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Executive Summary 

This deliverable presents the activities under taken and results obtained by Task 4.1 
which was focused on the identification, characterisation and optimisation of the 
hardware and software components that can be used in the implementation of the T-
NOVA Infrastructure Virtualisation and Management (IVM) layer. The task carried out 
characterisation experiments on the networking technologies options which can be 
used to improve packet processing performance. Technologies investigated included 
OVS, OVS-DPDK, SR-IOV and Snabb Switch. It was demonstrated that a combination 
of SR-IOV and DPDK achieved in excess of 8Gbps network throughput. The 
performance of a non-virtualised virtual Traffic Classifier network function was 
compared with Docker container and KVM VM implementations, demonstrating that 
virtualisation through a hypervisor can affect the performance of non-optimised 
network workloads up to 21%. A new approach to scale switch performance based on 
a dual-datapath approach was investigated. This approach exhibited high forwarding 
performance and port density in the accelerated datapath, while the primary 
datapath exploited the large amount of cache and main memory available in 
commodity servers to store all required flow state.  

The effects of core and non-uniform memory access (NUMA) pinning, core isolation 
and huge pages on Virtualised Network Function (VNF) performance were 
investigated. The results obtained showed that the usage of processor pinning can 
help to achieve improved performance, if properly configured. The effect of NUMA 
pinning on virtual machine (VM) performance was identified as being significant with 
an approximately 50% increase in network throughput. Co-location of a virtualised 
network function (VNF) on the same NUMA node that is attached to the NIC is 
important for data plane type workloads. The effects of huge page configurations 
were found to be scenario specific and their performance contribution is higher in the 
presence of noisy neighbours where they can improve network throughput by 14%. 
The configuration of the BIOS settings in compute nodes were investigated and 
appropriate settings identified for an Network Function Virtualisation Infrastructure 
(NFVI) testbed. The effects of heterogeneous compute resources namely and FPGA 
system-on-chip (SoC) in an OpenStack environment were also investigated. This 
activity remains a work in progress.  

Using a storage sensitive VNF the effect of different storage configurations were 
investigated. The results obtained indicate that the use of local disks is preferential to 
ephemeral volumes. In fact, with ephemeral volumes on local disks, Live Migration 
becomes bounded to a Storage Live Migration constraint. 

Significant VNF workload characterisation activities were carried out in the task. A key 
enabling capability in the form of a VNF workload characterisation framework was 
developed by the task. The framework is designed to automatically test various 
configurations of a VNF, in an iterative manner on different target platforms. The 
framework provides orchestration of the full test case lifecycle. The framework was 
applied to the characterisation of a virtual Traffic Classifier. Specifically the framework 
was used to investigate the potential of ‘network performance intent’ deployments. 
The effect of the deployment configuration on the performance was demonstrated 
using a comparison between OVS and SR-IOV network technologies. It was shown 
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that this approach can be used to define optimised deployment configurations in an 
automated manner to achieve a targeted network throughput performance.  

Task 4.1 has developed a collaborative engagement with the OPNFV Yardstick 
project. A number of areas of contribution have been identified which include the 
contribution of the VNF characterisation framework, definition and implementation of 
VNF lifecycle and VNF data plane benchmarking test cases and the contribution of 
the virtualised Traffic Classifier. This collaborative work is on-going and the 
contributions are scheduled to form part of the OPNFV Brahmaputra release in 2016. 
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1. INTRODUCTION 

Task 4.1 is focused on the functional testing, performance validation and 
implementation of the hardware and virtualised components within the IVM layer of 
the T-NOVA system. Virtualisation finds its origins in computing where a single 
compute resource can be divided into VMs that have same characteristics as a 
physical compute node with an operating system. Software running on the virtual 
machines is abstracted from the underlying physical hardware resources. 
Virtualisation has also expanded beyond its initial focus on compute resources to 
encompass a variety of different technology approaches such as hardware, operating 
systems, storage, memory and networking. Collectively, these approaches have 
enabled the complete virtualisation of infrastructure resources found it a traditional 
data centre. 

Virtualisation is the key enabler technology that allows traditional physical network 
functions such as firewalls, deep packet inspection etc. to be decoupled from fixed 
appliances and to be deployed onto industry standard servers in large data centres 
(DCs). This approach provides key benefits to operators such as greater flexibility, 
faster delivery of new services, a broader ecosystem enhancing innovation in the 
network etc.  

However virtualisation is not without significant challenges and limitations. Many 
virtualisation technologies find their origins in the IT domain where performance 
constraints can be more flexible than those of carrier grade telecom environments. 
Additionally given the origins of many virtualisation technologies such as cloud OS 
environments where the focus is on the provisioning of generic resources, capability 
gaps may exist and key features required for Telco related applications may also be 
absent. For example in cloud OS environments, where the focus is on provisioning of 
generic resources; some features required to adequately support VNF/NS type of 
workloads are absent. 

Therefore the appropriate combination of hardware and software technology 
components coupled with appropriate characterisation for a given operational 
context is extremely important. It is imperative to understand how the various 
technology options perform and specifically within the context of the T-NOVA 
system.  

Task 4.1 has specifically focused on various aspects of virtual node (vNode) resource 
virtualisation. A key aspect of this task was the emphasis on technology 
characterisation. It is important to contextualise the Telco performance aspects as 
they are generally multi-faceted in nature. Key influencing factors such as packet 
sizes and network connection type were identified together with key measures of 
performance determinism such as packet throughput etc. Various technologies 
characterisations have been undertaken including key network technologies 
(virtualised packet switching and packet acceleration), storage and compute (core 
pinning, NUMA pinning, heterogeneous compute resources etc.). The task also 
investigated approaches to switch scalability evaluating a forwarding plane option 
consisting of two datapaths. The task also performed characterisation of virtualised 
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network functions to develop an understanding of the relationship between specific 
measures of performance such as network throughput and the allocation of 
resources types and quantities. In this regard the task has developed models which 
can be used to optimise the deployment of a VNF for a targeted performance 
through the dynamic allocation of resources at run time. 

A number of Best Know Methods (BKMs) have been identified by the task which can 
be applied to improve both performance of the infrastructure and VNFs. The BKMs 
included optimised usage of packets accelerators and BIOS settings configuration. 

To support the workload characterisation activities a prototype framework for the 
automated generation of deployment configurations for a given VNF to be tested in 
an OpenStack environment was developed. The framework automatically builds VNF 
workload test configurations (for instance in the form of OpenStack Heat templates) 
based on a configuration file. The configuration file contains the range of defined 
configuration parameters and their associated value ranges which can be supported 
by the deployment environment. The framework supports the automated testing of 
hundreds of deployment configurations to identify the optimal allocation of 
resources to VNF workloads. The framework also automatically collects, processes 
and formats the data for a specified analytics platform. The open source WEKA 
machine learning platform has been used develop decisions trees which relate 
resource allocations to performance intent. 

During the course of the task an exploitation path has been developed with the 
OPNFV Yardstick project which is focused on VNF Infrastructure verification. Test 
cases focused on evaluating aspects of VNF performance are being contributed to 
the Yardstick project. The test cases are being implemented using the VNF 
characterisation framework to provide full automation of the tests in a reproducible 
manner. The finalised framework will also be contributed to the Yardstick project. 

	 	



T-NOVA | Deliverable D4.01  Infrastructure Virtualisation 

© T-NOVA Consortium  
 

10 

2. RESOURCE VIRTUALISATION 
VNFs and Network Services composed from VNFs have varying compute, storage and 
network requirements that are context specific. The potential mix and match of 
hardware, hypervisors and software can create a high degree of variation between 
server builds and subsequently VM’s running on those servers. The performance of a 
VNF is directly linked to the hardware performance, resource allocations and 
virtualisation technologies (hardware and software). This heterogeneity in resource 
configurations and resource allocations can significantly impact VNF software 
performance. It is therefore important from an IVM point of view to develop an 
understanding of how VNF type workloads interact and consume resources in their 
host environments and how these interactions vary on a temporal basis. Task 4.1 has 
focused on identifying, defining and implementing tests cases that correlated VNF 
performance with the technologies used in the composition of its host environment. 
The data collected was used to enable insights into the specific composition of 
resources and their configuration in order to optimise the design of the T-NOVA 
NFVI.  

2.1. Workload Characterisation  

As a technology, Network Function Virtualisation (NFV) encompasses a wide variety 
of network functions which have a diversity of resource requirements. It is important 
therefore to develop an understanding of the workload types and their affinity for 
certain platform features and technologies. While it is not possible to identify all the 
affinities for all VNFs within the scope of Task 4.1, the development of a robust 
methodology is important. To support the workload characterisation activities in the 
task, a flexible test-bed platform was developed which was composed of the 
technologies that were identified in D2.31 as being relevant to the design and 
implementation of the NFVI.  

The ETSI NFV Group Specification provides some general guidance on workload 
characterisation and the types of metrics that should be monitored [1]. For example 
they indicate that characterising all VNFs is not practical and therefore define an 
approach which is based on a testing regime that runs tests for relevant network 
tasks or workloads. The strategy is to extend the conclusions from a specific VNF to 
VNF’s of that type. ETSI identifies the following classes of workload [1]: 

• Data plane workloads that cover all tasks related to packet handling in end-
to-end communications between applications. 

• Control plane workloads that cover communications between network 
functions which are not related to end-to-end communications. 

• Signal processing workloads that cover all network function tasks related to 
digital signal processing as Cloud Radio Access Networks (C-RAN).  

• Storage workloads covering all tasks related to disk storage. 

The work presented in this deliverable is focused on characterisations related to data 
plane and storage workloads. Additional work on control plane workload 
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characterisation will be presented in the WP5 deliverables, while signal processing 
workloads are out of scope for T-NOVA. 

VNF workloads can be deployed on high volume servers in two ways, bare metal and 
virtualised. Parameters such as processor architecture, number of cores, clock rate, 
memory configuration, peripheral buses or peripheral devices such as network 
interface cards etc. can have a significant impact on VNF performance. The software 
design used in the implementation of the VNF can also have a significant impact on 
performance. For example efficient multi-threaded application design is required to 
make appropriate use of multi-core processor designs. While non-virtualised (bare 
metal) deployments are not envisaged within the T-NOVA system, the performance 
of VNFs when deployed on bare metal is measured in order to establish baseline 
performance, which can used to quantify the overhead of virtualisation. 

Of primary focus from a T-NOVA perspective is the deployment of fully virtualised 
network functions in virtualised environments. The factors that affect bare metal 
deployments remain relevant in the context of virtualised deployments however the 
introduction of virtual machines and hypervisors adds an additional overhead which 
has a significant influence on behaviour and performance. It should be noted that the 
overhead/penalties introduced by the hypervisor may be workload type specific. For 
example with control plane type workloads the virtualisation overhead could be less 
relevant (even negligible) in comparison to other workload types such as data plane 
workloads. 

2.2. Resource Virtualisation Components 

In the design and implementation of an NFVI test-bed, industry initiatives such as 
ONP (Open Network Platform) and OPNFV (Open Platform for NFV) were monitored 
closely and their outputs were utilised as appropriate e.g. OVS DPDK netdev. The key 
components selected for the implementation of a NFVI testbed are show in Figure 2-
1. The evaluation of the component technologies are described in detail in sections 3 
to 5. OpenStack provides implementation of the Virtualised Infrastructure Manager 
(VIM). OpenStack is used to manage pools of compute, networking, and storage 
infrastructure. The OpenStack compute service is called Nova. It is responsible for 
managing the compute infrastructure in an OpenStack managed cloud. Multiple 
hypervisor drivers are supported by Nova compute including QEMU/KVM (via libvirt), 
Xen, and VMware ESXi. For the purposes of the work carried out in Task 4.1 KVM was 
used exclusively due to its default native support in OpenStack. The OpenStack 
networking service is called Neutron which is designed to be a scalable service 
offering many different plug-in solutions to facilitate network management such as 
the ML2 plugin for OpenDaylight integration. Several network models are available 
such as a flat network, Virtual LAN (VLAN), VXLAN, GRE and others. IP Address 
Management (IPAM) support includes static IP address allocation, Dynamic Host 
Configuration Protocol (DHCP), and Floating IP support, the latter allowing for traffic 
to be dynamically rerouted in the infrastructure to different compute nodes.  

A key decision in selecting a NFVI server is to determine if the processor model is 
suitable for VNF components supporting data plane workloads. A wide variety of 
features are potentially relevant in the context of VNF performance such as 



T-NOVA | Deliverable D4.01  Infrastructure Virtualisation 

© T-NOVA Consortium  
 

12 

virtualisation support via instructions to reduce the number of VM exits under certain 
operations. Other features include hardware support for virtualisation in I/O 
operations or extended instruction sets for specialised operations e.g. cryptography. 
In some cases, it is also necessary to know whether those features have been enabled 
in the BIOS system. The configuration of the BIOS options needed to be carefully 
considered as they influence the stability of the compute node hosting a VNF. RAM 
memory capabilities (DDR2 vs. DDR3, number of channels, etc.) can be relevant to 
memory intensive applications. Although it is possible to derive a set of supported 
memory speeds from the processor vendor and the model, the specific memory 
speed depends on the installed memory modules. In order to minimise any potential 
issues related to hardware performance Open Network Platform (ONP1) compliant 
hardware was used for the NFVI testbed (Intel Xeon CPU, Intel Communications 
Chipset 89xx series and Intel Ethernet Controller e.g. X520 T2). The Intel ONP Server 
software stack consists of released open-source software based on the work carried 
out in community projects, including contributions made by Intel. The key open-
source software ingredients forming the Intel ONP Server software stack are: 

• OpenStack 
• OpenDaylight 
• DPDK 

• Open vSwitch 
• Linux/KVM 

 
Figure 2-1 Mapping of ONP components to T-NOVA IVM. 

The hypervisor also plays a critical role in a performant NFVI. It is important to know 
if the hypervisor is suitable for VNFCs dealing with data-plane workloads. The 
hypervisor should have the capability to appropriately exploit the hardware support 
for virtualisation and in particular for I/O operations. Other characteristics of 
relevance include: deterministic allocation of threads in CPUs (CPU pinning/affinity), 
deterministic memory allocation in NUMA nodes (memory pinning/affinity) and 
deterministic allocation of large pages in NUMA nodes (large memory pages 
pinning/affinity). Finally the resource topology can have a significant impact in NFV 

                                                   
1 https://01.org/packet-processing/intel%C2%AE-onp-servers 
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scenarios. When deploying VNFs it may be important to consider the location of the 
CPU, memory and I/O devices not only in terms of numbers, but also in terms of 
proximity e.g. ensure the VNFC’s of the same VNF are deployed on the same NUMA 
node or VNFC’s are deployed on the NUMA node with the network card attached. 
Within T-NOVA this information is collected and exposed by the information resource 
repository functional component of the T-NOVA Orchestrator.  

Analysis of the IVM requirements in D2.31 was utilised in the identification of the 
activities carried out in sections 3 to 7. For validation and characterisation of the 
Network Function Virtualisation Infrastructure (NFVI), the NFVI represents the system 
under test (SUT) as shown in Figure 2-2 [2]. 

 
Figure 2-2 General Functional Architecture of NFVI Under Test 

The SUT comprises of the following functions under test: 

• Physical Compute 

• Physical Network 

• Physical Storage 

• Virtualisation Layer 

• Virtual Compute 

• Virtual Network 

• Virtual Storage 

The test environment which was used for the experimental activities in sections 3-7 
consists of an implementation of NFV MANO functional components e.g. VIM as 
necessary plus a Test Controller, Test VNFs, and a Performance Monitor (e.g. 
Telemetry Platform). 
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In shared NFV environments, VNFs will likely be instantiated, scaled or terminated at 
exactly the same instant that many other VNFs are executing in steady state on the 
same server. This means that one VNF’s lifecycle operation can both affect and be 
affected by the presence or performance of other VNFs executing at the same time, 
which makes it essential to thoroughly test the different phases of a VNF’s lifecycle. 
To address this requirement test cases need to be defined for VNF data plane 
benchmarking, VNF Lifecycle and VNF storage benchmarking. These test 
requirements are defined in the context of the contribution to the OPNFV Yardstick 
project (see section 9.0). 
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3. OPTIMISATION OF NETWORKING TECHNOLOGIES 

The characterisation of network technologies plays an important role in the ability to 
predict the behaviour of a technology for a given context i.e. a particular use case, 
when combined with other technologies, etc. 

