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Executive Summary 

This deliverable presents the current activities and interim results of the four active 
tasks in Work Package 4 of the T-‐NOVA project. This work package is focused on the 
key elements of the T-‐NOVA Infrastructure Virtualisation Layer (﴾IVM)﴿. Current 
activities are focused on the identification of appropriate virtualisation mechanisms 
and enablers; implementation and characterisation of a virtualised software defined 
networking (﴾SDN)﴿ control plane; implementation of an SDN software development 
kit; infrastructure monitoring and maintenance subsystems for the IVM. 
Section 2 describes the inter task dependencies of WP4. These inter dependencies are 
being carefully considered and monitored to ensure that the tasks in the work 
package receive appropriate input to guide their activities. These inputs are 
important in aligning the outputs of each task in WP4 in order meet the expectations 
and needs of the dependent tasks. 
Section 3 describes the activities of Task 4.1 which are focusing on aspects of virtual 
Node (﴾vNode)﴿ resource virtualisation, workload characterisation; technology 
enhancements and optimisations required for supporting Virtualised Network 
Functions (﴾VNFs)﴿ and Network Services (﴾NS)﴿ deployments on vNodes. These activities 
have the explicit goal of determining the most appropriate composition of 
technology components and integration approaches to implement a functional T-‐
NOVA IVM. The implementation of the IVM and its functional entities is required to 
provide a performant environment for hosting VNFs and NS. 
Section 4 outlines the activities Task 4.2 which is designing and developing a 
virtualised SDN Control Plane to support virtual network creation and management 
over OpenFlow-‐enabled networks. The task is also investigating the most appropriate 
architecture for the SDN controller implementation in T-‐NOVA. Options being 
investigated are focused on centralised and distributed approaches. 
The third topic of WP4 is described in Section 5. Task 4.3 is designing and 
implementing a software development kit (﴾SDK)﴿ for the SDN Control Plane (﴾SDK for 
SDN)﴿. The key aim of this task is to provide the SDN community with a single 
framework to develop SDN applications regardless of the underlying API.  
Monitoring and Maintenance issues of the virtualised infrastructure are dealt with in 
the fourth task of WP4. Section 5 outlines the activities in the design and 
development of a monitoring framework that will monitor the physical and virtual 
resources of the IVM and make this information available to the T-‐NOVA 
Orchestration layer. 
Finally Section 7 outlines the technologies that have selected for the implementation 
of the IVM and its functional components namely the virtualised infrastructure 
manager (﴾VIM)﴿, network function virtualised infrastructure (﴾NFVI)﴿ and transport 
network manager (﴾TNM)﴿. A rational for the selection of each technology component 
is provided together with the alternative technologies that were investigated. A 
mapping of T-‐NOVA requirements to the technology is provided to ensure that the 
selected technology can support these requirements in an appropriate manner. 
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1. INTRODUCTION 

Work package 4 is focused on the characterisation of virtualisation mechanisms and 
enablers, the SDN control plane, an SDN SDK, as well as the infrastructure monitoring 
and maintenance subsystems for the T-‐NOVA system. The output of these tasks play 
a key role in the definition, implementation, functional testing and performance 
validation of the key components that will be utilised in the T-‐NOVA Infrastructure 
Virtualisation and Management (﴾IVM)﴿ layer. This deliverable outlines the key activities 
and findings to date from the four active tasks in WP4.  

The IVM layer is responsible for providing a performant virtualised hosting and 
execution environment for VNFs and NSs. The IVM is comprised of a Network 
Function Virtualised Infrastructure (﴾NFVI)﴿ domain, a Virtualised Infrastructure 
Manager (﴾VIM)﴿ and a Transport Network Manager (﴾TNM)﴿ as previously described in 
D2.31. The IVM provides full abstraction of these resources to VNFs by using 
virtualisation technologies. However many virtualisation technologies find their 
origins in the IT domain where performance constraints can be more flexible than 
those required in carrier grade telecoms environments. Virtualisation has also 
expanded beyond its initial focus on compute resource virtualisation to encompass a 
variety of different technology approaches such as hardware, operating system, 
storage, memory and network. Collectively these approaches have enabled the 
complete virtualisation of infrastructure resources found it a traditional data centre. 

Virtualisation is the key enabler technology that allows traditional physical network 
functions to be decoupled from fixed appliances and to be deployed onto industry 
standard servers in large Data Centres (﴾DCs)﴿. This approach is providing key benefits 
to operators such as greater flexibility, faster delivery of new services, a broader 
ecosystem enhancing innovation in the network etc. 

While virtualisation brings many benefits to Enterprise IT and more recently to the 
Telecoms domain it also brings many challenges particularly in achieving the same 
level of performance in comparison to the traditional fixed appliance approach. The 
composition, configuration and optimisation of the virtualised resources are critical in 
achieving the required levels of performance. Additionally given the origins of many 
virtualisation technologies such as cloud OS environments there are capability gaps 
that need to be addressed in order to adequately support VNF/NS type workloads. 
This WP is addressing some of these gaps by extending existing technologies in a 
manner that is compatible with their current instantiation, implementing bespoke 
solutions where necessary and integrating them into existing technology solutions in 
order to extend them. These approaches are necessary, firstly to address T-‐NOVA 
requirements and secondly to illustrate the benefits of these modifications in order to 
influence the communities that are developing these technologies and their 
roadmaps. For example a T-‐NOVA extension to OpenStack’s functional could form 
the basis for an OpenStack Blueprint contribution. 

Another challenge is to ensure the orchestration layer fully exploits the capabilities of 
the servers it manages. Currently within cloud environments the resources are highly 
abstracted which again causes issues for the performant deployment of VNFs and 
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NSs. It is important to expose the specific platform features such as unique CPU 
instructions and attached devices, such as acceleration cards, co-‐processors or 
Network Interface Cards (﴾NICs)﴿ with advanced capabilities. Additionally many 
hardware devices, such as NICs, have additional dependencies, such as the availability 
of supporting software libraries -‐ e.g. DPDK -‐ in order for a VNF to function in an 
optimal manner. 

The combination of hardware and software technology components plays a critical 
role in implementation of the IVM and its composite functional entities namely the 
NFVI, VIM and TNM. Individual and collective performance of these functional entities 
has a significant impact on the VNFs/NSs hosted within the IVM. For any given 
function more than one technology choice maybe available. It is therefore important 
to understand how the technology options will performance and specifically within 
the context of the T-‐NOVA system. These topics are addressed by Task 4.1 specifically 
focusing on aspects of vNode resource virtualisation, workload characterisation, 
technology enhancements and optimisations to support VNF/NS deployments on 
vNodes in a performant manner.  

The lack of platform and infrastructural awareness is a major drawback since many 
virtual appliances have intense I/O requirements and could benefit from access to 
high-‐performance instructions, accelerators and NICs for workloads such as 
compression, cryptography and transcoding. Identification of the relevant platform 
features than can influence VNF/NS performance is also a focus within Task 4.1. Key 
findings from the task will be an important input into Task 3.2 in WP3 which is 
focused on provisioning a resource repository to the T-‐NOVA Orchestration layer. In 
addition Task 3.2 is identifying mechanisms to improve the intelligence of the VM 
provisioning process within the VIM. This involves exposing key platform features 
identified in Task 4.1 to the scheduling function within the cloud environment. This 
capability should help to improve VNF/NS performance through improved 
provisioning of appropriate resources. 

In Task 4.2 the focus is on the design and development of an SDN Control Plane to 
support virtual network creation and management over OpenFlow-‐enabled networks. 
Starting with an in-‐depth analysis of the existing solutions, extensions and necessary 
modifications will be identified to address the requirements identified for the T-‐
NOVA system. Specifically, the task is evaluating distributed approaches to overcome 
network control plane centralisation limitations and to improve the performance and 
reliability of the network controller. Additionally network encapsulation techniques 
are being considered in order to provide enhanced connectivity services in multi-‐
tenant scenarios. In this context the key issues to be addressed are resource 
optimisation, QoS support and live migration of the VMs hosting the NFV 
applications. 

The third task of WP4 is the design and implementation of a Software Development 
Kit (﴾SDK)﴿ for the SDN Control Plane (﴾SDK for SDN)﴿. The SDK for SDN task is 
undertaking a detailed analysis of the interactions between virtualised and physical 
network elements in a DC to identify potential bottlenecks and potentials for 
optimisations through adoption of SDN capable network elements. The task, based 
on the outcome of this analysis will provide libraries and code examples to alleviate 
some of the identified bottlenecks. A prominent aim of this task is to provide the 
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community a single framework to develop SDN applications regardless of the 
underlying controller API. The northbound APIs of several popular SDN controllers 
will be analysed to identify the common feature-‐set to be unified under the initial 
release of the SDK, with controlled support for the disparate elements in various SDN 
controllers to be exposed to application developers. The SDK will also provide useful 
libraries to aid the development process – debugging support, test environments 
using Mininet or another similar frameworks. Requirements emerging from different 
tasks in T-‐NOVA will be collected, specifically from WP5 where most of the NFs are to 
be virtualised; the SDK design will be guided in part by these requirements in order 
to facilitate the NFV development process. 

The final topic in WP4 relates to monitoring and maintenance issues in virtualised 
infrastructures. The collection and exposure of dynamic metrics reflecting the current 
status of the IVM is critical for supporting most of the T-‐NOVA use cases. Task 4.4 is 
designing, implementing and integrating a monitoring framework within the VIM 
which collects metrics from computing and network nodes (﴾both virtual and physical)﴿, 
aggregates the metrics and analyses them. Generic VNF metrics are also collected 
and processed. As an output of the metrics processing workflow, selected 
measurements and alarms/events are communicated to the Orchestrator via an API 
to be also defined in this task, in order to facilitate service mapping and management 
procedures.  
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2. WP4 INTER TASK DEPENDENCIES 

The outputs of the tasks within WP4 have a number of key dependencies with other 
tasks in WP4 and with tasks in other work packages, including WP3 and WP5 as 
outlined in Tables 2.1 to 2.4. Therefore on-‐going close cooperation and coordination 
between the dependent tasks will be required to ensure that the outputs are 
appropriate and meet the expectations of the dependent task. The following tables 
provide a brief description of the task dependencies. 

2.1. Task 4.1 Resource Virtualisation Task Dependencies 

Dependent Task Dependency  

Task 3.1 – Orchestrator 
Interfaces 

Task 4.1 will provide an input on the metadata that 
must be sent by the Orchestrator in order to support 
platform aware VNF scheduling in OpenStack Nova 

Task 3.2 - Infrastructure 
Repository 

Task 4.1 will identify appropriate platform features that 
should be collected and stored in the Infrastructure 
Repository. These features are expected to be useful 
during the OpenStack Nova scheduling and filtering 
processes in order to improve VNF placement 
decisions. 

Task 3.3 - Resource 
Mapping 

Task 4.1 will identify the workload, platform and 
infrastructure features that have a significant impact on 
VNF performance. The features will act as inputs into 
the design and development of the resource mapping 
algorithm which maps VNF to the most appropriate 
platform locations.  

Task 4.5 - Infrastructure 
Integration and 
Deployment 

Task 4.1 will help to define the technology components 
including both software and hardware and their most 
appropriate configuration required to implement a 
performant IVM in Task 4.5. 

Task 5.4 - Performance 
Assessment and 
Optimisation 

Task 4.1 will provide some best practices relating to the 
design and the configuration of virtualisation 
infrastructure which will be taken as an input by Task 
5.4 which is focused performance assessment and 
optimisation of T-‐NOVA’s VNFs. 

Table 2.1 Outline of Task 4.1 inter-task dependencies 

2.2. Task 4.2 SDN Control Plane Task Dependencies 

Dependent Task Dependency  

Task 4.1 - Resource 
Virtualisation 

Task 4.1 is investigating resource allocation for various 
processing workloads in order to share the same 
resources efficiently. SDN control plane plays a 
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significant role when the processing workloads 
requiring network resources. Therefore, the SDN 
control plane will allow sharing of the same network 
resources by creating and maintaining isolated vNets. 

Task 3.1 - Orchestrator 
Interfaces 

One of the objectives of Task 3.1 is the implementation 
of the southbound interfaces, which will communicate 
with the underlying layers; the SDN control plane and 
the cloud controllers. Thus, Task 4.2 is directly related 
with Task 3.1, which will provide the communication 
between the SDN controller and the Orchestrator. 

Task 3.2 (Infrastructure 
Repository) 

The discovery engine of Task 3.2 will interact with the 
SDN controller in order to store network topology 
information. 

Task 4.5 Infrastructure 
Integration and 
Deployment 

Task 4.5 will handle the deployment and integration 
activities for T-‐NOVA’s infrastructure. Part of this work 
includes the validation of the SDN Control plane that 
will be defined and developed in Task 4.2. Thus, the 
work that will be carried out in Task 4.2 will be one of 
the initial starting points in Task 4.5. 

Table 2.2 Outline of Task 4.2 inter-task dependencies 

2.3. Task 4.3 SDK for SDN Task Dependencies 

Dependent Task Dependency  

Task 2.4 – Specification 
of IVM 

Task 4.3 will enable the user to fulfil the requirements 
defined by Task 2.4 in terms of setting up, managing 
and monitoring networks. 

Task 4.2 - SDN Control 
Plane 

Task 4.2 is focused on providing an abstraction layer to 
SDN application developers building network 
applications allowing them to avoid having a detailed 
understanding of the underlying controller. Task 4.3 will 
support the SDN Controller northbound interface, by 
building an abstraction layer and exposing it to SDN 
applications developers. 

Task 3.4 - Service 
Provision, Management 
and Monitoring 

Task 3.4 will use a generic northbound interface 
provided by Task 4.3, allowing the implementation of 
the Orchestrator to be agnostic of the underlying SDN 
controller. The T-‐NOVA framework is not strictly 
dependent on the specific SDN controller, as long as 
the SDK toolset provides translation of the generic-‐to-‐
specific-‐new-‐controller northbound interface. 

Task 5.3 - Development 
of VNFs 

The VNFs developed in Task 5.3 may require significant 
interaction with the underlying SDN network 
infrastructure. The VNF developers will use the SDK to 
simplify the interaction with the actual SDN controller. 

Table 2.3 Outline of Task 4.3 inter-task dependencies 
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2.4. Task 4.4 Monitoring and Maintenance Task Dependencies 

Dependent Task Dependency  

Task 2.4 - Specification 
of IVM 

IVM specifications and requirements drive Task 4.4 
design and implementation decisions. 

Task 3.1 - Orchestrator. 
Interfaces 

The approaches taken in Task 4.4 affect the interface to 
the Orchestrator for communication of monitoring 
metrics. 

Task 3.3 - Service 
Mapping 

Service mapping strongly depends on IVM metrics. 

Task 3.4 - Service 
Provision, Management 
and Monitoring 

IVM metrics are essential for proper service monitoring. 

Task 4.1 - Resource 
Virtualisation 

The technical approach of the monitoring framework 
strongly depends on the technical specifications of the 
NFVI substrate. 

