynamic loading of Java modules. This
means that applications can be loaded and unloaded, started and stopped without
interruption of the running JVM platform. This allows applications and protocols to
plug into the framework to fit different use cases and vendor strategies. These
modules are called bundles, more specifically they consist of jars with manifest files
that define what is exported/imported to/from other bundles in addition to other
details such as bundle name, activator, version etc, see Figure 4-8.

Figure 4-8 OSGi overview

A bundle alone can act as a service provider or a service consumer. Services are
specified by Java interfaces. Bundles can implement this interface and register the
service with the Service Registry.

Implementation of Traffic Steering bundle

To add the traffic steering functionality to OpenDaylight, a Maven OSGi project was
created that, when compiled, creates a bundle dynamically deployable into the
OpenDaylight controller. Basically, this bundle extends the OpenDaylight Northbound
REST API to create two new base endpoints:

• /ts/steering_classifiers/

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

30

• /ts/port_chains/

These two endpoints provide the Create, Read, Update, Delete (CRUD) functionalities
to the main objects, Classifiers and PortChains, respectively.

In order to implement the bundle, an OSGi activator class is needed. The latter
enables registering a component with the OSGi framework and defines the exposed
services that will be used in the Northbound API. The rest of the java classes will
implement the logic of the services themselves and implement the new Northbound
API resources, see Table 4-3.

Description Steering_Classifiers Port_chains

Object Data Model Classifier.java PortChain.java

Interface that defines
the CRUD methods

IClassifierCRUD.java IPortChainCRUD.java

Implementation of the
interface

ClassifierInterface.java PortChainInterface.java

Definition and
implementation of the
API

ClassifiersNorthbound.java PortChainNorthbound.java

Table 4-3 Java classes implementing traffic steering

The OSGi framework allows to share the different services exposed by each module.
In the module which implements the port chain the following external services are
needed:

• OVSDBConfigService: to get OVSDB tables information needed to learn the
OVS port where the VMs are connected

• INeutronPortCRUD: to get Neutron ports information and details
• IForwardingRulesManager: Manager of all the Forwarding Rules, this

component takes care of forwarding rules and is the one managing conflicts
between them

• ISwitchManager: Component holding the inventory information for all the
known nodes in the controller. All the components that want to have access
to a port name, node name or any inventory information, will find them by
querying the SwitchManager.

The packets can only be manipulated in the OVS, where the flows are installed. The
OVSDB tables information is used to find and create a map with the connections links
between the neutron ports and the OVS ports. The flows are constructed with this
information in addition to which is defined by the classifiers in the PortChain. One
important note, since the packets are redirected to a different hop, it is also needed
to change the packet mac address destination, so it can be accepted by the
host/function. The IForwardingRulesManager service is used to insert (also to delete

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

31

and update) a static flow in the OVS for each hop in the chain based on the flow
configuration built by the previous steps.

OpenStack extension for traffic steering

This section refers to the traffic steering extension implementation in OpenStack. The
plugin structure is somewhat alike to ML2 and Group Policy plugins, including a
steering manager, context objects, driver API, a dummy driver and an OpenDaylight
driver. Like other Neutron plugins, administrator users will have to enable this plugin
and the respective driver in Neutron configuration file. This extension has been
confirmed to work in OpenStack Icehouse version.

The traffic steering extension in OpenStack consists of two concepts:

• Traffic Classification - a policy for matching packets, e.g. HTTP traffic, that is
used for the identification of the appropriate actions to apply to the packets.
It can be for example an explicit forwarding entry in a network device that
forwards packets from one address, identified for example by an IP or MAC,
into the Service Function Chain;

• Traffic Steering - ability to manipulate the route of traffic, i.e. delivering
packets from one point to another, at the granularity of subscriber and traffic
types. Neither the actual network topology nor the overlay transports are
modified to accomplish this.

The manipulation of traffic redirection occurs at the port level. For example, all HTTP
traffic coming from a VM interface is directed to another VM interface instead of
going to the network gateway. With this in mind two new resources were added to
Neutron:

• Steering Classifier - traffic classification which supports the following filters:
protocol, source/destination MAC address, source/destination IP address and
source/destination port range;

• Port-Chain - sequence of traffic redirections. This is done with a dictionary of
lists of Neutron ports where the dictionary keys are the Neutron port UUIDs.
Ingress traffic from these ports is steered to all ports in the dictionary value (a
list of Neutron ports) according to a classification criterion.

The Traffic Steering API provides a flag that alerts in situations where there is more
than one path from a source to the same destination, or there is a path that can form
a loop. Note that when redirecting traffic intended for the network gateway to
another VM in OpenStack, it is necessary to manipulate the packets so that the VM
can process the packet. More specifically, the destination MAC address has to be
replaced with the MAC address of the VM interface. The rule to perform this action is
automatically inserted in Open vSwitch by the OpenDaylight module.

The Neutron traffic steering plugin extends the Neutron database and adds two
tables to store the steering classifiers and the port chains. Similar to other Neutron
plugins, the traffic steering functionality is exposed in Neutron python client, Neutron
command-line client and Neutron REST API. See Table 4-4 for a list of available
operations.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

32

Command line URI HTTP Verb Description

steering-classifier-
create

/classifiers POST Create a traffic steering classifier

steering-classifier-
delete

/classifier/{id} DELETE Delete a given classifier

steering-classifier-
list

/classifiers GET List traffic steering classifiers that
belong to a given tenant

steering-classifier-
show

/classifier/{id} GET Show information of a given classifier

steering-classifier-
update

/classifier/{id} PUT Update a given classifier

port-chain-create /port_chains POST Create a port chain

port-chain-delete /port_chain/{id} DELETE Delete a port chain

port-chain-list /port_chains GET List port chains that belong to a given
tenant

port-chain-show /port_chain/{id} GET Show information of a given port chain

port-chain-update /port_chain/{id} PUT Update a port chain

Table 4-4 Traffic Steering available operations

Defining a forwarding graph using the Neutron Traffic Steering
extension

It is up to the user to instantiate the network service by provisioning a machine and
configuring the network service software in it, making sure it is attached to a Neutron
network.

In the following example, a network configuration is implemented in OpenStack, as
represented in Figure 4-9.

Figure 4-9 Example of OpenStack configuration

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

33

Using this setup in OpenStack a forwarding chain will be created (see Figure 4-10),
which only applies to traffic matching the following classifier:

• HTTP or FTP traffic type
• Sent by the host USER (10.0.0.2)

Figure 4-10 Forwarding graph

The classifier needs to be created first to be referenced during the port chain
creation:

neutron steering-classifier-create --name FTP --protocol tcp --dst-
ports 20:21 --src-ip 10.0.0.2

neutron steering-classifier-create --name HTTP --protocol tcp --dst-
ports 80 --src-ip 10.0.0.2

Finally the port chain is created:
neutron port-chain --name USER-DPI_AND_FW-CACHE --classifiers
FTP,HTTP --ports "user_port:dpi_port,fw_port" --ports
"fw_port:cache_port"

The traffic originated from the host USER with the matching classifier FTP or classifier
HTTP will be steered to port fw_port and also to port dpi_port (the packet is
replicated to the two ports). When packets reach the Firewall, they are forwarded,
because the Firewall is not the final destination. After leaving the Firewall they can be
captured in OVS to be steered to the cache_port. If the Cache host is not the
intended destination, the packets are once again forwarded (repeating the behavior
previously described for the Firewall host). When the chain is complete the packet
follows its normal path.

The following constraints were identified during the development of this module:

• The bundle was only tested with the first version of OpenDaylight software
(Hydrogen) because it was the only available at the time. Before this work can
be used in the new ODL releases, some updates of the source code are
needed. Also, due to the same reasons it only works with Openflow version
1.0.

• OpenDaylight Hydrogen version has some limitations when creating provider
networks in OpenStack.

• Because OpenDaylight does not have its own database, once the application
is terminated the existing runtime data is lost.

Steering classifiers can only be created using NeutronPorts UUIDs. Because of this,
incorporating a host located outside of OpenStack in the chain may lead to

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

34

unpredictable behavior, due to the fact that a virtual node is necessary to receive all
traffic sent by the real host.

4.3.3.2. Source routing for service chaining on datacenter network

It is a fact that service chaining requires the installation of flow entries in switches
located in datacenters, such that traffic will traverse the NFs in the exact order
specified in the service chain. This requirement generates the need to install a large
number of flow entries in switches, especially with an increasing number of
customers. This, in turn, can raise a data scalability issue for the T-NOVA system, as
datacenter switches typically have relatively small flow table size (i.e., several
thousand entries).

To mitigate this problem, an alternative solution employs source routing to steer
traffic through the NFs of a service chain. Source routing embed the path of each
service chain on the traffic packets headers obviating the need to install flow entries
in DC switches, i.e., switches forward packets based on the path information carried
by the packet header. Source routing is an attractive solution for datacenters where
the number of switches per path is relatively small (typically, there are three switches
between access gateways and any server in a DC) in comparison to ISP and enterprise
networks. Furthermore, given that it is performed within the DC and under the
control of the DC operator, source routing raises less security concerns. For instance,
only switches and hypervisors (on virtualised servers) managed by the DC operator
can insert or remove paths from packet headers. However, source routing raises a set
of challenges in terms of scalability and performance. In particular, the embedded
path might increase the packet size beyond maximum allowed length (e.g. 1500
bytes for Ethernet packets). Therefore, we need to minimize the number of bytes
consumed to perform source routing per packet. This might entail a trade-off
between minimizing the state per switch and the source routing header size.
Furthermore, source routing should provide forwarding rates that are as high as rule-
based forwarding.

Architecture overview

Consider the example in Figure 4-11 where traffic needs to be steered through three
NFs deployed on servers within a DC to form a service chain (i.e. traffic should
traverse NFs in particular order). A straightforward approach is for each service chain
to install a forwarding entry in each switch on the path connecting the NFs. Despite
the simplicity of this approach, it requires maintaining the state of each service chain
on multiple switches (in this example we need 7 entries for one chain) which limits
the number of service chains that can be deployed on a DC (since the flow table size
of each switch is relatively small). On other hand, by using source routing, the path
between the NFs can be embedded on the packets header as they arrive to the DC
(at root switches) requiring no state maintenance on each switch on the path.

We propose to embed a sequence of switches output port numbers on each packet
such that each port in this sequence corresponds to a switch on the path. For
instance, to steer traffic through NF1 and NF2, each packet should carry the sequence

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

35

of port numbers 1, 3, 5. By reading the port number, the switch learns to which
output port, it should forward the packet (e.g., switch A will extract and forward
through port number 1). To allow the switches to identify their corresponding port
numbers, we add a counter field to the routing header. This counter identifies the
next port number to be read by the next switch on the path, i.e., the counter field
specifies the location of the switch corresponding port number from the beginning of
the routing header. For example, when reaching switch B, the counter will carry the
value of 6 indicating that switch B should read the six field on the port number
starting from the beginning of the routing header (Figure 4-11). The value of the
counter is decremented at each switch to indicate the next port number to be read.

Figure 4-11 Example of service chaining through source routing

To this end, a SDN architecture has been developed for service chaining through
source routing. The architecture consists of four main components (Figure 4-12):

1. Access switch: is an Openflow switch which inserts the source routing header on
each arriving packet based on the configuration provided by the source routing
controller. In DC, root switches can play the role of access switches. Typically, a DC
has multiple root switches which enables balancing routing header insertion load
across multiple access switches.
2. Source routing controller: provides: (i) topology discovery to keep track of the
different links and switches on DC network, (ii) path-to-ports translation to identify
the corresponding switch output ports which form the path between NFs, and (iii)
flow table configuration to install flows on the access switch to embed source routing
headers on arriving packets.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

36

3. Source routing switch: extracts the output port from the source routing header
and accordingly forwards the arriving packet. Aggregation and access switches can
play the role of source routing switches.
4. Southbound interface: provides an interface for the controller to install
forwarding rules on access switches and perform topology discovery (i.e., collect
information about the switches port numbers and active links).
5. Northbound interface: enables the NFV orchestrator to submit the service chain
assignment (the assignment of NFs to servers and DC paths) to the source routing
controller.