Accurate characterisation of network technologies is important in the context of the 
VNF/NS that will be supported by the T-NOVA system. Appropriate characterisation 
enables the predictability of VNF behaviour for a given set of resource types which is 
important when providing SLAs to customers for a purchased service. Secondly, it 
provides key insights into which technologies or combination of technologies should 
be selected and how they should be configured to achieve a desired performance 
level across a range of performance criteria such as throughput, latency, etc. The 
following sections describe the testbed configuration that was used to perform the 
network technology characterisation activities within the task. The selected 
technologies, protocols used and the key findings are also described. 

3.1. Testbed Configuration 

A key activity in Task 4.1 was the design and implementation of a testbed platform to 
support workload and technology characterisation activities within the task. The 
architecture implemented for the majority of the experimental work described in 
sections 3, 4 and 7 is shown in Figure 3.1. The development and deployment of this 
architecture evolved over the lifetime of the task to ensure that the constituent 
platform elements were representative of current industry adoption trends. 

The testbed is currently composed of three primary nodes: one controller and two 
compute nodes. The Controller acts as VIM (Virtual Infrastructure Manager - see 
Figure 3.1), and hosts the Cloud Controller (OpenStack Nova and Neutron) along with 
the Network Controller (OpenDaylight), integrated via the Neutron ML2 plugin. 

The compute nodes include Nova compute, which communicates with the controller 
through the management network. Virtualisation of the compute resources is based 
on the use of a KVM hypervisor and a libvirt hypervisor controller. 

From a hardware perspective, all the hosts include an Intel® Ethernet Converged 
Network Adapter X540-T2 NIC, which has dual Ethernet 10GB ports, supporting SR-
IOV and DPDK technologies: one port is connected to the management network and 
the other is connected to the data network. The controller and the compute node 
used as a packet generator were based on Intel® Core™ i7 4770, 3.40GHz CPUs with 
32GB of RAM. Initially the second compute node were based on dual socket servers 
with Intel® Xeon® E5 2680 v2, 2.8GHz CPUs and 96GB of RAM. The Xeon E5 
computing architecture provides 10 cores per processor (20 cores in total) with 8GT/s 
Quick Path Interconnects (QPI) for inter socket communications. 

The compute nodes (x2) were upgraded to Intel® Xeon® E5 2697v3, 2.6GHz and 64 
GB of RAM. This Intel Xeon E5 provides 14 cores per processor (28 cores in total) with 
9.6GT/s Quick Path Interconnects for inter socket communications. Additionally the 
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processor architecture has a set of platform features of interest to T-NOVA such as 
VT-x, VT-d, Extended page tables (EPT), TSX-NI, and Trusted Execution Technology 
(TXT). The controller and packet generator nodes based on Intel® Core™ i7 4770, 
3.40GHz CPUs with 32GB of RAM were retained 

The physical network-switching element of the test bed comprises of an Extreme® 
networks 10Gbps, 48-port SDN capable switch (Summit® X670V-48t) and a 
NETGEAR® 10Gbps 24 port non-SDN switch. The connectivity between the NICs of 
the compute nodes and the switch is provided by CAT7 cables. 

From a software stack perspective the Juno release of OpenStack was initially used 
which was later upgraded to the Kilo release. SDN based control was provided by the 
Hydrogen release of OpenDaylight which was later upgraded to the Lithium release. 
Integration with OpenStack and OpenDaylight was implemented using the Neutron 
ML2 plugin. 

 
Figure 3-1 Virtualisation Testbed Architecture 

3.2. Network Optimisations 

The manner in which a system and as a consequence the VNF workloads running on 
that system are connected to the network has a major impact on performance. There 
are several options currently available to provide network connectivity as shown in 
Figure 3-2. 
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Figure 3-2 Network Connectivity Options 

• Pass-Through/SR-IOV - bypasses the hypervisor, packets are available via 
direct memory access (DMA) direct to system memory which delivers the best 
performance. Pass-through operates on a one VM per device basis.  

• SR-IOV multiple VM’s per device -PCI-SIG SR-IOV allows partitioning of a 
single l Ethernet Server Adapter port, also known as the Physical Functions 
(PF). This PF is a full PCIe function that includes the SR-IOV Extended 
Capability (used to configure and manage the SR-IOV functionality) into 
multiple virtual functions (VFs). These VFs are lightweight PCIe functions that 
contain the resources necessary for data movement but minimise the set of 
configuration resources. They may be allocated to VMs, each with their own 
bandwidth allocation. They offer a high-performance, low-latency datapath 
into the VM, however there are migration limitations. 

• vSwitch (Kernel or User Space) - Currently only modified OVS can support 
the performance required for Telco workloads (in-house or commercial) e.g. 
10Gbps or higher. 

• Para-virtualised driver - Hypervisor emulates the device. The hypervisor can 
be either user space or kernel space. Not recommended for performance 
workloads. Hybrid modes/configurations are possible. 

In a dual server system with multiple cores there are implication on performance 
dependent on how the network controllers are connected to the CPU’s, how the 
memory is configured and how a DPDK enabled application connects to NIC ports. 
The aim from an optimisation perspective should be to reduce cross-socket memory 
access as much as possible. 

§ Recommendations based on Testbed configurations are as follows: 

§ NIC should be connected to the same socket as the DPDK workload is 
running on. 

§ DPDK RX core should be on the same socket as the NIC RX interface. 

§ All interacting NICs, CPUs and memory should be allocated on the 
same socket to avoid QPI traffic. 
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§ Huge Page support at host level in kernel huge pages. 

The experiments outlined in the following sections have been focused mainly on the 
network throughput metric. The Internet Engineering Task Force (IETF) developed 
RFC2544 [3] which outlines a benchmarking methodology for network Interconnect 
Devices was utilised. The methodology defines performance metrics such as latency, 
frame loss percentage, and maximum data throughput. 

Using RFC2544 as a basis, throughput was measured in millions of frames per second 
where the frame size refers to Ethernet frames ranging from 64 bytes to 1518 bytes. 
For 64-byte frames, a line rate of 10Gbps translates to 14.88 million packets per 
second for unidirectional traffic. 

The Device under Test (DUT) has 2 NICs, both connected to a packet generator: one 
NIC receives the packets, whereas the other NIC is used to send back the traffic to the 
packet generator where it measures the throughput. The packet generator selected 
for the experiments was DPDK Pktgen [4] which is an open source version of the 
Linux Foundation Pktgen based on Intel’s DPDK library. It was selected due to its free 
availability and its ability to send packets at 10Gbps line rate speeds. It is possible to 
physically assign one or more CPU cores directly to the sending and receiving 
processes over the NICs. In the current configuration, one core was assigned to the 
processor that generates the packets and one core is assigned to each transmission 
queue for transmitting packets onto the network. A new feature introduced in the 
latest release is the capability to run more than one instance on the same host which 
can be exploited in the creation of different packet flows. 

To maximise the efficiency of the packet generator, a Command Line Interface (CLI) is 
available to set and start the transmission of the network traffic. Moreover, it is 
possible to create scripts using the Lua programming language [5] to automate the 
packet generation process, defining traffic profiles and the behaviour of the packet 
generator. Exploiting this feature for the purpose of this experiment, a Lua script was 
implemented, following the RFC 2544 recommendations, with different packets sizes, 
automating the test for the various configurations under test. 

3.2.1. Non Virtualised (Bare Metal) Switch Comparison 

Testing has been focused initially on comparing the throughput of both the Open 
vSwitch and the DPDK vSwitch technologies in a non-virtualised (bare metal) 
scenario. Such a scenario is shown in Figure 3-3. 

 
Figure 3-3 Non-virtualised virtual switch comparison scenario 
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As shown in the Figure 3-3, this scenario does not involve VMs: the packet generator 
sends the traffic to a server hosting a virtual switch; the switch is configured in both 
the cases (OVS and DPDK OVS) in a manner where it is connected to the two physical 
ports of the server; it receives traffic input on the first port and sends it back on the 
second port; the packet generator then measures the throughput of the switch in 
such a bare metal deployment. This configuration is also called physical-port-to-
physical-port where it forwards the traffic received through NIC1 onto NIC 2. The 
results obtained are shown in Figure 3-4. 

 
Figure 3-4 Throughput comparison for the first testing scenario 

The results clearly shows that the DPDK vSwitch provided significantly better packet 
switching performance with respect to Open vSwitch in a physical-port-to-physical-
port scenario. 

3.2.2. Comparison of Network Technologies for VMs 
A set of experiments was carried which compared a number of potential network 
configuration which could be utilised in the deployment of a VM/VNF as shown in 
Figure 3-5. 

 
Figure 3-5 Network technology comparison scenario 
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The configurations shown in the Figure 3-5 compares OVS (a), DPDK vSwitch (b and 
c) and SR-IOV (d) when used with a VM. More specifically, the first and the second 
cases relate to the usage of OVS and DPDK vSwitch respectively to provide network 
connectivity to a VM that is based on Linux Kernel packet processing; the third and 
fourth scenarios (Figure 3-5 (c) and (d)) are focused on supporting a VM which is 
using the DPDK Pull Mode Driver (PMD) on top of DPDK vSwitch and an SR-IOV port. 
The results obtained are shown in Figure 3-6. 

 
Figure 3-6 Throughput comparison for network processing technologies 

It is clear from Figure 3-6 that the major bottleneck at the infrastructure layer is 
related to the communication between the VM and the physical host. Using DPDK in 
virtual switching technology provided superior performance in comparison to the 
non-DPDK accelerated version of OVS. The most visible output from the results is 
represented by the usage of the DPDK PMD within the guest VM. This is the main 
reason why developers are encouraged to use the DPDK library within the VM in 
order to achieve maximum throughput. The usage of SR-IOV in conjunction with 
DPDK vSwitch further improves the performance achievable by the VM. Another 
perspective is presented in Figure 3-7, where the same results are shown in terms of 
supported bandwidth. The use of SR-IOV channels achieves 100% exploitation of the 
available bandwidth (i.e. 10Gbps) for almost all the packet sizes used in the tests.  
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Figure 3-7 Supported bandwidth comparison for network processing technologies. 

3.2.3. DPDK-SR-IOV VNF Performance Enhancement 

The previous sections outlined the various virtualised data plane connection options 
for VNF network connectivity. As previously discussed, SR-IOV bypasses the 
hypervisor layer, allowing packets to be sent directly to the NIC while DPDK bypasses 
the kernel network I/O stack in the VM. While individually these technologies provide 
significant improvement in VNF performance, they have the potential to be used in 
combination as shown in Section 3.2.2 to deliver increased network throughput 
performance. The primary goal of the experimental protocol described in this section 
was to evaluate and quantify the performance improvements enabled by both SR-
IOV and DPDK in comparison to the standard Linux network stack for a virtualised 
Traffic Classifier (vTC) developed by NCSRD. A description of the vTC is provided in 
Section 6.1.  

3.2.3.1.  Experimental Configuration 

The tests outlined in this section were carried out on NCSRD’s testbed that is a 
separate instantiation of the testbed outlined in section 3-1 but is based on the same 
compute and networking components. Two setup configurations were utilised for 
performance testing of the traffic classifier VNF. Both test deployments were 
performed using servers with Intel® Xeon® E5-2620 v3 @ 2.40GHz CPUs. Each server 
had a dual port 10Gbit Intel® Ethernet Converged Network Adapter X520-T2. In both 
configurations one server was used as a traffic generator and the second server 
hosted the vTC application. The first test case was performed at the physical layer 
meaning the vTC application was executed in a non-virtualised manner i.e. ‘bare 
metal’ using the physical NICs, whereas in the second test the vTC application was 
deployed as a VM through a KVM hypervisor with the packets arriving through an 
SR-IOV fast path. In both performance tests two versions of the vTC application were 
evaluated, using LibPCAP [6, 7] and DPDK. The purpose of the first configuration was 
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to benchmark and set a baseline performance for the DPDK enhanced vTC 
application.  

In Figures 3-8 and 3-9 an overview of the two configuration setups is shown. Figure 
3-8 outlines the baseline setup, where no additional modifications were made to 
enhance the performance of the vTC. In both the physical NIC and virtual NIC driver 
layers, the Linux kernel network stack handles the packets. The vTC application in 
both tests (physical and virtualised), uses the LibPCAP in order to read and analyse 
the network traffic received. 

 
Figure 3-8 Standard Setup 

Figure 3-9 shows SR-IOV enablement at the physical NIC of the host server. A 
corresponding VF driver is attached to the vTC virtual machine. The virtual NIC is 
loaded with the DPDK driver for faster NIC-userspace communication. In this 
configuration the vTC application reads and processes the packets received using the 
DPDK framework, in both the physical and virtualised experiments. 

 
Figure 3-9 Setup with SR-IOV enabled ports and DPDK on the VM. 
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For the evaluation and benchmarking of the vTC, the DPDK PktGen [8] traffic 
generator was used to replay a PCAP file generated from real traffic traces captured 
in NCSRD. 

3.2.3.2.  Experimental Results 

This section presents the results of comparison tests between DPDK and LibPcap 
versions of the vTC in physical and virtualised environments. The traffic for both 
experimental evaluations was generated by a traffic generator in a linear manner 
from 1 to 100%, with 1% increments per second. Traffic statistics were collected from 
the VNF every second and were post processed for performance evaluation. 

A comparison of the packet processing performance of the LibPcap based 
deployment of the vTC versus the DPDK accelerated version of the VNF under a bare 
metal scenario is shown in Figure 3-10. The results clearly show that the vTC’s 
performance is significantly improved when DPDK is used to accelerate packet 
processing. The LibPcap version exhibited saturation at approximate 1Gbps. This 
throughput compares poorly to the approximately line rate performance of the DPDK 
accelerated version. 

 
Figure 3-10 Physical Testbed DPDK vs LibPcap. 

A second set of experiments focused on identifying the effect of combining SR-IOV 
and DPDK on vTC performance when deployed as a VM. A linear scaling network 
traffic load up to 10Gbps was used to stress test both the LibPCAP and SR-IOV/DPDK 
versions of the vTC VM. 

As shown in Figure 3-11 the SR-IOV/DPDK version achieves approximately 80% of 
line rate packet transmission performance. The LibPCAP version displayed saturation 
effect at 1Gbps with an 87.5% throughput reduction in comparison to the DPDK 
version. The results also indicate that DPDK’s performance in the virtualised scenario 
is degraded to, approximately 21% in comparison with the corresponding physical 
test. Additionally, in the DPDK-SRIOV setup the number of packets processed is 
steadily degraded compared to the total traffic sent. This can be explained by the fact 
that during the tests core-pinning and NUMA-pinning was not utilised, resulting in 
the DPDK-VM using 100% of the virtual CPU, however this does imply 100% 
utilisation of the physical CPU. The resources were not bound exclusively to each 
process demanding them, and this resulted in a percentage allocation according the 
workload each time.  
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The results indicate the promising performance of the virtualised vTC solution, and a 
clear improvement when DPDK is utilised. The gap in performance between the 
physical and the virtualised solution shows further optimisation is required in order 
for the VNF to achieve performance close to the corresponding physical vTC solution 
i.e. line rate. Additionally, it is clear that despite the use of SR-IOV the network kernel 
stack remained the bottleneck in the packet processing path. Detailed description of 
the experimental setup and results can be found in [9]. 

 
Figure 3-11 Virtual Machine over SR-IOV Testbed DPDK vs LibPcap. 

3.3. Switch Scalability 

Service chaining requires the installation of flow entries in OpenFlow switches located 
in data centres, such that traffic will traverse the NFs in the exact order specified in 
the service chain. This requirement necessitates the installation of a large number of 
flow entries in switches, especially with an increasing number of network functions. 
This, in turn, can result in data scalability issue for the T-NOVA system, as OpenFlow 
switches typically have relatively small flow table sizes (i.e., several thousand entries).  

3.3.1. Data Plane Design 
To mitigate the problem of switch scalability, a dual datapath approach was 
employed, i.e., a forwarding plane consisting of a primary datapath (DP0) hosted on a 
commodity server, and an external OpenFlow switch that acts as an accelerated 
datapath (DPX) (see Figure 3-12). This allows the exploitation of the advantages of 
commodity servers and switches, while mitigating their inherent limitations. 
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Figure 3-12 Flow distribution versus data rate 

More specifically, commodity servers are equipped with a large amount of memory, 
sufficient for storing a large number of flow entries. Despite the recent advances in 
commodity hardware (e.g., non-uniform memory architectures, network cards with 
hardware multi-queueing) and technologies for high-performance packet I/O (e.g., 
DPDK, netmap [10]) servers cannot yet match the packet forwarding performance 
rates of specialised hardware. On the other hand, switches offer higher forwarding 
capacity and port density but have limitations in terms of flow table size. 