Task 4.2 - SDN Control 
Plane 

The technical approach of the monitoring framework 
strongly depends on the technical specifications of the 
SDN Control Plane. 

Task 4.5 - Infra. 
Integration and 
Deployment 

The IVM monitoring framework is one of the 
components to be integrated by Task 4.5. 

Task 5.3 - Development 
of VNFs 

The implementation of NFs will affect how NF resources 
will be monitored. 

Task 6.3 - User 
Dashboard 

It is assumed that some IVM metrics will be presented 
on the dashboard. 

Task 6.4 - SLAs and 
Billing 

SLA monitoring procedures strongly depend on IVM 
metrics. 

Table 2.4 Outline of Task 4.4 inter-task dependencies 
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3. RESOURCE VIRTUALISATION 
This section relates to the activities of Task 4.1, which is focused on the identification, 
characterisation and optimisation of the hardware and software components that will 
be used in the implementation of the T-‐NOVA IVM. Task 4.1 is also examining the 
inter-‐relationship of VNFs and their host virtualised environments. The task will also 
look at the challenges than can exist around co-‐competing optimisation criteria e.g. 
performance vs resource consumption, cost vs reliability, infrastructure homogeneity 
vs heterogeneity etc. The key outputs of this task will be a set of best practices and 
insights regarding the appropriate configuration of the infrastructural components 
and the technologies to be used in the implementation of the T-‐NOVA IVM. 

The VNFs and the Networks Services that are composed from them have varying 
compute, storage and network requirements that are context specific. It is therefore 
important from an IVM point of view to develop an understanding of how VNF type 
workloads interact and consume resources in their host environments and how these 
interactions vary on a temporal basis. While Task 4.4 is looking at the collection and 
exposure of dynamic IVM system metrics to the Orchestration layer, Task 4.1 will 
specifically work on identifying both dynamic and static metrics that are correlated 
with VNF performance and its host environment. These metrics should enable 
insights into the specific composition of resources and their configuration.  

The ESTI NFV Group Specification provide some guidance on the types of metrics 
that should monitored and will inform the initial set of metrics to be capture and 
analysed [1]. While metrics can play an important role in the characterisation of VNF 
workloads and their environments the volume of potential metrics can be 
overwhelming and can dilute their value particularly in an operational context. 
Additionally, the identification of the key static metrics is a key input into Task 3.2 
which is focused on the implementation of a resource repository for the T-‐NOVA 
Orchestrator. 

While current cloud environments do track some limited static metrics in terms of 
platform characteristics -‐ e.g. CPU speed -‐ these are very limited in scope. They are 
currently not considered sufficient for the intelligent placement of VNFs onto 
virtualised infrastructures. For example a VNF which has a dependency on DPDK 
(﴾Data Plane Development Kit [2])﴿ libraries for accelerating packet processing 
performance cannot be deployed onto the appropriate compute node without using 
enhanced compute scheduling mechanisms. An initial step in this direction is to 
identify non-‐generic platform features both hardware e.g. AES-‐NI, TXT, SR-‐IOV 
capable NICs and software e.g. DPDK libraries, which need to be exposed to allow the 
Orchestrator to make better workload placement decisions. Additionally, 
mechanisms, which can be utilised to expose these, enhanced platform features to 
the scheduling and filtering mechanisms in cloud compute environments, will also be 
explored. 

As a technology, NFV encompasses a wide variety of network functions which have a 
diversity of resource requirements. It is important therefore to develop an 
understanding of the workload types and their affinity for certain platform features 
and technologies. While it is not possible to identify all the affinities for all VNFs 
within the scope of Task 4.1, the development of a robust methodology is possible. 
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To support workload characterisation activities in the task, a flexible test-‐bed 
platform is being developed which will be composed of the technologies that are 
relevant to the IVM and will enable to rapid evaluation of technologies that may 
emerge over the lifetime of the T-‐NOVA project. In the design and implementation of 
the test-‐bed industry initiatives such as ONP (﴾Open Network Platform)﴿ and OPNFV 
(﴾Open Platform for NFV)﴿ are being monitored closely and their outputs are being 
utilised were appropriate. 

The Task 4.1 test-‐bed will also make use of instrumentation to capture a full set of 
metrics from system counters that will be reduced to a set that are most highly 
correlated with workload or system performance. In this way, the test-‐bed will enable 
the benchmarking of potential technologies and workloads. Key considerations such 
as VM start-‐up time, network latency etc. will be investigated. 

Finally the Task 4.1 will develop a set of Best Known Methods (﴾BKMs)﴿ for virtualised 
environment implementation for the performant deployment and management of 
VNFs. It is expected that these BKMs will be used by other tasks in the setup and 
configuration of test infrastructures for their task activities. It is also expected that 
output of Task 4.1 will be used in WP7 for guiding the pilot integration and field 
trials. 

3.1. Candidate Technology Selection and Rational 

A key activity for Task 4.1 is the identification of the key software and hardware 
components that will form the IVM platform and specifically each functional entity 
within the IVM. While more than one technology may exist for a specific role within 
the IVM (﴾e.g. SDN Controller)﴿ initial selections are made around the most appropriate 
match to the requirements identified in D2.31 and the level of community or 
commercial support for the technology. The section presents the initial set of 
platform, hardware and software technologies that will be used in the 
implementation of a tested to evaluate the technologies, determine the most 
appropriate configuration and to develop optimisations for VNF deployments within 
a cloud environment. 

3.1.1. Platforms 

Open source software and open standards are playing a key role in networking, 
communications, and cloud infrastructure by supporting the transition from fixed-‐
function, complex network equipment based on proprietary architectures, to 
solutions based on lower cost and open technologies. 

Two of the leading approaches designed to address the needs of telecommunication 
industry are NFV and SDN. These approaches enable demand-‐driven scalable service 
provision across pooled elastic infrastructures and have been discussed in detail in 
previous T-‐NOVA deliverables. 

In order to accelerate the migration towards SDN and NFV, technology companies 
have been developing platform based solutions that combine interoperable hardware 
and open source software ingredients based on standards that enable Telco’s 
evaluate and deploy NFV and SDN solutions into their networks. A key effort in this 
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direction is Intel’s ONP, which provides an application-‐ready solution supported by 
the open software community, commercial software, system integration alliances, and 
industry standards bodies. ONP accelerates and simplifies the deployment of those 
technologies, extending the capability to test, deploy and scale new generation 
services. It involves two reference design specifications, respectively related to 
switches [3] and servers [4]. 

Of particular interest to T-‐NOVA is, the ONP Server Reference Design based on a set 
of open source software components and software/hardware configurations 
integrated together on standard servers to deliver a working platform and an 
infrastructural framework for efficiently virtualising Network Functions (﴾NFs)﴿. 

In ONP, the Fedora 20 (﴾64-‐bit)﴿ Linux distribution is the based Operating System (﴾OS)﴿. 
Integration of QEMU1-KVM Virtual Machine Monitor (﴾VMM)﴿ is provided to support 
the execution of VMs on the physical infrastructure coupled with libvirt as the 
hypervisor manager, OpenStack as the Cloud Controller to control the VM lifecycle 
(﴾instantiation, resource allocation, termination, and so forth)﴿ and OpenDaylight as the 
Network Controller, to control the traffic paths between Virtual Network Function 
Components (﴾VNFCs)﴿. In terms of virtual switching technology, ONP proposes Open 
vSwitch and Intel’s DPDK vSwitch as the open standard solution. 

In the latest release, OpenDaylight is not integrated with OpenStack but only with the 
virtual switching technology. Analysing the T-‐NOVA IVM requirements, the 
integration between Neutron and OpenDaylight is necessary in order to provide the 
deployment of virtual network across the physical infrastructure. For this reason, the 
ONP requires extension with the integration of the ML2 Plugin [6] from a T-‐NOVA 
perspective, integrating the OpenStack Neutron network component with the Control 
Plane controller (﴾i.e. OpenDaylight)﴿. Figure 3.1 provides a mapping of the main 
software and hardware components in ONP with respect to the functional entities of 
the T-‐NOVA IVM. 

In September 2014 the Linux Foundation 
announced the Open Platform for NFV Project 
(﴾OPNFV)﴿ [7] which is focused on developing 
carrier-‐grade, integrated, open source 
reference platform. The initial scope of OPNFV 
will be on building NFV Infrastructure (﴾NFVI)﴿, 
Virtualised Infrastructure Management (﴾VIM)﴿, 

and including application programmable interfaces (﴾APIs)﴿ to other NFV elements, 
which together form the basic infrastructure required for VNF and Management and 
Network Orchestration (﴾MANO)﴿ components. The platform is expected to be based 
on existing open source projects including OpenDaylight, OpenStack, Open vSwitch 
and the Linux kernel among others [7]. Task 4.1 will monitor the outputs of this 
project closely and will integrate outputs as appropriate. 

                                                   
1 QEMU is an open source Virtual Machine emulator [5] QEMU. (﴾2014)﴿. Open Source 
Processor Emulator. Available: http://wiki.qemu.org/Main_Page. 
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Figure 3.1 Mapping of ONP components to T-NOVA IVM. 

3.1.2. Hardware 

This section describes the key characteristics and capabilities of the hardware 
components considered in the design and deployment of the Task 4.1 testbed. In 
addition to identifying the hardware components, Task 4.1 will also evaluate their 
performance, as well as interrogating various configuration options to identify the 
appropriate set of hardware resources and configurations for use in Task 4.5 
(﴾Infrastructure Integration and Deployment)﴿. 

3.1.2.1.  SDN Switches – Features and Capabilities  

The most important feature introduced by the SDN approach is the separation of the 
Control Plane (﴾CP)﴿ and Data plane. SDN switches (﴾both physical and virtual)﴿ are based 
on the replacement of the local CP with a programmatic interface supporting 
standard flow control protocols (﴾see Figure 3.2)﴿. This supports the migration of the 
network device CP to a centralised controller that has holistic view of the overall 
network and can dynamically respond to changes: the controller makes decisions 
about the CP and automatically configures the switches accordingly through their 
northbound interface. 

The most common protocol used to implement this interface is OpenFlow [8]. It is an 
open standard that defines how the controller interacts with the Data Plane and 
makes adjustments to the network, adapting to changing requirements or conditions. 
When a switch receives an unknown packet it sends a packet-in event to the 
controller, requesting instructions on what actions to apply in order to process the 
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packet appropriately; the controller installs on the switch one or more entries in the 
flow tables that match the specific packet providing a set of actions to be executed 
during the forwarding phase. Thereafter, each time the switch will receive a new 
packet that matches the new flow entries; it will execute the specified actions without 
recall to the controller. 

While OpenFlow is regarded as de-‐facto standard protocol for SDN, new vendor led 
open source SDN protocols are also emerging, such as OpFlex from Cisco [9]. OpFlex 
takes a different approach to switch configuration. Instead of sending specific 
configuration instructions to downstream networking equipment, it sends down an 
application policy or the application's network requirements, allowing the devices to 
self-‐configure accordingly. OpFlex comprises of both the protocol and the set of 
standards used to communicate the policies.  

It is important for the T-‐NOVA project to continuously monitor developments in both 
the OpenFlow protocol and other protocol initiatives to ensure that the T-‐NOVA 
solution evolves appropriately overtime. 

SDN switches are commonly focused on Top-‐of-‐Rack (﴾ToR)﴿ access switching 
providing 1Gbe (﴾or faster)﴿ connectivity to servers with high-‐speed uplinks to the next 
level of aggregation switching. Switches with SDN support are available from a 
variety of vendors, including Extreme Networks, Cisco, NEC, etc. The first generation 
of SDN switches such as the PICA8 supported 1 Gbps line rate speed. Most SDN 
switches commercially available at present support at least 10 Gbps line rates. Many 
10 Gbps switches offer from 2 to 4 40Gbe uplink ports to provide switch fabric 
connectivity. Switches which provide various fixed configurations of 10, 40 and 56 
Gbe QSFP/SPF+ ports are also available from vendors such as Mellanox, Arista, 
Brocade, etc. However they can be relatively expensive for large-‐scale deployment. 

 

Figure 3.2 High level architecture of an SDN switch 

SDN switches typically support Layer 2 and Layer 3 forwarding in 48 or 64 port 
configurations with IPv4/IPv6 support. The physical switch connections are mainly 
SFP+ with either optical cabling or direct attached copper cabling. Some vendors also 
offer switches with 10Gbase-‐T connections over Category 6/7 cabling preferable for 
lab base test beds due to the lower cost of connections. 
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An important feature which can affect performance of an SDN switch is the memory 
used to store forwarding tables. OpenFlow 1.0 switches typically used the Ternary 
Content-‐Addressable Memory (﴾TCAM)﴿, which is a specialised type of high-‐speed 
memory that searches its entire contents in a single clock cycle. TCAM supports 
efficient flow instantiation updates from an SDN controller and its lookups match 
explicit 1s and 0s but also have a “don’t care” bit. In OpenFlow this is referred to as a 
wildcard bit often depicted in diagrams with a ‘*’. However, the use of TCAM in an 
SDN switch is not without issues. TCAM is power hungry, expensive and can have a 
large silicon footprint, and is often the most expensive component on the switch [10]. 
Some vendors now use a blend of BCAM memory, SRAM, NPUs and software 
algorithms to perform ternary lookups instead of utilising expensive TCAM. 

From a T-‐NOVA system perspective there is a number of considerations regarding 
the choice of switch for the IVM layer that comes from the analysis of the 
requirements, outlined in D2.31. First, the switch should support the OpenFlow 
protocol, due its open source nature and its broad industry adoption, OpenDaylight 
support and its de facto industry standard status. At a minimum the switch needs to 
support OpenFlow version 1.0. Ideally, the switch should feature OF version 1.3 which 
is currently supported the Helium release of OpenDaylight. Additional support for 
open source protocols such as VxLAN is desirable to support alternative research 
configurations/investigations if necessary. Use of TCAM memory would be desirable 
to maximise flow table lookup performance. Finally, the switch vendor should have a 
robust and timely roadmap for SDN support to ensure that the switch can be 
upgraded to the latest technology developments over the lifetime of the T-‐NOVA 
project. 

3.1.2.2.  Network Interface Cards (﴾NICs)﴿ 

The cost of 10GB Ethernet has fallen significantly over the last few years and it is 
becoming more common place in many datacentres. Typically a 10GB NIC costs in 
the range of $500 -‐ $1000 depending on its feature set. 10-‐gigabit Ethernet (﴾10GE, 
10GbE, or 10 GigE)﴿ was first defined by the IEEE 802.3ae-‐2002 standard. The standard 
only defines full duplex point-‐to-‐point links which are generally connected by 
network switches. Connections between ports can be provided by either copper or 
fibre cabling. The standard supports a number of different physical layer (﴾PHY)﴿ 
standards including XFP, XENPAK, QSFP, enhanced small form-‐factor pluggable 
transceiver, (﴾SFP+)﴿ and 8P8C (﴾RJ45)﴿. SFP+ has become the most popular socket on 
10GbE systems, however with additional cost considerations over copper. Due to the 
high bandwidth requirements, higher-‐grade copper cables are required in 
comparison the 10/100/1000 MB standards. Category 6a or Class F/Category 7 cable 
are necessary for links up to 100m in length. 10GbE network interface cards are 
available from several manufacturers with a variety of options as outlined in Table 3.1. 
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Feature Options 

Physical Connectivity XFP, XENPAK, QSFP, (﴾SFP+)﴿ and 8P8C (﴾RJ45)﴿. 