Figure 4-12 Source routing architecture

Embedding the port numbers of the whole path on the arriving packets might
significantly increase the packet size leading to high bandwidth consumption and/or
larger packet sizes beyond the maximum length. For instance, a service chain
consisting of 10 NFs which are assigned to different racks requires a routing header
with 30 port numbers. Assuming each port number is carried on 8-bits field, a routing
header adds 30 extra bytes to each arriving packets. This leads to the consumption of
46% more bandwidth for packets with the size of 64 bytes and to the need for
fragmentation for packets with a size bigger than 1470 bytes (with Ethernet link). To

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

37

overcome this problem, we propose using more than one access switch along the
path. In this respect, the service chain is divided into pathlets where each pathlet
starts and ends with an access switch. The location and number of access switches is
identified by the DC operator based on real world service chains deployment and the
employed embedding algorithm. By embedding NFs in as small as possible number
of servers and racks, less number of ports is required for routing traffic and
subsequently, less number of access switches. An alternative approach is to deploy
both access switch and source routing functionality within all DC switches, allowing
the DC operator to dynamically install routing headers on packets in different
locations of the network. To identify packets reaching the end of their pathlet, we use
the zero value of the counter field (indicating no further ports to read). While this
approach provides more flexibility, it increases the complexity of the DC switch
design.

Implementation

In this section, we present the implementation of our architecture components:

Source routing header: To embed the routing header on the service chain packets,
we use the destination MAC address and further add a VLAN tag and an MPLS label
stack to each packet. In particular, we encode the port numbers in the destination
MAC address, the VLAN ID and the MPLS label (Openflow 1.0 which we use for our
implementation does not allow modifying other VLAN and MPLS fields). By
combining these fields, we can store 10 port numbers per packet, where each field is
8 bit long and supports switches with up to 256 ports. To store the counter value, we
use the TTL field of the MPLS header. We can further increase the number of
embedded ports by inserting more MPLS stack labels in each packet.

Source routing controller: We use POX [POX] to implement the different
components of our controller. Using Openflow, the controller collects and stores the
port numbers of each switch. Based on this information, the controller translates the
service chain path to switch ports. After the translation, the controller ensemble the
port numbers into a bit vector. This bit vector is further broken down into the MAC
destination address, the VLAN ID and the MPLS label. This step is followed by
installing a flow entry in the access switch using OFPT_FLOW_MOD message. This
message carries the flow matching fields (e.g., source/destination IP,
source/destination port numbers and protocol) as well as the physical output port
number.

Access switch: We rely on OpenvSwitch [PPK+09] to embed routing headers on the
arriving packets. OpenvSwitch exposes an Openflow interface to the controller to
install forwarding rules which insert the routing headers on the service chain packets
by adding a VLAN tag and an MPLS label stack to each packet and updating its
destination MAC address.

Source routing switch: We extend Click Modular Router [KMC+00] with a new
element, SourceRouter, which extracts the values of the VLAN ID, MPLS label, MPLS
TTL and the destination MAC address and subsequently combines them into the
routing header (see Figure 4-11). Based on the counter value, the element reads the
corresponding port number through which the packet is forwarded. By combining

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

38

our element with Click elements for packet I/O, we implement a source routing
switch.

Evaluation

We evaluate our source routing switch on a emulab-based testbed using 3 servers,
each one equipped with an Intel Xeon E5520 quad-core CPU at 2.26 GHz, 6 GB DDR3
RAM and a quad 1G port network interface cards (NICs) based on Intel 82571EB. All
servers run Click Modular router 2.0 on kernel space with Linux kernel 2.6.32. We
deploy our source routing switch on one server and use the other two as source and
destination to generate and receive traffic, respectively. Since the switch on our
testbed filters packets with VLAN and MPLS header, we encapsulate our packets in
IP-in-IP header. We measure the packet forwarding rate of our switch with various
packet input rates and packet size of 85 bytes including the routing header and the IP
encapsulation header. We further compare our switch performance with rule-based
forwarding where we forward packets based on packets' destination IP address using
a routing table with 380K entries. Figure 4-13 shows that our source routing switch
achieves more than 30% higher forwarding rate than rule-based routing. This
performance is achieved using a single CPU core.

Figure 4-13 Source routing switch forwarding rate

To evaluate the performance of our controller, we add another server with the same
specifications to our setup (4 servers in total). We use two servers as traffic source
and sink and the other two to host the controller and the access switch. Initially, we
measure the flow setup time (i.e., the time required to insert the source routing
header at the access switch) which we define as the time elapsed from the flow's first
packet arrival at the access switch ingress port till its departure from the egress port.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

39

Figure 4-14 Setup time per flow.

As depicted in Figure 4-14, the flow setup time does not change significantly across
the various flow arrival rates. We further break down the setup time into multiple
components. In particular, we measure the time required for the source routing
header computation, the time the control packet takes to traverse the POX and kernel
stack on the controller server in both directions (between the controller and the
switch), the RTT (between the controller and the access switch) and the access switch
processing time. As shown in Table 4-5, source routing header computation
consumes less than 29% of the total setup time. Instead, most of the setup time is
spent in POX, kernel stack, and the access switch processing.

Table 4-5 Flow setup time

Element Time (milliseconds)
Source	routing	header	computation 0.25

POX	processing	+	kernel	stack 0.24
RTT 0.1

access	switch	processing 0.3
Total 0.89

We also compare source routing with rule-based forwarding in terms of control
communication overhead. We first measure the communication overhead on a single
switch for different flow arrival rates. In this respect, we measure the control traffic
between the switch and controller per direction (noted as uplink and downlink
overhead). Our measurements show that both source routing and rule-based
forwarding consume the same amount of bandwidth at the uplink (Figure 4-15 (a)),
since both approaches use the same packet size and format (i.e., OFPT_PACKET_IN) to
transfer the packet fields to the controller. On the other hand, for downlink, source
routing consumes more bandwidth than rule-based forwarding (Figure 4-15 (b)), due
to the extra packet fields (i.e., VLAN and MPLS) required to install the source routing
header.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

40

Figure 4-15 Control overhead for a single switch.

Using the results we obtained for a single switch, we further calculate the
communication overhead with a diverse number of switches. For our calculation, we
consider DCs with a fat-tree topology [FAT TREE]. The DC components in a fat-tree
topology can be modeled based on the number of ports per switch. More precisely, a
fat-tree topology with k-port switches has (5(𝑘"))/4) switches where 𝑘"/4 of these
switches are core switches and 𝑘" are aggregation and edge switches.

Figure 4-16 Control overhead for multiple switches.

We calculate the control overhead of source routing and rule-based forwarding for
fat-tree topologies with a diverse number of ports per switch. As shown in Figure
4-16, source-routing introduces significantly lower communication overhead in
comparison to rule-based forwarding. We observe that the savings in communication
overhead increase with the size of the DC network, since the source routing controller
needs to communicate only with the core switches of the DC.

4.4. Load balancing in multicontroller scenarios

The SDN architectural model introduces a single logical node in charge of controlling
all the data-path layer behaviour. The following section deals with scenarios where
multiple controllers cooperate in a cluster, in order to provide scaling capabilities and
avoid failure issues.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

41

In this context, a load balancing algorithm has been proposed, as well as different
implementation approaches, with the aim of managing the control traffic between
switches and multiple controllers. Such algorithm aims at balancing the switch-to-
controller connections according to the current controllers’ load estimation.
Specifically it has to assign each switch to a subset of controllers, of which one will be
the master, in order to reduce the control traffic load while maintaining resiliency. By
balancing the load of the controllers, fair exploitation of the control resources is
achieved which, in turn, increases the overall throughput and minimizes the control
connection latency.

4.4.1. Clustering Service in OpenDaylight

The OpenDaylight controller supports a cluster-based HA model where several
instances of controllers act as a single logical controller, while the global state of the
network is maintained through a distributed datastore.

In the Hydrogen release, OpenDaylight included the Clustering Service Provider
module for this purpose. It provides clustering services to all the functional
components of the controller as well as to applications running on top of the
controller. From the northbound side the cluster is accessible via RESTful API and
each request can land in any controller in the cluster. From southbound, Openflow
switches would need to explicitly connect to the controllers in the cluster via their IP
address. In this regard, the Connection Manager is in charge of managing
connections between the ODL instances and the OF switches. For the time being, the
connection schemes supported are: SINGLE_CONTROLLER (all the switches connected
to only one controller) and ANY_CONTROLLER_ONE_MASTER (any switch connected
to any controller, with only one master). Other connection schemes (i.e.
ROUND_ROBIN and LOAD_BALANCED) were defined but not yet implemented. In this
regard, one implementation approach proposed in T-NOVA aims at extending the
Clustering Service offered by ODL Hydrogen with a load balancing algorithm
implementing the LOAD_BALANCED connection scheme.

Starting from Helium, OpenDaylight moved to the popular Akka [AKKA] technology
to operate in a server cluster configuration, thus dismissing the previous clustering
implementation. This feature, installed through Karaf, replaces the non-clustered
datastore access methods with methods that replicate the datastore transaction
within the configured cluster. The cluster, consisting of at least three physical server
nodes, is configured to enable coordination between the member nodes. Once the
configuration process is completed, a cluster leader is elected according to the RAFT
[RAFT] convergence process, using the Gossip protocol. Therefore, in order to
integrate load balancing into ODL Helium (and beyond), an alternative
implementation has been carried out in T-NOVA. This new approach leverages on the
OpenFlow protocol, which, in version 1.3 [OF1.3], introduced the concept of Role
(EQUAL/MASTER/SLAVE) of controllers. The main goal is to balance control traffic by
dynamically assigning the MASTER controller of each switch, as described in Section
4.4.6.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

42

4.4.2. Experimental plan

In order to evaluate the benefits of having multiple controller instances, a
preliminary test environment has been setup, using Mininet and OpenDayLight
(Hydrogen release).

The testing environment in Figure 4-15 is composed by a SDN controller cluster of
2 instances and 26 virtual switches created using OpenvSwitch [OVS]. Every switch Si
is connected to the Si+1 switch and to the host Hi that simulates the data traffic
generator. The control traffic is generated by the switch when there is no flow entry
for an incoming data packet that the host wants to send. Hence, the switch
encapsulates the data packet in a OF control packet (packet-in) and sends it to its
controllers. Then, exactly one controller should send a reply message containing the
flow entry that the switch will install in its table. Let flow-mod be the name of these
messages.

Figure 4-15 Testing environment

We performed the test using the following physical devices: n.1 Quad core Intel
Q8300 machine with 4 GB RAM and a gigabit Ethernet card hosting the Mininet
network emulator and the tcpdump packet sniffer; n. 2 Quad core AMD Athlon X4
750K with 8 GB RAM and a gigabit Ethernet card, both running the OpenDaylight
Hydrogen controller; n. 1 gigabit switch. The performance is measured in the machine
with Mininet as all packet-in and flow-mod messages pass through its network
interface (see Figure 4-15).

In Figure 4-16 the testing scenarios are presented. In the configuration (a) all the
switches are connected to one instance of controller.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

43

The scenario (b) is interesting to see what happens when every switch sends the
packet-in control message to more than one controllers. One controller should
answer to the request while the other one should ignore it. However, the ignoring
decision takes some computational resources and we will see the its impact. In (c)
there are two controllers and the first 13 switches are connected to the first one while
the remaining ones are connected to the second controller.

a. Single connection (One Controller)

b. All connections (Two controllers)

c. Selective connections (Two controllers)

Figure 4-16 Testing scenarios

Figure 4-17 depicts the 95-percentile response time of the 3 cases described
above.

Figure 4-17 95-percentile response time comparison between the different
configurations

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

44

We chose to measure the 95 percentile response time instead of the average
because the latter does not take into account spikes if they are less than 5%. Another
reason is that the average does not always report the real behavior since it may hide
a significant higher response time for an important part of the requests. For example,
a 15 milliseconds 95 percentile response time means that 95% of all responses were
processed in 15 milliseconds or less.