 
Figure 3-12 Flow distribution vs. data rate 

The feasibility of the proposed dual-datapath approach mainly stems from the Zipf 
(Figure 3-13) property of aggregate traffic, i.e. a few flows carry a high percentage of 
the total traffic. For instance, based on a public trace captured on a 1Gb link of an 
access router of a residential ISP in [11], 100 prefixes comprised more than 50% of 
the total traffic, while 1000 prefixes account for 80% of the total traffic. Hence, this 
allows us to maintain all forwarding rules in DP0's flow table, while the DPX only 
caches large-volume flows (elephants).  

By caching a small number of flow entries in the DPX, the traffic overhead on the DP0 
and the DPX interconnection can be significantly decreased. In particular, a set of 
low-priority, infrastructure entries redirect traffic from the OpenFlow switch to the 
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DP0, when no high-priority flow entries were cached at the switch (i.e., acting as a 
fall-back path). It is the responsibility of the controller to select the flows that will be 
cached to DPX as well as the rate at which the cache is updated. This can be achieved 
using traditional caching techniques (e.g., LFU, LRU), or a more recent technique 
which yields higher efficiency [11].  

3.3.2. Evaluation 

The performance and feasibility of the proposed data plane design were assessed 
using a prototype implementation consisting of a Pronto 3290 switch with 48 1Gbps 
ports for the accelerated datapath (DPX) and Open vSwitch [12] for the primary 
datapath (DP0) running on a server with an Intel Nehalem CPU with four cores 
@2.27GHz and 4GB of RAM. DP0 and DPX were interconnected over four 1Gbps 
datapath links. 

 

Figure 3-13 Throughput for DP0 and DPX with 99% confidence intervals. 

Initially the throughput and latency with DP0 and DPX were measured. Figure 3-14 
shows the mean achievable throughput rates for traffic with packet sizes ranging 
from 64 to 1500 bytes. For each packet size, 1Gbps CBR traffic was injected into the 
system and the rate at the output of the datapath measured for 100 seconds. Each 
experiment was repeated 25 times. As expected, the DPX forwards traffic at line rate 
for all packet sizes. On the other hand, DP0 can only sustain the maximum 
throughput for packets larger than 100B. This corresponds to a packet forwarding 
rate of 1Mpps (this forwarding limit is illustrated as a dashed line in Figure 3-14). This 
limitation of Open vSwitch has also been reported in Netmap [10] where an improved 
I/O technique is presented which increases the forwarding rate to nearly 3Mpps. To 
investigate this further, measurements using Click Modular Router [13] were repeated 
for DP0. It was found that a CPU core saturates a one 1G link with 64B packets. 
Furthermore, the forwarding performance scales linearly with the number of cores. 
The achievable throughput is also expected to scale with additional NUMA nodes due 
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to the integrated memory controllers that alleviate the main memory access latency 
limitations in shared-memory architectures [14].  

The delay for packets traversing DP0 and DPX were also measured. The results for 
different packet sizes are shown in Figure 3-15 for 1000 runs. Packet forwarding at 
DPX incurs a minimum delay of 4 µs which increases linearly with the packet size with 
a slope corresponding to the transmission delay of the 1G link. For DP0 the minimum 
delay is 18.6 µs.  

 
Figure 3-14 Delay for DP0 and DPX with 99% confidence intervals. 

Moreover, the feasibility of the proposed data plane design is affected by (i) the rates 
with which new flows can be generated and inserted into the switch flow table, and 
(ii) the packet processing capacity of DP0 and the datapath link. The datapath flow 
insertion rate R directly influences the rate at which the flow cache manager may 
update cached entries. To evaluate R, CBR traffic was injected into DP0 and DPX using 
the setup in Figure 3-16 and generated a burst of 4000 routing flow modification 
messages, where the action of each flow entry is set to update the flow’s destination 
MAC address with an incremented value. The time required for the installation of a 
new flow entry in the switch was measured by capturing the interval tf between two 
packets with different destination MAC addresses at the egress of the switch. The 
mean flow insertion rates for DP0 and DPX were 12554/s and 715/s, respectively. It is 
expected these rates will increase further, as OpenFlow datapath implementations 
continue to improve. Since most OpenFlow controllers are capable of generating 
OpenFlow messages at significantly higher rates (several millions per second), the 
generation rate of flow modification messages at the flow management proxy does 
not result in a limitation for the data plane approach outlined. 
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Figure 3-15 Experimental setup for the measurement of flow insertion rate. 

The enhancements in terms of packet I/O along with parallelisation across cores 
enable modern commodity servers to achieve throughput rates higher than 10Gbps. 
This indicates that the packet processing capacity of modern commodity servers is 
sufficient to handle the long tail of Internet traffic distribution with several thousands 
large-volume flows being offloaded to DPX. For instance, based on a public trace 
captured on a 1Gb link of an access router of a residential ISP, 100 prefixes were 
found to comprise more than 50% of the total traffic, while 1000 prefixes account for 
80% of the total traffic. Using the latest OpenFlow-enabled switches with tens of 
thousands flow entries, it is feasible to offload 1000 prefixes for each port, thus 
leaving only 20% of the traffic to be processed by the primary datapath. A packet 
processing capacity in excess of 10Gbps is sufficient for DP0 to handle mice (i.e. 
percentage of flows with low volume, see figure 3-13) traffic. 

3.3.3. Switch Scalability Conclusions 

To mitigate the problem of the small switch flow tables, a dual-datapath approach 
was employed that exhibits high forwarding performance and port density in the 
accelerated datapath, while the primary datapath exploits the large amount of cache 
and main memory available in commodity servers to store all required flow state. This 
essentially enables service chaining at massive scale, and thus NFaaS offerings to a 
large number of customers. The results obtained corroborate the feasibility of the 
data plane approach.  

3.4. SNABB Switch Evaluation 

Snabb Switch [15] is a simple and fast packet open source networking toolkit that 
runs as a stand-alone Linux userspace executable. It is being developed in a simple, 
minimalistic manner to support intuitive use by the user. Snabb Switch is written 
using three main techniques: 

• Lua, a high-level programming language that is easy to learn.  
• LuaJIT, a just-in-time compiler that is competitive with C.  
• Ethernet I/O with no kernel overhead ("kernel bypass" mode).  
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Snabb Switch can also be defined as a virtualised Ethernet networking stack. It can be 
used as the underlying framework where users can build on top of the existing 
features, develop their own custom features or extending its functionality with Lua 
scripts.  

The first generation of Snabb Switch applications include: 

Snabb NFV makes QEMU/KVM networking performance practical for applications 
that require high packet rates, such as ISP core routers. It is intended for people who 
want to process up to 10Gbps or 50Mpps of Virtio-net network traffic per server. 
Snabb NFV can be deployed in a stand-alone mode with QEMU or it can be 
integrated with a cloud computing platform such as OpenStack. The OpenStack 
implementation includes switching, firewalling, some QoS capabilities, tunnelling and 
other features that are being developed specifically for NFV. It can be considered as a 
potential alternative to Open vSwitch, although it is possible to utilise both in the 
same environment.  

Snabb Switch has a specific use case for its OpenStack Neutron plugin. It assumes 
you have a network in place, which you want to connect the VMs to the network. The 
target user is therefore someone who wants to deploy hardware virtualisation. Snabb 
switch provides a wide range of hardware virtualisation features, which allows the NIC 
to provide packet-switching and provide QoS capabilities, while achieving near line 
rate performance. Snabb switch copies all traffic to virtio within VMs using zero-copy 
methodology. It also ensures that the packet filtering, QoS and tunnelling gives the 
user the full OpenStack Neutron abstraction rather than just the subset the hardware 
can handle directly.  

Snabb Switch is in relatively early stages of development and has been developed 
with a focus on Intel CPU’s (typically Xeon), and a limited number of Intel network 
interface cards. 

3.4.1.1.  Configuration and Experimental Issues 

For the purposes of evaluating alternatives to DPDK in userspace packet processing 
accelerating frameworks, SnabbNFV was deployed in the NCSRD testbed. Although 
Snabb switch looked initially promising and is potentially simpler than DPDK (DPDK is 
over 10 million lines of code), it was found that at its current early stage development 
status successful integration into the NCRSD testbed was not possible due to various 
technical issues.  

Firstly, the current stable release support for network interface cards is limited to 
Intel’s 82599 driver. The system under test utilised Intel’s x540-T2 10Gbps cards, 
which are compliant to the 82599 driver, but are currently not directly supported by 
the Snabb switch’s stable release. This incompatibility was resolved after using the 
“next” branch of Snabb switch, which is intended for future release and is currently 
under-test. 

The test scenario based on a simple QEMU-VM using Snabb switch’s SnabbNFV 
program in order for the virtual network interface to work over Snabbswitch’s 
userspace was investigated. The SnabbNFV consists of two software components; the 
first is the Snabb driver that is loaded on the NIC, running as a socket file providing 
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debugging information, the second component is a spawning QEMU instance for the 
VM hosting. The association between the two components is done through the 
socket file of the driver file, which is loaded as a parameter in the QEMU instance. The 
advised QEMU version for use is the 2.1.0-vhost-user, which is a version previous to 
the current QEMU release. This resulted in numerous compatibility problems and 
issues, even when attempting to run a QEMU-VM with a Snabb-vNIC. The issues 
encountered revolved mainly around huge pages allocations and mounting as a 
device on the VM. The issues were mainly caused by poor debugging info provided 
by the version of QEMU. After surmounting these issues and finally managing to 
successfully run a QEMU-VM with Snabb-driver loaded network interface, the VM 
failed to receive any packets. Additionally, the SnabbNFV driver program running for 
the virtual NIC, although successfully acknowledging the port attachment it did not 
show any incoming packets from the traffic generator. Also in [16] it reports that with 
various OS distributions, Snabb switch may fail to receive any packets, resulting in 
failed tests.  

Due to the breath of issues encountered during the installation and configuration of 
Snabb switch and as a result of its current immaturity it is not a viable candidate for 
use within the T-NOVA project at this time. Moreover the set-up of a simple QEMU-
VM scenario was very challenging and the supporting documentation is difficult to 
follow [17] therefore it was concluded that Snabb switch does not make a viable 
candidate for the required T-NOVA functionality, however the overall the Snabb 
switch project has significant potential and adoption will become more viable as it 
matures. 

3.5. VNF Virtualisation Technology 

Another important aspect to be considered is the virtualisation technology used. 
From a T-NOVA perspective a flexible virtualisation environment is required. As it is 
important to quantify how particular options impact VNF performance, a set of 
experiments were conducted using the LibPCAP version of the vTC developed by 
NCSRD. The experiments show a comparison in terms of supported network 
throughput between different deployments using different virtualisation 
technologies, namely: bare metal, Docker container, KVM virtual machine based on 
OVS and KVM virtual machines based on SR-IOV deployments. The results obtained 
are shown in Figures 3-17 to 3-20. 

The figures show metrics from the network interfaces of the testbed. More specifically 
the red lines (in all the figures) represent the number of bytes per second sent by the 
packet generator, whereas the green lines represent the traffic sent back from the 
vTC to the packet gen. In order to measure these values, a telemetry agent was 
installed on the infrastructure. The network throughput was measured using the 
Workload Characterisation Framework (see Section 6). The framework module 
responsible for calculating latency implements a non-extensive search algorithm 
which is designed to avoid checking all possible bandwidth values (from 1 to 100%) 
by using a stepping mechanism which halves the bandwidth at each step until a 
match is identified. The throughput was calculated using packets of 1280 bytes. 
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Figure 3-16 Throughput calculation for bare metal deployment. 

 
Figure 3-17 Throughput calculation for Docker container deployment. 

 

Figure 3-18 Throughput calculation for KVM virtual machine based on an OVS 
deployment. 
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Figure 3-19 Throughput calculation for KVM virtual machine based on an SR-IOV 
deployment. 

The results indicate that with bare metal and Docker container deployments it is 
possible to achieve up to 4.7Gbps throughput, with OVS it is possible to reach up to 
800Mbps and with SR-IOV it is possible to reach 3.7Gbps, which means a reduction of 
the 21% with respect to the non-virtualised configuration. This confirms the results 
outlined in sections 3.2.1 – 3.2.3. 
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4. COMPUTATIONAL RESOURCE OPTIMISATION 

The characteristics of the underlying server architecture can have a significant 
influence on VNF performance. Parameters such the processor architecture, 
bandwidth of buses (peripheral, inter-processor), availability of specialist instruction 
sets (AES-NI), have a strong influence on how a VNF behaves on the specific compute 
hardware. It is also important from a software perspective to ensure that a VNF is 
designed to appropriately to leverage the features of the server such as such multi-
core and multi socket architectures. Software developers need to consider aspects 
such as multi-threading, pipelining etc. to maximise performance of the VNF. 
Furthermore accelerators such as FPGAs and GPUs might be used in tandem with 
standard processors to expedite specific, compute-intensive parts of the processing. 
The inter-play between the VNF and hardware in the context of virtualisation is of 
critical importance. 

In the following sections the effect of core pinning, NUMA, huge pages and FPGA-
based on heterogeneous compute resources are investigated to determine their 
impact on VNF performance in order to identify the appropriate configurations for 
the T-NOVA system. 

4.1. Core Pinning and Isolation 

In OpenStack by default the host scheduler has the flexibility to move threads around 
within that NUMA cell. The host will schedule across available physical CPU’s (pCPU’s) 
within the NUMA node. This impacts NFV applications that require threads to be 
pinned to pCPUs to comply with particular application design constraints, or to 
deliver on particular latency or predictability metrics. Processor pinning (or core 
pinning) enables the binding of a process to specific cores within the CPUs in a 
manner that the process runs only on the specified core(s). I/O threads should be 
pinned on virtual CPUs (vCPU) and vCPU pinned to pCPUs.  

A number of tests have been performed to identify the impact of processor pinning 
on both vSwitch and VM performance. 

With DPDK vSwitch, it is mandatory to dedicate cores to switching operations. The 
minimum number of cores which can be assigned to DPDK vSwitch is four. However, 
in order to tune the performance of the vSwitch, the impact of increasing the number 
of allocated cores was investigated. 

In Figure 4-1 and 4-2 throughput versus the number of allocated cores is shown. The 
experiment scenario was comprised of a DPDK vSwitch connected to a VM with two 
virtual NICs: the traffic was sent from a packet generator to the virtual switch, then 
from the virtual switch to the VM that takes the traffic in from vNIC1 and sends it 
back to the switch through vNIC2, then the switch sends the traffic back to the packet 
generator to measure throughput. 

The Operating System setup require a special configuration for these experiments: 
the “isolcpus” option in the GRUB configuration file is required to isolate the cores 
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from the OS it-self. This prevents the OS accessing the cores of the platform 
indicated in the isolcpus option. 

Figure 4-1 relates to a scenario where different numbers of cores assigned to the 
vSwitch. The results indicate that the optimal assignment of cores to vSwitch is 
exactly four and the allocation of higher number of cores does not provide any 
measurable performance improvement in most cases. The allocation of additional 
cores beyond the default configuration can therefore be considered as a waste of 
resources that could be otherwise allocated to VMs. 

 
Figure 4-1 Throughput varying the core pinning configuration for DPDK vSwitch. 

Similar experiments have been conducted by changing the number of cores allocated 
to a VM, in order to analyse the extent in which a VNF can be influenced by processor 
pinning. Results are shown in Figure 4-2. Four cores were statically assigned to the 
vSwitch for this experiment. 
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Figure 4-2 Throughput varying the core pinning configuration for the VM. 

The results show that the usage of processor pinning can help to achieve improved 
performance, if properly configured. In this experimental configuration the VM using 
just one core for processing incoming network traffic was found to be insufficient to 
manage the processing overhead required by the VM. Assigning two cores (yellow 
bars) it is possible to achieve improved performance in comparison to a non-pinned 
configuration (blue bars). These experiments are based on a single VM deployment 
onto a server with two processors with 10 cores each with the assigned cores on 
CPU1. These results are however workload specific and with a different VM 
configuration the exhibited behaviour could be potentially different. This is a key 
motivation behind the development of the characterisation framework described in 
Section 5: using the framework for automated tests it is possible to calculate the best 
configuration deployment for a specific workload in an automatic fashion, exploiting 
a workload awareness approach. 

Using the framework to analyse the effect of the core pinning on the virtual Traffic 
Classifier network function developed by NCSRD, a side effect of core pinning was 
identified. More specifically, two experiments were executed with the purpose of 
analysing the CPU idle metric of each physical core during a throughput test and this 
was realised using a telemetry agent measuring the CPU idle time per core on the 
compute node. 

In Figure 4-3 the CPU idle time per core for a non-core pinning scenario is shown. 
Each trace represents the idle metric of one physical core. There are 28 lines in total 
(2 CPUs with 14 cores each) shown. It can be clearly seen from Figure 4-3 than in this 
scenario the CPU cores are not heavily utilised i.e. CPU idle time is high which from a 
service provider’s perspective is uneconomical in terms of infrastructure resource use.  
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Figure 4-3CPU idle per core for the non-core pinning scenario. 