Power Management  Thermal Design Power (﴾TDP)﴿ 

Technology Support 

IWARP/RDMA, 
Power Management,  
SR-‐IOV,  
VMDq,  
On-‐chip QoS,  
DPDK support,  
Unified Networking (﴾LAN/SAN (﴾e.g. iSCSI)﴿ traffic support on the 
same network fabric etc. 
Packet Filtering 
VLAN Support 

Table 3.1 Typical NIC Characteristics 

Another key consideration is backwards compatibility. Some NICs will only support 
10GB connections while others provide backward compatibility with existing 
1000Base-‐T networks such as Intel’s x540 Converged Ethernet NICs. 

Most 10GB NICs support SR-‐IOV, which is a PCI SIG standard that allows a single PCIe 
device to be subdivided into multiple virtual instances. These virtual instances, known 
as virtual functions, can be assigned to separate VMs and appear to the VM as its 
own individual NIC, without the need for packet traffic to traverse the hypervisor 
layer. Theoretically up to 256 VFs can supported, however currently the practical limit 
of 64 VFs appears to be the upper limit for most devices. From a T-‐NOVA system 
perspective, the use of SR-‐IOV capable NIC introduces some important 
considerations. Many SR-‐IOV NICs include basic L2 hardware switching on the NIC. 
As a result, VM-‐to-‐VM traffic can be extremely fast (﴾up to 40 Gbps)﴿. However, when 
traffic patterns change from VM-‐to-‐VM communications on the same SR-‐IOV NIC to 
VM-‐to-‐VM on different cards, performance can change significantly. Depending on 
the path and the involved NICs (﴾i.e. SR-‐IOV to SR-‐IOV vs SR-‐IOV to non SR-‐IOV NICs)﴿ 
performance will drop back to the physical layer speed or lower. 

3.1.2.3.  Compute Platform 

The compute platform is a critical component in supporting the functional 
deployment of VNFs. Initially, VNFs were deployed onto standard X86 servers that 
were designed for Enterprise Cloud environments. While supporting virtualisation 
technologies, standard servers lacked features to support VNFs that had high packet 
processing requirements. Compute platforms that are targeted specifically at large-‐
scale communications infrastructure systems have started to emerge. Intel now offers 
a platform targeted at NFV solutions which is based around its Xeon E5 v2/v3 
product family and 89xx communication chipsets. This platform provides hardware-‐
based acceleration and the general purpose processing needed for Telco workloads. 
The platform provides a number of key technologies to improve the performance of 
NFV workload types, including QuickAssist, XL710 40GbE Ethernet Controllers and PCI 
Express. 
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The chipset series provides hardware-‐based cryptographic and compression 
acceleration capabilities for a wide range of communications infrastructure 
applications, such as high-‐end security appliances, enterprise routers, and wireless 
infrastructure. The Intel Data Plane Development Kit (﴾DPDK)﴿ complements the 
platform by improving packet processing speeds to handle increasing network traffic 
data rates and associated infrastructure control/signalling requirements. The chipset 
series also provides hardware offload assistance up to 20 Gbps for virtual private 
networks (﴾VPNs)﴿ and helps storage and network optimisation applications better 
handle compression and decompression tasks. 

A range of processor options allows developers to create a family of products based 
on one design. The specific number of cores required will typically be VNF 
dependent, relating to the number of threads that have to be supported (﴾10 cores – 
20 threads, 8 cores – 16 threads, 6 cores -‐ 12 threads)﴿. For multi socket systems 
QuickPath Interconnects (﴾QPI)﴿ provide low latency connections between the 
processors (﴾as shown in Figure 3.2)﴿ which is important for bandwidth intensive 
applications. 

 
Figure 3.3 Dual-socket -socket configurations of Intel E5-2600 v2 Xeon processor with 

89xx communications chipset 

3.1.3. Software 

In this section the most important software components relevant to the 
investigations of Task 4.1 are discussed. 

3.1.3.1.  Open vSwitch and DPDK vSwitch 

Virtual Switch (﴾vSwitch)﴿ technology is a key component in realising NFV. Various 
vSwitch technologies including Open vSwitch and DPDK vSwitch have previously 
been described in D2.31. The section provides additional information on the 
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candidate technologies in order to further explore the different configuration options 
and implementation features. 

Open vSwitch (﴾OvS)﴿ [11] is a production quality, multilayer virtual switch licensed 
under an Apache 2.0 open source license and it represents the de facto standard 
technology in terms of vSwitches. Intel DPDK vSwitch is a branch of OvS, which 
couples the original software switching technology with DPDK in order to improve 
the performance of OvS, while maintaining its core functionality. The OvS source 
code has been modified to enable fast packet switching and improves small-‐packet 
performance. 

Along with the DPDK vSwitch source code, a specific version of QEMU is also 
provided: to enable efficient inter-‐VM communications by interfacing with the 
accelerated vSwitch at the hypervisor layer. 

DPDK vSwitch currently provides two communication methods between the Virtual 
Machine (﴾VM)﴿ and the host: Userspace vHost and IVSHMEM (﴾Inter Virtual machine 
SHared MEMory)﴿. 

The Userspace vHost mechanism provides a virtio Poll Mode Driver (﴾PMD)﴿ as a 
software solution for fast guest-‐VM-‐to–guest-‐VM communications and guest-‐VM-‐to-‐
host communications. vHost is a kernel module which works as the backend of virtio 
(﴾a para-‐virtualisation driver framework)﴿ to accelerate the traffic from the guest to the 
host. The DPDK kernel NIC interface provides the ability to attach vHost traffic to 
userspace DPDK applications. Together with the DPDK PMD virtio, it significantly 
improves the throughput between guest and host. Further details regarding these 
mechanisms are available in the DPDK Programmer’s guide [12]. 

With the IVSHMEM mechanism, shared memory between the VM and the host is 
utilised in order to improve the performance of information exchange. As a result of 
the shared memory, zero copies between the guest and switch are required. This 
option can be particularly useful for trusted applications that require very fast small 
packet throughput. However, using this option means the Linux Kernel network stack 
is completely isolated from the packet processing. Both the mechanisms and 
configuration options are currently being investigated in Task 4.1. 

In order to select the appropriate virtual switching technology, from a technical 
perspective, a set of tests was been performed to measure the relative throughput, 
comparing the performance levels of Open vSwitch and DPDK vSwitch. The results of 
this comparison are presented in Section 3.3. DPDK vSwitch delivers superior 
performance, based on the current versions of these technologies. However Intel has 
recently announced that they are ceasing investment in DPDK vSwitch and will 
instead focusing their efforts on OvS and advancing hardware acceleration. Intel’s 
new mainstream OvS code called “DPDK-‐netdev” is already present in OvS version 
2.3; however it is currently only available as an experimental feature and not all the 
DPDK mechanisms are fully supported. It is expected the next release of OvS (﴾version 
2.4)﴿ early next year will feature fully DPDK support. It is therefore expected that in T-‐
NOVA will adopted future releases of OvS for the IVM given recent developments.  
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3.1.3.2.  OpenStack 

The Cloud Controller candidate solution selected for T-‐NOVA is OpenStack (﴾see 
Section 7)﴿, which provides the software components for building and managing 
cloud computing platforms for public and private clouds. Currently the Icehouse 
version of OpenStack is the reference version for the project. 

The role of the OpenStack platform in T-‐NOVA is twofold. First, it supports the 
deployment and lifecycle management (﴾in cooperation with the Orchestration layer)﴿ 
of the VNFs deployed on VMs within the cloud infrastructure. It also provides a 
common virtualisation layer across different platforms making the VNFs independent 
of the actual underlying physical infrastructure. 

It is worth noting that OpenStack was originally designed to address enterprise cloud 
environment needs, managing the Compute and Hypervisor domains. From a T-‐
NOVA perspective, the Infrastructure Network domain is as important as the 
Compute and the Hypervisor domains. Task 4.1 activities have been focusing on 
identifying current gaps in OpenStack which need to be addressed in order to deliver 
a cloud environment suitable for NFV/SDN. The gaps identified to date relate to the 
exposure of granular platform features and characteristics to the Orchestrator. This is 
necessary in order for the orchestrator to make the most appropriate allocation 
decision according the best of match VNF service characteristics, constraints and 
available infrastructural resources. 

Technologies and features that are crucial for Telco workloads in terms of 
performance include DPDK, co-‐processors (﴾GPUs or FPGAs)﴿, SR-‐IOV capable NICs, 
Non-‐Uniform Memory Access (﴾NUMA)﴿ awareness, and so forth. Task 4.1 is focusing 
on identifying which features and mechanisms are required to deliver increased 
platform awareness within OpenStack. Task 3.2 is utilising this work to implement an 
actual working solution within the context of OpenStack and to expose the 
infrastructural landscape with increased fidelity to the T-‐NOVA Orchestration layer. 
While platform awareness is important, it serves no useful purpose unless the 
information can be utilised in an effective manner. 

OpenStack’s scheduling mechanism (﴾called Nova Scheduler)﴿ uses a filter-‐based 
approach in the form of a Filter Chain to make decisions regarding the dispatching of 
compute (﴾and volume)﴿ requests. This mechanism needs to utilise the additional 
platform information effectively in the scheduling process. The Filter Chain can be 
composed by built-‐in filters (﴾already provided by OpenStack)﴿ or custom filters 
(﴾extending the standard catalogue of filters)﴿. At the end of the filtering process, a list 
of acceptable hosts is provided and eventually subjected to a weighting process to 
choose a node where to deploy a VM. 

3.1.3.3.  SDN Controller Selection 

During the selection process of the SDN controller by the T-‐NOVA consortium the 
level of community activity and support were considered. With this criteria in mind 
the initial set of SDN controller options for T-‐NOVA were identified as: Ryu, Trema, 
OpenDaylight, OpenIRIS, MUL and OpenContrail. ONOS from ON.Lab is currently 
under development and potentially may offer interesting capabilities such as a 
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promised 100-‐millisecond recovery and the ability to process 1 million requests per 
second. ONOS is designed to support a number of use cases such as SDN control of 
multilayer networks. The potential value is the ability for service providers to operate 
their complete networks assets i.e. both packet and optical in an integrated manner. 
Other potential advantages of ONOS include the ability to reduce overprovisioning; 
and SDN-‐based WAN control (﴾use of MPLS as the data plane, with an SDN Control 
Plane)﴿ [13]. However; ONOS was not included as an option as at the time of writing 
this deliverable its first release named Avocet was only made available on December 
5th, 2014. 

Another consideration in the selection of the SDN controller was the consortium’s 
hands-‐on experience of the various controller options. When this criterion was 
applied, Ryu and OpenDaylight were the remaining options. 

Analysis of the feature sets and roadmaps for the two remaining candidates resulted 
in the selection of OpenDaylight. OpenDaylight is a highly scalable open source 
controller platform written in Java. It is designed to be a modular SDN platform which 
differentiates it from many of the controllers reviewed in D2.31. It comes with support 
for an abstraction layer above the southbound interface, a Graphical User Interface 
(﴾GUI)﴿, northbound interface abstractions, network discovery, pluggable southbound 
interfaces, L2 and L3 learning, path provisioning and a flexible northbound interface 
using Representation State Transfer APIs (﴾REST APIs)﴿. Statistics collection mechanisms 
are offered within an OpenFlow plugin which are accessible through REST APIs. 
Improved customisation of the platform deployment is now supported in the latest 
release (﴾Helium)﴿ through the use the Apache Karaf [14] container. This gives the user 
significant flexibility in defining the complexity of their deployment, the required 
feature set and footprint of the controller. 

The available modules can be utilised for performing various tasks such as data 
gathering, network devices identification and management, etc. based on field-‐
proven and popular technologies, such as Java, OSGi, REST, etc.  

3.1.3.4.  ML2 Plugin 

The OpenStack Modular Layer 2 (﴾ML2)﴿ plugin is a framework that allows OpenStack 
Neutron to simultaneously utilise a variety of Layer 2 networking technologies found 
in data centres. It currently works with the existing Open vSwitch, Linux Bridge, and 
Hyperv L2 agents. The ML2 framework was designed with a view to greatly simplify 
adding new L2 networking technologies. OpenDaylight leverages the integration the 
ML2 plugin provides for Neutron via a specific driver to enable communication 
between Neutron and OpenDaylight. On the SDN controller side, OpenDaylight has 
northbound APIs to interact with Neutron and to use OVSDB for southbound 
configuration of vSwitches on compute nodes. OpenDaylight can therefore manage 
network connectivity and setup GRE or VXLAN tunnels for compute nodes. 

3.2. Proposed Architecture of Virtualisation Testbed 

One of the main activities of the Task 4.1 is the implementation of a testbed platform 
to support workload and technology characterisation activities within the task. The 
initial architecture implemented for the experimental work outlined in the next 
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section is shown in Figure 3.4. The development and deployment of this architecture 
is an ongoing activity within the task. It is expected that the architecture will evolve 
over the course of the task towards a more data centre oriented configuration. 

The testbed is currently composed of three nodes: one controller and two compute 
nodes. The Controller acts as VIM (﴾Virtual Infrastructure Manager -‐ see Figure 3.1)﴿, 
and hosts the Cloud Controller (﴾OpenStack Nova and Neutron)﴿ along with the 
Network Controller (﴾OpenDaylight)﴿, integrated via the Neutron ML2 plugin. 

The compute nodes include Nova Compute, which communicates with the controller 
through the management network. Virtualisation of the compute resources is based 
on the use of a KVM hypervisor and a libvirt hypervisor controller. Open and DPDK 
vSwitches deliver VM connectivity through the Data Network. 

From a hardware perspective, all the hosts include an X540-‐T2 NIC, which has dual 
Ethernet 10GB ports, supporting SR-‐IOV and DPDK technologies: one port is 
connected to the Management Network and the other is connected to the Data 
Network. The controller and one of the compute nodes are based on Intel i7 4770, 
3,40Ghz CPUs with 32 GB of RAM, the other compute node is a dual socket server 
with XEON E5 2680 v2, 2.8GHz CPUs and 96GB of RAM. This XEON E5 computing 
architecture provides 10 cores per processor (﴾20 cores in total)﴿, a set of platform 
features of interest to T-‐NOVA (﴾e.g. VT-‐x, VT-‐d, Extended page tables (﴾EPT)﴿, TSX-‐NI, 
Trusted Execution Technology (﴾TXT)﴿)﴿ and 8GT/s Quick Path Interconnects for fast 
inter socket communications. 