We noticed that the difference between the All and the Selective connection case
becomes relevant when the number of packet-in/s is greater than 40,000. At 50,000
packet-in/s this difference becomes more significant (about 8 seconds).

Figure 4-18 Throughput comparison between different configurations

Similar results are reported in Figure 4-18. When the network load is high (above
45000 packets/s) the throughput of the Selective test is the highest one, being 66%
greater than the one in the All test scenario and 100% greater than the one in the
Single test scenario. These plots clearly highlight the benefits of a control plane with
multiple controllers. It is easy to observe that relevant performance boost is obtained
only under certain level of load. Hence it is important to find the load levels that
should trigger an increment or a decrease of the number of controllers. Moreover,
shrinking the cluster when the load drops under some decided value may reduce the
operational cost.

The performance gain highlighted by the tests represents a good motivation for
using multiple controllers. They indicate that increasing the cluster size may improve
the performance but this could have relevant results only under certain level of load.

4.4.3. Load balancing algorithm

As mentioned before, OpenDaylight controller supports several connection schemes
between control and data planes, i.e. each switch could be statically connected to
one, more than one or all of the controllers. In this section, we propose a load
balanced approach providing a dynamic selective switch-controller connection
scheme.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

45

The balancing algorithm dynamically decides the switch-controller mapping aiming
at optimizing the resource utilisation. In the clustered SDN control plane, at any
moment there is an elected leader (i.e. an instance of Controller), that performs both
monitoring and migration operations. It collects load information about every
Controller in the cluster and then uses it to decide which switches should be moved
to different controllers. In this implemented version, the monitored data consist of
the average CPU load and the number of Openflow messages received from every
switch that the specific Controller is connected to, in a closed time interval.

It should be taken into account that the decision of finding the best mapping could
lead to a migration of a very large number of switches, moreover, it would further
slowdown the system due to the computations needed to solve it, so is preferable to
migrate a small number of switches. The benefits obtained from the optimal solution
are not always significant, a 10% imbalance will be hardly noticed in the system
response time. It should also be considered that the traffic could be highly dynamic
and the perfect solution could be useless because in a very short period of time the
load will change and that will trigger a new load balancing operation. The Load
Balancing algorithm tackles the problem of a potential large number of switch
migrations and avoids the migration of switches that have a load impact smaller than
a defined threshold.

The algorithm receives as input the average load and statistics about every controller.
By using these monitoring data and a predefined activation threshold (THRESHOLD
BALANCE), the algorithm compute two set of controller, namely the overloaded and
the non-overloaded Controllers.

From the data plane point of view, the switches are assigned to classes of load. The
load generated by one switch is given by the fraction of number of messages that it
has sent and the total number of messages that the controller has received from all
its switches.

At the core of the algorithm, given a non-overloaded controller Cdst, the algorithm
tries to act a best-fit technique by transferring switches from an overloaded controller
Csrc to Cdst, until its load becomes at most the average plus half of the THRESHOLD
BALANCE. This additional factor aims to decrease the problems caused by
fragmentation.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

46

Figure 4-19 Load Balancing Algorithm

4.4.3.1. Switch migration

The number of exchanged control messages between a switch and a controller is
variable and often unpredictable, it depends on the hosts that connect to this switch.
Hence, a switch can migrate from one controller to another in such a way that the
system load remains balanced. Such switch migration feature is fundamental for the
load balancing functionality.

The load balancing algorithm generates a set of switch migration operations. Figure
4-20 represents a migration of a switch (X) between two controllers (A and B).

The implemented migration algorithm uses the Openflow 1.0 feature. Such protocol
version implementation does not support roles, however, in the following sections we
refer to “master” as the controller that should handle all asynchronous Openflow
messages coming from a certain switch. We assume there is a distributed cache

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

47

replicated in all controllers that is mainly used to establish which controller must
answer to asynchronous messages.

Figure 4-20 Migration protocol

The dummy flow is a flow that can be easily distinguished from the normal flows
which are installed in the switches. When it is received by a switch it changes its
master. In particular, the match that identifies the dummy-flow have the initial master
and final master as source and destination addresses. The concept of dummy-flow
has also been proposed in [DHM+13].

As shown in Figure 4-20, the algorithm starts with the ”Start Migration & X-Do not
process” message. B should remember that during this migration should not process
the asynchronous messages received from X until it receives the dummy-flow
removal message. Controller B should also connect to the switch X. When A receives
the acknowledgment for the previous operations, it should instead remember to
process the asynchronous messages and right after that A changes the distributed
map. Then it requests to B to go ahead and install and remove the dummy-flow.
Controller B does it and when X removes and notifies the removal, both controller will
receive and process this event and each of them will continue to use the changed
map where B is the master of X.

Such migration protocol guaranties that no duplicated flows are installed and that
there is always one controller that answers to packet-in messages.

4.4.4. Implementation

The first implementation of the Load Balancer makes use of features built in the
OpenDaylight Hydrogen release. Specifically, the following bundles/API are used and
extended:

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

48

• Connection Manager - It manages the ‘role’ of each controller instance in the
cluster. Only two connection schemes were available, namely Single Controller
and Any Controller. Here the Selective Controller scheme, implemented by the
switch migration algorithm was added.

• Openflow Plugin - It is the module that programs the Openflow switches
throught the Openflow protocol 1.0.

• OVSDB Plugin - The module responsible for connecting the switches to the
controllers, for their configuration and for disconnecting them. Such plugin
was enriched with a function that is able to disconnect a switch from the
controller. The OVSDB API set were updated with this API and another able to
allow to connect a switch to another controller.

In addition to the above bundles, a new one, carrying on the Load Balancer logic was
developed, responsible for taking all the balancing-related decisions.

Figure 4-21 highlights the interactions among all of the involved bundles.

Figure 4-21 Main interactions among the bundles of interest in OpenDaylight

A migration is requested by the cluster coordinator (or cluster leader), that is also the
one that collects all the load statistics and decides which switch should change its
master.

Figure 4-22 illustrates how the controllers A (initial Master), B (final Master), and C
(coordinator) communicate between them. Controller A or B could also be the cluster
coordinator. In the figure there is the interaction among system components during a
switch migration. From the Load Balancer bundle, the cluster coordinator contacts
the TCP migration servers in the controller A that is overloaded and in controller B
that is not overloaded. The OVSDB Plugin connects and disconnects (if needed) the
switch that is being migrated.

Every controller has a migration server that receives migration requests from the
coordinator. It is implemented and runs in the Openflow Plugin bundle. The TCP
migration server can receive ”Start migration” and ”Install and remove dummy-flow”.

The TCP migration client is the one that makes the migrations requests. It is
implemented and run in the Load Balancer bundle. For every migration there are 2
clients: one that communicates with the current master and one with the target
master.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

49

Figure 4-22 Bundles interaction during a switch migration

4.4.5. Evaluation results

This section outlines the test performed by the Load Balancer to measure the overall
performance in specific conditions. In the following, the response time before and
after the activation of the Load Balancer algorithm is plotted.

In every test, the system is imbalanced in the first half of the total test time, then the
load balancing is activated, this in order to measure the improvements brought by
the auto-balancing. We measure the 95 percentile response time before and after the
activation. For the sake of simplicity, every switch sends an equal amount of packet-in
(reported on the X axis).

The test results are illustrated in Figure 4-23.

Figure 4-23 Mean response time comparison before and after load balancing event

The differences between the two scenarios are noticeable, such differences become
huge when the controllers - without Load Balancer - reach their point of saturation (ie
they process the max number of Openflow messages per second). In the latter

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

50

scenario, the Load Balancer algorithm aims to increase the overall controller cluster
throughput by distributing the load generated by a single switch across the instances.

4.4.6. Role-based load balancing

4.4.6.1. Overview

In order to endow more recent OpenDaylight releases (Helium and beyond) with load
balancing capabilities, an alternative solution has been implemented. It leverages the
Openflow protocol which, starting from version 1.3, regulated a new architectural
model by introducing the concept of role (MASTER, SLAVE and EQUAL) of a
controller.

This new model enables two modes of operations when multiple controllers connect
to the switches: equal and master/slave. In equal interaction, there can be more than
one controller with EQUAL role for a switch. These controllers may receive and
respond to any of the events belonging to that switch. On the contrary, in
master/slave interaction, for each switch, only one MASTER, responsible for all the
events corresponding to that switch, must exist, whereas the SLAVE controllers can be
more than one but they do not receive any events.

The OpenDaylight controller supports both equal and master/slave operations.
Specifically, the Openflow Plugin is the module in charge of statically assigning the
controllers’ roles and providing mechanisms to manage this information within the
cluster (Figure 4-24)

Figure 4-24 Openflow Roles in OpenDaylight

Following the role-based approach, the proposed implementation aims at
dynamically changing the controllers‘ roles (MASTER/SLAVE) of each switch so as to
balance the cluster workload, in an easier way than connecting/disconnecting
switches using OVSDB (as done in the previous implementation). This makes the
migration mechanism more efficient and, at the same time, reduces significantly the
network control traffic.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

51

4.4.6.2. Implementation

The implementation of the role-based load balancing relies on existing features built
in the OpenDaylight Lithium, together with components developed from scratch.

The reference scenario is depicted in Figure 4-25.

Figure 4-25 Load balancing reference scenario

Specifically, the following existing ODL features have been used and extended:

• OpenFlow Plugin (OF Plugin)
This module has been extended to allow the configuration of the switch
ownership on-demand and to manage external Role Messages through Java
interfaces

• Forwarding Rule Manager (FRM)
This module has been extended to support the on-demand switch ownership
change in order to re-route internally a request

• Statistics Manager (Stats Manager)
The Statistics has been enhanced to collect and expose per-switch OpenFlow
statistics.

In addition, the following components have been implemented:

• Role Manager
The Role Manager is an ODL bundle which exposes RESTful API to
northbound applications and, in particular, to the Load Balancer for
configuring the controller role and providing statistics data of each switch.
The description of the REST interface is available in the table below:

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

52

URI Method Parameter Description

/set-switch-
role

POST Switch IDs,
OpenFlow-Role

Enforces the given OpenFlow-
Role for the target switches on
the invoked controller instance.

/get-switch-
role

POST Switch IDs Returns the OpenFlow-Role of
the target switches for the
invoked controller instance.

/get-switch-
stats

POST Switch IDs Returns aggregated per-switch
OpenFlow statistics (messages
sent/received) of the target
switches for the invoked
controller instance.

Table 4-6 Role Manager APIs

• Load Balancer
The Load Balancer is a stand-alone Java application in charge of monitoring
each controller of the cluster and determining the best controller-to-switch
mapping according to the workload. It also provides a web GUI to display the
roles mapping assignments within the cluster.

4.4.6.3. Evaluation

The role-based implementation of the load balancer has been evaluated on a test-
bed composed by a cluster of 3 OpenDaylight controllers connected to a Mininet
network of 16 Openflow (v1.3) switches. The aim of the test was to demonstrate the
load balancer capability of providing the switch-to-controller mapping that equally
distributes the workload of the cluster.

Once started, the Load Balancer triggers the Stats Manager of each controller to get
updated information about the machine resources usage (CPU/RAM) and the
exchanged Openflow traffic. Then it computes the best switch-to-controller mapping
on the basis of the load information, as detailed in Section 4.4.3. Finally, it applies the
mapping by dynamically changing the controller roles for each switch, through the
Role Manager interfaces.

Figure 4-26 shows the assignments statically done by the ODL cluster when it starts
and connects to the Mininet network. Each blue block represents a running controller
instance, including the switches to which the instance is connected. The light yellow
items represent Openflow switches, whose controller has a SLAVE role, while the
green items are switches whose controller is MASTER. In the case represented in
Figure 4-26, the network switches are connected to all the controllers belonging to
the cluster but the first controller acts passively since it has no switches under its
(master) control.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

53

Figure 4-26 Load Balancer Web GUI (before balancing)

Figure 4-27 outlines the role assignment after the activation of the load balancer.
Specifically, a subset of switches are moved to the first instance of the controller by
changing its role, so as to balance the load of the switches on the cluster.