In Figure 4-4 the CPU idle time per core for a core pinning scenario is shown. In this 
scenario the VM process responsible for processing and forwarding packets is pinned 
to a single core (core 1) represented by the blue line. 

 
Figure 4-4 CPU idle per core for the core pinning scenario. 

The high CPU idle time shown in Figure 4-3 is a result of the execution core 
continuously changing resulting in a higher number of L3 cache calls. However when 
core pinning i.e. execution is always on the same core, therefore L3 cache calls are 
generally not required as the data is kept on core in either the L1 or L2 caches, 
reducing the number of cache misses.  

4.2. NUMA Pinning 

NUMA is a computer memory access design used in multiprocessing, where the 
memory access time depends on the memory location relative to the processor. In 
multiprocessor systems the processors can be grouped together with their own 
memory and possibly their own I/O channels. Each group of CPUs and memory is 
called a “NUMA node”. Each CPU can also access memory associated with another 
NUMA node in a coherent way. However this approach introduces latency: the 
process is slower and less efficient in comparison to accessing local memory. The 
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allocation of CPUs and hardware resources to a NUMA node is a hardware vendor 
specific implementation. In order to avoid such latency, the concept of NUMA 
pinning was introduced. This feature ensures a process (more specifically a VM) runs 
on cores belonging to the same CPU: This has the effect of maintaining all process 
related data in the local memory which improves the performance and predictability 
of the process.  

Another very important aspect to consider from this perspective is related to the 
location of the NICs within the NUMA architecture: each PCI express device attached 
to the motherboard, including the NICs, exclusively belong to a NUMA node. This 
means that a VM particularly using the NIC (for example a VNF) will benefit from an 
allocation of its vCPUs in the same NUMA node added to the NIC. 

The test system utilised for the investigating the NUMA configurations had two 
NUMA nodes, containing one CPU per each. The NIC used for the experiments (Intel 
X540-T2) was installed on a PCI slot belonging to the first NUMA node. Throughput 
was measured for two different configurations: in the first instance the VM was 
pinned to two cores belonging to the first NUMA node (CPU1), whereas in the 
second instance the VM was pinned to two cores belonging to the second NUMA 
node (CPU2). The results obtained are shown in Figure 4-5. 

 
Figure 4-5 The effect of core pinning configuration on throughput  

The performance obtained in the second scenario was approximately 50% less than in 
scenario one, indicating that NUMA awareness can have a significant influence on 
system performance and should be considered appropriately at the Orchestration 
layer and within the VIM functional entity of the IVM. 

Awareness of NUMA topology in the platform was added in the OpenStack Juno 
release with the Virt driver guest NUMA node placement and topology extension. 
This feature allows the tenant to specify its desired guest NUMA configuration. The 
Nova scheduler was extended with the numa_topology_filter to help match guest 
NUMA topology requests with the available NUMA topologies of the hosts. Tenants 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

64 128 256 512 1024 1280 1518

M
illi

on
 P

ac
ke

t p
er

 S
ec

on
d

Packet Size (Bytes)

CPU 1

CPU 2



T-NOVA | Deliverable D4.01  Infrastructure Virtualisation 

© T-NOVA Consortium  
 

38 

can specify their request via the Nova flavour-based mechanism. Tenants also have 
the option to specify their guest NUMA topology request via an image-property-
based mechanism. The parameters provided are: 

• hw:numa_cpus.0=0,1,2,3  
o It indicates the virtual cores of the VM that have to be pinned on the 

NUMA node 0 
• hw:numa_cpus.1=4,5,6,7  

o It indicates the virtual cores of the VM that have to be pinned on the 
NUMA node 1 

• hw:numa_mem.0=1024  
o It indicates the amount of memory (RAM) associated to the NUMA 

node 0 
• hw:numa_mem.1=1024  

o It indicates the amount of memory (RAM) associated to the NUMA 
node 1 

These parameters can be set in OpenStack through Horizon, Command Line Interface 
(CLI) or Heat Template. Further support for NUMA awareness has been included in 
the last OpenStack Kilo release, where each VM with an associated SR-IOV NICs is 
automatically pinned to the NUMA node that includes the physical NIC, if there are 
free cores available. 

4.3. Huge Pages 

When executing instructions in an x86 architecture both the CPU and OS mark the 
RAM as being used by a process. For efficiency, the CPU usually allocates RAM in 
blocks (default value for Linux) named pages. Since these pages can be swapped to 
the disk, the memory addresses are virtual and the operating system has to keep 
track of which page belongs to which process and where they are stored on the disk. 
As the number of pages increases, more time is taken to find where the memory has 
been mapped too. Newer CPU architectures and operating systems support bigger 
pages (so less time spent on look-ups as is the number of pages required). This 
feature is called Huge Pages. 

The purpose of huge pages is to help avoid Translation Lookaside Buffer (TLB) misses 
and page table walks as the Memory Management Unit (MMU) attempts to resolve 
application virtual memory addresses to physical address. Huge pages must be 
supported by the kernel (HUGETLBFS – Linux RAM file systems). Support for huge 
pages can be determined using the Linux commands: 

• cat /proc/cpuinfo | grep pse 
o Verifies if the system supports 2M pages, 

• cat /proc/cpuinfo | grep 1Gb 
o Verifies if the system supports 1G pages, 

• grep huge /proc/meminfo | grep Huge 
o Analyses the actual configuration and usage of huge pages 

Huge page support is processor dependent, for example only Xeon class processor 
support 1G pages with 1G huge pages being the recommended default. It is also 
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recommended that both guest and host use huge pages. Huge pages should be 
reserved at boot time and 1G page tables must be reserved at boot time and 
specified specifically. Huge pages are not swapped out. DPDK uses mmap() and 1G 
huge pages and must be mounted as a HUGETBLFS, typically mounted by default by 
the system on /dev/hugepages, for each huge page a file will be created here when 
applications take a huge page. 

Since the usage of DPDK vSwitch requires huge pages, tests were performed on the 
switch performance by changing the size of the pages from 2Mbytes to 1Gbyte. The 
results obtained are shown in Figure 4-6. The results obtained indicated that there 
was no significant advantage in terms of throughput by increasing the huge page 
size.  

 
Figure 4-6 Packet throughput performance with huge page sizes of 2MB and 1GB 

4.4. VNF Compute Resource Optimisation 

In order to provide a practical example of how improvements that can be applied to 
the compute domain in order to optimise VNF performance, a series of experiments 
were carried out. These experiments investigated the effect of core pinning and huge 
pages on a vTC VNF. NUMA awareness was not explicitly tested, as it is supported by 
default in the OpenStack Kilo release. 

The experiments described in this section have been executed using the Workload 
Characterisation Framework outlined in Section 5. 

The default configuration for the vTC in these experiments was based on a single VM 
(which includes both the inspection engine and the forwarding engine VNFCs) with 
two SR-IOV NICs used respectively to receive and forward traffic. The baseline 
performance throughput was 3.7Gbps, as shown in Figure 3-20. 

Two test cases were executed: in the first test case throughput was calculated 
following the RFC 2544 methodology; in the second experimental scenario the 
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throughput was re-measured in the presence of noisy neighbours who added 
additional overhead to the CPU of node hosting the VNF. The results obtained are 
shown in Figure 4-7.  

 
Figure 4-7 Packet throughput performance of the vTC with different configurations. 

In the first test case, the results show that huge pages have no measurable impact on 
the performance, whereas core pinning improved performance, especially if 
used in conjunction with the “isolcpus” Grub option, by up to 24%. The isolcpus 
option provides CPU isolation from the general kernel SMP balancing and scheduler 
algorithms. This has the effect of isolating the cores from user-space tasks.  

In the second test case (with noisy neighbours) the base line performance with the 
default configuration is 2.7Gbps, which is lower than the first test case scenario. The 
reason for the reduction in throughput is the additional computation overhead 
placed on the CPU servicing requests from the additional VM’s. In this test case the 
impact of the huge pages on performance is clearly visible (up to 14% improvement 
in throughput) and with the core pinning it is possible to further improve the 
performance up to an additional 23% increase in throughput. 

4.5. Heterogeneous Compute Resources 

Heterogeneous compute resources encompass a variety of accelerators that offer 
higher performance than general-purpose processors for specific applications. The 
reasons for this performance boost can be traced to a combination of specialised 
processing resources and the use of massive parallelism inherent in many workloads. 
This by necessity includes a broad range of devices including GPUs, DSPs and FPGAs, 
which feature very different architectures and programming paradigms. This makes 
having one unified approach to virtualise them impossible. This necessitated limiting 
investigations to one class of devices. The choice was made to pursue FPGAs since 
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they offer the prospect of significant performance benefits with a large variety of 
applications.  

FPGAs are conspicuously absent from any cloud infrastructure. One of the main 
reasons for this is the complete absence of any integration with existing cloud 
environments. There’s currently no way to include an FPGA as an addressable 
resource within a cloud infrastructure and to deploy and retire tasks to and from the 
cloud much like with a normal processor. The goal of this work was to integrate an 
FPGA within a standard OpenStack-based cloud infrastructure as shown in Figure 4-7. 

Deploying a VNFC on an FPGA is a vastly different process than its CPU equivalent. 
Since FPGA virtualisation is none existent there’s a lot of foundational work that that 
is required at an infrastructure management level in order to realise an operational 
solution. In this activity the focus was on enabling cloud deployment for single-
tenant FPGAs. This means that each FPGA device can only be used for the 
deployment of a single VNFC, independently of how many resources this VNFC will 
use. While there are approaches to both time- [18] and space [19] sharing of an 
FPGA, they are both complicated and inefficient to implement and operate due to the 
way FPGAs are programmed.  

 
Figure 4-7 – Block diagram of the FPGA SoC system 

The selected platform was a Xilinx Zynq FPGA SoC device, which combines two ARM 
A9 cores with programmable fabric. This combination of a general purpose CPU and 
programmable fabric delivers the best of both worlds, namely the acceleration that 
the programmable logic can offer coupled with the flexibility that the A9 offers which 
supports an embedded Linux OS on which an OpenStack agent is executed. While 
this approach allows the maximum reuse of OpenStack components, the different 
nature of programmable devices requires that these components are modified 
accordingly. Changes are mandated on both the side of the cloud controller and the 
worker. The following changes were made: 

• A modified nova scheduler service communicates with the database to 
identify an appropriate FPGA host. It then launches an rpc.cast request to 
nova-compute to launch an instance on the appropriate host. 
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• The Nova Conductor service was modified to interact with Glance and to fetch 
VNF information such as host ID and flavour. 

• The Nova Compute service was adapted to compensate for the absence of a 
hypervisor (libvirt, XenAPI, etc). The high number of calls to the hypervisor API 
(which has no equivalent on a programmable device) has to be intercepted 
and re-routed. To deal with this requirement a simple libvirt function which 
responds to the agent’s queries in terms of resources availability and 
deployment status was developed. 

• The Glance service was modified to store the bitstream used to configure the 
FPGA. 

The configuration data is then passed on to the reconfiguration driver (DevC) which is 
provided by the FPGA vendor. This driver interfaces with a specialist silicon function 
that allows the programmable logic to be dynamically reprogrammed during its 
operation. This component is called a Processor Configuration Access Port (PCAP).  

In order for dynamic configuration to function correctly the programmable logic was 
partitioned in two areas, the static and the dynamic one. The static one contains all of 
the modules that are required to perform the reconfiguration and to facilitate the 
communication between the A9 and the programmable logic. This includes the PCAP, 
as well as an AXI DMA engine to ship data received from the network (which is 
connected to the A9) to the programmable logic and back. This is programmed onto 
the device upon initialisation (at the same time the A9s boot up) and is not altered 
during operation. In contrast the dynamic region is where the FPGA-based VNFC will 
be deployed.  

Currently the hardware and software components of the system are being tested, 
which will be followed by an integration phase, after which the deployment of a 
simple dummy VNFC will be demonstrated. This dummy VNFC will be subsequently 
replaced by a functional block and the system will be integrated into the T-NOVA 
environment, with the ultimate goal being to deploy a VNF, which consists of at least 
one FPGA-based VNFC. 

4.6. Recommendations 

In this section a list of recommendations realised from the work carried out in setting 
up the testbed and the output from the experiments described in Sections 3 and 4 
are outlined. 

4.6.1. BIOS Optimisation 

For initial BIOS testing the recommendation is to disable some features of the 
platform. After an initial baseline is established these features can be enabled one at 
a time and tuned for desired performance level. Using the vTC the settings outlined 
in Table 4.1 were identified as providing the most stable environment for the 
execution of the VNF. Note some BIOS will not allow access to all the options 
described in Table 4-1. 
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Table 4.1 BIOS options. 

BIOS Option Description Value 

Hyper Threading HT Allows 2 hardware threads 
(Logical Cores) per 
physical core (pCPU) 

OFF 

C-States CPU sleep states OFF 

P-States Frequency scaling OFF 

Memory Power 
Management 

Management of the power 
consumption for the 
memory 

OFF 

Memory Frequency Frequency of the memory MAX per installed DDR 

Intel® Turbo Boost 
Technology 

 OFF 

VT-d, VT-x, VT-c Virtualisation Features ON 

In addition to BIOS optimisation Grub options can also be used to tune compute 
node behaviour. Grub is the boot loader process which is used to load the OS. 
Various customisation options are available which can be used to specific the 
behaviour of the kernel. The key options utilised are shown in Table 4.2 

Table 4.2 Grub Options. 

Grub Option Description Value 

Intel_iommu Input/Output Memory 
Management Unit 

“on” 

isolcpus Isolation of the cores Id of the cores to be 
isolated (e.g. 1,2,3,4) 

default_hugepagesz Size of the huge pages 
(default values) 

“1G” or “2M” 

hugepagesz Size of the huge pages “1G” or “2M” 

Hugepages Number of huge pages 
available 

Value higher than 1 

4.7. Configuration Recommendations 

Based on the various investigations carried out in this task a set of configuration and 
deployment settings to satisfy the T-NOVA requirements and to improve the 
performance of the NFVI have been identified. The key recommendations are as 
follows: 
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§ Virtualisation Technology: 

§ Docker container deployment provided better VNF throughput 
performance in comparison to a standard VM/VNF deployment. However, 
in order to support the T-NOVA requirements, the bare metal 
configuration is not flexible enough, whereas Docker comes with various 
issues that have been outlined in Deliverable 2.32. 

§ The recommended solution is the virtualisation technology based on KVM, 
since it is possible to address the virtualisation performance overhead 
using data plane acceleration technologies.  

§ Network packet processing technology: 

§ Default virtual switches do not provide the required Telco level of 
performance (10Gbps throughput). 

§ The usage of SR-IOV channels is recommended if the level of required 
flexibility is not too high. (SR-IOV cannot be used if live migration is 
required) 

§ The accelerated version of Open vSwitch could afford the T-NOVA 
performance requirements, (see DPDK vSwitch). 

§ DPDK as data plane packet acceleration technology within the guest VM is 
strongly recommended (in the case of the virtual Traffic Classifier it allows 
it reach up to 8Gbps throughput). 

§ Core Pinning and Isolation 

§ DPDK vSwitch can be pinned on physical cores. The best allocation for 
DPDK is four cores. This is the minimal requirement to work, however 
additional cores will not provide any improvement. 

§ The same rationale can be extent to the VMs, but the number of cores is 
specific for each workload, therefore workload characterisation is 
recommended prior to deployment. 

§ Using core pinning for VMs improves the performance of the VMs 
reducing the interplay effect between VMs deployed on the same 
compute node and the L1 and L2 cache misses, resulting in improved 
performance. 

§ NUMA Pinning 

§ The NIC has to be installed on NUMA node 0. 
§ Network workloads have to be deployed as much as possible on the same 

NUMA node connected to PCIe channel of the NIC. 

§ Huge pages 

The huge page support is desirable, as it reduces the interplay effects 
between VMs deployed on the same compute node. (The impact of this can 
vary among different workload types). 
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5. STORAGE PERFORMANCE CHARACTERISATION 

The deployment and execution of VNFs in the T-NOVA system requires the allocation 
of appropriate storage resources in the NFVI. Storage is involved in the lifecycle of a 
VNF at two levels: 

1. Infrastructural level (black-box VM) - In an NFV environment, as well as in 
any virtualised, cloud-based platform, storage resources are required to 
support the deployment of computational resources. Storage devices are 
required to provide repositories for VNF images, from which they can be 
retrieved and deployed as VMs each time a new VNF is instantiated or scaled 
out. When VNFs are in execution mode, they require storage devices, not only 
to perform their specific functions, but also to guarantee their availability. 
Storage can at any time hold an updated snapshot of the VNF’s running 
VNFC’s thus ensuring that in the event of issues the host VM can be moved to 
a different node without (or with minimal) service interruption. 