 
Figure 3.4 Proposed Architecture for the Virtualisation Testbed 
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3.3. Characterisation and Optimisation Experimental Protocols 

As previously outlined, Task 4.1 is focused on technology, platform and workload 
characterisation activities. In order to apply a structured approach to these activities 
an initial experimental protocol has been defined. 

In the migration roadmap from application-‐specific hardware to the generic 
hardware/software environment as envisioned by T-‐NOVA, a definition of best 
practices is required in order to help system owners (﴾or administrators)﴿ to provide a 
suitable infrastructure, as well as Orchestrators to schedule VNF deployments in a 
manner, which achieves SLA fulfilment and optimal resource usage. 

Based on the analysis of the IVM requirements in D2.31 an initial set of experiments 
have been performing. These experiments are focused on identifying metrics of 
potential interest for the quantitative evaluation of VIM performance in an effort to 
developing proposals with respect to potential optimisations. Table 3.2 lists the 
metrics identified to date. The list is not exhaustive and will be updated as 
appropriate in Deliverable 4.1. 

It is important to identify which are the most influential parameters and to capture 
empirical results that indicate whether and to what extent they affect system 
performance. Table 3.2 specifies a concise list of parameters that could possibly affect 
the performance of VNFs and, consequently, Network Services. 

Metrics Description Possible Influencing 
Parameters 

Network 
Throughput 

The throughput provided by the 
virtual network environment. It is 
measured as the difference from 
the number of sent and received 
packets. 

• Network technologies 
configuration 
o DPDK 
o SR-‐IOV and VT-‐d 

• NUMA CPU Pinning 
• Core Pinning 
• Hugepages Size 

Network Latency 

This time interval starts when a 
packet leaves the source and 
ends when the packet reaches its 
destination. 

• Network technologies 
configuration 
o DPDK 
o SR-‐IOV and VT-‐d 

• NUMA CPU Pinning 
• Core Pinning 
• Hugepage Size  

VM Deployment 
Time 

This time interval starts when the 
Orchestrator sends the VM 
creation command and ends 
when the VM is available over 
the Network. 

• Image Size 
• Number of vNICs 
• Type of vNICs 
• Storage technologies and 

configuration 

Multiple VMs 
Deployment Time 

This time interval starts when the 
Orchestrator sends the VM 
creation command for the first 
VM and ends when the last VM is 

• Average image size 
• Number of vNICs 
• Type of vNICs 
• Number of VM deployment 



T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management 

© T-‐NOVA Consortium  
 

26 

available over the Network. requests 
• Storage technologies and 

configuration 

Live Migration 
Down Time 

This time interval starts when the 
VM is no more reachable 
through the network at the 
source node and ends when the 
VM is reachable again at the 
destination node. 

• Network technologies 
configuration 

• Storage technologies and 
configuration 

Live Migration 
Overall Time 

This time interval starts when a 
VM receives the command to 
migrate and ends when the VM 
is reachable over the network 
after the migration. 

• Network technologies 
configuration  

• Storage technologies and 
configuration 

Table 3.2 Selected performance metrics for the IVM. 

The design of experimental protocols is an on-‐going activity for Task 4.1. Some initial 
experiments have been completed and are described in the next section. 

3.3.1. Initial Experimental Protocols 

The experiments performed so far have been focused mainly on the network 
throughput metric. The Internet Engineering Task Force (﴾IETF)﴿ developed RFC2544 
[15] which outlines a benchmarking methodology for network Interconnect Devices. 
The methodology defines performance metrics such as latency, frame loss 
percentage, and maximum data throughput. 

Using the RFC as a basis, throughput was measured in millions of frames per second 
where the frame size refers to Ethernet frames ranging from smallest frames of 64 
bytes to largest frames of 1518 bytes. For 64-‐byte frames, a line rate of 10 Gbps 
translates to 14.88 million packets per second for unidirectional traffic. 

The Device under Test (﴾DUT)﴿ has 2 NICs, both connected to a packet generator: one 
NIC receives the packets, whereas the other NIC is used to send back the traffic to the 
packet generator that measures the throughput. The packet generator selected for 
the experiments was DPDK Pktgen [16] which is an open source version of the Linux 
Foundation Pktgen based on Intel’s DPDK library. It was selected due to its free 
availability and its ability to send packets at 10Gbps line rate speeds. It is possible to 
physically assign one or more CPU cores directly to the sending and receiving 
processes over the NICs. In the current configuration, one core was assigned to the 
processor that generates the packets and one core is assigned to each transmission 
queue for transmitting packets onto the network. A new feature introduced in the 
latest release is the capability to run more than one instance on the same host which 
can be exploited in the creation of different packet flows. 

To maximise the efficiency of the packet generator, a Command Line Interface (﴾CLI)﴿ is 
available to set and start the transmission of the network traffic. Moreover, it is 
possible to setup scripts using the LUA programming language [17] to automate the 
packet generation process, defining traffic profiles and the behaviour of the packet 
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generator. Exploiting this feature for the purpose of this experiment, a LUA script has 
been implemented, following the RFC 2544 recommendations, with different packets 
sizes, automating the test for the various configurations under test. 

3.3.1.1.  Open vSwitch vs. DPDK vSwitch Throughput 

Testing has been focused initially on comparing the throughput of both the Open 
vSwitch and the DPDK vSwitch technologies in two different scenarios, respectively 
shown in Figures 3.5 (﴾a)﴿ and (﴾b)﴿. 

  

Figure 3.5 (a) First testing scenario Figure 3.6 (b) Second testing scenario 

In the first scenario a physical-‐port-‐to-‐physical-‐port communication was 
implemented by the vSwitch, which basically forwards the traffic received through 
NIC1 onto NIC 2. The results obtained are shown in Figure 3.6. 

 
Figure 3.7 Throughput comparison for the first testing scenario 

The results clearly show that DPDK vSwitch provides significantly better packet 
switching performance with respect Open vSwitch. In order to have a complete 
comparison, the results of the second scenario (﴾as shown in Figure 3.5(﴾b)﴿)﴿ are shown 
in Figure 3.7. 
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Figure 3.8 Throughput comparison for second test scenario 

From these results it is clear that the major bottleneck at the infrastructure layer is 
related to the communication between the VM and the physical host. This is the main 
reason why developers are encouraged to use the DPDK library within the VM in 
order to achieve maximum throughput. Using DPDK in virtual switching technology 
(﴾see Figure 3.7)﴿ provided superior performance in comparison the current 
mainstream version of OVS. As previously discussed, these results will most likely 
change, due to Intel’s renewed focus on integrating DPDK capabilities into the 
upcoming OvS 2.4 mainstream code release. 

The remaining experimental results described in this section referred to the second 
configuration of scenario two (﴾using DPDK vSwitch and the Linux kernel packet 
processing within the VM)﴿, since at the VIM level, there is no knowledge respect the 
specific VNF a VM is hosting. 

3.3.1.2.  Processor Pinning influence on Throughput 

Processor pinning (﴾or core pinning)﴿ enables the binding of a process to specific cores 
within the CPUs in a manner that the process runs only on the specified core(﴾s)﴿. 

A number of tests have been performed to identify the impact of processor pinning 
on vSwitch and VM performance. 

With DPDK vSwitch, it is mandatory to allocate cores that are dedicated to switching 
operations. The minimum number of cores which can be assigned to DPDK vSwitch is 
four. However, in order to tune the performance of the vSwitch, the impact of 
increasing the number of allocated cores was investigated. 

In Figure 3.8 throughput versus the number of allocated cores is shown. The results 
indicated that the optimal assign of cores to vSwitch is four. In fact, increasing the 
number of cores beyond four did not provide any measurable increase performance 
in most cases. The data clearly indicates that the allocation of additional cores 
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beyond the default configuration of four can be considered as a waste of physical 
resources that could otherwise be allocated to VMs. 

 
Figure 3.9 Throughput varying the core pinning configuration for DPDK vSwitch. 

Similar experiments have been conducted for a VM, in order to analyse the extent in 
which a VNF can be influenced by processor pinning. Results are shown in Figure 3.9. 
Four cores were statically assigned to the vSwitch for this experiment. 

 
Figure 3.10 Throughput varying the core pinning configuration for the VM. 

The results show that the usage of processor pinning can help to achieve improved 
performance, if properly configured. In this experimental configuration a VNFC, using 
just one core for processing incoming network traffic was found to be insufficient to 
manage the processing overhead required by the VM. Assigning two cores (﴾yellow 
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bars)﴿ it is possible to achieve improved performance in comparison to a non-‐pinned 
configuration (﴾blue bars)﴿. These experiments to date are based on a single VM 
deployment onto a server with two processors with 10 cores each with the assigned 
cores on CPU1. 

3.3.1.3.  Influence of NUMA Awareness on Throughput 

Non-‐Uniform Memory Access (﴾NUMA)﴿ is a computer memory access design used in 
multiprocessing, where the memory access time depends on the memory location 
relative to the processor. In multiprocessor systems the processors can be grouped 
together with their own memory and possibly their own I/O channels. Each group of 
CPUs and memory is called a NUMA node. Each CPU can also access memory 
associated with another NUMA node in a coherent way however this is slower and 
less efficient in comparison to accessing local memory. The allocation of CPUs and 
hardware resources to a NUMA node is a hardware vendor specific implementation. 

The test system utilised for the investigated NUMA configurations had two NUMA 
nodes, containing one CPU per each. The NIC used for the experiment (﴾Intel Ethernet 
Controller X540-‐T2)﴿ was installed on a PCI slot belonging to the first NUMA node. 

During the experiments, the throughput has been measured for two different 
configurations: in the first one the VM is pinned on two cores belonging to the first 
NUMA node (﴾CPU1)﴿, whereas in the second the VM is pinned on two cores belonging 
to the second NUMA node (﴾CPU2)﴿. The results obtained are shown in Figure 3.10. 

 
Figure 3.11 The effect of core pinning configuration on throughput  

The performance obtained in the second scenario was approximately 50% less than in 
scenario one, indicating that NUMA awareness can have a significant influence on 
system performance and should be considered appropriately at the Orchestration 
layer and within the VIM functional entity of the IVM. 
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3.3.1.4.  Hugepages Size Throughput 

When executing instructions in an x86 architecture both the CPU and OS mark the 
RAM as being used by a process. For efficiency, the CPU usually allocates RAM in 4K 
blocks (﴾default value for Linux)﴿ named pages. Since these pages can be swapped to 
the disk, the memory addresses are virtual and the operating system has to keep 
track of which page belongs to which process and where they are stored on the disk. 
As the number of pages increases, more time is taken to find where the memory has 
been mapped too. Newer CPU architectures and operating systems support bigger 
pages (﴾so less time spent on look-‐ups as is the number of pages required)﴿. This 
feature is called Hugepages. Since the usage of DPDK vSwitch requires the 
Hugepages, some tests have been performed by changing the size of the pages from 
2Mbytes to 1Gbyte. The results obtained are shown in Figure 3.11. 

Initial results obtained indicated there is no significant advantage in terms of 
throughput by increasing the Hugepage size. Additional tests will be carried in order 
to determine if the size of the Hugepage has an influence on other systems metrics 
such as latency. 

 
Figure 3.12 Packet throughput performance with huge page sizes of 2MB and 1GB 

3.3.2. Planned Experimental Protocols 

Starting with the parameters listed in Table 3.2, a set of scenarios are currently in 
development and will be used to plan a set of experimental protocols to determine if 
the parameters identified have a quantifiable impact on performance. For example, 
one representative scenario involves the use of DPDK vSwitch to process the traffic 
between VMs at a software level as well as the exploitation of hardware features, such 
as VT-‐d and SR-‐IOV technologies, to reduce the overhead due to the VMM. Live 
migration is another scenario of interest, where the bandwidth dedicated to the 
information exchange between the source and the destination of a live migration 
could affect both migration delay and down time. The test-‐bed defined in Section 3.2 
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will be used to execute the protocols based on different system configurations, 
network technologies etc. 

Networking experiments may also involve the creation of simple service chains, each 
of them intended as a chain of VMs traversed by the same traffic flow. Since the 
analysis of the VNF application per se is out of the scope of the VIM (﴾in T-‐NOVA this 
is delegated to the VNF developer)﴿ the goal here is to analyse the impact of the 
underlying technologies and, for this purpose, the simplest known VNF can be used: 
the L2/L3 Linux kernel stack. 

Moreover, exploration of the different storage technologies available that can be 
used within the T-‐NOVA IVM will be necessary, with a focus on configuration 
parameters. An initial high level classification of different approaches/technologies 
with respect to specific scenarios has been performed. Due to the high level of 
potential customisation, not all the options will be considered in the experimental 
plan. The focus is explicitly on those that are considered to most applicable to VNFs. 

The following scenarios and options have been identified: 

Scenario 1. Boot volumes of VMs can be located on: 
a. Local disks of the Nova Compute Node 
b. Shared disks (﴾of Nova Compute Nodes)﴿ residing on a SAN or an IP 

based storage array; in this case a clustered file system is necessary in 
order, for example, to control SCSI reservations when multiple 
Compute Nodes access the shared volume 

c. Disks presented by a Cinder Block Storage Node, disks that, in turn, 
can be: 

i. Local disks of the Cinder Node 
ii. Shared disks (﴾of the Cinder Node)﴿ residing on a SAN based or 

IP based storage array; Cinder Volume Agent would be moved 
onto the Controller Node and will manage the SAN or IP based 
storage array (﴾in case of where disks local to the Cinder Node 
are used, the Cinder Volume Agent would run on the Cinder 
Node itself)﴿. 

Scenario 2. Additional (﴾non-‐boot)﴿ volumes of VMs can be located on: 

a. Local disks of a Cinder Storage Node 
b. Shared disks of a Cinder Node residing on a SAN or IP based storage 

array; as highlighted above it would be the Controller Node which 
manages the SAN or IP based storage array 

Scenario 3. Volumes containing the VMs master images should be located 
on the Object Storage: local disks of a Swift Object Storage Node; Swift has 
been designed to be a multi-‐master replicated Object Storage, so creation or 
modification of an object on a Swift Node is immediately replicated to the 
other Swift Nodes. 

As highlighted by the list above, more than one configuration can be used for each 
scenario and technology (﴾with the exception of the Swift Object Storage)﴿. Any 
configuration listed above could influence in diverse way behaviour and performance 
of the cloud environment, impacting on some of the metrics listed at the beginning 
of this section. 
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3.4. Conclusions and Future Work 

Task 4.1 is focused on the identification, characterisation and optimisation of the 
hardware and software components that will be used in the implementation of the T-‐
NOVA IVM. The initial selection of candidate technologies has been completed and 
presented in Section 7. These candidate technologies have been utilised in the design 
and implementation of an IVM testbed. Initial technology characterisation 
experiments have been conducted, which can be used to improve packet processing 
performance. An extensive experimental protocol which will focus on workload and 
technology characterisation is being developed. The output of this work will help to 
identify dynamic and static metrics that are most highly correlated with workload or 
system performance. Task 4.1 is also developing a set of Best Known Methods (﴾BKMs)﴿ 
for virtualised environment implementation for the performant deployment and 
management of VNFs. These methods will be reported in Deliverable 4.1 and will be 
used by a number of other tasks in the development of subsystem components for 
the T-‐NOVA system. 
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4. SDN CONTROL PLANE  
The SDN Control Plane plays a key role in the T-‐NOVA system with responsibility in 
the southbound direction for the configuration, management and monitoring of the 
SDN-‐compatible network entities. Northbound it is responsible for delivering 
enhanced network connectivity services to the Orchestrator and management 
systems.  