Figure 4-27 Load Balancer Web GUI (after balancing)

Further details on the tests performed, as well as the source code of the developed
components, are available at the public repository [LBGIT].

4.5. Network isolation and QoS support

The NFV Infrastructure as envisaged by T-NOVA is a product of integrating
Openstack and OpenDaylight. As the current support for network isolation and QoS
support are not well integrated, two are the current options that are under test in the
frame of Task 4.2. The first option is to use the current integration provided by the
neutron ML2 plugin for interfacing of Neutron with OpenDaylight controller or re-use
the above solution but also interface directly with the SDN Controller and the OVS
instances for reasons that will be explained in this section. The trade-off between the
aforementioned solutions is that the first is simpler to implement, as the APIs and
interfaces used are between the Orchestrator and those provided by the Openstack,

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

54

however the functionalities and QoS capabilities currently supported are somewhat
limited. On top of that the network resource management currently supported by the
first option is limited to policing ingress traffic at the Cloud Neutron Node external
interface. This sections discusses early effort in assessing the situation w.r.t network
isolation and QoS support.

4.5.1. Network Isolation

Network isolation for a multitenant environment is the efficient isolation in the
network namespace in order different tenants to be able to create isolated networks
segments reusing addressing segments operating in a completely isolated manner.
Note should be added in the fact that this isolation does not mean strict isolation
also in the network resources. This will be attempted through resource management
schemes, integrated to future Openstack versions, via integration of QoS mechanisms
already available or planned at OpenDaylight (i.e ODL Lithium Reservation Project
[ODL-RESERV]) and OVS components.

4.5.1.1. Openstack supported Network Isolation

OpenStack has been designed to be a multi-tenant environment. Users can co-exist
within the same OpenStack environment and share compute, storage, and network
resources or they can have dedicated compute, storage, and network resources
within the same OpenStack environment. A user can create Neutron tenant networks
that are completely isolated from any Neutron tenant network created by any other
user, even if the users are sharing resources. The network isolation is a feature that
does not require intervention from a Systems Administrator. This functionality is
possible through the use of Network Namespaces, a feature implemented in the
Linux kernel. When two users create two different Neutron tenant networks, a
Network Namespace is created for each one. When the users create OpenStack
instances and attach those instances to their respective Neutron tenant network, only
those instances within the same Network Namespace can communicate with each
other, even if the instances are spread across OpenStack compute nodes. This is very
similar to having two physical Layer 2 networks that have no way of communicating
with each other until a router is put between them.

OpenStack supports network isolation through the use of several mechanisms that
ensure the isolation between different networks. Isolation mechanisms that are
supported in OpenStack are VLANs (IEEE 802.1Q tagging), VxLANs or L2 tunnels
using GRE encapsulation. The isolation technique to be used is configured in the
initial setup. When VLAN tagging is used as an isolation mechanism, a VLAN tag is
allocated by Neutron from a pre-defined VLAN tags pool and assigned to the newly
created network. Packets on the specific network contain IEEE 802.1Q headers with a
specific VLAN tag. By provisioning VLAN tags to the networks, Neutron allows the
creation of multiple isolated networks on the same physical link. The main difference
between OpenStack and other platforms is that the user does not have to deal with
allocating and managing VLANs to networks. The VLAN allocation and provisioning is
handled by Neutron, which keeps track of the VLAN tags and is responsible for

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

55

allocating and reclaiming VLAN tags. Similarly, VxLANs and GRE tunnels are allocated
and managed automatically by Neutron.

When OpenStack is integrated with OpenDaylight SDN Controller, the VTN (Virtual
Tenant Network) framework can be used in order to control and manage the
networking. VTN creates a virtual networking environment, in which each network
inside is a different VTN and is managed as an independent network. Features of VTN
are:

§ Virtual network provisioning
§ Add, remove, modify VTN
§ Add, remove, modify VTN model

§ Flow control on virtual network
§ flow filter(pass, abandon, redirect, remarking)

§ QoS control on virtual network
§ policing (pass, abandon, penalty)

§ Virtual network monitoring
§ Stats info of traffic
§ Failure event

The components used to create such networks are presented and described in the
following Table.

Table 4-7 VTN abstraction components

To create an instance of tenant network, as in the following illustrated in Figure 4-28,
the following actions must be performed in the correct order:

§ Creation of VTN
§ Creation of vBridge
§ Creation of interface
§ port-mapping

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

56

Figure 4-28 VTN Mapping of physical network to virtual networks

There are two types of port mapping available, simple port mapping and VLAN
mapping.

Simple port mapping maps the VLAN on physical port of specific switch to vBridge
according to the following Figure (Figure 4-29). Physical ports cannot be mapped to
physical ports where other OpenFlow switches are connected.

Figure 4-29 Simple VTN port mapping

The VLAN mapping works by mapping any VLAN to the vBridge, as shown in the
Figure 4-30. When a physical switch is specified, only the VLAN on specified physical
switch is mapped. When a physical switch is not specified, the VLAN on all managed
switches are mapped.

A physical port connected to OpenFlow switch is not in scope for VLAN mapping.
Also port mapping settings are given priority. VLAN on port mapped physical port is
not in scope for VLAN mapping.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

57

Figure 4-30 VLAN VTN port mapping

After the virtual networks are created and assigned to the physical network, in each
virtual interface a flow filter can be applied. Flow filters are used to match specific
conditions and apply actions and policies. The figure below depicts two cases of filter
usage.

4.5.2. QoS Support

4.5.2.1. QoS Support at the OVS level

Since OpenFlow 1.0, queues are supported for rate-limiting egress packets in a switch
port for QoS implementation. Queues are designed to provide a guarantee on the
rate of flow of packets placed in the queue. As such, different queues at different
rates can be used to prioritize "special" traffic over "ordinary" traffic.

Queues, although very useful, are defined outside the OpenFlow protocol. OpenFlow
merely provides a wrapper around existing switch queuing mechanisms in order to
inform the controller of the available queues. Queues must be defined/instantiated at

flow%filter

Create%flow%list
(set%match%condition)

Set%flow%filter%to%
interface
(set%action)

QoS

Create)flow)list
(set)match)condition)

Create)policing)profile
(set)rate,)action)

Set)
policing)profile)to)

interface

 (a) (b)

Figure 4-31 Flow filters: (a) Simple filter, (b) QoS filter

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

58

the switch using out of band signalling. This means that queues must set up with
native OVS commands prior to to using them with OpenFlow. This is analogous to
adding ports to an OpenFlow instance or virtual switch.

Moreover, OVS has various ways of providing rate limiting mostly based to the
available Linux queue disciplines (qdisc) supported by the Linux kernel. In order to
support statistical QoS schemes or support DifServ based schemes the Hierarchical
Token Bucket (HTB) scheduler can be used via tc-htb element. Alternatively, the
available policers or token bucket (TB) schedulers might be used to provide network
resource guarantees for particular flows on designated OVS ports.

4.5.2.2. QoS Support at OpenFlow level

OpenFlow version 1.3 introduced meters support at the OpenFlow protocol. Meters
complement the queue framework already in place in OpenFlow, by allowing for the
rate-monitoring of traffic prior to output. More specifically, with meters, we can
monitor the ingress rate of traffic as defined by a flow. Flows can direct packets to a
meter using the goto-meter OpenFlow instruction, where the meter can then perform
some operation based on the rate it receives packets.

In turn a configured queue, accepts packets for output and processes them at a
min/max specified rate. As such, note that meters and queues are complementary
and are not different implementations of the same thing. A common misconception
is that meters are a replacement for queues.

Unlike queues though, which are rather rigid and must be defined by the switch out
of band (e.g. if using Open vSwitch (OVS) with OVS commands), meters can be
installed, modified, and removed at runtime using OpenFlow. In fact, we can link
meters to flows themselves. OpenFlow defines an abstraction called a meter table,
which simply contains rows of meters. These meters can be manipulated in a similar
manner to flows. Also like flows, meters receive packets as input and (optionally) send
packets as output.

A meter table consists of meter entries, defining per-flow meters. Per-flow meters
enable OpenFlow to implement various simple QoS operations, such as rate-limiting
or policing.

A meter measures the rate of packets assigned to it and enables controlling the rate
of those packets. Meters are attached directly to flow entries (as opposed to queues
which are attached to ports). Any flow entry can specify a meter in its instruction set,
the meter measures and controls the rate of the aggregate of all flow entries to which
it is attached. Multiple meters can be used in the same table, but in an exclusive way
(disjoint set of flow entries). Multiple meters can be used on the same set of packets
by using them in successive flow tables.

Each meter entry is identified by its meter identifier and contains:

• meter identifier: a 32-bit unsigned integer uniquely identifying the meter
• meter bands: an unordered list of meter bands, where each meter band

specifies the rate of the band and the way to process the packet
• counters: updated when packets are processed by a meter

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

59

Each meter may have one or more meter bands. Each band specifies the rate at which
the band applies and the way packets should be processed. Packet are processed by
a single meter band based on the current measured meter rate, the meter applies the
meter band with the highest configured rate that is lower than the current measured
rate. If the current rate is lower than any specified meter band rate, no meter band is
applied.

Each meter band is identified by its rate and contains:

• band type: defines how packet are processed
• rate: used by the meter to select the meter band, defines the lowest rate at

which the band can apply
• counters: updated when packets are processed by a meter band
• type specific arguments: some band types have optional arguments

There is no band type “Required” by this specification. The controller can query the
switch about which of the “Optional” meter band types it supports.

• Optional: drop: Drop (discard) the packet. Can be used to define a rate limiter
band.

• Optional: dscp remark: decrease the drop precedence of the DSCP field in the
IP header of the packet. Can be used to define a simple DiffServ policer.

An example REST API request used at ODL is illustrated below:

Using PostMan: Set Request Headers
Content-Type: application/xml
Accept: application/xml
Use URL: http://<ip-address>:8080/restconf/config/opendaylight-
inventory:nodes/node/openflow:1/meter/1
Method:PUT
Request Body:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<meter xmlns="urn:opendaylight:flow:inventory">

 <container-name>abcd</container-name>

 <flags>meter-burst</flags>

 <meter-band-headers>

 <meter-band-header>

 <band-burst-size>400</band-burst-size>

 <band-id>0</band-id>

 <band-rate>2048</band-rate>

 <dscp-remark-burst-size>5</dscp-remark-burst-size>

 <dscp-remark-rate>12</dscp-remark-rate>

 <prec_level>1</prec_level>

 <meter-band-types>

 <flags>ofpmbt-dscp-remark</flags>

 </meter-band-types>

 </meter-band-header>

 </meter-band-headers>

 <meter-id>1</meter-id>

<meter-name>Foo</meter-name>

</meter>

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

60

4.5.2.3. QoS Support in Virtual Tenant Network (VTN)

To perform QoS in VTN (Virtual Tenant Network) which works on top of
OpenDaylight, flow filters must be used. The flow-filter function discards, permits, or
redirects packets of the traffic within a VTN, according to specified flow conditions.
Priority and dscp remarking can be performed in VTN.

The following two figures are examples of different QoS policies used in a VTN. sets
the dscp to 55 in order to differentiate the selected packets.

Figure 4-32 Prioritising Traffic in VTN

Figure 4-33 provides a more complicated example which uses three color marking in
order to apply specific thresholds and limits to the appropriates packets.