2. Application level (white-box VM) - To enable the execution of a VNF, 
storage resources may be required. The required allocation of resources will 
be dependent on the specific functionality of the VNF. Although many 
network functions are not characterised by being storage-bound, there are 
cases where this condition applies (e.g., functions processing high throughput 
streams, content distribution network (CDN) related functions, etc.). Hence, 
the functional performance of the VNF (what happens inside the host VM) can 
strongly depend on the characteristics of the available storage resources. 

There are a number of different storage technology options that can be utilised in the 
provisioning of resources within an NFV framework. Selected options can potentially 
have an impact in terms of performance, availability, or other key performance 
indicators (KPIs) associated to the whole NFVI layer. Therefore it is important to 
include storage characterisation as part of the overall NFVI technology 
characterisation presented in this deliverable in order to ensure, that the right 
options are selected in the NFVI design and implementation. 

5.1. Methodology 

The storage characterisation process was carried out based on the following key 
steps: 

1. Identification of the key technology options to be evaluated; 

2. Appraisal of the potential impact of any option on NFVI performance and 
behaviour; 

3. Identification of the most significant configurations, combining the various 
options applicable to operational deployments. 

Following step one, the storage technology options listed in Table 5.1 were identified. 
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Table 5.1 Storage technology option list 

Feature/parameter Possible options 

VNF lifecycle phase 

• First instantiation 
• On-line instantiation (scaling) 
• Execution (storage used by VNF application) 
• Migration 

Media technology 
• HDD 
• Solid state 

Storage model 
• Block (OpenStack Cinder) 
• Object (OpenStack Swift) 
• Both (with Ceph) 

Storage location 
• Storage on Nova Compute Node: Local vs SAN 
• Storage on Cinder Node: Local vs SAN 
• Storage on Ceph node 

VM volume type 
• Bootable volume 
• Additional (non-bootable) volumes 

Transversal features 
• Latency critical 
• Dependent upon the specific application in the 

VNF 

An additional step in the characterisation setup is the selection of a candidate VNF 
workload. To satisfy this requirement a storage intensive VNF was necessary in order 
to appropriately stress the storage resources and to provide indicative metrics related 
to the impact of storage operations.  

After some investigation, balancing the trade-off between VNF features with timing 
needs for the execution of the characterisation experimental protocol, a Squid proxy 
VNF was selected. The VNF executes a tuneable and potentially intensive number of 
caching operations, supporting the collection of measurements relating to storage 
performance impacts. 

5.2. Test Cases 

The first step in the execution of the test cases was to exclude options which were 
deemed not to be sufficiently relevant. Then the key considerations were identified 
which are as follows: 

• Initial instantiation and runtime instantiation of a VNF (the latter triggered by 
scaling out) are functionally identical; they were considered separately, since 
scaling could potentially have considerably tighter performance constraints to 
prevent possible service interruptions, whereas for initial instantiation no 
special requirement is expected on the speed of deployment; 

• Latency problems are particularly relevant during the VNF execution phase; 

• Local disks have cost advantages with respect to Storage-Area Network (SAN) 
storage, at the expense of reliability/availability, as well as performance in the 
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case of live migration (they force the migration all data in conjunction to 
moving the VMs to a different computing node); 

• Solid State Disks (SSD) can provide significant performance advantages with 
respect to High Density Disks (HDD) whenever there is a real constraint on 
read/write performance;  

• Object storage is of limited scope within T-NOVA; the key focus is on options 
related to block storage, and include volume persistence as a varying 
parameter. 

Utilising these considerations the choice for the most representative process 
influenced by storage technologies and configuration was identified as Live 
Migration. Live Migration can be divided in three types, each one involving the 
storage subsystem: 

• Host only 
o Refers to the movement of the host on which the VM is running on; 

while all files representing the VMs disks (the virtual disks) remain on 
the same storage location as before. 

o Using block storage technology (e.g. Cinder), or more generally in the 
case of shared disks between the source and target host, storage is 
only involved for writing VM metadata. Instead, with ephemeral 
volumes on local disks a ‘host only’ migration moves the whole VM, so 
in this case falls into a type B migration. 

• Storage only 
o Usually indicated as “Storage Live Migration”. 

o Refers to the movement of all VM files (virtual disks and metadata) 
from a storage volume to another (can be on same or different 
storage arrays), while the VM continues to run on the same host. As 
stated above, in OpenStack Live Migration of VMs residing on 
ephemeral disks corresponds to a Storage Live Migration. 

o In this migration type, storage bound VNFs could exhibit impact on 
their service delivery capability. 

• Host and Storage together 

o There is no formal definition, sometimes defined as “Storage Live 
Migration” or sometimes as “Host and Storage Live Migration”. 

In addition a test matrix was composed with three macro test cases, which provided a 
representative characterisation of potential configurations of interest within the 
context of T-NOVA: 

1. Local disks ephemeral only, i.e. without persistent storage; 
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Figure 5-1: Local disks without persistent storage 

2. Local disks in both ephemeral and block storage flavours, i.e. plus persistent 
volumes; 

 

Figure 5-2 Local disks plus persistent volumes 

3. SAN disks used as block storage 

 

Figure 5-3 SAN disks 

The block storage technology used in the storage characterisation tests was Cinder, 
based on the OpenStack Kilo release. 
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5.3. Testbed Configuration 

Figure 5-4 below shows the configuration of the components utilised in the testbed. 

 
Figure 5-4 Testbed configuration 

• The compute nodes used were HP Proliant BL465 Gen8 with 2 x 300 GB 15K 
RPM internal disks. 

• The controller network nodes were virtual machines on an external vSphere 
farm. 

• The storage array was a HP 3PAR 
• The compute nodes were connected to the 3PAR storage array via Fibre 

Channel, through SAN switches  
• The OS for all nodes was Ubuntu Server 14.04.2. 
• OpenStack Kilo release - community standard flavour. 

5.4. Test Execution 

As outlined previously the tests focused on the Live Migration process of a VNF. The 
VNF used for these tests was a Squid based proxy VM, with caching enabled. 

Tests were executed with three different cache sizes: 

I. 1 GB 
II. 5 GB 
III. 15 GB 

15GB was set as the maximum useful cache size. With 1GB and 5GB (with ephemeral 
volumes) the http download duration was lower than the Live Migration duration. 
With a 15GB cache size the inverse was true which indicated VNF proxy activity 
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during the complete Live Migration process. For block storage based volumes, the 
Live Migration duration is so quick that even a download of just 1GB from cache took 
longer. 

For each cache size, Live Migration of the Squid VNF was executed with the following 
three cache activity types: 

1. Squid VNF solely reading cache 
2. Squid VNF solely writing cache 
3. Cache was idle 

Finally the combination of the above 3 x 3 cases (cache size and activity type) were 
repeated based on two of the three scenarios described in the previous paragraph, 
i.e.: 

A. Ephemeral volumes located on local disks 
B. Cinder block storage volumes located on local disks 
C. Cinder block storage volumes located on a shared disk provided by a storage 

array in SAN 

For each one of the 27 resulting tests, several iterations were performed in order to 
establish statistically significant results. For the same reason, the metrics data 
collection was performed with different tools, namely: 

o Iotop - oriented to per-process monitoring. 
o Iostat - oriented to per-disk monitoring. 
o dstat – Dstat is a utility for monitoring systems during performance tuning 

tests, benchmarks or troubleshooting. Replacement for vmstat, iostat, netstat, 
nfsstat and ifstat. 

Metrics collected were: 

§ Live Migration duration 
§ Disks I/O throughput during the Live Migration process 

5.5. Results and Conclusions 

The results obtained for the executed experimental protocol are outlined in the 
following figures 5-5 to 5-9. 
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Figure 5-5: Live Migration duration while cache reading 

 

Figure 5-6: Live Migration duration while cache writing 
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Figure 5-7: Live Migration duration while the cache is idle 

 
Figure 5-8: Disk I/O: Live Migration with ephemeral volumes while cache reading 
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Figure 5-9: Disk I/O: Live Migration with block storage volumes while cache reading 

 
Figure 5-10: Disk I/O: Live Migration with block storage on SAN while cache reading 

Examining Figures 5-5 to 5-7 it is clear that the Live Migration duration with 
ephemeral volumes increases with the cache size, with approximately the same 
duration (in seconds) for cache reading and writing respectively and, as expected, has 
lower values when the cache in idle mode. This does not occur when volumes are 
located on a block storage solution such as Cinder. In this case the Live Migration 
duration: 

• Is much lower than with ephemeral volumes; 
• Cache size has no influence 

As a general consideration, the SAN case provides results similar to the Cinder/local 
storage configuration as the latter has proved significantly different from the 
ephemeral storage case. 
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As outlined previously Live Migration elapsed time exhibits sensitivity to variations of 
cache size. In the case of ephemeral storage the duration increases with cache size, 
whereas it appears to remain constant in the case of Cinder block storage. This is 
explained by the different order of magnitude for the migration execution. In the case 
of block storage, this is faster than the cache downloading time, even at the lowest 
tested cache size. In the ephemeral storage case, migration is not as fast, and cache 
downloading has a growing impact with increasing size. 

As previously outlined, cache sizes above 15GB did not have added significance in the 
context of the test cases, as at this threshold level the cache download time 
systematically exceeds the migration duration with any storage class.  

The results obtained indicate the performance improvement obtained with local disks 
on the hosts (configuration is less expensive than disks on a SAN based storage 
array). In fact, with ephemeral volumes on local disks Live Migration becomes 
bounded to a Storage Live Migration constraint. The same conclusions can be 
derived in the case of block storage on SAN, where migration time has comparable 
durations with that of Cinder block storage on local disks. 

With respect to I/O throughput during the migration, it can be observed in Figures 5-
8 to 5-10 a steep decline in throughput corresponding to storage migration. 
However, this step is far narrower in cases of block storage (both local or on a SAN) 
with respect to ephemeral volumes, as expected. There is an increase from a few 
seconds to the tens of seconds, which could have an impact on quality of service. 
With SAN storage the impact of live migration is comparable with the local block 
storage case and it is even less perceivable. 

Analysis of the results indicate that using block storage technology (either on local 
disks of compute nodes or on a SAN based storage array) is the preferred option in 
comparison to ephemeral volumes, exhibiting both insensitivity to cache size 
variations and a significant reduction in the window where I/O throughput falls short. 

Of course there are scenarios where the selection of a storage array (SAN) based 
block storage solution could be preferential to local disks, but this decision must be 
taken after a considered trade-off analysis, taking into account the costs of storage 
array solutions and consequently evaluating the return on investment (ROI) for both 
approaches. A SAN option should carefully balance the required service levels and 
the potential frequency of migration events. In other words, the marginal cost of a 
SAN infrastructure should be motivated by an actual compelling need in terms of 
performance (tight application requirements for the VNF) and/or availability 
requirements (need to minimise service quality issues). 

5.5.1. Further Investigations 

There is potential for additional investigations can be performed in the future to 
extend the current results. Additional areas of interest include: 

• SSD storage technology evaluation  

• Use of Ceph as a block storage option alternative to Cinder; 

• Investigation of VNFs with high affinity for storage performance. 
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6. VNF WORKLOAD CHARACTERISATION FRAMEWORK 

Industry initiatives such as OPNFV or standard bodies such as ETSI or IETF have 
initiated various projects to address different aspects of workload characterisation. 
This includes the definition of methodologies, modifications to existing 
methodologies, development of tools to support characterisation of VNF workloads 
or verification of infrastructure that supports VNFs. 

Typically workload characterisation is a manual process, however in order to address 
VNF workload characterisation at scale i.e. investigation of multiple configuration 
combinations requires a repeatable, automated and robust methodology. This 
methodology can be used to identify bottlenecks and platform feature affinities for 
different classes of VNF: this is very important capability for T-NOVA, especially when 
external developers are providing their own implementation of VNFs. In this task a 
prototype framework was developed to address this need. The following sections 
describe the key features and implementation details of the framework. 

6.1. Framework Overview 

Evaluation of VNF configurations is typically limited in the number of test cases that 
can be completed due to the characteristically manual nature of the process. 
However, in order to develop a granular understanding of how a VNF behaves with 
respect to its host infrastructure environment, it is necessary to investigate various 
configurations and to repeat this process for multiple iterations to obtain statistically 
meaningful data. The total number of configurations to be tested can be very high 
and depends on the number of different parameters to be analysed and the number 
of values to be explored for each parameter. 

The framework is designed to automatically test various configurations of the VNF, in 
an iterative manner on different target platforms to evaluate the affinity a VNF has for 
either allocations of compute resources (e.g. OpenStack flavour) or the effect of 
specific platform features on VNF performance. Parameters which can be investigated 
are those specified in the Heat template describing the deployment of VNF and its 
component VNFCs. Parameters of specific interest are defined in a configuration file 
which is used by the framework and includes the value types to be investigated 
(examples of parameters are: vNICs technology, Scheduler Hints, vCPUs, etc.; whereas 
examples of configuration values include Scheduler Hints e.g. “SameHostFilter” or 
“DifferentHostFilter”, for vCPUs an integer value range, etc.). 

The framework provides orchestration of the full test case lifecycle. A typical test case 
will comprise of template deployment, followed by VNF load application (e.g. traffic 
generation sent to the deployed VNF), collection of real time data on performance 
(e.g. network throughput), and VNF deletion. This process is repeated until all 
templates have been deployed. 

The framework is designed to support a user specified telemetry solution due to the 
wide range of open source telemetry solutions (e.g. Collectd, Nagios, Ganglia etc.) 
and the typical requirement for users to implement their own data formats and 
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metrics. For the purposes of the evaluating the framework and executing the test 
case scenarios described in section 7-3 the Cimmaron [20] telemetry platform was 
used to capture real-time performance metrics. 

6.2. Framework Architecture and Implementation 

The high-level architecture of the framework comprises three key functional blocks as 
shown in Figure 5-1. The key blocks of functionality in the framework are: 

• Template Generation- this block is responsible for generating a set of heat 
templates representing the configurations to be tested according to the 
configuration file containing the configuration parameters and value ranges. 

• Test Case Execution – this block is responsible for deploying each template 
sequentially through the OpenStack Heat service, executing the required test 
cases using the deployed VNF and deleting it after the experiment. 

• Data Analysis – this block is responsible for formatting and processing all the 
data files generated at the end of experiments. The default format for the 
processed data is a CSV (Comma Separated Variable) file. This block can also 
call an analytics platform passing the processed data files and collecting 
results. 

 
Figure 6-1 High level architecture of framework 

All components of the framework were implemented in Python. A more detailed 
description of the software modules is provided in the following sections. 
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6.3. Template Generation Block 

The Template generation block of the framework is responsible for the generation of 
all Heat templates necessary to test the capabilities of interest to the user. This block 
is composed by a single software module that takes as its input a “generic” Heat 
Template written in yaml, hereinafter called the “Base Heat Template”. 

The base Heat template and the framework’s configuration file are parsed and 
platform information from both sources is combined and used by an algorithm to 
generate a hierarchical tree structure. The algorithm starts by constructing a root 
node, the first level leaves are then added and this process is repeated for all 
parameters. The number of leaves is dependent on the number of possible values for 
each parameter. 

More specifically, the base Heat template is a template that describes the specific 
workload (VMs and their components, like vNICs, Flavours, etc.) and includes 
placeholders for the configuration parameters that will be populated from the 
configuration file. It is therefore necessary for the user to set the placeholders in the 
base Heat template and to contextually set the values that these parameters have to 
assume in the configuration files. The user can also specify a cost associated to each 
single configuration value: the cost has to be a numeric value and has to be 
expressed according to a specific syntax: in the base Heat template it is necessary to 
use the ‘#’ special character to indicate that a string corresponding to the name of a 
parameter; in the configuration file the syntax is expressed as follow:  

PARAM_NAME = @type “val1” “val2” … “valN” @costs ‘cost1’ ‘cost2’ … ‘costN’ 

In Figure 5-2 an example of the syntax is provided. 

 

Figure 5-2 User defined syntax for the heat template generation block 

6.4. Test Case Execution Block 

The Test Case (TC) Execution block is responsible for the actual execution of the test 
cases for each configuration previously generated by the template generation block. 
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This block comprises a number of software modules, namely: 

• Benchmarking Unit 
• Deployment Unit 
• Data Manager 

The Benchmarking Unit is the primary module of the block: it is responsible for 
managing the test case execution lifecycle which comprises of: the iterative 
deployment of the workloads, the execution of the test cases required by the user, 
the collection of data from each experiment and the termination of the workloads. 
This module utilises the Deployment Unit to deploy and terminate workloads and 
uses the Data Manager to store metadata for each experiment and to collect results. 
Each test case is defined as a class that extends a base test case abstract class and 
implements three required methods: initialise (initialise setup of resources for test case 
execution), finalise (termination and removal of test case deployment) and run (test 
case execution e.g. sends traffic to the VNF).  