SDN has the potential to deliver benefits to NFV applications with a scalable, elastic 
and on-‐demand network infrastructure, leveraging the programmability of 
southbound network elements. However such elements, both physical and virtualised, 
need to be properly configured to address the applications’ requirements. This 
challenging task is the main objective of the SDN Control Plane. 

In this regard, Task 4.2 proposes to design and develop an enhanced SDN controller 
for network services provisioning to support NFV applications. The activities within 
the task have been split into following focus areas:  

• Programmatic Network Control: Dynamic and intelligent control of network 
resources, thus enabling responsiveness to variable conditions, such as user 
behaviour dynamics, application lifecycle, network performance, monitoring 
events (﴾e.g. congestion, network malfunction)﴿, as well as flexible establishment 
of service function chaining. 

• Network Virtualisation: Deals with the deployment of virtual networks 
(﴾vNets)﴿ supporting QoS and overlay encapsulation, through analysis of 
frameworks (﴾i.e. Open vSwitch)﴿, protocols (﴾i.e. OpenFlow)﴿ and tunnelling 
solutions (﴾i.e. NVGRE, VxLAN)﴿. The key output of this activity is to provide an 
open, flexible and extensible interface for the instantiation, configuration and 
monitoring of isolated virtual networks.  

• Control Plane Virtualisation: Refers to the virtualisation of the network 
controller to ensure reliability and high availability in large-‐scale scenarios. For 
these purposes, cloud computing capabilities combined with distributed 
clustered approaches are being investigated in order to ensure elasticity, auto-‐
scaling and load balancing of the SDN control plane. 

In Task 4.2, work has initially focused on determining the SDN platform that most 
appropriately addresses the T-‐NOVA requirements. This selection was carried out 
after a thorough analysis of the SDN controller implementations currently available, 
the features they offer, the mechanisms they support for enhanced network services 
(﴾i.e. slicing, chaining, QoS)﴿, the way they approach the distribution of the control 
workload. The information presented in this section reports the progress on these 
activities. 

4.1. Key Requirements 

The first step involved the identification of key requirements affecting the network 
controller procedures and mechanisms. Table 4.1 provides a summary of the high-‐
level requirements identified in T-‐NOVA concerning the SDN Control Plane. A full list 
of requirements have been collected and documented in D2.31.  
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Requirement Description 

Network connectivity and 
isolation 

Applications and services must be connected to isolated 
networks, ensuring that the processing of packets on each 
network is independent of all the others. 

Resource Monitoring 
The provision of monitoring information should make 
management and orchestration entities aware of the status 
and performance of the network infrastructure 

QoS support 
Applications and services may have specific performance 
needs, requiring mechanisms for QoS provisioning over the 
network infrastructure. 

Performance 

In large-‐scale scenarios where many nodes need to be 
controlled, the control plane may suffer slower performance 
in terms of processed requests per second/average response 
time. Therefore, mechanisms to limit this issue should be 
provided.   

Scalability 

The control plane should adapt to a variety of applications 
and scale according to their network load. This means that in 
some cases a distributed control plane may be required; 
therefore the T-‐NOVA control plane must be able to 
accommodate this requirement.  

Robustness/Fault 
tolerance 

The controller itself might fail and therefore leave the 
network inoperable. Through redundancy mechanisms, it 
must be guaranteed that the controller does not represent a 
single point of failure. 

Service chaining support The network controller must be able to dynamically enforce 
and modify the chaining of network service functions. 

Inter-datacentre 
connectivity 

The solution adopted for the control plane should be able to 
support inter-‐datacenter (﴾inter-‐DC)﴿ connectivity, as in many 
practical cases this will be required due to the physical 
dispersion of resources. 

Table 4.1 Requirements mapping for Task 4.2 

4.2. Generic Architecture of the SDN Control Plane 

Within Task 4.2, a key activity was the design of the preliminary architecture for the 
network controller. The components, modules and interfaces of the T-‐NOVA SDN 
Control Plane were identified. 

Figure 4.1 shows the SDN control plane functional architecture; it has been defined 
starting from an idealised SDN framework model which has been selected as an initial 
reference point [18]. It has then been extended and properly adapted to fulfil the 
requirements previously described.  
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Figure 4.1 T-NOVA SDN Control Plane Architecture 

4.2.1. Functional components 

Table 4.2 outlines the main functional components that have been identified with a 
brief description of their role within the network controller. 

Component Functionalities 

Topology Manager 

The Topology Manager learns and manages topology 
information specific to devices and their reachability. 
Information gathered about the networks’ elements is 
essential to discovering the topology.  

Network Element 
Manager 

The Network Element Manager stores, manages and provides 
the details (﴾e.g. switch id, SW version, capabilities, etc.)﴿ of the 
network nodes as they are discovered. 

Path/Flow Manager 

This module provides the flow programming services including 
forwarding rule installation and removal of data paths 
configurations. Typically used when high-‐level policies 
specified by the northbound are translated into flows by a 
service module (﴾Service Chaining, Slice Manager)﴿ that in turn 
communicates with this module to proactively push the flows 
down to network elements. Path reconfiguration (﴾after 
network failures or VM migration)﴿ and QoS support are in 
charge of this module. 
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Component Functionalities 

Host Tracker 

The host tracker module learns, statically or dynamically about 
VM hosts in the network. It stores and provides host 
information, such Host's IP address, MAC address, switch ID, 
port, and VLAN. Moreover it periodically refreshes the hosts’ 
data to track the element location (﴾switch, port, MAC, or 
VLAN)﴿, and notifies the listening applications of host related 
events. 

Stats Manager 
This module stores and provides network statistics data with 
different levels of data granularity (﴾flow, port and table 
statistics)﴿. 

vNet Manager 

This functional module allows the creation of multiple, 
isolated, virtual tenant networks on top of a single physical 
network, in order to enable complete separation between the 
logical and physical plane, hiding the complexity of the 
underlying network and optimising network resources usage. 

Service Chaining 
This functional module supports applying service chains as 
ordered graph of network services (﴾e.g. firewalls, load 
balancers)﴿ by configuring accordingly traffic steering. 

Table 4.2 SDN Control Plane Functional Components 

4.2.1.1.  Distributed Control Plane 

In order to address performance, scalability and fault-‐tolerance requirements, a 
distributed approach for the deployment of the SDN controller platform is under 
investigation. 

In this regard, following the concept of a "distributed, but logically centralised" 
controller [19] [20], the SDN control plane in T-‐NOVA proposes the virtualisation of 
the network controller through multiple instances organised in clusters, while 
keeping the benefits of centralised network control. The core concept is to exploit 
cloud-‐computing capabilities to virtualise each instance of a controller on dedicated 
virtual machines, allowing dynamic deployment and enabling the distribution of the 
network control workload across the cluster.  

To support deployments in a distributed scenario, new functional components are 
required. These additional components, shown in Figure 4.2, have the goal of 
extending the architecture defined before, where each CP block corresponds to a 
single instance of the control plane.  
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Figure 4.2 Distributed SDN Control Plane Architecture 

In Table 4.3 a brief description of all the Distributed SDN Control Plane components 
is provided. 

Component Functionalities 

Distributed Data 
Repository 

This component is responsible for consistently maintaining a 
global view of the network across the control plane instances 
belonging to the cluster. The information collected is useful 
maintaining a global view of the topology and the state of 
the network, including switch, port, link, and host status. 
Northbound applications/internal CP components can take 
advantage of the global network view in making forwarding 
and policy decisions, which are in turn stored into the 
network view. Mechanisms for the distribution of the network 
state among the CP instances require evaluation and analysis 
that will be explored later in the project. 

Northbound Request 
Handler 

Mainly responsible for distributing northbound requests 
among the available controller instances. It is essential to 
make the network control plane accessible by the 
northbound API as a unique single instance. 

CP Coordinator  

The CP Coordinator supervises and coordinates the operation 
in the cluster. Specifically it has to: 

• Properly instruct the Northbound Requests Handler 
in spreading the northbound requests. 

• Dynamically configure the controller-‐to-‐switch 
connections by assigning each switch to one or more 
controller instances.  

• Decide whether to add or remove a controller 
instance to the cluster depending on the network 
needs 

• Monitor the status of the cluster 
The role of coordinator may be carried out by one of the CP 
instances available in the cluster, by means of a procedure of 
leader election. 
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Component Functionalities 

CP Agent 

The CP Agent is in charge of collecting information about the 
current resource utilisation (﴾CPU load, memory usage, control 
messages arrival rate, etc.)﴿ at each CP instance and enforcing 
the switch-‐to-‐controller instance connection rules as 
established by the Coordinator. These rules are used by each 
switch to identify the controller instance/s to which the 
southbound requests must be forwarded. 

Table 4.3 Distributed SDN Control Plane Components 

4.2.2. Interfaces 

The following is a description of main functionalities supported at the control plane 
interfaces divided into Northbound, Southbound and West-‐Eastbound. The detailed 
specification of these interfaces is currently ongoing; therefore the following is a 
provisional description of the roles and high-‐level functions.  

• Northbound Interface: 
This interface identifies the application programming interface (﴾API)﴿, often 
RESTful, serving the higher systems such as orchestrators or cloud managers 
or applications to gather network intelligence, run algorithms and manage 
network resources.  

• Southbound Interface: 
This interface supports the exchange of control information between the 
physical and virtual switches and the SDN controller platform. The 
southbound interface is capable of supporting multiple protocols, proprietary 
and standards based, can be used for flow programmability (﴾e.g. OpenFlow 
1.0/1.3, BGP-‐LS, etc.)﴿ and device configuration (﴾e.g. OVSDB, SNMP, NETCONF)﴿ 
of the data plane entities.  

• Westbound Interface:  
This interface is required to address the scalability and high-‐availability 
requirements imposed by DC environments. It supports the control of large-‐
scale DCs by enabling the interconnection of multiple SDN controllers, 
organised in clusters. 

• Eastbound interface 
This interface is used for the communication with control planes of non-‐SDN 
domains (﴾i.e. MPLS)﴿ and it is also responsible for managing inter-‐DC 
connectivity. 

4.3. Candidate Solutions 

Given the rising number of SDN solutions available an important task concerns the 
selection of appropriate technologies for the development of the functional 
components described previously. Therefore, a detailed survey among existing 
solutions was carried out with the goal of selecting the best technologies as the initial 
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starting point for the implementation of the T-‐NOVA SDN Control Plane. Specifically, 
the following topics were addressed: 

o SDN controllers 
o Distributed controller approaches 
o Network tunnelling protocols 
o Network virtualisation frameworks 

Sections below present the complete list of candidate technologies and the rationale 
behind the selection. 

4.3.1. SDN Controller 

4.3.1.1.  OpenDaylight 

Table 4.4 presents a list of the currently available SDN controllers.  

Name Descriptions 

NOX 
Open-‐source controller developed by Nicira Networks, implemented in 
C++ and Python. It offers support for the OpenFlow v1.0 protocol. NOX is 
not being actively developed at this time. 

POX 
Open-‐source controller developed by Nicira Networks, implemented in 
Python. It offers support for the OpenFlow v1.0 protocol. POX is not 
being actively developed at this time. 

Maestro 
Open-‐source controller developed by Rice University, implemented in 
Java. It offers support for the OpenFlow v1.0 protocol. Maestro is not 
actively developed at this time. 

Beacon 
Open-‐source controller developed by Stanford University, implemented 
in Java. It offers support for the OpenFlow v1.0 protocol. Beacon is not 
being actively developed at this time. 

Floodlight 

Open-‐source controller developed by Big Switch Networks, implemented 
in Java. It offers support for the OpenFlow v1.0 protocol and a Quantum 
plug-‐in for OpenStack support. Floodlight is not being actively developed 
at this time. 

ONOS 
Open-‐source SDN controller platform developed by ON.LAB. ONOS is 
being actively developed. The first public release was made available on 
the 5th of December. 

Ryu 

Open-‐source controller developed by NTT, implemented in Python. It 
offers support for the OpenFlow v1.0, OpenFlow v1.2, OpenFlow v1.3 and 
OpenFlow v1.4 protocols, as well as OpenStack support. Ryu is being 
actively developed at this time. 

Nodeflow Open-‐source controller developed by CISCO, implemented in Javascript. 
Nodeflow is not being actively developed at this time. 

Trema 

Open-‐source controller developed by NEC, implemented in C and Ruby. 
It offers support for the OpenFlow v1.0, OpenFlow v1.2 and OpenFlow 
v1.3.X protocol and a Quantum plug-‐in for OpenStack support. Trema is 
being actively developed at this time 
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Name Descriptions 

OpenIRIS 
Open-‐source controller developed by ETRI, implemented in Java. It offers 
support for the OpenFlow v1.0.1 to v1.3.2. OpenIRIS is being actively 
developed at this time. 

MUL 
Open-‐source controller developed by Kulcloud, implemented in C. It 
offers support for the OpenFlow v1.0, OpenFlow v1.3 and OpenFlow v1.4. 
MUL is being actively developed at this time. 

Jaxon Open-‐source controller based on NOX and implemented in Java. It is not 
being actively developed at this time. 

OpenContrail 

Open-‐source SDN platform developed by Juniper Networks. The 
OpenContrail Controller, which is part of the platform, is implemented in 
Python, while the projects comprising OpenContrail are implemented in 
various programming languages (﴾Python, C++ and JavaScript)﴿. It offers 
OpenStack support but the current version lacks of OpenFlow support. 
OpenContrail is being actively developed at this time. 

Table 4.4 Alterative SDN Controller Considered 

The first criterion to be applied in the SDN controller selection process was to 
consider only those still under active development. The next step was to take into 
account the consortium’s hands-‐on experience with the various controller options. 
Ryu and OpenDaylight were the solutions that emerged based on this criterion. 

The final choice between these two candidates was the OpenDaylight platform due to 
the high level of community support, strong roadmap, growing maturity and its 
numerous features, as outlined in Sections 3.1.3.3 and 7.0. 

4.3.2. Distributed Control Plane 

4.3.2.1.  ODL Clustering Service 

OpenDaylight supports a cluster based High Availability (﴾HA)﴿ model where several 
instances of ODL controller act as a single logical controller. The global state of the 
network is maintained through a distributed data store. 