Figure 4-33 Three color marker in VTN

VTN Supported filter actions for the provision of QoS are illustrated in the following
Table (Table 4-8)

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

61

Table 4-8 VTN Filter Actions

4.5.2.4. LibVirt QoS Support

QoS related information is signalled to libvirt configuration via the <bandwidth>
element [LIBVIRT]. The element allows setting quality of service for a particular
network under the constrain that the network type is <forward> i.e route, nat or no
mode at all. This element is defined as a subelement of a domain’s <interface>, a
subelement of a <network>, or a subelement of a <portgroup> in a <network>.
Reciting from the libvirt relevant info page [LIBVIRT]:”As a subelement of a domain's
<interface>, the bandwidth only applies to that one interface of the domain. As a
subelement of a <network>, the bandwidth is a total aggregate bandwidth to/from
all guest interfaces attached to that network, not to each guest interface individually.
If a domain's <interface> has <bandwidth> element values higher than the
aggregate for the entire network, then the aggregate bandwidth for the <network>
takes precedence. This is because the two choke points are independent of each
other where the domain's <interface> bandwidth control is applied on the interface's
tap device, while the <network> bandwidth control is applied on the interface part of
the bridge device created for that network.”
Inbound and Outbound traffic shaping is supported independently. The supported
configuration options allowed in the <bandwidth> element are:

• average i.e. average bitrate for the shaped interface;
• peak i.e. the maximum rate at which bridge can send data;
• burst i.e amount of kbytes for a single burst;
• floor i.e. applicable only for inbound traffic, guarantees minimal throughput

for shaped interfaces.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

62

4.5.2.5. Openstack QoS Support

The QoS support in Openstack is a product of the current implemented interfaces
with the available mechanisms of the components and drivers being utilised, namely
libvirt, neutron and supported ml2 plugins, OpenDaylight and VTN, and finally OVS.

OpenStack Liberty release introduces built-in Quality of Service support, a feature
that allows OpenStack tenant administrators to offer different service levels based on
application needs and available bandwidth. Within the current Openstack roadmap,
the focues is to provide an extensible API and reference implementation that enables
bandwidth limiting through egress bandwidth limit rules (i.e. rules that apply on the
traffic exiting the VMs). QoS support in Liberty is perceived as an advanced service
plug-in that is decoupled from the rest of the Neutron code on multiple levels and it
is available through the ml2 extension driver[OSTACK-QOS][NEUT-QOS].

There are two different ways to apply QoS policies:

§ Per network: All the ports plugged on the network where the QoS policy is
applied get the policy applied to them.

§ Per port: The specific port gets the policy applied, when the port had any network
policy that one is overridden.

To create a QoS policy, a policy name must be chosen and then used in the following
command:

After issuing the previous command, we need to configure the bandwidth limit rules
in the policy, by specifying the maximum kbps and maximum burst (expressed in
kbytes)1 that are allowed:

1 NOTE: The burst is actually calculated over excess bytes allowed, the printed command has a
typo.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

63

Finally, to associate the created policy with an existing neutron port, use the following
command with the relevant IDs:

Also rules can be modified in runtime. Rule modifications will be propagated to any
attached port.

To review the QoS policies, use the following command:

To view the details of a specific QoS policy, use the following command:

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

64

To view a rule of a specific QoS policy, use the following command:

Some validation tests were conducted with iperf to verify the application of QoS
policies. The VM in the following example had an ingress limit of 2 Mbps and the
traffic generated was in the area of 1 to 5 with 0.5 mbps increment. The following
figures show that the traffic reaching the server is less or equal than 2 Mbit, thus
complying with the applied QoS policy. The duration of each iperf measurement was
10 sec.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

65

Figure 4-34 BW Policing example

The QoS study in the frame of the project is considered as research topic. Extensions
of the above measurements are considered to be delivered within WP7 frame and
contributed to Deliverable D7.2.

4.5.3. QoS Considerations

From the analysis above, it appears that full QoS support in the Openstack
environment is only achievable via additional interfacing with the actual components
that participate in the Openstack environment. The use of SDN in conjunction with
Openstack allows bigger freedom in the QoS models that maybe supported and
dynamic and flexible control on the granularity of the solutions. However, Openstack
environment withholds no knowledge of configurations happening without the use
of its own APIs. Therefore any QoS scheme to be attempted should be also retained
and managed by a resource management component operating at the Orchestrator
level.

In T-NOVA the QoS specific requirement are declared via the descriptors as adapted
by ETSI i.e. Network Service Descriptor (NSD), Virtual Network Function Descriptor
(VNFD) and Virtual Link Descriptor (VLD). The aforementioned descriptor will be
decomposed by the Orchestrator and HEAT files will be generated and signalled to
the Virtual Infrastructure Manager (VIM) that are responsible for the resource
allocation with the designated PoPs (it might be the case where more than one VIM
will be used considering a multi-PoP environment). The file snippet below reveals the
VNFD, and VLD parts where the QoS attributes are declared.

VLD VNFD

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

BI
T	
RA

TE

BW	POLICING	

Ingress	Bit	Rate Received	Traffic	Rate	

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

66

…

vitual_links:

 - vld_id: "vld0"

 root_requirements: "10Mbps"

 leaf_requirements: "10Mbps"

 - qos:

 average: "5Mbps"

 peak: "6Mbps"

 burst: "50"

…

…

vl_id: "mngt"

 connectivity_type: "E-Line"

 connection_points_reference:
["vdu0:mngt0", "vnf0:mngt0"]

 root_requirement: "10Mbps"

 leaf_requirement: "10Mbps"

- qos:

 average: "5Mbps"

 peak: "6Mbps"

 burst: "50"

 net_segment: "192.168.1.0/24"

 dhcp: "TRUE"

Table 4-9 VNFD/VLD examples for QoS configuration.

Depending on the scenario to be implemented the qos field in the above files needs
to be expanded in order to support e.g. DiffServ or statistical QoS within the NFVI-
PoP or across the PoP over the WAN. The above scenarios is anticipated to be tackled
at the final version this deliverable (D4.22).

4.6. Persistency of Network Configuration

As stated in previous sections, a distributed control plane is a must in T-NOVA
framework. Since the T-NOVA control plane is based on OpenDaylight, the several
SDN controllers are in Clustering Mode.
Among the advantages of OpenDaylight clustering mode (e.g. High Availability of
control plane), persistency of network configuration is provided. Data persistence
means whenever a controller instance is manually restarted or even crashes, any data
gathered by the controller is not lost, but network configuration is persisted to a
database. This database can be in the local drive of the server on which the controller
instance is deployed on, or even in a remote database, in order to also introduce data
redundancy.
Thanks to this mechanism, when the functionality of a controller instance is correctly
restored after a crash, all the data stored on the disk will allow the controller to
reconstitute the previous network configuration. With network configuration is
intended the inventory of network equipment, the interconnections, and for each
switch the list of installed flows, meters and statistics.
After an initial synchronisation phase with the other cluster members, the restored
controller instance is fully operational and ready to take in charge the management
of the switches.
In order to validate this stated behaviour, a batch of tests was run using three
instances of OpenDaylight Lithium (each one running in a separate VM) configured as
a cluster.

Comment [LZ1]: To be provided by NCSRD

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

67

The orchestration of the aforementioned VMs was performed by OpenStack Liberty
(community standard flavour). OpenStack Liberty was run in a 4-node configuration
(Figure 4-35):

• Controller Node and Network Node were virtual machines on an external
vSphere farm;

• Compute Nodes used were HPE Proliant BL465 Gen8.

Figure 4-35 Testbed configuration

To run our tests, an SDN application built over OpenDaylight was run, called
Persistence Test Application. Thanks to this tool, it is pretty straightforward to test the
controller behaviour in case of failure verifying the network configuration persistence.
In particular, it allows users to generate data to be stored, persisted and eventually
retrieved.
Our tests were performed with the following configurations:

• A single instance of OpenDaylight Lithium;
• A cluster of three instances of OpenDaylight Lithium.

Clustering mode in OpenDaylight can be also run with a single instance of the
controller. With this setup, network configuration is still persisted, but now the
control plane is centralised, with the consequence of becoming a single point of
failure. Obviously, with a single controller, High Availability is not provided anymore.
This case is unfeasible with T-NOVA architecture, therefore it was not considered as a
test scenario.
The workflow for each test can be divided in the following steps:

• With the controller correctly working, Persistence Test Application was started;
• Through this application were created:

o an additional user, with a name and a set of permissions;
o a network device, setting for it a name and an IP address.

• The controller was stopped rebooting the VM hosting it, in order to simulate a
controller failure;

• After the controller is restarted, the Performance Test Application was run
again, checking if the data previously inserted were correctly persisted by the
controller.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

68

As we expected, when OpenDaylight was run in single instance mode, the controller
reboot caused the loss of the manually inserted network configuration.
On the contrary, when OpenDaylight was configured to run in clustered mode, data
manually inserted were correctly persisted and available to be retrieved, even after
the controller simulated failure.

These tests highlighted the importance of running the T-NOVA control plane in a
distributed environment, in order to have (in addition to High Availability) the
persistence of network configuration, available to be recovered upon a failure.

4.7. Inter-DC/WAN integration - WAN Infrastructure
Connection Manager (WICM)

4.7.1. Overview

In T-NOVA, a service is composed of two basic components:

• VNF as-a-Service (VNFaaS), a set of associated VNFs hosted in one or multiple
NFVI-PoP.

• A connectivity service, in most cases including one or multiple WAN domains.

The end-to-end provisioning of the T-NOVA service to a customer in a real scenario
relies on the proper integration of these two components, as illustrated in Figure
4-36 for a typical enterprise scenario:

Figure 4-36 T-NOVA service: end-to-end view

The integration of these two components in T-NOVA is carried out by the SDN-based
WAN Infrastructure Connection Manager (WICM). The functionality provided by the
WICM has been initially described in section 3.8 of T-NOVA Deliverable D2.32. In this
section, WICM design and implementation is reported.

The WICM is the architectural component that handles the integration of WAN
connectivity services with the NFVI-PoPs that host the VNFs. To understand the role
of the WICM, an important concept to be taken into account is the VNF location. As
described in D2.32, two types of VNF location should be distinguished:

• Logical VNF location, which corresponds to the point in the customer network
where the service is installed (typically, a customer attachment point to the
service provider network);

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

69

• Physical VNF location, which identifies the actual placement of the VMs that
support the VNF (NFVI-PoP ID and hosts).

The logical location is supposed to be decided by the customer and specified at the
time of service subscription, whereas the physical location is decided by the service
provider following the service mapping algorithm.

As noted in D2.32, the role played by the WICM greatly depends on the proximity
between logical and physical locations, more specifically whether or not they are
separated by a WAN segment (or, perhaps more precisely, whether or not an existing
WAN connectivity service is affected by the insertion of the VNF in the data path).

For the sake of simplicity, the following sections (until 4.7.5) are based on two
assumptions:

• VNF logical and physical locations are close to each other, i.e., there is no
WAN segment in between (case A, following D2.32 section 3.8);

• The VNFs that compose a network service are located in a single NFVI-PoP.

Section 4.7.6 will discuss the extensions to the basic model to cover the general case
where these restrictions do not apply.

The basic scenario considered in the next few sections is illustrated in Figure 4-37.

Figure 4-37 NFVI-PoP and WAN integration with WICM

A pivotal role in this scenario is played by a WAN switching node, controlled by the
WICM (WICM node in the figure above), which is in charge of forwarding the traffic
received from the customer directly to the service provider edge node (if no VNF is
included in the data path), or to divert it to a nearby NFVI-PoP (if one or more VNFs
are included in the data path). The same applies to the traffic coming from the WAN
towards the customer.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

70

It is up to the WICM to decide how and when to enforce the rerouting of the
customer traffic. Typically, the actions performed by the WICM are triggered by the
subscription of a new VNF service by the customer.

The sequence of events is as follows:

1. Through the marketplace dashboard, the customer selects the VNF service
and the respective location (i.e. the logical location, following the definition
above).

2. The marketplace sends the following info to the NFVO: [Customer ID, NAP ID,
Service ID]

3. The NFVO decides about service mapping and provides the following
information to the WICM:

• Customer ID (same as received from Marketplace)
• NAP ID (same as received from Marketplace)
• Service Descriptor
• NFVI-PoP (if service mapping is executed)

4. Through consultation of customers’ database, the WICM maps [Customer ID,
NAP ID] into the concrete network location. This follows the same convention
used for PoPs, followed by [switch ID, physical port ID, VLAN tag], e.g. GR-
ATH-0012-345-678.