Some test cases are natively provided with the framework: their description is 
provided in Section 8. The test cases can access a library that provides control of the 
packet generator and allows the test cases to generate traffic and to send it to the 
VNF. The framework supports the DPDK packet generator through a combination of 
Python and Lua scripts (Lua is the only interface supported by the packet generation 
for external programmatic control), however the user can implement their own 
wrapper for any packet generator that offers an appropriate API.  

The user can specify a list of test cases to run with each configuration, including both 
the native test cases provided with the framework and the user implemented ones; 
then, the Benchmarking Unit performs the following actions for all configurations 
previously generated: 

1. Each workload is deployed through the OpenStack Heat service, which 
creates the VMs, installs the VNF software and a telemetry agent to measure 
internal metrics at a 1 Hz sampling interval. Details of the telemetry agent 
and supporting backend have been previously reported [8]. 

2. Execution of each test case from the list of the ones indicated by the user. 

3. Collection of the results from each test case. 

4. Termination of the workload. 

The Deployment Unit is a module that manages the deployment of the VNF 
workloads on the benchmarking testbed. The credentials to access the testbed are 
specified by the user into the configuration file, along with the URL of the OpenStack 
controller and the access URL of the Heat service. This module keeps track of the 
workloads deployed during the execution of the test cases, manages any errors that 
may occur during the deployment and resets the system (terminates the workloads) 
at the end of each test sequence. The actual implementation of the calls to the Heat 
service are managed by a decoupled software component, the Heat Manager, in 
order to make the Deployment Unit more generic and extensible to support other 
platforms in the future. 
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The Data Manager module manages the data related to experiments. For each 
experiment an object is instantiated and three different types of data are identified 
and organised in three different dictionaries:  

• Configuration: includes the specific key-value pairs describing the 
configuration parameters that characterise the experimental set-up. 

• Results: the results are organised as a dictionary of benchmarks and, for each 
benchmark, there is a list of data points that represent the specific result. Each 
data point is again a dictionary that includes key-value items defined within 
the specific test case. This feature allows each test case to have its own set of 
metrics as results and also allows the user to easily define their own set. 

• Metadata: all other relevant data that needs to be saved for an experiment 
(start time, stop time, etc.). 

6.5. Data Analysis Block 

The Data Analysis functional block is responsible for processing and analysing the 
data collected during each experiment and supporting the automated and 
performant deployment of workloads. In order to support this, the block functions in 
three phases: 

• Data formatting: realised through the Data Manager (described in the 
previous section), which generates CSV files. More specifically, the Data 
Manager generates a single CSV file for each test case executed with a 
workload. Each row of the file represents a data point and contains data 
related to the specific configuration deployed (see Table 5-1) for that data 
point and the correspondent results obtained during execution of a test case. 

• Data Analysis: an analytics platform is invoked in order to process the data 
and generate a model. The analytics platform takes a CSV file input and 
outputs a model that describes the required configuration to reach a specific 
performance target (i.e. a specific network performance). The framework 
supports models in the form of a decision tree.  

• Performant deployment: This involves the processing of the model and the 
selection of the configuration parameters according to the network 
performance intent specified by the user. This phase is supported by a 
software module that collects the decision trees specific for each VNF and 
uses the rules to select the best configuration to achieve the required network 
intent. If the costs for each configuration values are specified in the 
configuration file, this module selects the configuration correspondent to the 
lower cost (see section 6.3.2 for more details). 
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Table 6.1 Configuration Metadata CSV file 

Vnic_type RAM CPU … Performance 

normal 1024 1 … 400M 

direct 1024 1 … 2G 

Normal 2048 1 … 500M 

Direct 2048 1 … 3G 

normal 1024 2 … 500M 

direct 1024 2 … 3G 

… … … … … 

The CSV format was selected to store the results of the experiments due to its 
simplicity and its widespread support across most analytics platforms. In order to 
support different analytics platforms, the user needs to implement a software module 
that provides an appropriate wrapper for a given analytics platform or set of analysis 
algorithms. The output of the algorithm has to be formatted as a decision tree and 
given to the Performant Deployment module, along with a VNF ID, in order to enable 
support for the performant deployment of that VNF. 

In the current implementation of the workload characterisation framework the data 
analysis block was configured to support the open source Weka machine learning 
platform. The data files collected for each test case were processed and formatted 
into a single data file which can be provided to Weka for modelling purposes. Weka 
is a data mining software application developed in Java [21]. It comprises of machine 
learning algorithms for data mining tasks. The algorithms can either be applied 
directly to a dataset or called directly from your own application when required. 
Weka contains various tools for data pre-processing, classification, regression, 
clustering, association rules, and visualisation. Its primary focus is enabling the 
development of new machine learning schemes. 

Finally, it is important to note that performant deployment can be decoupled from 
the framework: this allows the user to use the framework only as a collector of data 
(in CSV format) from experiments and therefore the data can be used as necessary 
for other purposes. 
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7. NFV WORKLOAD CHARACTERISATION 

Workload characterisation is the science of a methodical approach which is used to 
observe, identify and explain the phenomena of work in a manner that allows you to 
develop a clear and insightful understanding of how resources are being used by a 
given workload [22]. The primary objective of workload characterisation is to derive 
metrics and models to show, capture, and reproduce the behaviour of the workload 
and its most important features [23]. 

For any VNF type workload it is important to have a detailed understanding of its 
performance characteristics. It is necessary to build a picture of the VNF’s affinities for 
compute resource allocations and platform specific features in order to understand 
how it will behave when deployed. In order to appropriately interrogate these 
affinities requires the deployment of various compute resource allocations and to 
quantify the performance of a VNF using telemetry in a statistically meaningful 
manner. Even for relatively simple VNFs with constrained boundary conditions in 
terms of resource allocation ranges, workload characterisation will require tens or 
hundreds of distinct configurations. This can quickly grow into thousands of 
deployments to ensure data robustness. This constraint catalysed the development of 
the framework described in the previous section. In this section the application of the 
framework to characterise a virtualised traffic classifier which was developed by 
NCSRD in WP5 is described. The relationship between different flavour allocations 
and VNF performance was investigated. The effect of different network connectivity 
technologies was also investigated. Finally using the data from the experiments 
performed, a decision tree model was developed. The model is used to specify the 
type and quantity of resources to be allocated when deploying the virtualised traffic 
classifier in order to achieve a targeted network throughput performance. 

7.1. Virtualised Traffic Classifier 

The virtualised traffic classifier VNF used comprises of two Virtual Network Function 
Components (VNFCs), namely the Traffic Inspection engine and the Classification and 
Forwarding function as shown in Figure 7-1. The two VNFCs are implemented in 
respective VMs. The Traffic Classifier is based upon a Deep Packet Inspection (DPI) 
approach, which is used to analyse a small number of initial packets from a flow in 
order to identify the flow type. After the flow identification step, no further packets 
are inspected. The Traffic Classifier follows the Packet Based per Flow State (PBFS) in 
order to track the respective flows. This method uses a table to track each session 
based on the 5-tuples (source address, destination address, source port, destination 
port, and the transport protocol) that is created for each flow. 



T-NOVA | Deliverable D4.01  Infrastructure Virtualisation 

© T-NOVA Consortium  
 

62 

 
Figure 7-1 Virtualised Traffic Classifier High Level Architecture 

Both VNFCs can run independently from one another, but in order for the VNF to 
have the expected behaviour and output, the two VNFCs are required to operate in a 
parallel manner. 

7.1.1. Traffic Classifier Architecture 

The Traffic Inspection VNFC is the most computationally intensive component of the 
VNF. It implements filtering and packet matching algorithms in order to support the 
enhanced traffic forwarding capability of the VNF. The component supports a flow 
table (exploiting hashing algorithms for fast indexing of flows) and an inspection 
engine for traffic classification. The implementation used for these experiments 
exploits the nDPI library [9]. The packet capturing mechanism is implemented using 
libpcap. This component does not block or delay unidentified traffic as traffic is 
mirrored to both VNFCs. When the traffic inspection engine identifies a new flow, the 
flow register is updated with the appropriate information and transmitted across to 
the Traffic Forwarding VNFC, which then applies any required policy updates.  

The Traffic Forwarding VNFC component is responsible for routing and packet 
forwarding. It accepts incoming network traffic, consults the flow table for 
classification information for each incoming flow and then applies pre-defined 
policies marking e.g. type of Service/Differentiated Services Code Point (TOS/DSCP) 
multimedia traffic for QoS enablement on the forwarded traffic. It is assumed that the 
traffic is forwarded using the default policy until it is identified and new policies are 
enforced. The expected response delay is considered to be negligible, as only a small 
number of packets are required to identify each flow. In a scenario where the VNFCs 
are not deployed on the same compute node, traffic mirroring may introduce 
additional overhead. 

7.2. Experimental Configuration 

The experimental configuration was based around the testbed described in section 
3.2. The specific configuration used in the set of experiments described is shown in 
Figure 7-2. It comprised of an OpenStack Juno based cloud environment, which 
included: a controller (Intel® Core™ i7, @ 3.40GHz 32GB RAM), two compute nodes 
(dual socket Intel® Xeon® E5 2680 v2@ 2.80GHz with 10 cores, 64GB RAM) and a 
traffic generator (Intel® Core™ i7@ 3.40GHz, 32 GB RAM) connected on the same 
network domain through a 10Gbps switch. All compute nodes used Intel® Dual 
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Ethernet Converged Network Adapters (X540-T2). The compute node configuration 
enabled the hosted VMs to use both vNICs connected to OVS (Open vSwitch) in the 
form of a software-assisted solution and physical NICs with PCIe pass-through, 
exploiting SR-IOV in the form of a hardware-assisted solution. A packet generator 
was used to stress test the performance of the VNF under test. The deployment of 
the vTC, test case execution, data collection and processing in the testbed was 
controlled by the VNF workload characterisation framework (see section 6). 

 
Figure 7-2 High level architecture of experimental testbed. 

7.2.1. Networking Traffic Generation Setup 

The performance of the vTC VNF is dependent on the following factors with respect 
to the traffic profile, namely (i) the number of flows; (ii) flow duration; (iii) stateful 
protocol matching versus static port. In this context a traffic profile which consists of 
high volume, short-lived flows consumes a higher level of compute resources (CPU 
and memory) in order to support classification of the new flows. Additionally other 
factors that affect the performance of the VNF are dependent solely on its 
configuration and enabled features. These factors are: (i) the number of protocols 
being matched against, (ii) the number of regular expressions used and (iii) matching 
algorithm complexity. Throughout the experimental protocol the same mixture of 
traffic and VNF setup was utilised in order to minimise any influence from the factors 
outlined which can affect the VNF’s performance behaviour. 

The traffic profile used in the experiments was based on real traffic traces captured in 
NCSRD’s network. In total the captured traffic contained 2343 unique flows utilising 
28 different application protocols. The captured PCAP files were reproduced during 
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the experiments using a packet generator capable of reaching 10Gbps line rates. The 
packet destination addresses for the generated were re-written and replaced with a 
multicast destination address. This modification is necessary due to the fact that the 
traffic needs to be mirrored to both VNFCs. This method was preferred over 
performing traffic mirroring at the OVS level (at the compute node), which could 
introduce additional latencies and increase resource utilisation.  

7.3. Test Case Scenarios 

The following section describes a test case scenario where the framework was 
applied. The scenario investigated the effect of allocating OVS and SR-IOV network 
connections on the performance of a vTC. The framework was also used to 
investigate an approach which supports a VNF deployment based on network 
performance intent. 

7.3.1. OVS vs SR-IOV Characterisation 

The framework was used to investigate the effect of allocating OVS and SR-IOV 
physical channel connections to the network ports of the VNFCs comprising the VNF. 
As shown in Figure 7-1 the VNF has 5 network port connections providing ingress, 
egress and inter VNFC connectivity. Two Heat templates were generated to reflect 
this configuration with the two instances generated being deployed on two different 
physical hosts, respectively with and without SR-IOV capabilities. As shown in Figure 
7-3 each instance had dedicated destination test endpoints (TP2 and TP3) 
implemented as virtual machines which were used to measure the amount of traffic 
the VNF was able to forward. A third endpoint destination (TP1) acted as a network 
throughput reference point by intercepting all traffic sent by the traffic generator. A 
traffic generator [8] was used to generate multicast traffic flows that were 
simultaneously sent to both VNFs and TP1. The traffic rate was accelerated at runtime 
in order to send a linearly increasing traffic profile, ranging from 1Mbps to 9.6Gbps.  

 
Figure 7-3 Testpoint configuration for VNF testing 

7.3.2. Network Intent Test Case 

The network intent test case investigated an approach which supports VNF 
deployments based on network performance intent. The main purpose of the test 
case was to support an automated deployment which is capable of selecting the 
minimum resource configuration for a VNF which will provide the desired level of 
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performance specified by an SLA. This relates to a scenario where a Service Provider 
wishes to provide the same service to many users with different SLAs by using 
different VNF flavours. The concept of flavour in this context is distinctly different to 
OpenStack’s VM flavour. In this context it is intended to define the complete 
deployment configuration of all the VNFCs composing a VNF. It includes the 
configuration of the network interfaces, the scheduler hints and other elements 
necessary to instantiate the VMs in additional to the required allocations of vCPUs, 
RAM and storage. In order to define the VNF flavours, a set of experiments were 
carried out using the framework to collect and analyse the data based on various 
deployment configurations (SR-IOV allocation and VM flavours). Three bandwidth 
SLA targets were selected (400Mbps, 800Mbps and 3Gbps). The data collected was 
analysed using the J48 machine learning algorithm [24], specifically the Weka 
implementation which returns a decision tree as its output. The approach is designed 
to support the automated building of VNF flavours, according to the network 
performance intent of the customer, selecting the most efficient configuration (in 
terms of usage of resources) which can provide the required SLA. 

7.3.3. Results and Discussion 

The following sections present the key results relating to the test case scenarios 
described in the previous section. 

7.3.3.1.  OVS vs SR-IOV Characterisation 

The results of the characterisation experiments are shown in Figure 7-4. The network 
traffic load was increased linearly from 1 Mbps to 9.6Gbps over the course of the 
experimental run which was approximately 140 seconds in duration. The VNF 
deployment utilising OVS exhibited network saturation effects at approximately 360 
Mbps. The VNF deployment utilising SR-IOV exhibited a 10 fold improvement over 
OVS with saturation occurring at approximately 3.6Gbps. However the results also 
indicate a significant gap between the throughput achieved by the forwarding VNFC 
and the total traffic load. 

 
Figure 7-4. SR-IOV vs OVS throughput. 

The VNF also generates metrics to monitor its internal performance which are 
typically used by a VNF Manager (VNFM) to manage the VNF when deployed. For the 
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purposes of this experiment these metrics were captured and integrated into the 
telemetry platform for further analysis. In Figure 7-5 the number of flows detected 
per second by the VNF is shown. The ability of the VNF to detect unique flows is 
significantly affected by the allocation of SR-IOV or OVS and corresponds to the 
pattern of behaviour shown in Figure 7-5.  

 
Figure 7-5 SR-IOV vs OVS number of detected flows 

7.3.3.2.  Network Intent 

In order to explore different network performance intents, 32 different configurations 
consisting of various network connection types between SR-IOV and OVS for the 
VNFCs of the VNF were investigated. The test scenarios were automatically 
provisioned, tested and analysed using the framework, generating all possible 
combinations of the variables (Five vNICs with two allowed values). Each 
configuration was tested three times using 60 second test durations. Over 6000 data 
points were generated and analysed using the J48 algorithm to generate a decision 
tree as shown in Figure 7-6. 

 
Figure 7-6 J48 Decision Tree 

Using this tree it is possible to select a VNF configuration to achieve a given SLA. For 
instance, the minimal configuration to achieve a forwarding throughput of 3Gbps is 
achieved by allocating SR-IOV to vNICs 4 and 5 both and OVS to the other interfaces.  

The same experiments were performed for various flavours of the Forwarding VNFC, 
specifically varying the quantity of vCPUs and of RAM assigned to the VM. For this 
experimental configuration SR-IOV channels were statically assigned to the vNICs 1, 4 
and 5. The number of vCPUs assigned to the VM was varied between 1 and 10 and 
RAM allocations between 2 and 8GBs in 1GB incremental steps. The total number of 
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possible combinations of configuration for this experiment was 70. Each 
configuration was tested 3 times over a 60 second duration using the framework. In 
total 14,000 data points were collected which were used for model generation in 
WEKA. 