The Clustering Service Provider module is responsible for providing the clustering 
services to all the functional components of the controller as well as to applications 
on the northbound side of the controller. From the northbound side the cluster is 
accessible via a REST API; a request can land on any controller in the cluster. On the 
southbound side (﴾specifically OpenFlow)﴿, switches need to be explicitly connected to 
the controllers in the cluster via their IP address. 

The Connection Manager is the module responsible for managing connection 
information between the ODL instances and the OF switches. For the time being, the 
connection schemes supported are: SINGLE_CONTROLLER (﴾all the switches connected 
to only one controller)﴿ and ANY_CONTROLLER_ONE_MASTER (﴾any switch connected 
to any controller, with only one master)﴿. Other schemes (﴾i.e. ROUND_ROBIN and 
LOAD_BALANCED)﴿ have been defined but have not yet been implemented. 
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In this regard, the T-‐NOVA SDN Control Plane proposes to extend the Clustering 
Service offered by ODL with an algorithm implementing the LOAD_BALANCED 
connection scheme. This form of algorithm will be in charge of determining when to 
add/remove controllers to/from the cluster and to dynamically balance the switch-‐to-‐
controller connections according to the current controllers’ load estimation. 
Specifically it has to assign each switch to a subset of controllers, of which one will be 
the master, in order to reduce the control traffic load while maintaining resiliency. 
The dynamic switch assignment will be achieved through a migration protocol to 
minimise packet loss or duplication. 

Name Description 

Pratyaastha 

It distributes the SDN control plane application state (﴾consisting of 
network flows related to a VNFs or vNets)﴿ as a variant of a multi-‐
dimensional bin-‐packing problem. The goal is to reduce the 
operating cost of controllers and reduce flow setup latencies, in 
comparison to other approaches that use static assignments of SDN 
switches to controllers and make use of distributed data stores for 
state sharing.  
Application states and controller load may change dynamically, and 
if needed states and switches may need to be reassigned as well as 
new controllers added or removed as per the load. When switch 
reassignment is required, Pratyaastha proposes to use the switch 
migration protocol of ElastiCon. 

ElastiCon 

ElastiCon is a distributed controller architecture in which the 
controller pool is dynamically grown or shrunk depending on the 
traffic conditions. The SDN switch mapping to a controller is not 
static and an OpenFlow compliant switch handover protocol has 
been created to support dynamic reallocation of a switch to a 
different controller. The switch migration algorithm ensures the 
aliveness and safety of operations. 
ElastiCon exploits the features introduced in OpenFlow 1.3 where a 
controller can be configured as master, equal, or slave. The 
controller can register its role with the switch it is managing. A 
switch can connect to multiple controllers, but only one of them 
acts as the master controller. 
The ElastiCon distributed controller design consists of clusters of 
autonomous controller nodes that coordinate among themselves to 
provide consistent control logic. ElastiCon also uses a distributed 
data store that helps the cluster of controllers to coordinate itself 
and thus to show a behaviour similar to a logically centralised 
controller. 

ONOS 

ONOS is an open source distributed network operating system 
initially developed by researchers at Stanford University. The core 
architecture is implemented by using several other open source 
components including Zookeeper (﴾for distributed coordination)﴿, 
Cassandra (﴾in memory DHT)﴿, Titan (﴾graph DB)﴿, to name a few. The 
project uses Floodlight as the SDN controller that receives 
configurations from control applications running on top of ONOS 
and sets up the necessary flows between forwarding devices using 
OpenFlow. The architecture allows for multiple SDN controllers to 
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manage parts of network components exclusively (﴾sharding)﴿ and 
algorithms to minimise message flows between network silos. High 
availability with failover is enabled through a distributed registry 
(﴾Zookeeper)﴿. The network topology is learned by monitoring 
OpenFlow events (﴾such as PKTIN)﴿ and eventually achieves 
consistency. ONOS reduces the complexity of the network by 
segregating network topology maintenance and the path 
computation process. At the time of writing -‐ dynamic clustering in 
ONOS was not recommended and the static clustering mechanism 
was suggested 

Table 4.5 Alternative Distributed Control Plane Technologies 

4.3.3. Network Virtualisation 

Network virtualisation deals with the decoupling of the hardware elements that form 
a physical network, from the logical networks operating over it to enable application 
or tenant isolation. Network virtualisation is accomplished by means of frameworks 
and technologies providing network abstraction over the physical environment. In the 
following sections, existing solutions designed for this scope are presented. 

4.3.3.1.  OpenDaylight VTN 

OpenDaylight Virtual Tenant Network (﴾ODL VTN)﴿ is a framework that provides multi-‐
tenant virtual network on an SDN controller. As such it implements a logical 
abstraction plane that enables the complete separation of the logical plane from 
physical plane. Multiple logical networks can be applied on the same physical 
infrastructure, while at the same time remaining completely segregated from each 
other. Networks for applications and end user needs can be deployed without 
knowledge of the underlying physical network topology. ODL VTN networks are 
constructed by mean of the following objects: virtual bridge (﴾vBridge)﴿, virtual router 
(﴾vRouter)﴿, virtual interface (﴾vInterface)﴿ and virtual link (﴾vLink)﴿. Figure 4.3 shows a 
simple logical network. 

 

Figure 4.3 Simple VTN network 
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In a more complicated real world scenario, the following objects are also 
provided: virtual tunnel (﴾vTunnel)﴿, virtual Tunnel End Point (﴾vTEP)﴿, virtual 
connectivity between controlled networks (﴾vBypass)﴿. Figure 4.4 shows this more 
complex logical network. 

 

Figure 4.4 VTN tunnels 

Another function in ODL VTN is the Flow Filter that can be comparable in 
functionality Access Control Lists (﴾ACLs)﴿. In other words communication can be 
allowed, prohibited or redirected based upon particular conditions that a packet 
can meet. 

With ODL VTN virtual networks can also be configured across multiple SDN 
controllers. This feature applies usually in a multi-‐DC environment. In this case it 
is still possible to apply a single Flow Filter policy to VTN virtual objects 
distributed over different DCs. 

ODL VTN main components are the VTN Coordinator and VTN Manager that, as 
shown in Figure 4.5, communicates via Web APIs, implemented by REST protocol. 
ODL VTN uses three different methods of mapping frames to virtual networks: 
port, VLAN and MAC mapping.  

 

Figure 4.5 VTN high-level architecture 

4.3.3.2.  OpenDOVE 

Open DOVE is an overlay network virtualisation platform for the DC. It runs over any 
IP network and provides logically isolated multi-­‐tenant networks with layer2 or layer3 
connectivity. The OpenDove components are:  

• oDMC (﴾OpenDove Management Controller)﴿: acts as the control/access point 
into the OpenDove management plane  

• oDCS (﴾OpenDove Connectivity Server)﴿: acts as the control point for the 
OpenDove control plane  
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• oDGW (﴾OpenDove Gateway)﴿: provides gateway functionality between overlay 
and the outside world, thus enabling OpenDove to provide connectivity to 
external networks 

• OpenDove OVS Agent: provides the interface between OVS and OpenDove 
control plane.  

The relationship between these components is shown in Figure 4.6 

 
Figure 4.6 OpenDove components 

The main OpenDove features are: control plane implementation with address, policy 
and mobility management; management interfaces for programmatic configuration, 
including OpenStack enablement;  open data plane implementation for Linux/KVM 
and VxLAN encapsulation; software gateway for connecting to non-­‐virtualised 
network and external hosts. OpenDove virtual switches are implemented on Open 
vSwitch. It leverages OVS native encapsulation/tunnelling support (﴾VxLAN frame 
format)﴿. OpenDOVE has not been submitted to the incubated projects list for the 
Helium version of ODL.  

4.4. Implementation Choices 

A mapping of the T-‐NOVA SDN controller components and the OpenDaylight 
modules is being carried out. Table 4.7 summarises the initial analysis aimed at 
identifying the extensions required to be implemented in ODL to address the gaps in 
the SDN control plane functionalities requested by the T-‐NOVA system. 

Functionality 
in T-NOVA 

Functional Module 
in OpenDaylight 

Extensions 
to be implemented 

Path/Flow Manager 
Forwarding Rule 
Manager / Flow 
Programmer 

QoS Support 

Path reconfiguration 

vNet Manager 
VTN Coordinator 

VTN Manager 
Support for live migration of VM 
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Functionality 
in T-NOVA 

Functional Module 
in OpenDaylight 

Extensions 
to be implemented 

Traffic Steering 
VTN Coordinator 

VTN Manger 
Support for service chaining through the 
enforcement of traffic steering policies. 

High 
Availability/Clustering Clustering Service Support for dynamic deployment of 

control plane instances. 

Northbound request 
handler  None 

Solutions to be investigated:  

• Anycast virtual IP 
• Round-‐robin DNS 
• HTTP load-‐balancer 

Southbound traffic 
balancing Connection Manager 

Provide a load balanced connection 
scheme across the clustered controllers 
by migrating switches from overloaded 
controllers to lightly-‐loaded ones. 

Table 4.6 Mapping between T-NOVA and OpenDaylight Components 

4.5. Conclusions 

OpenDaylight was selected from the available open source SDN controllers as the 
reference framework for the SDN control plane software implementation in T-‐NOVA. 
In addition, the Virtual Tenant Network service has been selected as the first option 
to support the Network Virtualisation functionalities. Finally, the clustering service 
included in OpenDaylight has been evaluated as an effective solution for the 
distributed control plane.  
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5. SDK FOR SDN 

Modern computing is rapidly becoming dominated by resources being provisioned 
on demand, for the duration of the task being processed, and is increasingly being 
driven by the credit-‐card mind-‐set (﴾instant-‐gratification)﴿, far away from the resource-‐
requisition model that was satisfied through a centralised IT. The compute (﴾CPUs)﴿, 
storage and networking needs of the consumers are being increasingly met by cloud 
computing providers -‐ both internal and external to an organisation. In order to 
provide on-‐demand self-‐provisioning, the underlying network fabric has to be 
increasingly flexible. SDN is being seen as a likely paradigm that can support 
consumers' desires for a programmable network (﴾management and configuration)﴿. 
Software defined networks can also be seen as a means to reduce the complexity and 
costs of the legacy networking setups, enabling innovation through rapid, 
uncomplicated deployment of protocol optimisations, and also possibly improving 
the throughput in a virtualised cloud environment by rendering the layers of 
encapsulation of various protocols (﴾for tenant segregation)﴿ unnecessary. 

Since the advent of OpenFlow [21] and with the maturity of several software 
implementations of basic network functions – open vSwitch [11] firewalls [22] etc., 
there is an increasing diversity of SDN controllers available today. 

SDN controllers today not only allow management of flows (﴾typically through 
OpenFlow protocol support in the physical/virtual switches)﴿, but also unified access 
to popular packages (﴾open vSwitch)﴿, and other network protocols (﴾ICMP)﴿, and in 
some cases to popular cloud platform networking management modules, for 
example OpenStack Neutron. Additionally, the telecommunication industry is gearing 
up for NFV framework adoption, and after the NFV recommendation from the ETSI 
MANO [23] working group, such activities have been gathering pace.  

With the increasing adoption of SDN in big data centres and the push from 
telecommunication vendors worldwide towards NFV – the developer community is 
seeing increased activity in the SDN application development space. There is also an 
increasing diversity in SDN controllers developed by numerous consortia and 
individual companies. In order to sustain the quality development of SDN 
applications a uniform way is required for programmers to access the various SDN 
capabilities exposed by numerous controllers. Moreover a convenient compilation of 
useful networking libraries will aid the SDN application development process 
tremendously. 

The SDK for SDN task in the T-‐NOVA project aims to alleviate some of the pain 
points of SDN application developers, and DC implementers by providing a toolkit 
that will abstract out the differences of the northbound APIs (﴾nAPIs)﴿ of popular SDN 
controllers. The SDK for SDN task is also evaluating the fine-‐grained interactions 
between the virtualised and physical aspects of DC networking in order to better 
understand the bottlenecks in the data and control path, so as to include the 
necessary tools to aid DC planners. 

Typically, a software development kit can comprise of the following: 
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• Language specific API wrappers 
• Debugging capabilities typically built into the integrated development 

environment 
• Testing and runtime environments (﴾example: Mininet [24] for SDN 

applications)﴿ 
• Sample codes showing how to use the SDK 
• Supporting technical notes clarifying and supplementing the original feature 

usage guide 

Some SDKs can provide additional functionalities such as a widget library, GUI 
builder, etc. for visual composition of features in the target application. There is also a 
need to compile a priority list of features needed by other tasks in this project, along 
with generally desired features to have in such a SDK. Understanding the interactions 
between virtual and physical network elements in a DC is critical in order to develop 
an understanding of the feature list to be supported by this task. In the following 
sections the requirements on the SDK for SDN are identified, along with an initial 
discussion on a possible architecture for the target SDK for SDN. The links and 
dependencies on other T-‐NOVA tasks and work-‐packages are described. 

5.1. State of the Art 

The following sections provides an brief review of the current state of the art that has 
relevance to the activities of Task 4.3 

5.1.1. NetIDE Project 

In order to identify possible overlap areas between NetIDE [25] and T-‐NOVA (﴾WP4)﴿ 
projects, a brief overview of both the project scopes and activities is required 
together with an analysis of the possible synergies and differences between the two 
projects. Although project external goals would be the provisioning of development 
environment, to be utilised by SDN programmers, this analysis provides a comparison 
that assesses and identifies the key differences.  

5.1.1.1.  Overview 

NetIDE is an FP7 project which started, together with T-‐NOVA, in January of 2014 
with a duration of 36 months. The project is focused on delivering a single IDE to 
support the whole development lifecycle of portable network controller programs in 
a vendor-‐independent fashion. 

The project objectives encompass: 

• An abstraction layer for developing SDN platform independent network 
programs 

• An IDE and associated tools that work on objects in the SDN abstraction layer 
• A framework that interfaces the SDN abstraction layer with real and 

simulated/emulated network appliances 
• Proof-‐of-‐concept implementations of network applications and services 
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The project is defining a framework for network applications developers who need to 
re-‐code their solutions every time they encounter a network infrastructure based on a 
different controller. Since the developers would have to develop different solutions 
for different high-‐level control plane network programming languages (﴾Frenetic [26] 
Procera [27] etc.)﴿, this may result in network programs that are neither reusable nor 
shareable. The advantages of OpenFlow (﴾uniform interface between the controller 
and the network infrastructures)﴿ are therefore not fully utilised. NetIDE proposes to 
deliver a single Integrated Development Environment to support the whole 
development lifecycle of network controller programs in a vendor-‐independent 
fashion. 

The proposed NetIDE abstractions will allow the development of SDN solutions 
independent from the actual SDN controller used in each case. In particular NetIDE 
will: 

• Define an abstraction layer for developing solution-‐independent SDN 
programs;  

• Design and implement an IDE and associated tools that work on objects on 
the SDN abstraction layer;  

• Provide a framework that interfaces the SDN abstraction layer with real and 
simulated/emulated network. In particular the development environment is 
controller-‐agnostic. 