5. Based on the network location obtained in the previous step, the WICM
identifies the switch and customer VLAN2 and allocates a VLAN to the
network segment between the NFVI-PoP GW and the WAN switching node. If
the customer VLAN is already being used in that segment, the WICM needs to
allocate a new VLAN and inform the NFVO.

6. The WICM acknowledges the allocation process success or failure, if
successful returns the external customer VLAN ID to the NFVO.

7. The NFVO interacts with VIM to create the NS instance using the VLAN ID
provided earlier by the WICM.

8. The VIM acknowledges the NS deployment success or failure to the NFVO.
Moreover, this step successful conclusion implies that the VNFs are in place
and ready to start processing the customer’s traffic.

9. Finally, the NFVO is now able to notify the WICM to start enforcing the
customer’s traffic redirection and avoid any service loss.

Figure 4-38 illustrates steps 3 to 9 from the previous sequence of events.

2 This is the VLAN that carries the customer traffic between the CE and the PE network
elements.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

71

Figure 4-38 WICM procedure

4.7.2. WICM Architecture

The WICM architecture, shown in Figure 4-39, is composed of four functional
components:

• WICM API - this component provides an interface through which the NFVO
can make traffic redirection requests

• WICM DB – the database enables the persistent storage of network services,
customers logical location, NFVI-PoPs location and other necessary data
elements.

• OpenDaylight Controller – this component enables the centralised
management and control of the network infrastructure.

• WICM Traffic Redirection Services – this component is responsible for the
realisation of traffic redirection services received by the API. To enforce the
services it uses the DB and the OpenDaylight controller.

• WAN-SW – these represent the network elements that are capable of
redirecting the customer’s network traffic to a nearby NFVI-PoP.

Figure 4-39 WICM Architecture

Each WICM connectivity resource has one the following states:

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

72

State Description

ALLOCATED The switch logic port is allocated to the resource (VLAN ID),
but traffic is not yet being redirected.

ACTIVE Traffic redirection is active.

ERROR There was a problem in the redirection configuration.

NOT AVAILABLE It is not possible to allocate the connectivity resource.

TERMINATING The connectivity resource is being destroyed.

TERMINATED The connectivity resource is destroyed, traffic redirection is
disable.

Table 4-10 WICM Resource states

When a connectivity creation request is received, the WICM queries the database
retrieving all used VLANs (either ALLOCATED or ACTIVE states) for the same NFVI-
PoP. If VLANs are available, the resource is registered as ALLOCATED and the VLANs
returned. Otherwise the resource is registered as NOT AVAILABLE.

After the successful resource creation, the next step is to activate the traffic
redirection. When such request is received, the WICM queries the database to
retrieve the resource information (NAP, NFVI-PoP, VLANs). With this information, the
WICM requests the SDN controller to put the Openflow rules in place for traffic
redirection. Once the redirection is in place, the WICM removes the pre-VNFaaS
Openflow rules, using the SDN controller, to save space in the switch. Finally, the
resource is set as active. If anything fails, the resource state is set to ERROR and
Openflow rules for pre-VNFaaS mode are put in place.

A customer may also wish to unsubscribe VNF services hosted on the NFVI-PoP,
which implies returning to pre-VNFaaS mode, thus disabling traffic redirection. The
WICM handles this request by querying the database to retrieve the resource
information and sets its state as TERMINATING. Then the WICM requests the SDN
controller to instantiate the pre-VNFaaS forwarding rules and once this rules are in
place the old rules are deleted. To finish this operation the state of the resource is set
to TERMINATED.

4.7.3. WICM API

The description of the REST interface used between the NFVO and the WICM is
available in the table below:

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

73

URI Method Parameter Description

/vnf-connectivity

POST ns_instance_id;
NAP ID; Service
Descriptor; NFVI-
PoP ID

Create a connectivity resource
reserving two VLAN IDs in WICM.
Said IDs are returned to the
NFVO in the response body.
(Steps 3-4)

/vnf-connectivity/
:ns_instance_id

GET N.A. Query the status of
ns_instance_id resource.

/vnf-
connectivity/:ns_ins
tance_id

PUT N.A Update ns_instance_id resource,
enabling traffic redirection. (Steps
5-6)

/vnf-
connectivity/:ns_ins
tance_id

DELETE N.A. Delete ns_instance_id resource,
disabling traffic redirection.

Table 4-11 WICM APIs – Single PoP scenario

4.7.4. WICM Dependencies

WICM is fully implemented using python 2.7, the database storing all connectivity
resources information is implemented using MySQL version 5.5 and uses the Lithium
(3.0.3) version of OpenDaylight requiring the following features: odl-openflowplugin-
all and odl-restconf-all.

The following python libraries are needed to run the WICM:

Software library Description

Flask – 0.10.1 Used to provide the rest API for the orchestrator.

MySQL-python – 1.2.5 MySQL plugin required for database access.

SQLAlchemy – 2.0 Object relational mapper.

requests – 2.7.0 Used to control the SDN.

Table 4-12 WICM Software dependencies

4.7.5. WICM Demonstration

In a pre-VNFaaS mode of operation, traffic flows directly from the customer edge to
the respective provider edge and vice-versa. The introduction of the VNFs raises the
need to redirect traffic to network functions located in datacenters while still
maintaining transparency from the customer point of view.

Figure 4-40 stands as a demonstration scenario for the WICM.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

74

Figure 4-40 WICM demonstration scenario

The upper block Alex (named after the machine where it is instantiated) contains all
that is needed for the pre-VNFaaS mode of operation, in this case provider and
customer edges are in different VLANs as shown in the image. C1 and C2 are
supposed to be located in the customer domain (br-ce being the equivalent of the
customer edge node), while S1 and S2 are servers located beyond the provider edge,
represented by br-pe. S1 communicates with C1, while S2 communicates with C2.

Alex also contains three interconnected switches: two aggregator switches placed
one at each edge and one in the middle introduced to act as the VNF gateway. The
edge switches are responsible for handling VLAN tagging, providing intra-edge
connectivity and forwarding to the respective complementary edge, through the VNF
gateway. The responsibilities of VNF GW switch, named br-wicm, encompass
redirecting traffic to the correct datacenter and then forward the traffic back from the
datacenter to the correct edge (further explanation will follow on how this is realised).
When a given edge pair (client/provider) has no active VNFs, the VNF GW defaults to
VLAN ID switching and forwarding, ensuring that there is no loss of connectivity. This
last switch is operated by OpenDaylight (ODL), which is controlled by WICM. WICM
accepts requests to either enable or disable redirection to VNFs from the
orchestrator.

The other presented block, named Biker, represents the datacenter where VNFs are
placed using OpenStack. In this example, for the sake of brevity, only one VNF is used
instead of a full service chain as it is all that is necessary to verify the correctness of
the operation performed by the WICM. VNFs in Biker are connected to an OVS switch
managed by OpenStack’s Neutron.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

75

Alex and Biker are connected through a physical wire, where the redirected traffic
flows. VLANs are used to distinguish which VNF is to be used and also to distinguish
the direction of the flows. These VLANs are assigned by WICM following a /vnf-
connectivity POST, which returns two IDs for a given redirection request – one for
client-provider and another for provider-client directions. Considering these IDs, the
orchestrator instantiates the VNF with two "Provider Network” connections, one for
each VLAN assigned by WICM. In this example, consider that redirection is enabled
only the pair C1-S1, with assigned VLAN IDs 1 and 2, as illustrated in Figure 4-41.

Figure 4-41 NFVI-PoP VLANs and connectivity with external network

Figure 4-42 shows the Openflow flows implemented in the br-wicm, a stylied output
of the command “ovs-ofctl –O openflow13 dump-flows br-wicm”. Cookie is used to
represent the type of flow:

• NFVI (Network Virtual Function Instance): redirection flow
• NAP (Network Access Point): normal operation
• DEFAULT: indicating what to if all matches fail.

Priority is the Openflow priority and match/actions are the implemented Openflow
rules.

Figure 4-42 Traffic flows in br-wicm

Analysing each line of the table the packets travel in the following manner:

1. All incoming traffic from OpenStack (Biker) tagged with VLAN ID 2 is changed
to VLAN ID 400 and forwarded to the provider aggregator switch.

2. All incoming traffic from OpenStack (Biker) tagged with VLAN ID 1 is changed
to VLAN ID 400 and forwarded to the client aggregator switch.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

76

3. All incoming traffic from the provider aggregator switch tagged with VLAN ID
400 is changed to VLAN ID 2 and forwarded to the OpenStack (Biker) for VNF
processing.

4. All incoming traffic from the client aggregator switch tagged with VLAN ID
100 is changed to VLAN ID 1 and forwarded to the OpenStack (Biker) for VNF
processing.

5. All incoming traffic from the provider aggregator switch tagged with VLAN ID
500 is changed to VLAN ID 200 and forwarded to the client aggregator switch.

6. All incoming traffic from the client aggregator switch tagged with VLAN ID
200 is changed to VLAN ID 500 and forwarded to the provider aggregator
switch.

7. If no rules match, drop the packet.

The first four lines implement the redirection, cookie NFVI, and the next two lines
provide simple connectivity for the pair C2-S2.

4.7.6. Extensions to the basic WICM scenario

In the previous sections a description of the basic functionality of the WICM has been
provided following the implementation of the initial prototype. As noted in section
4.7.1, two assumptions were made to facilitate an early implementation of the WICM
module:

• VNF logical and physical locations are close to each other, i.e., there is no
WAN segment in between;

• All VNFs that compose a network service are located in a single NFVI-PoP.

The following sub-sections analyse the requirements to generalize the above
scenario, where the above restrictions do not apply. For the sake of simplicity, the
examples analyse the unidirectional flow of traffic, extending to the bidirectional case
should as simple as of applying the same approach in both directions.

4.7.6.1. Remote logical VNF location

In the case where physical and logical locations of a VNF are different, the connection
between the WICM switching node and the NFVI-PoP has to be extended across one
or more WAN domains. Two possible approaches are illustrated in Figure 4-43 and
Figure 4-44 below, where the traffic flowing from left to right is represented by a red
dotted line.

The first case corresponds to the direct replacement of the connection between the
WICM node and the local NFVI-PoP (represented before in Figure Figure 4-37) by a
tunnel that may cross one or several WAN domains and is terminated at another
WICM node located at, or next to, the remote NFVI-PoP. Traffic leaving the initial
WICM node is sent to the NFVI-PoP through a tunnel and then sent back to the same
WICM node. From that point, the normal path to the destination is resumed. This is a
simple approach, fully transparent from the point of view of the existing WAN service,
as only the tunnel endpoints are aware of modifications in the path between source
and destination. The price to pay is routing inefficiency and increased latency

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

77

motivated by the so-called “tromboning” effect , which is minimized by the
alternative approach described below.

Figure 4-43 NFVI PoP in remote location – first approach

In the second approach, represented in Figure 4-44, the packets leaving the NFVI-PoP
are not tunnelled back to the initial WICM node, but rather forwarded directly to the
final destination. This is a more efficient approach compared to the one described
above but introduces added complexity, because it is not transparent from the point
of view of the existing WAN connectivity service

and would require an overarching orchestration entity to perform integrated control
of VNF lifecycle and the WAN connectivity service. A detailed discussion of such
scenario is beyond the scope of this document.

Figure 4-44 NFVI PoP in remote location – second approach

4.7.6.2. Multiple NFVI-PoPs

Up to now, it has been assumed that all VNFs that compose a network service are
instantiated in a single NFVI-PoP. However, for several reasons, this may not always
be the case – it makes sense that different VNFs may be located at different NFVI-

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

78

PoPs, running different VIM instances (This corresponds to the scenario depicted in
Figure 4-36, in section 4.7.1).

This scenario can be seen as a special case of service function chaining in which the
several VNF components are spread across multiple NFVI-PoPs.