The results obtained do not indicate any particular dependency on the flavour of the 
VM i.e. the VNFC was not CPU or memory bound; therefore a minimum VNF flavour 
(1 vCPU, 2GB RAM) was sufficient to achieve a 3Gbps traffic throughput. Of course, 
this result is specific for the virtualised traffic classifier under test and for the physical 
infrastructure setup utilised. The J48 algorithm did not return any decision tree.  

To check the validity of the results obtained two deployments were carried out. One 
deployment was based on a maximum resources allocation and a second deployment 
was based on the resources selected by the framework. A side to side performance 
comparison of the respective deployments is shown in Figure 7-7. The network 
throughput achieved is the same for both deployments. However in the second 
deployment the result is achieved with a significantly smaller allocation of resources 
which provides tangible support for the approach outlined. 

 
Figure 7-7 Effect of vCPU’s allocation (High and Low performance evenly distributed 

indicating no influence 

7.4. Conclusions 
While the utilisation of a VNFD is the current industry approach to support the 
automated deployment of VNFs in cloud computing environments, it has potential 
limitations from an Orchestration perspective and does not take into account 
underutilisation of compute resources. To address this limitation, the potential of 
‘network performance intent’ was investigated. The effect of the deployment 
configuration, i.e. the VNF flavour, on the performance has been demonstrated using 
a comparison between OVS and SR-IOV network technologies. Additionally an 
approach for the automatic selection of the best VNF flavour has been proposed and 
a framework has been designed and developed to support dynamic configuration 
selection at runtime.  

It has been shown that this approach can be used to define appropriate deployment 
configurations in an automated manner to achieve a specific network related 
performance intent with a minimal configuration of a VNF i.e. consumes the lowest 
amount of resources (e.g. number of SR-IOV channels, number of vCPUs, amount of 
RAM, etc.) for the required performance intent.  
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8. T-NOVA CONTRIBUTION TO OPNFV YARDSTICK 

PROJECT 

In September 2014 the Linux Foundation 
announced the Open Platform for NFV Project 
(OPNFV) [25] which is focused on developing a 
carrier-grade, integrated, open source 
reference platform.  

The goal of OPNFV is to accelerate the 
introduction of new NFV products and services. 

As an open source project it is positioned to bring together the work of standards 
bodies, open source communities and commercial suppliers to deliver a de facto 
standard open source NFV platform for the industry. By integrating components from 
upstream projects, the community is carrying out performance and use case-based 
testing to ensure the platform’s suitability for NFV use cases. OPNFV aims also to 
bring the learnings from its work directly to those communities in the form of 
blueprints, patches, and code contributions. 

The scope of OPNFV’s ARNO release (June 2015) was focused on building an NFV 
Infrastructure (NFVI) and Virtualised Infrastructure Management (VIM) by integrating 
components from upstream projects such as OpenDaylight, OpenStack, Ceph 
Storage, KVM, Open vSwitch, and Linux. These components, along with application 
programmable interfaces (APIs) to other NFV elements form the basic infrastructure 
required for VNFs and Management and Network Orchestration (MANO) 
components. OPNFV’s goal is to increase performance and power efficiency; improve 
reliability, availability, and serviceability; and deliver comprehensive platform 
instrumentation. 

One of the projects in OPNFV is Yardstick which is focused on the verification the 
infrastructure compliance when running VNF applications. The activities of Yardstick 
and activities in Task 4.1 have an obvious alignment. During the course of Task 4.1 
partners from the task engaged with Yardstick team and identified opportunities for 
the task to make a meaningful contribution to the Yardstick project. The following 
sections describe T-NOVA contributions to Yardstick project which are planned to be 
included in the OPNFV Brahmaputra release scheduled for early 2016. 

8.1. Yardstick Project 

The goal of the Yardstick Project is to verify the infrastructure compliance when 
running VNF applications. NFV use cases described in ETSI GS NFV 001 show a large 
variety of applications, each defining specific requirements and complex 
configuration on the underlying infrastructure and test tools. The Yardstick concept 
decomposes typical VNF work-load performance metrics into a number of 
characteristics/performance vectors, which each of them can be represented by 
distinct test-cases. The project scope is to develop a test framework, test cases and 
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test stimuli. The methodology used by the Project, to verify the infrastructure from 
the perspective of a VNF, is aligned with ETSI TST001 [2]. 

8.2. T-NOVA Contribution to Yardstick 

The T-NOVA contribution to the Yardstick project is mainly composed by the virtual 
Traffic Classifier (vTC) network function developed in WP5 along with a number of 
VNF lifecycle and data plane benchmarking test cases and the Workload 
Characterisation Framework described in Section 5. The workload characterisation 
framework provides full test case lifecycle support: deployment of required resources, 
execution of the test case and the termination of the resources at the end of each 
test case. Some use cases have been already defined: they come with the framework 
and will be contributed to the Yardstick OPNFV project in order to support a user to 
characterise the vTC on top of their-own infrastructure. However it will be possible for 
the user to develop their onw test cases whose life cycle will be supported by the 
framework. 

A test case is defined as a set of actions to be performed in order to collect data or 
answer specific questions related to the workload under test (e.g. is the workload 
able to manage a given traffic rate?, or what is the highest supported throughput?, 
and so forth). 

For the sake of simplicity, within the framework each test case is organised into 
different phases. The instantiation and the termination of the workload and the 
allocation of required resources is realised by the Benchmarking Unit of the 
Framework, which also validates each deployment. A test case includes the following 
methods: 

§ Initialisation: provides the initialisation of the set of resources specific for a 
given test case (e.g. deployment of noisy neighbours on the physical host); 

§ Execution: the actual execution of the test case, which also needs to manage 
data collection and data persistence at the end of each experiment; 

§ Finalisation: termination of the resource set allocated during the initialisation 
phase. 

Four test cases are currently under development and will be contributed to Yardstick. 
They require traffic to be sent to the function under test and are based on the DPDK-
Pktgen packet generator. The test cases are based on the use of three physical 
compute nodes and two switches. The general configuration utilised is as follows: 

§ An OpenStack controller: 

o Operating System: Linux (Ubuntu 14.04) 
o OpenStack Controller (Kilo version).  
o Configuration of Neutron service based on VLANs (not GRE tunnels). 
o 1GB (or higher) Ethernet card connected a management network; 
o 1GB (or higher) Ethernet card to be connected to a data network; 
o 1GB (or higher) Ethernet card to be connected to an external network; 

§ An OpenStack compute node: 
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o Operating System: Linux (Ubuntu 14.04) 
o OpenStack Compute Node (Kilo –needs to be same as the controller 

node). 
o 1GB (or higher) Ethernet card to be connected to the management 

network, 
o 2x10GB Ethernet cards, SR-IOV enabled, to be connected to the data 

network (Intel X540-T2 NIC is preferable), one NIC is used for 
communications with the VM over an SR-IOV channel, the other NIC is 
used for communications via OVS. 

§ A node for hosting the packet generator and the execution of the framework: 

o Operating System: Linux (Ubuntu, Fedora or CentOS are valid options) 
o 1Gb (or higher) Ethernet card to be connected to the management 

network, 
o 2x10Gb DPDK compatible Ethernet cards connected to the data 

network (e.g. Intel X540-T2); 

§ Data Network switch: 

o 10GB interfaces 
o Multicast support (Internet Group Management Protocol (IGMP) and 

IGMP snooping protocols) 
o VLAN support 

§ Management Network switch: 

o 1GB (or higher) Ethernet interface. 

If only two physical nodes are available, the framework can also be executed in an 
All-In-One OpenStack setup, however the results of the performance characterisation 
will probably be influenced by this choice. A dedicated node is required for packet 
generator and framework execution. The vTC instances are executed by the 
framework on the OpenStack compute node sequentially. 

8.2.1. Test Cases 

A typical test case will comprise of template deployment, followed by traffic 
generation which is sent to the deployed VNF, collection of real time data on 
performance (e.g. network throughput), stopping network traffic generation followed 
by VNF and template deletion. This process is repeated until all templates have been 
deployed.  

The following test cases will be completed. 

• Network Throughput - Measurement of networking throughput using 
RFC2544 benchmarking methodology for network interconnect devices. This 
test case utilises the DPDK packet generator to generate a constant line rate 
network traffic load with different frame sizes (64, 128, 256, 512, 1024, 1280, 
1518 bytes). The throughput is calculated as the maximum traffic rate that is 
supported by the function under test for 60 seconds without any packet loss. 
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• Multi tenancy - Measurement of networking throughput using RFC2544 
benchmarking methodology for network interconnect devices in a multi-
tenancy deployment scenario. This test case utilises OpenStack Heat to 
generate multi instances of a generic traffic sender/receiver service that 
generates and consumes network traffic at defined rates. The test case 
deploys a single instance of the function under test with incrementally 
increasing instances of the sender/receiver service. This test case utilises the 
DPDK packet generator to generate a constant line rate network traffic load 
with different frame sizes. Throughput is calculated according to RFC2544. 

Deployment Scenarios: 

• The function under test, sender and receiver services are deployed on same 
physical compute node using OVS. 

• The function under test and sender service are deployed on the same physical 
compute node using OVS. The receiver service is deployed on a second 
physical compute node using OVS. 

• The function under test and sender and receiver services are deployed on 
same physical compute node. The function under test is allocated SR-IOV 
ports, and the sender receiver service is allocated OVS ports. 

• The function under test and sender receiver service are deployed on the same 
physical compute node. The function under test and the sender and receiver 
services are allocated SR-IOV ports. 

Details of the individual test cases adhering to the format proposed in ETSI GS NFV-
TST001 are described in the following sections. 
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8.2.2. Virtual Traffic Classifier Instantiation Test 

A detailed description of the protocol to be followed for this test case is presented in 
the following table, adhering to the format proposed in ETSI GS NFV-TST001. 

vTC Instantiation Test Description 

Identifier vTC _Instantiation_Test_1 

Test Purpose To verify that a newly instantiated vTC is ‘alive’ and functional. 

Configuration The values of the parameters composing the flavours of the vTC used 
for the test are provided in a configuration file or through an API. All 
possible configuration combinations are considered. In the case 
where only one value is provided for each parameter, the 
configuration under test will be one. 

References ETSI GS NFV MAN 001: "Network Functions Virtualisation (NFV); 
Management & Orchestration". 

ETSI GS NFV SWA 001: "Network Functions Virtualisation (NFV); VNF 
Architecture". 

 

Pre-test conditions • The Test vTC has been successfully instantiated and configured.  
• The user has specified the network throughput (expressed in 

unitary percentage of 10Gbps) that the vTC is should support on 
the current infrastructure. 

• The user has assigned the necessary NFVI resources and selected 
the correct parameter values for the vTC to perform at its target 
level. 

 

Test 

Sequence 
Step Type Description Result 

1 Stimulus The Test Controller triggers the creation 
and configuration of the vTC. 

 

2 Check The vTC has been successfully instantiated 
and has been allocated the necessary NFVI 
resources, as specified in the Heat 
Template. 

The vTC configuration script has been 
executed and the network function is ready 
to receive and process traffic. 

 

3 Stimulus This step involves the Test Controller (the 
framework) before initiating the actual test. 
The Test Controller is required to establish 
the necessary control plane or stateful 
sessions with the VNF. 
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vTC Instantiation Test Description 

Since the vTC VNF is session agnostic, this 
step is omitted by the test case.  

4 Check Follows Step 3.  

5 Stimulus The Test Controller originates the traffic to 
be sent to the vTC and the vTC processes 
the traffic and sends it to the destination, in 
order for the traffic to be analysed.  

 

6 Check The vTC instance forwards traffic for at least 
10 seconds. 

 

7 Check The Test Controller ensures that the vTC 
instance forwards all packets without errors, 
meets its user defined performance targets 
(throughput >= user specified value) and 
the packets are processed correctly. 

 

    

Test Verdict The vTC is deemed as successfully instantiated if all the checks 
are successful, else it is deemed DoA (dead-on-arrival). 
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8.2.3. Virtual Traffic Classifier Instantiation in the presence of Noisy 
Neighbours Test 

A more detailed description of the protocol for this test case is presented in the 
following table. 

vTC Instantiation in presence of noisy neighbours Test Description 

Identifier vTC _Instantiation_Test_2 

Test Purpose To verify that a newly instantiated vTC is ‘alive’ and functional in 
presence of noisy neighbours. 

Configuration The values of the parameters composing the flavours of the vTC used 
for the test are provided in the configuration file or through an API. 
All possible combinations of parameters and associated values are 
taken into account. If for each parameter only one value will be 
provided, the configuration under test will be one. 

References ETSI GS NFV MAN 001: "Network Functions Virtualisation (NFV); 
Management & Orchestration" 

ETSI GS NFV SWA 001: "Network Functions Virtualisation (NFV); VNF 
Architecture" 

 

Pre-test conditions • The Test vTC has been successfully instantiated and configured.  
• The user has specified the number of compute-bound noisy 

neighbours. 
• The user has specified the number of memory-bound noisy 

neighbours. 
• The user has specified the network throughput (expressed in 

unitary percentage of 10Gbps) that the vTC is required to support 
on the current infrastructure and with the current configuration. 

• The user has assigned the necessary NFVI resources and selected 
the right parameter values for the vTC to perform at its target 
level. 

 

Test 
Sequence 

Step Type Description Result 

1 Stimulus The Test Controller triggers the creation 
and configuration of the vTC. 

 

2 Stimulus The Test Controller triggers the creation 
and the configuration of the noisy 
neighbours, as required by the user. 

 

3 Check The vTC and the neighbours have been 
successfully instantiated and have been 
allocated the necessary NFVI resources, as 
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vTC Instantiation in presence of noisy neighbours Test Description 

specified in a Heat Template. 

The vTC configuration script has been 
executed and the network function is ready 
to receive and process traffic. 

4 Stimulus This step would involve the Test Controller 
(the framework) before to initiate the test. 
The Test Controller would be required to 
establish the necessary control plane or 
stateful sessions with the VNF. 

Since the vTC VNF is session agnostic, this 
step is omitted by this test case. 

 

5 Check Follows Step 4.  

6 Stimulus The Test Controller originates traffic to be 
sent to the vTC and the vTC processes it 
and sends it to the destination, in order for 
the traffic to be analysed.  

 

7 Check The vTC instance forwards traffic for at least 
10 seconds. 

 

8 Check The Test Controller ensures that the vTC 
instance forwards all packets without errors, 
meets its user defined performance targets 
(throughput >= user specified value) and 
the packets are processed correctly. 

 

    

Test Verdict The vTC is deemed as successfully instantiated if all the checks 
are successful, else it is deemed DoA 
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8.2.4. Virtual Traffic Classifier Data Plane Throughput Benchmarking 
Test 

This test case mainly involves the measurement of network throughput using the 
RFC2544 benchmarking methodology for network devices. Further details are 
provided in the following table. 

vTC Data Plane Throughput Benchmarking Test Description 

Identifier vTC Data Plane Throughput Benchmarking Test_1 

Test Purpose Measure the vTC’s network throughput according to the RFC 
2544 methodology for a user-defined set of vTC deployment 
configurations. 

Configuration The values of the parameters composing the flavours of the 
vTC used for the test are provided in the configuration file or 
through an API. All possible combinations of 
flavour/configuration are considered. If for each parameter 
only one value will be provided, the configuration under test 
will only be one. 

References ETSI GS NFV MAN 001: "Network Functions Virtualisation 
(NFV); Management & Orchestration" 

ETSI GS NFV SWA 001: "Network Functions Virtualisation 
(NFV); VNF Architecture" 

 

Pre-test conditions • The vTC has been successfully instantiated and configured.  
• The user has correctly assigned the values to the 

deployment configuration parameters. 
 

Test 
Sequence 

Step Type Description Result 

1 Stimulus The Test Controller triggers the 
creation and configuration of the vTC. 

 

2 Check The vTC has been successfully 
instantiated and has been allocated 
the necessary NFVI resources, as 
specified in the Heat Template. 

The vTC configuration script has been 
executed and the network function is 
ready to receive and process traffic. 

 

3 Stimulus This step would involve the Test 
Controller (the framework) before to 
initiating the test. The Test Controller 
would be required to establish the 
necessary control plane or stateful 
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vTC Data Plane Throughput Benchmarking Test Description 

sessions with the VNF. 

Since the vTC VNF is session agnostic, 
this step is omitted by this test case. 

4 Check Follows Step 4.  

5 Stimulus It is recommended to run the test 
cycle through different frame sizes 
and frame rates: 

• Frame sizes - [64 , 128, 256, 
1024, 1280, 1518 bytes]  

• Rate in percentage of 
available bandwidth - [10, 20, 
30, 40, …, 100]. 