The overall architecture of the NetIDE project is shown in Figure 5.1, which separates 
into three respective blocks: the developer toolkit, the network app engine (﴾mediator)﴿ 
and the network elements / emulators. 

The developer toolkit represents the programming environment based on the NetIDE 
concept of Interchange Representation Format (﴾IRF)﴿ -‐ a central language element 
(﴾lingua franca)﴿ [28] that covers orthogonal aspects of deployment models of different 
SDN approaches. It consists in a set of integrated tools, in an Eclipse-‐like 
environment, that allows software developers to code, configure, and deploy network 
Apps. 

IRF provides a common representation of the network that is later processed by 
NetIDE tools (﴾e.g. debugger, compiler, etc.)﴿. Network programs described through 
different languages can be transformed to IRF (﴾and vice versa)﴿. Network programs 
described through IRF can be executed on top of different controllers thanks to a set 
of specific driver. 

A library that translates the various constructs in network applications into 
representation to be used by the mediator layer below supports the IRF: NetIDE 
Network App Engine. This is a runtime environment that hosts Network Apps and 
acts as virtual controller of the network, leveraging existing network controllers. 
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Figure 5.1 NetIDE Architecture 

For achieving interoperability between controllers, NetIDE utilises pyretic [29] and its 
backend (﴾Figure 5. 2)﴿. 

 
Figure 5.2 Pyretic 

Subsequently, the client is rewritten for the Ryu controller. In this way the portability 
of applications by POX Ryu and vice versa is enabled. Furthermore an alpha version 
for OpenDaylight (﴾ODL)﴿ has already been developed. 

5.1.1.2.  Differences between NetIDE and T-‐NOVA SDK 

NetIDE is a project with a large allocated budget and therefore its objectives are 
broader compared to those of Task 4.3. In any case, both share the objective of the 
creation of a programming framework for SDN. While Task 4.3 is more focused on 
achieving unification of SDN controller nAPIs, NetIDE in comparison is oriented 
towards architectures that may involve LAN, Core and Metro networks and in 
principal any type of configuration or environment with programmable switches or 
NEs. The focus of SDK4SDN is restricted to particular topologies and sectors: DC SDN 
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and SDN for orchestration of NFV. Therefore Task 4.3 represents both a subset of 
NetIDE’s scope (﴾i.e. DCs)﴿ but also an extension of NetIDE objectives because it is 
dealing with a particular architecture design of NFV (﴾Orchestration)﴿. NetIDE does not 
address de facto cloud architectures or specific platforms like OpenStack. 

An analysis of differences is presented in Figure 5.3. In the left side brackets, some 
annotations regarding NetIDE objectives are shown, and thoughts about targeting 
NFV and utilisation of cloud infrastructures are analysed. 

In the right side brackets, T-‐NOVA and SK4SDN objectives are shown and annotated 
next to the different layers of the NetIDE architecture. One important requirement of 
T-‐NOVA is that the SDK will be used in the NFV VIM / orchestration phase thus at the 
quasi runtime phase, compared to the NetIDE programming environment, which is 
positioned for use during the design phase of SDN applications.  

Furthermore, Task 4.3 will also focus on the interplay between physical and virtual 
network elements in a DC with a focus on providing tools to assess the bottlenecks in 
the data plane and libraries for programmers to support them in alleviating those 
bottlenecks. 

 

Figure 5.3 Main Differences T-NOVA versus NetIDE 

In particular NFV orchestration involving SDN will deal with problems such as: 

• Network Virtualisation and Cloud => Layer encapsulation, tunnelling, 
preconfigured virtual network flows between the VMs implementing the NFVs 
and the VMs and storage servers. 

• Defining a library to help programmability of configurations or pre-‐
configuration of SDN elements, both physical and virtual, for specific blocks of 
network functions 
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The SDK may address, for example, inclusion of existing OpenStack Neutron nAPIs 
features for SDN based elements. Table 5.1 shows comparison of the characteristics 
of Task 4.3 with the NetIDE project. 

 
Table 5.1 NetIDE versus T-NOVA 

5.1.2. Popular SDN Controllers and API Comparison 

Currently there is a variety of SDN controllers available in the market. Since analysing 
all of them would require a significant effort, an internal analysis of the popular SDN 
controllers within the project has been conducted which narrowed the controller 
choices down to two candidates – OpenDaylight and Ryu. In the first iteration of the 
SDK release, the task will aim at supporting both. A brief description of the controllers 
and a preliminary analysis of their APIs is provided in the following sections. 

5.1.2.1.  Ryu 

Ryu is an open source, component-‐based software defined networking framework, 
which is written in python. Developers can easily create network management and 
control applications by using software components with well-‐defined APIs provided 
by Ryu. 

Ryu supports various protocols such as OpenFlow 1.0, 1.2, 1.3, 1.4, NETCONF [30] and 
OFconfig [31]. At the Northbound APIs layer, Ryu has an OpenStack Neutron plug-‐in 
that supports VLAN and GRE configurations. Ryu also supports a REST interface for its 
OpenFlow operations. 

Figure 5.4 shows the Ryu Framework Architecture. There are numerous "Ryu built-‐in 
apps", including firewalls, topology discover, tenant isolation, etc. 
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Figure 5.4 Ryu Architecture 

5.1.2.2.  OpenDaylight 

OpenDaylight is a modular and pluggable open source framework written in Java. 
The controller is contained within a Java Virtual Machine (﴾JVM)﴿ and can be deployed 
in any operating system platform that supports Java. 

OpenDaylight supports the Open Service Gateway Initiative (﴾OSGi)﴿ [32] framework 
and the REST interface for the nAPIs. For applications that are running in the same 
address space as the controller, the OSGi framework is used; whereas for applications 
that are not running in the same address space as the controller a REST API is utilised. 

To perform required network tasks like host tracker or switch manager, the controller 
platform contains a collection of dynamically pluggable modules. The southbound 
interface supports multiple protocols such as OpenFlow 1.0, 1.3, Border Gateway 
Protocol (﴾BGP)﴿, NETCONF, etc. Figure 5.4 shows the OpenDaylight Framework 
Architecture. 
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Figure 5.5 OpenDaylight Architecture 

5.1.2.3.  Comparison of Ryu and OpenDaylight N-‐APIs 

Tables 5.2 and 5.3 outline some of the standard modules and extensions of the Ryu 
and OpenDaylight platforms where similar classes of REST methods can be found. For 
example: in the OpenStack support comparison matrix (﴾Table 5.2)﴿, in Network 
Configuration operations, the GET /v1.0/networks method provided by rest.py API 
returns the list of networks. In OpenDaylight, the respective functionality can be 
traced in the “Neutron Networks” extension and the actual REST call is: GET 
/controller/nb/v2/neutron/networks. 

Operations 
OpenStack 

Ryu Module File OpenDaylight Extension Name 

Router 
Configuration  Neutron Routers Northbound 

Firewall  Neutron Firewall Northbound 
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Configuration Neutron Firewall Policy 
Northbound 

Neutron Firewall Rules 
Northbound 

Network 
Configuration rest.py Neutron Networks Northbound 

Switch 
Configuration rest_conf_switch.py  

Port Configuration rest.py Neutron Ports Northbound 

Flow Programming   

Statistics   

Topology   

Table 5.2 Comparing the Ryu and OpenDaylight support for OpenStack (Modules) 

Operations 
Generic Network 

Ryu Module File OpenDaylight Extension Name 

Router 
Configuration rest_router.py Static Routing Northbound 

Firewall 
Configuration rest_firewall.py  

Network 
Configuration   

Switch 
Configuration  Switch Northbound 

Port Configuration   

Flow Programming ofctl_rest.py Flow Programmer Northbound 

Statistics ofctl_rest.py Statistics Northbound 

Topology rest_topology.py Topology Northbound JAXRS 

Table 5.3 Ryu and OpenDaylight Controllers’ support towards generic networks 
(Modules) 

The subset of REST calls available in the two SDN controllers that support OpenStack 
Neutron, and generic network elements are presented in Tables 5.4 and 5.5. 

Operations OpenStack 

Ryu REST API OpenDaylight REST API 

Return a list 
of networks GET /v1.0/networks GET /controller/nb/v2/neutron/networks 
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Create a new 
network 

POST 
/v1.0/networks/(﴾network-‐
id)﴿ 

POST /controller/nb/v2/neutron/networks 

Update a 
network 

PUT 
/v1.0/networks/(﴾network-‐
id)﴿ 

PUT 
/controller/nb/v2/neutron/networks/(﴾netUUID)﴿ 

Delete a 
network 

DELETE 
/v1.0/networks/(﴾network-‐
id)﴿ 

DELETE 
/controller/nb/v2/neutron/networks/(﴾netUUID)﴿ 

List all ports 
GET 
/v1.0/networks/(﴾network-‐
id)﴿/ 

GET /controller/nb/v2/neutron/ports 

Create new 
port 

POST 
/v1.0/networks/(﴾network-‐
id)﴿/(﴾dpid)﴿_(﴾port-‐id)﴿ 

POST /controller/nb/v2/neutron/ports 

Update port 
PUT 
/v1.0/networks/(﴾network-‐
id)﴿/(﴾dpid)﴿_(﴾port-‐id)﴿ 

PUT 
/controller/nb/v2/neutron/ports/(﴾portUUID)﴿ 

Delete port 
DELETE 
/v1.0/networks/(﴾network-‐
id)﴿/(﴾dpid)﴿_(﴾port-‐id)﴿ 

DELETE 
/controller/nb/v2/neutron/ports/(﴾portUUID)﴿ 

Table 5.4 REST APIs Comparison for OpenStack Neutron Support 

Operations 
Generic Networks 

Ryu REST 
API OpenDaylight REST API 

Get the route 
data 

GET 
/router/(﴾swi
tch_id)﴿/(﴾vla
n_id)﴿ 

GET 
/controller/nb/v2/staticroute/(﴾containerName)﴿/route/(﴾route)﴿ 

Add a new 
route 

POST 
/router/(﴾swi
tch_id)﴿/(﴾vla
n_id)﴿ 

PUT 
/controller/nb/v2/staticroute/(﴾containerName)﴿/route/(﴾route)﴿ 

Delete a 
route 

DELETE 
/router/(﴾swi
tch_id)﴿/(﴾vla
n_id)﴿ 

DELETE 
/controller/nb/v2/staticroute/(﴾containerName)﴿/route/(﴾route)﴿ 

Add a flow 
configuration 

POST 
/stats/flowe
ntry/add 

PUT 
/controller/nb/v2/flowprogrammer/(﴾containerName)﴿/node/(﴾n
odeType)﴿/(﴾nodeId)﴿/staticFlow/(﴾name)﴿ 

Delete a flow 
configuration 

POST 
/stats/flowe

DELETE 
/controller/nb/v2/flowprogrammer/(﴾containerName)﴿/node/(﴾n
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ntry/delete odeType)﴿/(﴾nodeId)﴿/staticFlow/(﴾name)﴿ 

Modify a 
flow 
configuration 

POST 
/stats/flowe
ntry/modify 

PUT 
/controller/nb/v2/flowprogrammer/(﴾containerName)﴿/node/(﴾n
odeType)﴿/(﴾nodeId)﴿/staticFlow/(﴾name)﴿ 

Get flow 
statistics for 
a node 

(﴾switch)﴿ 
GET 
/stats/flow/
(﴾dpid)﴿ 

GET 
/controller/nb/v2/statistics/(﴾containerName)﴿/flow/node/(﴾node
Type)﴿/(﴾nodeId)﴿ 

Get all the 
links 
configuration 

GET 
/v1.0/topol
ogy/links 

GET /controller/nb/v2/topology/(﴾containerName)﴿/userLinks 

Table 5.5 Ryu and OpenDaylight REST support for generic networks 

As evident from the tables there are many points where the REST APIs provided by 
the northbound layers of these two SDN controllers diverge considerably, or in some 
cases are missing. This further strengthens the need for a unified layer to facilitate 
software development for SDN applications in an environment agnostic manner. 

5.1.3. Popular Cloud Libraries 

The last number of years has seen the proliferation in cloud platforms, both from 
commercial vendors and open source communities. Notable platforms are 
OpenStack, Apache CloudStack, OpenNebula, Eucalyptus, etc. Each platform has their 
own programmable interfaces, and there have been significant efforts by the 
community to unify these interfaces to simplify application development over them. 
Today in the SDN space we see similar needs, therefore in order to understand how 
community solutions for cloud interface differences were devised, and to gain design 
insights for the SDK for SDN solution, two most popular community cloud libraries 
were analysed. 

5.1.3.1.  Jclouds 

Apache jclouds is an open source library that provides an abstraction with Java or 
Clojure API to control and manage various cloud software platforms such as Amazon, 
Openstack or VMware vCloud 2. Jclouds is extremely flexible and allows developers to 
invoke not only portable operations (﴾i.e. operations that are exposed by all supported 
cloud platforms)﴿, which are controlled by services like ComputeService and 
BlobStorage, but also platform-‐specific operations (﴾i.e. operations that are specific to 
a single platform, or a subset of the supported platforms)﴿. Jcloud’s main concepts are: 

▪ Views: Views are portable abstractions to allow writing code that uses generic 
cloud services. The concept is similar to JDBC for a DB. The actual views 
available are: ComputeService, BlobStorage and LoadBalancer. 

                                                   
2 A of supported providers can be found here https://jclouds.apache.org/reference/providers/ 
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▪ APIs: APIs represents the specific call made in order to perform some action 
on the cloud. Most APIs are HTTP based (﴾SOAP or REST)﴿, but in some cases 
this may be different, depending on the specific cloud. 

▪ Providers: A provider is a specific cloud platform API plus some specific values 
like the endpoint URL. Each provider in jclouds implements one or more 
Views. 

▪ Contexts: A context represents a specific connection to a particular provider. 
The concept is like a database connection to a specific DB. 

In order to create their own applications with jclouds, developers instantiate a context 
and connect to a specific Provider. As soon as the connection is established, 
developers can use Views to invoke portable operations exposed by the provider, or 
APIs for provider-‐specific operations. 

5.1.3.2.  libcloud  

Apache libcloud is a Python library for interacting with many popular cloud service 
providers through a unified API. Similar to jClouds, it was created in order to allow 
developers to build applications that can work seamlessly with all supported cloud 
providers. libcloud can manage the following categories of resources: 

▪ Compute – Cloud Servers and Block Storage services, e.g. Amazon EC2, 
OpenStack Nova/Cinder 

▪ Object Storage – e.g. Amazon S3, OpenStack Swift 

▪ Load Balancer – e.g. Amazon Elastic Load Balancer, Rackspace Load Balancer 

▪ DNS – e.g. Amazon Route 53, Google DNS 

For a full list of supported providers, please refer to the project official website [33]. 
Similar to jClouds, Libcloud supports both cross-‐platform and platform-‐specific 
operations: the former are exposed through a common, unified API layer, while the 
latter are exposed through API extensions. Furthermore, Libcloud supports a driver-‐
based architecture, which allows integrating new cloud platforms that are not natively 
supported, by developing and registering a 3rd party driver. 