To support this scenario, the interface between the orchestrator and the WICM must
be extended in such a way that an ordered list of NFVI-PoP IDs, not a single NFVI-
PoP ID, is received by the WICM.

In a multi-NFVI-PoP environment, it makes sense that the functionality of WICM
node, performing the steering of the traffic across the multiple NFVI-PoP, is
instantiated at the service provider network edge, as well as at every NFVI-PoP as
shown in Figure 4-45. It should be noted that the figure only represents the case of
unidirectional flow from customer site A to B – for the reverse direction, a WICM
node would also be necessary at the network edge close to customer site B, if traffic
redirection was required at that point.

Figure 4-45 Multiple NFVI-PoP scenario

In terms of WICM API, in order to accommodate the extensions described above, the
only change required to the basic version described in Table 4-11, is that instead of a
single NFVI-PoP, an ordered list of NFVI-PoPs may be needed, as shown in Table 4-13
.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

79

URI Method Parameter Description

/vnf-connectivity

POST ns_instance_id;
NAP ID; Service
Descriptor; [NFVI-
PoP ID1, …, NFVI-
PoP IDn]

Create a connectivity resource
reserving two VLAN IDs in WICM.
Said IDs are returned to the
NFVO in the response body.
(Steps 3-4)

/vnf-connectivity/
:ns_instance_id

GET N.A. Query the status of
ns_instance_id resource.

/vnf-
connectivity/:ns_ins
tance_id

PUT N.A Update ns_instance_id resource,
enabling traffic redirection. (Steps
5-6)

/vnf-
connectivity/:ns_ins
tance_id

DELETE N.A. Delete ns_instance_id resource,
disabling traffic redirection.

Table 4-13 WICM APIs – MultiPoPs scenario

With regard to the WICM process described before in Figure 4-38, the only relevant
difference is that now the orchestrator has to deal with multiple VIM instances (on
the left hand site of the Figure 4-38). In relation to the interface between the
orchestrator and the WICM, nothing changes apart from the extension of the API, as
shown in Table 4-13.

Going one step further in terms of generality, one may assume that NFVI-PoPs
hosting VNFs may be located at different administrative domains. Figure 4-46
provides a general overarching scenario, including multiple NFVI-PoPs located at
multiple provider domains. Detailed elaboration of this scenario is out of the scope of
this document.

Figure 4-46 Overall multi-domain multi-PoP scenario

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

80

5. VALIDATION TESTS
Besides the testbeds described above, focused on the individual validation of each
feature developed within Task 4.2, dedicated test environments have been designed
for enabling the integration of the Control Plane in the T-NOVA IVM layer.

This section presents the validation tests that have been carried out focusing on the
SDN Control Plane and the SFC with WICM components.

5.1. SDN Control Plane

The implemented testbed is depicted in Figure 5-1.

Figure 5-1 SDN Control Plane testbed

As also reported in D4.52, the testbed comprises two physical nodes, specifically Dell
PowerEdge T20 equipped with CPU Intel Xeon E3-1225 (Quad core) CPU, 8 GB RAM,
1TB Hard Disk, 1GB Ethernet port. They both are used to host five virtual machines,
organized as follows:

• ODL-H1, ODL-H2, ODL-H3 host three instances of OpenDaylight controller
(Lithium release) forming a cluster of controllers.

• ODL-HDEV is used for development and building purposes. It holds the
OpenDaylight source code which can be built and deployed on the ODL-
H{DEV,1-3} machines.

• MININET is used to provide a SDN network topology in order to evaluate the
control plane operations.

The functional tests were intended to validate the proper functioning of the SDN
Control Plane, with particular focus on the clustering service, considering two
different scenarios: one working with a single instance of controller and another one
working with a cluster of multiple controllers.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

81

For this purpose, the following test cases have been identified and then
implemented:

Single Instance of Controller

Aim of the test: This test is responsible for validating the functionality of recovery
from persistent data when using the clustering service. The test has been carried out
using a simple Openflow network with three nodes. The OpenDaylight controller is
connected to the network nodes in order to control them.

Precondition : A single instance of controller (with clustering service activated) is
deployed and running (ODL-H1)

Description of the test:

1. Start MININET and connect the network to the controller
2. Check if all nodes and the tables for those nodes are present in the

operational data using the RESTful interface (RESTCONF)
3. Stop the controller
4. Start the controller again
5. Repeat step 2.
6. Exit MININET

Result:

When the clustering service is activated on the controller instance, the step 2 and the
step 5 output the same data. So, as explained in section 4.6, the clustering service is
essential to ensure that the network configurations stored into the persistent local
data are recovered and applied again into the network nodes.

Multiple Instances of Controllers

Aim of the test: This test is responsible for validating the functionality of high
availability of the control plane after that the one instance (specifically the leader) of
the cluster fails.

Precondition: Multiple instances of controllers (with clustering service activated) are
deployed and running (ODL-H1, ODL-H2, ODL-H3)

Description of the test:

1. Start MININET and connect the network to the cluster
2. Stop the controller acting as current leader of the cluster (i.e. ODL-H1)
3. Leader moves to one of the remaining controllers (ODL-H2 becomes the

new leader)
4. Use the new leader and continue performing requests (through the RESTful

interface) for operations on the network.
5. Exit MININET

Result:

The new leader is able to process incoming RESTful requests, making the cluster of
controllers failure-proof, since it detects the fault and elects a new leader. Therefore,
this test reveals pivotal role of the clustering service in ensuring high availability of
the control plane.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

82

5.2. Service Function Chaining

In section 4.3, Service Function Chaining was described as one of the target use cases
inside the T-NOVA domain. This capability was a reference application in the
development of the SDK4SDN, called Netfloc (elaborated in details in Deliverable
[D4.31]). The aim was to demonstrate a first end-to-end scenario that was enabled by
directly employing its dedicated traffic steering library. Moreover the product of the
SFC implementation has delivered a successful integration of several T- NOVA
components into a holistic chaining solution, demonstrated at the Year2 T- NOVA
review in Brussels.

5.2.1. SFC in the scope of T-NOVA and demonstration details

Figure 5-2 depicts the overall scenario. On the left side is the NFVI-PoP, i.e. the cloud
infrastructure consisting of three OpenStack Nodes, an SDK4SDN (Netfloc) node and
a physical switch, whereas on the right, the WICM resides with its own SDN controller
instance. The T-Nova Orchestrator manages the WAN and the NFVI-POP and it is in
charge of instantiating the VNFs and starting the network services onto the
underlying infrastructure. On a higher level, once a new client registers in the NFVI
Marketplace to request for a specific network service, the orchestrator triggers the
WICM for a new isolated Client ID space. The WICM then creates a client's instance ID
and reserves VLAN IDs for the clients’ (User1 and User2 in the scenario) network
service management.

As detailed in Section 4.7, once the orchestrator receives an approval from the WICM,
it requests for traffic redirection coming from User1 to User2 to pass via the NFVI
PoP. The orchestrator is in charge of managing the network services' lifecycle by
instantiating the required VNFs in the OpenStack Cloud infrastructure and mapping
the Neutron port IDs of the VNF VMs to the respective service descriptors. The VNFs
such as the vTC and vTU, are in charge of functions like packet classification,
enhanced deep packet inspection, video analysis etc., depending on the particular
service specification.

Figure 5-2 SFC flows installed on OpenStack Control Node

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

83

Once the VNFs have been instantiated and their services successfully started, the
orchestrator calls the Netfloc Restful API for chain creation in order to request for
traffic steering along a designated service path. Following are the CREATE and
DELETE Chain API call examples, according to the SDK4SDN specification:

CREATE CHAIN API:

curl	-H	'Content-Type:	application/json'	-X	POST	-d	'{"input":	{neutron-ports	:		"06ba1679-25df-448e-
8755-07bc4a356c85,d481a967-44b6-4e64-9be3-cf49b80702d3,bac1fa34-b515-47e0-9698-
9e70d549330b,d09befd1-385c-4fb5-86bc-debfe6fa31dc"}}'	--verbose	-u	admin:admin	
http://127.0.0.1:8181/restconf/operations/netfloc:create-service-chain	
The Create Chain JSON data consists of a comma separated array of the Neutron port
IDs that are associated to the ingress/egress pair interfaces residing along the specific
network path.

DELETE CHAIN API:

curl -H 'Content-Type: application/json' -X POST -d '{"input": {service-chain-id : "1"}}' --verbose -
u admin:admin http://127.0.0.1:8181/restconf/operations/netfloc:delete-service-chain

The Delete Chain JSON data contains the Chain ID, returned by Netfloc on service
chain creation.

5.2.2. SDK for SDN (Netfloc) directed chain graph

In depth representation of the prototype scenario is shown in Figure 5-3. User1 and
User2 are the endpoints in the chain connected to the Pica8 switch that, upon being
instructed by the WICM, sends to the NVFI PoP bidirectional VLAN tagged traffic (ex.
ID 400 and 401 for sending and receiving). The OpenStack VMs are hosting the VNFs
involved in the scenario. The Service Forwarder VM (SF) is the main entry and exit VM
for the outside traffic into the cloud.

Figure 5-3 points out a simplified bridge and interface setup in comparison to the
baseline OpenStack model [OSN].

This effect is a direct product of using Netfloc as a fully SDN based counterpart of the
OpenStack ML2 networking service, in order to achieve simplification of the
tunnelling protocols to grant a tenant isolation. Instead, using fully SDN-enabled L2
approach, Netfloc ensures tenant isolation implemented in one of its reference SDK
libraries.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

84

Figure 5-3 T-NOVA SFC pilot setup

The lines on Figure 5-3 depict the chain paths (two in the case of the demonstration).
The yellow line is common for both chains and shows the traffic coming onto the vTC
ingress port, as a first interface in the chain. From there the vTC classifies the traffic
and sends it out on two different egress interfaces, eth2 – the blue line and eth3 – the
red line.

The blue line follows the ICMP data traffic that is further steered into the vTC-f
(forwarding VNF) and out of the PoP, whereas the red line shows the UDP video
traffic that is further steered into the vTU VNF in order to get transcoded. The vTU
then puts a watermark, before sending the video traffic out. The modified video is
shown in User2, while the data traffic is captured by using tcpdump command in
order to verify the distinction between the two network chains, Figure 5-4.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

85

Figure 5-4 Chain1: ICMP traffic output from User1 captured in User2

Figure 5-5 shows a video capture as perceived by User2 in two cases: disabled traffic
redirection by the WICM (left), and enabled traffic redirection with SFC enforced by
the SDK4SDN-Netfloc (right). The video used for the test is an excerpt from the
animated movie “Big Buck Bunny” [BBB].

Figure 5-5 Chain2: Video output in User2 without redirection (left) and with redirection,

i.e. SFC steered traffic (right)

Furthermore we point out some of the flow actions installed on the SDN switch’s br-
int interface and the Neutron Node’s br-sfc interface in order to follow up the traffic
steering inside the physical hosts of the SFC-PoP.

Figure 5-6 shows the flows installed on the Neutron network Node. Since the
Neutron nodes is the first entry point in the SFC-PoP, the packets coming from
outside (from User1) are tagged with VLAN numbers assigned by the WICM in the
Pica8 SDN controller. The packets tagged with VLAN number 400 in this case are the
packets from User1, whereas the VLAN number 401 packets are coming from User2
towards User1 for bidirectional communication.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

86

Figure 5-6 SFC flows installed on OpenStack Network Node

Finally, Figure 5-7 outlines the SDN switch flows installed automatically by Netfloc on
service chain creation. They have the highest priority (20) in the instructions set and
provide MAC rewriting based traffic steering as elaborated in details in Deliverable
D4.31 [D4.31].

Figure 5-7 SFC flows installed on Switch

6. CONCLUSIONS
In this deliverable we reported the results of the activities of research, design and
implementation done in Task 4.2 "SDN Control Plane" of T-NOVA project.