The Test Controller originates traffic 
to be sent to the vTC and the vTC 
processes it and sends it to the 
destination, in order for the traffic to 
be analysed. It repeats the iterations 
until all frame sizes and frame rates 
have been exhausted. 

 

6 Check The vTC instance forwards traffic for 
at least 120 seconds. 

 

7 Check The Test Controller ensures that the 
vTC instance forwards all packets and 
calculates the maximum supported 
throughput for each configuration. 

 

    

Test Verdict The Test Controller returns a csv file with the results obtained 
during the test for the different configurations. 
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8.2.5. Virtual Traffic Classifier Data Plane Throughput Benchmarking 
in presence of noisy neighbours Test 

This test case mainly involves the measurement of networking throughput using 
RFC2544 benchmarking methodology for network devices. This test case also 
includes the presence of noisy neighbours. Further details are specified in the 
following table. 

vTC Data Plane Throughput Benchmark in presence of noisy neighbours Test Description 

Identifier vTC _Data Plane Throughput Benchmarking_Test_2 

Test Purpose Measure vTC throughput according to the RFC 2544 methodology for 
a user-defined set of vTC deployment configurations and in presence 
of compute-bound and network-bound noisy neighbours. 

Configuration The values of the parameters composing the flavours of the vTC used 
for the test are provided in the configuration file or through an API. 
All the possible combinations of those are taken into account. If for 
each parameter only one value will be provided, the configuration 
under test will only be one. 

References ETSI GS NFV MAN 001: "Network Functions Virtualisation (NFV); 
Management & Orchestration" 

ETSI GS NFV SWA 001: "Network Functions Virtualisation (NFV); VNF 
Architecture" 

 

Pre-test conditions • The Test vTC has been successfully instantiated and configured.  
• The user has specified the number of compute-bound noisy 

neighbours. 
• The user has specified the number of memory-bound noisy 

neighbours. 
• The user has assigned the values to the deployment configuration 

parameters. 
 

Test 
Sequence 

Step Type Description Result 

1 Stimulus The Test Controller triggers the creation 
and configuration of the vTC. 

 

2 Stimulus The Test Controller triggers the creation 
and the configuration of the noisy 
neighbours, as required by the user. 

 

3 Check The vTC and the neighbours have been 
successfully instantiated and have been 
allocated necessary NFVI resources, as 
specified in the Heat Template. 
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vTC Data Plane Throughput Benchmark in presence of noisy neighbours Test Description 

The vTC configuration script has been 
executed and the network function is ready 
to receive and process traffic. 

4 Stimulus This step would involve the Test Controller 
(the framework) before to initiate the test. 
The Test Controller would be required to 
establish the necessary control plane or 
stateful sessions with the VNF. 

Since the vTC VNF is session agnostic, this 
step is omitted by this test case. 

 

5 Check Follows Step 4.  

6 Stimulus It is recommended that the test cycle uses 
different frame sizes and frame rates: 

• Frame sizes - [64 , 128, 256, 1024, 
1280, 1518 bytes] 

• Rate in percentage of available 
bandwidth - [10, 20, 30, 40, …, 100]. 

The Test Controller originates the traffic to 
be sent to the vTC and the vTC processes it 
and sends it back to the destination, in 
order for the traffic to be analysed. It 
repeats the test iteratively until all frame 
sizes and frame rates have been exhausted. 

 

7 Check The vTC instance forwards traffic for at least 
120 seconds. 

 

8 Check The Test Controller ensures that the vTC 
instance forwards all packets and calculates 
the maximum supported throughput for 
each configuration. 

 

    

Test Verdict The Test Controller returns a csv file with the results obtained 
during the test for the different configurations. 
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9. CONCLUSIONS  

Task 4.1 focused on the identification, characterisation and optimisation of the 
hardware and software components that can be used in the implementation of the T-
NOVA IVM. VNFs have varying compute, storage and network requirements that are 
specific to required levels of performance or associated SLAs. The potential mix of 
software and hardware options within the NFVI can have a signification influence on 
the performance of VNFs running on NFVI nodes. The performance of a VNF is 
directly linked to the hardware performance, resource allocations and virtualisation 
technologies (hardware and software).  

The task identified various candidate technologies relating to network optimisation, 
computational resources and storage to be characterised. The selection of candidate 
technologies were utilised in the design and implementation of an NFVI testbed. The 
testbed was used to characterise the performance of candidate technologies on a 
standalone basis or when used to support the deployment of a VNF. The initial set of 
characterisation experiments focused on networking technologies options which can 
be used to improve packet processing performance. Technologies investigated 
included OVS, OVS-DPDK, SR-IOV and Snabb Switch. Using different configuration 
their impact on network throughput performance of a VNF was demonstrated. It was 
also demonstrated that a combination of SR-IOV and DPDK achieved in excess of 
8Gbps network throughput.  

The performance of a non-virtualised deployment of the virtual Traffic Classifier 
(considered as baseline performance) was compared to a Docker container and 
virtualised KVM deployments with OVS and SR-IOV network connectivity. The results 
obtained indicated that with a non-virtualised deployment and Docker container it is 
possible to achieve up to 4.7Gbps throughput, with OVS it is possible to reach up to 
800Mbps and with SR-IOV it is possible to reach 3.7Gbps, which means a reduction of 
the 21% with respect to the non-virtualised configuration.  

Another element of network optimisation which is important to consider is service 
chaining and its impact on switch performance requirements. Service chaining 
requires the installation of flow entries in OpenFlow switches located in data centres, 
after which network traffic will traverse the NFs in the exact order specified in the 
service chain. This requirement generates the need to install a large number of flow 
entries in switches which potentially could result in a data scalability issue for the T-
NOVA system, as OpenFlow switches typically have relatively small flow table size (i.e., 
several thousand entries). To mitigate the problem of the small switch flow tables, a 
dual-datapath approach was investigated. This approach exhibited high forwarding 
performance and port density in the accelerated datapath, while the primary 
datapath exploited the large amount of cache and main memory available in 
commodity servers to store all required flow state. This approach has the potential to 
enable service chaining at scale which is important in the context of realising NFaaS 
for customers. The network characterisation activities also highlighted the different 
levels of maturity in network technologies for VNF related use cases. The work on 
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Snabb switch indicated that despite the promising level of functionality it currently 
lacks sufficient maturity for it to be considered for use within the T-NOVA system. 

The second phase of technology characterisation focused computational resources 
options. Parameters such the processor architecture, bandwidth of buses (peripheral, 
inter-processor), availability of specialist instruction sets (AES-NI), have a strong 
influence on how a VNF behaves on the specific compute node’s hardware. The 
effects of core and NUMA pinning, core isolation and huge pages on VNF 
performance were investigated. The results show that the usage of processor pinning 
can help to achieve improved performance, if properly configured. The effect of 
NUMA pinning on VM performance was identified as being significant with an 
approximately 50% increase in network throughput. Co-location of a VNF on the 
same NUMA node that is attached to the NIC is important for data plane type 
workloads. The effects of huge page configurations were found to be scenario 
specific and are more important in multi-tenancy scenarios where noisy neighbours 
can affect the performance of the workload. The configuration of BIOS settings in 
compute nodes were investigated in addition to huge page settings. BIOS can have 
an important influence on both compute node stability and workloads running on 
the compute node. For initial testing the recommendation is to disable the majority 
of platform settings (apart from the virtualisation features, namely VT-d, VT-x, VT-c 
which must be enabled). After an initial baseline has been established the various 
features can be enabled one at a time and tuned for desired performance level. The 
BIOS configuration will be at a minimum workload type specific i.e. data plane versus 
control plane etc. Finally the effects of heterogeneous compute resources were 
investigated with a specific focus on how they could be used within an OpenStack 
environment. An FPGA SoC with two ARM A9 cores was selected as the target 
platform. This activity remains a work in progress. The hardware and software 
components of the system are being tested, which will be followed by an integration 
phase, after which the deployment of a simple dummy VNFC will be demonstrated as 
part of Task 4.5 activities. This dummy VNFC will be subsequently replaced by a 
functional block and the system will be integrated into the T-NOVA system with the 
ultimate goal being to deploy a VNF, which consists of at least one FPGA-based 
VNFC. 

Investigations into the effect of storage using a Squid Proxy VNF indicate that Live 
Migration duration with ephemeral volumes increases with the cache size, with 
approximately the same duration (in seconds) for cache reading and writing 
respectively and with lower values with cache in idle mode. This does not happen 
when volumes are located on a block storage solution such as Cinder. In this case the 
Live Migration duration is lower than the case with an ephemeral volume while cache 
size was found to have no influence. The results obtained also indicate that that when 
using local disks of compute nodes block storage technology is the preferred option 
in comparison to ephemeral volumes, exhibiting insensitivity to cache size variations. 
In fact, with ephemeral volumes on local disks Live Migration becomes bounded to a 
Storage Live Migration constraint.  

The inter play between the VNF and hardware in the context of virtualisation is of 
critical importance. Workload characterisation was an important focus within the task. 
As a technology, NFV encompasses a wide variety of network functions which have a 
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diversity of resource requirements. Therefore it is important to develop an 
understanding of the workload types and their affinity for certain platform features 
and technologies. While it is not possible to identify all the affinities for all VNFs 
within the scope of Task 4.1 it was important to implement a robust methodology 
which could be used for the T-NOVA VNFs and was sufficiently flexible in nature to 
allow its use beyond T-NOVA. Workload characterisation is typically a manual process 
which investigates a limited number of platform features and variations of 
configurations. This has the effect of constraining the workload characterisation 
process due the high levels of human intervention required and time constraints. To 
address these limitations a VNF workload characterisation framework was designed 
and implemented to automatically test various configurations of a VNF, in an iterative 
manner on different target platforms. It is used to evaluate the affinity a VNF has for 
either allocations of compute resources (e.g. OpenStack flavour) or the effect of 
specific platform features on VNF performance. The framework provides 
orchestration of the full test case lifecycle. The framework was applied to the 
characterisation of a virtualised traffic classifier developed by NCSRD. Specifically the 
framework was used to investigate the potential of ‘network performance intent’ 
deployments. The effect of the deployment configuration, i.e. the VNF flavour, on the 
performance has been demonstrated using a comparison between OVS and SR-IOV 
network technologies. It was shown that this approach can be used to define 
appropriate deployment configurations in an automated manner to achieve a specific 
network related performance intent with a minimal configuration of a VNF i.e. 
consumes the lowest amount of resources (e.g. number of SR-IOV channels, number 
of vCPUs, amount of RAM, etc.) for the required performance intent. This work has 
potential to be exploited at an Orchestration level where the selection of a VNF 
flavour to deliver a specific level of performance could be automated to provide 
dynamic selection at run time. 

The activities within Task 4.1 had a natural alignment with OPNFV which is an 
industry lead open source project focused on accelerating NFV's evolution through 
an integrated, open platform. There are variety of Requirements, Integration & 
Testing and Collaborative Development projects within OPNFV. Specifically Task 4.1 
had significant alignment with the Yardstick project which is an Integration and 
Testing type project. Working collaboratively with the Yardstick project which is led 
by Ericsson, a number of areas of contribution were identified which include 
contribution of the VNF characterisation framework, definition and of implementation 
of VNF lifecycle and VNF data plane benchmarking test cases and the contribution of 
the virtualised traffic classifier. The test case contributions from Task 4.1 have been 
accepted and added to the Yardstick work program. The framework is being further 
developed in order to ensure that can be used in a fully generic manner (i.e. the 
framework is not tied to a specific VNF) and to ensure robustness of operation 
through the implementation of a comprehensive unit testing plan. This work is on-
going and will continue through Task 4.5 where the framework will be deployed and 
utilised as part of the T-NOVA testbed. The Task 4.1 contributions are scheduled to 
form part of the OPNFV Brahmaputra release in 2016. 
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10. LIST OF ACRONYMS 

Acronym Description 

ACL Access Control List 

AES-NI Advanced Encryption Standard New Instructions 

API Application Programming Interface 

AVG Average 

BCAM Binary Content Addressable Memory 

BGP Border Gateway Protocol 

BGP-LS Border Gateway Protocol Linkstate 

BKM Best Known Method 

CLI  Command Line Interface 

CP Control Plane 

CPU Control Processing Unit 

CRC Cyclic Redundancy Check 

DC Data Centre 

DMA Direct Memory Access 

DOVE Distributed Overlay Virtual Ethernet 

DoW Description of Work 

DP Data Plane 

DPDK Data Plane Development Kit 

DSP Digital Signal Processing 

DUT Device Under Inspection 

EPT Extended Page Tables 

ETSI European Telecommunications Standards Institute 

FE Functional Entity 

FPGA Field Programmable Gate Array 

Gbps Giga bits per second 

GPU Graphical Processing Unit 

GRE Generic Routing Encapsulation 

HA Hardware Abstraction 
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IaaS Infrastructure as a Service 

ICMP Internet Control Message Protocol 

IEEE  Institute of Electrical and Electronics Engineer 

IETF Internet Engineering Task Force 

IGMP Internet Group Management Protocol 

IRF Interchange Representation Format 

I/O Input/Output 

IOPS Input/Output Operations Per Second 

IP Internet Protocol 

IPFIX Internet Protocol Flow Information Export 

iSCSI Internet Small Computer System Interface 

IVM Infrastructure Virtualisation and Management 

IVSHMEM Inter-Virtual machine Shared Memory 

KVM Kernel-based Virtual Machine  

KPI Key Parameter Indicator 

L2 Layer 2 

L3 Layer 3 

LAN Local Area Network 

MA Monitoring Agent 

MAC Media Access Control 

MANO Management and Orchestration 

MF Monitoring Framework 

ML2 Modular Layer 2 

MM Monitoring Manager 

NC Network Controller 

NF Network Function 

NFaaS Network Functions-as-a-Service  

NFV Network Functions Virtualisation 

NFVI Network Functions Virtualisation Infrastructure 

NFVI-PoP NFVI-Point of Presence 

NIC Network Interface Cards 

NS Network Service 
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NUMA Non-uniform Memory Access 

NVGRE Network Virtualisation using Generic Routing Encapsulation 

ODCS OpenDOVE Server 

ODGW OpenDOVE Gateway 

ODL OpenDaylight 

ODML OpenDOVE Management Controller 

OF OpenFlow  

ONF Open Networking Foundation 

ONP Open Networking Platform 

OPNFV Open Platform for Network Function Virtualisation 

OS Operating System 

OVSDB  Open vSwitch Database Management Protocol 

PCIe Peripheral Component Interconnect Express 

PF Physical Function 

PMD Poll Mode Driver 

PPS Packets Per Second 

QoS Quality of Service 

QPI Quick Path Interconnect 

QSFP Quad Small Form-factor Pluggable 

OSGi Open Service Gateway initiative 

RAM Random Access Memory 

REST API Representation State Transfer API 

RDMA Remote Direct Memory Access 

RFC Request for Comments 

RPC  Remote Procedure Call 

SAN Storage Area Network 

SDN Software-Defined Networking 

SDK Software Development Kit 

SFP Small Form Factor Pluggable  

SLA Service Level Agreement 

SNMP Simple Network Management Protocol 

SoC System on Chip 
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SOTA State-Of-The-Art 

SR-IOV Single Root I/O Virtualisation 

SSD Solid-State Disk 

SW Software 

TCAM Ternary Content Addressable Memory 

ToR Top of Rack 

TNM Transport Network Manager 

T-NOVA Network Functions as-a-Service over Virtualised 
Infrastructures 

TXT Trusted Execution Technology 

UDP User Datagram Protocol 

vApp Virtual Application 

VIM Virtualised Infrastructure Manager 

VL Virtual Link 

VLAN Virtual Local Area Network 

VM Virtual Machine 

VMDq Virtual Machine Device Queues 

VMM Virtual Machine Manager 

VMX Virtual Machine Extension 

VNF Virtual Network Function 

VNFC Virtual Network Function Component 

vNode Virtual Node 

VPN Virtual Private Network 

vNIC Virtual Network Interface Cards 

VPN Virtual Private Network 

vNS Virtual Network Service 

VT-d Virtualisation Technology for Directed I/O 

VTEP Virtual Tunnel End Point 

VT-x Virtualisation Technology for x86 

VTN Virtual Tenant Network 

vTunnel Virtual Tunnel 

WAN Wide Area Network 



T-NOVA | Deliverable D4.01  Infrastructure Virtualisation 

© T-NOVA Consortium  
 

87 

WP Work Package 

XFP 10 Gigabit Small Form Factor Pluggable 

XML Extended Markup Language 

YAML YAML Ain't Markup Language 
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