The functional architecture of the SDN control plane based on the requirements
outlined in previous T-NOVA deliverables is described. Analysis of a variety of
candidate technologies has been carried out in order to identify a suitable solution
for the SDN controller implementation based on a balanced view of the available and
missing features. To this end, OpenDaylight has been selected as the Network
Controller with Virtual Tenant Network (VTN) as the multi-tenant network
virtualisation framework and Clustering Service for the controller deployment in
large-scale environments as well as the persistency of the network configuration.
Several approaches have been investigated to provide traffic steering functionalities
supporting service function chaining for NFV deployments. In addition, different
solutions for load balancing in multi-controllers scenarios have been developed.

Moreover, Task 4.2 have developed experimental plans to evaluate the performance
of the selected technologies under a number of different scenarios. Test plan have
been implemented to collect quantitative data in order to evaluate the Controller
architecture options i.e. single instance vs. clustered, in terms of high availability and
resiliency of the network controller. Last but not least, WAN Infrastructure Connection
Manager have been developed in order to provide integration of WAN connectivity
services.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

87

7. LIST OF ACRONYMS

Acronym Description

API Application Programming Interface

ARP Address Resolution Protocol

BGP Border Gateway Protocol

BUM Broadcast, Unknown unicast and Multicast

CP Control Plane

CPU Central Processing Unit

CRUD Create, Read, Update, Delete

DC Data Centre

DCN Distributed Cloud Networking

DOVE Distributed Overlay Virtual Ethernet

DPI Deep Packet Inspection

FTP File Transfer Protocol

FW Firewall

GPE Generic Protocol Extension

GRE Generic Routing Encapsulation

GW Gateway

HA High Availability

HPE Hewlett Packard Enterprise

HTTP HyperText Transport Protocol

IP Internet Protocol

ISP Internet Service Provider

IVM Infrastructure Virtualisation Management

JVM Java Virtual Machine

L2 Layer 2

L3 Layer 3

L4 Layer 4

LB Load Balancer

MAC Medium Access Control

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

88

MD-SAL Model-Driven Service Abstraction Layer

ML2 Modular Layer 2

MPLS Multi-Protocol Label Switching

NAP Network Access Point

NFV Network Function Virtualisation

NFVO NFV Orchestrator

NIC Network Interface Card

NSH Network Service Header

NVGRE Network Virtualisation using Generic Routing Encapsulation

ODL OpenDaylight

OF Openflow

OSGi Open Services Gateway initiative

OVS Open vSwitch

OVSDB Open vSwitch Database

POP Point Of Presence

QOS Quality of Service

REST Representational State Transfer

SDK Software Development Kit

SDN Software Defined Networking

SF Service Function

SFC Service Function Chaining

SFF Service Function Forwarder

SFP Service Function Path

TTL Time-To-Live

UDP User Datagram Protocol

UUID Universal Unique Identifier

VIM Virtual Infrastructure Manager

VLAN Virtual Local Area Network

VM Virtual Machine

VNFAAS VNF As A Service

VNFFG Virtual Network Function Forwarding Graph

VPN Virtual Private Network

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

89

VRS Virtualised Routing & Switching

VSC Virtualised Services Controller

VSD Virtualised Services Directory

VSP Virtualised Services Platform

VTEP VxLAN Tunnel Endpoint

VTN Virtual Tenant Network

vTC Virtual Traffic Classifier

VxLAN Virtual Extensible Local Area Network

WAN Wide Area Network

WICM WAN Infrastructure Connection Manager

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

90

8. REFERENCES

[AKKA] “Akka”. [Online]. Available: http://akka.io/ , accessed 20-Feb-2016.

[BBB] “Big Buck Bunny Reference Video”. Available:
https://peach.blender.org/ , accessed: 19-Apr-2016

[BEACON] “Beacon”. [Online]. Available:
https://openflow.stanford.edu/display/Beacon, accessed 21-Nov-2015.

[BGH+14] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, and W. Snow, “ONOS: towards an
open, distributed SDN OS” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 1–6.

[D2.32] T-NOVA Consortium, "Deliverable D2.32 Specification of the
Infrastructure Virtualisation, Management and Orchestration - Final" .
2015.

[D4.31] T-NOVA Consortium, "Deliverable D4.31 SDK for SDN - Interim" . 2015.

[D4.32] T-NOVA Consortium, "Deliverable D4.32 SDK for SDN - Final" . 2016.

[DHM+13] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella,
"Towards an elastic distributed SDN controller," presented at the
Proceedings of the second ACM SIGCOMM workshop on Hot topics in
software defined networking, Hong Kong, China, 2013.

[FAT TREE] Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data
center network architecture. ACM SIGCOMM Computer
Communication Review, pp. 63-74, 38(4),(2008)

[FLOODLIGHT] “FloodLight”. [Online]. Available: http://Floodlight.openflowhub.org/,
accessed 21-Nov-2015.

[HPECTX] “HPE ContextNet White Paper”. [Online]. Available:
http://www8.hp.com/h20195/v2/GetPDF.aspx/c04725726.pdf,
accessed 21-Nov-15

[JUNICON] “Contrail Architecture”. [Online]. Available:
http://www.juniper.net/us/en/local/pdf/whitepapers/2000535-en.pdf,
accessed 21-Nov-2015

[JUNIOPENC] “OpenContrail”. [Online]. Available: http://www.opencontrail.org ,
accessed 21-Nov-2015

[KMC+00] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, "The click
modular router," ACM Trans. Comput. Syst., vol. 18, pp. 263-297, 2000.

[KZM+14] R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou, “Feature-
based comparison and selection of Software Defined Networking
(SDN) controllers,” in Computer Applications and Information Systems
(WCCAIS), 2014 World Congress on IEEE, 2014.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

91

[LBGIT] Github repository of the SDN Control Plane Load Balancer [Online].
Available https://github.com/CRAT-EU/T-NOVA, accessed 19-Feb-
2016

 [LIBVIRT] Libvirt Documentation. [Online]. Available
https://libvirt.org/formatnetwork.html, accessed 21-Nov-2015

[LIBVIRT] LibVirt QoS Element, online:
http://libvirt.org/formatnetwork.html#elementQoS

[MAB+08] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[MUL] “MUL SDN Controller”. [Online]. Available:
http://sourceforge.net/p/mul/wiki/Home/, accessed 21-Nov-2015.

[NEUT-QOS] Neutron QoS API extension, on-line:
http://specs.openstack.org/openstack/neutron-
specs/specs/liberty/qos-api-extension.html

[NG13] T. Nadeau and K. Gray, “SDN: Software Defined Networks”. Sebastopol,
CA, USA: O'Reilly Media, 2013.

[NODEFLOW] “NodeFlow”. [Online]. Available:
https://github.com/dreamerslab/node.flow, accessed 21-Nov-2015

[NOX] “About NOX”. [Online]. Available: http://www.noxrepo.org/nox/about-
nox/, accessed 21-Nov-2015.

[NSH] “Network Service Header (NSH)”. [Online]. Available:
https://tools.ietf.org/html/draft-quinn-sfc-nsh-03 , accessed 21-Nov-
2015

[NUAGE] “Nuage: Virtualized Services Platform”. [Online]. Available:
http://www.nuagenetworks.net/products/virtualized-services-
platform/, accessed 21-Nov-15

[ODL] OpenDaylight: A Linux Foundation Collaborative Project. [Online].
Available: http://www.opendaylight.org, accessed 21-Nov-2015.

[ODL-NSH] “Service Function Chaining in OpenDaylight using NSH protocol”.
[Online]. Available:
https://wiki.opendaylight.org/view/Service_Function_Chaining:Main ,
accessed 21-Nov-2015

[ODL-RESERV] ODL Lithium: Reservation Project, on-line:
https://wiki.opendaylight.org/view/Reservation:Main

[ODL-SFC1] “Service Function Chaining: Helium, Lithium an beyond”. Available:
http://events.linuxfoundation.org/sites/events/files/slides/SFC-Helium-
Lithium-and-beyond.pdf , accessed 21-Nov-2015

[ODL-SFC2] “OpenDaylight service function chaining use-cases”. [Online].
Available: https://wiki.opendaylight.org/images/8/89/Ericsson-

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

92

Kumbhare_Joshi-OpenDaylight_Service_Function_Chaining.pdf ,
accessed 21-Nov-2015

[ODL-SFC3] “OpenDaylight Service Function Chaining”. [Online]. Available:
http://opentechindia.org/wp-
content/uploads/2012/07/OpenSDNIndia2015-Vinayak.pdf, accessed
21-Nov-2015

[OF13] “Openflow Switch Specification v1.3”. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf,
accessed 21-Nov-2015

[ONOS] ON.LAB, “ONOS: Open Network Operating System.” [Online].
Available: http://onosproject.org/, accessed 21-Nov-2015.

[OOSC] “OpenStack Orchestrated Service Chaining”. [Online]. Available:
http://events.linuxfoundation.org/sites/events/files/slides/ODL%20Su
mmit%202015%20-
%20OpenStack%20Orchestrated%20Network%20Service%20Chaining_
0.pdf, accessed 21-Nov-2015.

[OPENIRIS] “OpenIRIS: The Recursive SDN Openflow Controller by ETRI”. [Online].
Available: http://openiris.etri.re.kr , accessed 21-Nov-2015

[OPNFV-FG] “OpenStack Based VNF Forwarding Graph”. [Online]. Available:
https://wiki.opnfv.org/requirements_projects/openstack_based_vnf_for
warding_graph , accessed 21-Nov-2015.

[OPNFV-SFC] “OPNFV Project: Service Function Chaining”. [Online]. Available:
https://wiki.opnfv.org/service_function_chaining , accessed 21-Nov-
2015.

[OSTACK-QOS] http://docs.openstack.org/networking-
guide/adv_config_qos.html

[OSN] OpenStack networking details. Available:
https://www.rdoproject.org/networking/networking-in-too-much-
detail, Accessed: 19.4.2016.

[OVS] "Open vSwitch". [Online]. Available: http://openvswitch.org, accessed
21-Nov-2015.

[POX] “A Python-based Openflow Controller“. [Online]. Available:
http://www.noxrepo.org/pox/about-pox/, accessed 21-Nov-2015.

[PPK+09] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,
"Extending Networking into the Virtualization Layer," in Eighth ACM
Workshop on Hot Topics in Networks (HOTNETS VIII), New York, USA,
2009.

[RAFT] “RAFT consensus”. [Online]. Available: https://raftconsensus.github.io,
accessed 20-Feb-2016.

[RYU] “Ryu”. [Online]. Available: http://osrg.github.com/ryu/, accessed 21-
Nov-2015.

T-NOVA | Deliverable D4.21 SDN Control Plane

© T-NOVA Consortium

93

[SFC00] “Service Function Chaining (SFC) Control Plane Components &
Requirements”. [Online]. Available: https://tools.ietf.org/html/draft-
ietf-sfc-control-plane-00 , accessed 21-Nov-2015

[SFC03] “Service Function Chaining (SFC) Use Cases In Data Centers”. [Online].
Available: https://tools.ietf.org/html/draft-ietf-sfc-dc-use-cases-03 ,
accessed 21-Nov-2015

[SFC04] “Service Function Chaining (SFC) Use Cases in Mobile Networks”.
[Online]. Available: https://tools.ietf.org/html/draft-ietf-sfc-use-case-
mobility-04 , accessed 21-Nov-2015

[SFC11] “Service Function Chaining (SFC) Architecture”. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-sfc-architecture-11 , accessed 21-
Nov-2015

[TREMA] “Trema”. [Online]. Available: http://trema.github.com/trema/, accessed
21-Nov-2015.

[ZC11] Zheng Cai, “Maestro: Achieving Scalability and Coordination in
Centralized Network Control Plane”, Ph.D. Thesis, Rice University, 2011

[ZCD+15] L. Zuccaro, F. Cimorelli, F. Delli Priscoli, C. Gori Giorgi, S. Monaco, V.
Suraci, “Distributed Control in Virtualized Networks”. 10th International
Conference on Future Networks and Communications (FNC 2015)