5.2. Requirements Gathering 

An SDK must take into account various requirements that affect design and 
implementation issues. Three main categories can be identified here:  

• The first is the software design phase where a number of design tricks can 
help in the implementation phase. 

• The use of abstract classes allow you to change how an object works 
without breaking code 

• The limited use of inherited classes only exposes absolutely necessary 
functions. 
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• The use of small interfaces will limit the chance of breaking existing 
code while the reduction of big interfaces benefits the SDK by not 
limiting the SDK to the predefined design 

• The second is end user design issues where again a number of design 
tricks can help in the implementation phase. 

• The use of a good definition in describing the terms used inside the 
SDK provides a good starting point. 

• The use of namespaces based on how often a set of objects will be 
used. 

• The use of intelligent code completion providing in this way can be an 
instant help in the programmer. 

• The third is Language and Terms Design where the main concept is not to 
use terms that people need to look up. 

• Language and terms really help determine what objects and 
functionality need to be defined as code. 

• The language used must be self-‐evident to other developers. 

Apart from the generic guidelines above, which are vital for the successful design and 
implementation of any SDK, the SDK for SDN in T-‐NOVA has some specific 
requirements that have been captured in the Table 5.6. 

Requirement 
Name Requirement Description Justification of 

Requirement Category 

SDK4SDN-
OpenDayLight 

SDK for SDN MUST support 
OpenDaylight] 

Comes from the T-‐
NOVA consortium 

Functional 

SDK4SDN-Testing SDK for SDN MUST provide 
testing capabilities  

Comes from SDK-‐
general 

Functional 

SDK4SDN-Diff- 
OpenFlow 

SDK for SDN MUST expose 
OpenFlow differences in a safe 
manner  

Comes from DoW Functional 

SDK4SDN-Source-
CODE 

SDK for SDN MUST be 
available as open source 
software 

Comes from DoW Functional 

SDK4SDN-
Contrlollers 

SDK for SDN SHALL support a 
variety of SDN Controllers 

Comes from DoW Functional 

SDK4SDN-Libraries SDK for SDN SHALL provide all 
the necessary dependencies 
and tools in order that 
developers can validated their 
installation 

Comes from DoW Functional 

SDK4SDN-
Languages 

SDK for SDN-‐MUST support 
multiple languages 

Comes from DoW Functional 
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SDK4SDN-
OpenFlow Versions 

SDK for SDN support multiple 
OpenFlow versions 

Comes from DoW Functional 

Table 5.6 SDK for SDN Functional Requirements 

Considering these requirements and leveraging the approaches of the jCloud and 
libcloud libraries for cloud platforms, first iteration of SDK for SDN platform 
architecture is outlined in Section 5.3. 

5.3. Initial High Level Architecture 

Figure 5.6 shows the initial high-‐level architecture of the SDK for SDN tool to be 
developed in this task. The design phase of this task has not yet concluded (﴾at the 
time of writing of this deliverable)﴿, and therefore it is likely that the architecture may 
undergo additional changes as the task progresses. 

 

Figure 5.6 SDK for SDN Initial Architecture 

This initial iteration only shows the architectural elements for the unification of the 
different APIs exposed by the various popular SDN controllers. The elements shown 
outside of the boxed area are not part of the SDK but are external elements over 
which the SDK will be developed and deployed. At the bottom layer of the 
architecture are the various drivers for the target SDN controllers who’s APIs are to 
be supported by the SDK, apart from any T-‐NOVA specific integration features. The 
SDN controllers APIs are analysed and common feature sets are offered out from the 
Unified API Layer component. Controller specific features, which cannot be made 
available by the Unified API Layer, can be exposed to the developers by individual 
Controller Specific API extensions. 

APIs developed by the various T-‐NOVA services for 3rd party integrators, can be 
supported as part of the SDK as well. An example case using the T-‐NOVA 
Marketplace component is indicated in the architecture. These will be offered 
through individual extension modules in the SDK in phases. Furthermore, providing 
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support for OpenStack Neutron is being considered, and is therefore shown as a 
dashed-‐box in the architecture. 

The APIs and features to be supported by the SDK can be generally categorised into 
network control and network management APIs. In addition -‐ the SDK will provide 
additional tools to facilitate application debugging, network packet analysis to 
understand interactions between the virtual and physical network elements in a DC, 
and additional tools and code examples to help an application developer optimise 
the DC networking fabric. 

The highest layer in the architecture diagram is the popular programming language 
bindings, which are the Java/Python API wrappings. Other language supports can be 
incorporated at a later date depending on the community demand for such bindings. 
The architecture will evolve in coming months to include mechanisms to include 
testing and runtime environments using Mininet [24] or similar external platform. 
Discussions on a clean-‐slate network research approach by including appropriate 
libraries (﴾frame detection, error correction codes, etc.)﴿ is still on-‐going, and the 
overall architecture document will be updated as this task progresses. 

5.4. Conclusions and Next Steps 

The SDK for SDN task will not only provide common development libraries (﴾with 
support for multiple SDN controllers)﴿ to the SDN application developers, it will also 
undertake a detailed analysis of interactions among virtual and physical network 
elements in a typical cloud DC. The aim of the study will be to identify bottlenecks in 
the network stack, and to develop specific libraries to aid developers in the 
minimisation or removal of bottlenecks. In this section, an initial draft architecture of 
the SDK has been presented which over the course of next couple of months will be 
further refined based on the close interactions planned with other tasks in T-‐NOVA. 
The two initial SDN controllers that will be targeted by this task will be OpenDaylight 
and Ryu -‐ the final two controllers filtered by the T-‐NOVA consortium. Other 
controllers’ support can be included over the course of time if required. 

API language bindings for Java and Python will be provided to aid the development 
process. The goals for the next few months in this task are to finalise the API analysis 
of the northbound APIs exposed by OpenDaylight and Ryu, and to refine the 
architecture further with inputs from other tasks in T-‐NOVA. Actual code 
development will commence early next year together with the cloud DC analysis. 
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6. MONITORING AND MAINTENANCE 

This section outlines the work currently being carried out in Task 4.4 (﴾Monitoring and 
Maintenance)﴿. Task 4.4 focuses on the implementation and integration of a 
monitoring framework, which is able to extract and process monitoring information 
from both physical and virtual nodes at the IVM level. In other words, the scope of 
the monitoring framework being developed in Task 4.4 covers the two lower layers of 
the T-‐NOVA architecture, namely the NFVI and VIM. 

Metrics are collected at the NFVI layer, processed at the VIM and forwarded to the 
upper layers (﴾Orchestrator and Marketplace)﴿. Task 4.4 focuses specifically on the 
collection of dynamic metrics, i.e. metrics which change frequently in relation to 
resource usage. Static information reflecting the status and capabilities of 
infrastructure, e.g. number of installed compute nodes, processing resources per 
node etc. are assumed to be handled by Task 3.2 (﴾Infrastructure Repository)﴿. 

6.1. Requirements Overview and Consolidation 

Deliverable D2.31 has defined and identified architectural concepts and requirements 
for the IVM (﴾NFVI and VIM)﴿ layer. The technical requirements for the IVM monitoring 
framework can be directly derived/inherited by the specific IVM requirements. Table 
6.1 outlines the IVM requirements that directly affect the monitoring framework and 
their required specialisations within the monitoring framework. 

IVM 
Req.ID 

IVM Requirement 
Name 

Requirement specialisation for the Monitoring 
Framework 

VIM.1 
Ability to handle 
heterogeneous 
physical resources 

The MF must provide a vendor agnostic mechanism for 
physical resource monitoring. 

VIM.3 API Exposure The MF must provide an interface to the Orchestrator for 
the communication of monitoring metrics. 

VIM.7 

Translation of 
references between 
logical and physical 
resource identifiers 

The MF must re-‐use resource identifiers when linking 
metrics to resources. 

VIM.9 Control and 
Monitoring 

The MF must monitor in real time the physical network 
infrastructure as well as the vNets instantiated on top of 
it. 

VIM.24 Virtualised 
Infrastructure Metrics 

The MF must collect utilisation metrics from the 
virtualised resources in the NFVI. 

C.7 Compute Domain 
Metrics The MF must collect compute domain metrics. 

H.1 Compute Domain 
Metrics The MF must collect metrics from the Hypervisor. 
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H.12 Alarm/Error 
Publishing 

The MF must receive and process any alarms sent by the 
Hypervisor. 

N.6 Usage monitoring The MF must collect metrics from physical and virtual 
networking devices. 

N.9 OpenFlow The MF must leverage OpenFlow monitoring capabilities. 

Table 6.1 IVM requirements which affect the monitoring framework 

By consolidating the aforementioned requirements, it becomes clear that the basic 
functionalities required the IVM monitoring framework are as follows: 

• Collection of IT and networking metrics from virtual and physical devices of 
the NFVI. It should be noted that at the IVM level, metrics correspond only to 
physical and virtual nodes and are not associated to services since the VIM 
does not have knowledge of end-‐to-‐end Network Services. Metrics are 
mapped to Network Services at the Orchestrator level; 

• Processing and generation of events and alarms; 

• Communication of monitoring information and events/alarms to the 
Orchestrator in a scalable manner; 

6.2. Challenges and Innovations 

With regard to the basic functionalities identified in the previous section, metrics 
collection (﴾Functionality 1)﴿ can be achieved by re-‐using a number of the pre-‐existing 
monitoring mechanisms for virtualised infrastructures, as surveyed in the following 
section. Apart from selecting and properly integrating the appropriate technologies 
and possibly selecting the appropriate set of metrics, limited progress beyond the 
state-‐of-‐the-‐art should be expected in this field. 

On the other hand, the actual challenges and envisaged innovation of the monitoring 
framework are seen to be associated with Functionalities 2 and 3. Specifically, the 
following challenges have been identified: 

• Events and alarms generation: Moving beyond the typical approach, which is 
found in most monitoring systems and is based on static thresholds (﴾i.e. 
generate an alarm when a metric has crossed a pre-‐defined threshold)﴿ the aim 
is to study and adopt dynamic methods for fault detection. Such methods 
should be based on statistical methods and self-‐learning approaches, 
identifying outliers in system behaviour and triggering alarms reactively or 
even proactively (﴾e.g. before the actual fault has occurred)﴿. This anomaly 
detection procedure, in the context of T-‐NOVA, can clearly benefit from the 
fact that the monitored services are composed of VNFs rather than generic 
VMs. As virtual appliances dedicated to traffic processing, VNFs are expected 
to expose some common characteristics (﴾e.g. the CPU load is expected to 
proportionally rise, not necessarily linearly, with the increase of processed 
traffic)﴿. A significant deviation from this correlation could, for example, 
indicate a potential malfunction. 
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• Communication with the Orchestrator: With this functionality, scalability is the 
key requirement that needs to be fulfilled. In an operational environment, the 
Orchestrator is expected to manage tens or hundreds of NFVI-‐PoPs (﴾or even 
thousands, if micro-‐data centres distributed in the access network are 
envisaged)﴿. It is impossible for the Orchestrator to handle the full set of 
metrics from all the physical and virtual nodes under its control. The challenge 
is to optimise communication of monitoring information to the Orchestrator 
so that only necessary information is transmitted. This optimisation does not 
only imply fine-‐tuning of the polling frequency, careful definition of a minimal 
set of metrics or the proper design of the communication protocol, but also 
requires an intelligent aggregation procedure at the VIM level. This procedure 
should achieve the grouping/aggregation of various metrics from various 
parts of the infrastructure as well as alarms, and the dynamic identification of 
information that is of actual value to the Orchestrator. 

To achieve the aforementioned innovations, Task 4.4 work plan involves in its 
initial stage the establishment of a baseline framework which fulfils the basic 
functionalities by collecting and communicating metrics and, as a second step, 
the study, design and incorporation of innovative techniques for anomaly 
detection and metrics aggregation. 

6.3. Monitoring Frameworks for Virtualised Infrastructures 
Survey 

This section presents a brief overview of existing frameworks for monitoring 
virtualised IT infrastructures as well as SDN-‐enabled networks, and discusses the 
technologies which could be partially re-‐used in T-‐NOVA. 

6.3.1. IT/Cloud monitoring 

6.3.1.1.  OpenStack Telemetry 

OpenStack’s Telemetry module, formerly called Ceilometer, reliably collects 
measurements with respect to the utilisation of physical and virtual resources that 
comprise deployed clouds. Telemetry persists data for subsequent retrieval and 
analysis and triggers actions when defined criteria are met. It efficiently collects the 
metering data of guest machines (﴾VMs)﴿ and the hosts (﴾Nova)﴿, the network, the 
Operating System images (﴾Glance)﴿, the disk volumes (﴾Cinder)﴿, the identities 
(﴾Keystone)﴿, the object storage (﴾Swift)﴿, the orchestration (﴾Heat)﴿, the energy 
consumption (﴾Kwapi)﴿ and also user-‐defined meters. 
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Figure 6.1 Overview of Openstack Telemetry architecture 

Figure 6.1 depicts an overall logical architecture of the Telemetry module. Each of the 
telemetry services are designed to scale horizontally. Additional workers and nodes 
can be added depending on the expected load. The system consists of the following 
basic components: 

• Polling agents; these are: 
o Compute agents (﴾ceilometer-‐agent-‐compute)﴿: they run on each 

compute node and poll for resource utilisation statistics; 
o Central agents (﴾ceilometer-‐agent-‐central)﴿: run on one or more central 

management servers to poll for resource utilisation statistics for 
resources not tied to instances or compute nodes; 

• Notification agents; these run on one or more central management servers to 
monitor the message queues (﴾for notifications and for metering data coming 
from the agent)﴿;  

• Collectors (﴾ceilometer-‐collector)﴿: designed to gather and record event and 
metering data created by notification and polling agents. 

• Databases, containing Events, Meters and Alarms; these are capable of 
handling concurrent writes (﴾from one or more collector instances)﴿ and reads 
(﴾from the API module)﴿; 

• An Alarm Evaluator and Notifier (﴾ceilometer-‐alarm-‐notifier)﴿: Runs on one or 
more central management servers to allow configuration of alarms based on 
threshold evaluation for a collection of samples. 

• An API module (﴾ceilometer-‐api)﴿: Runs on one or more central management 
servers to provide access to the data from the data store. 

Telemetry offers three independent ways to collect metering data, allowing easy 
integration of any OpenStack-‐related project which needs to be monitored:  
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• Via listening to events generated on the notification bus and transforming 
them into Ceilometer samples. This is the preferred method of data collection, 
since it is the most simple and straightforward. It requires, however, that the 
monitored entity uses the bus to publish events, which may not be the case 
for all OpenStack-‐related projects. 

• Via pushing information to Telemetry, which requires adding a component to 
each of the nodes that need monitoring, thus, making data collection more 
complex. It is the recommended solution for modules which do not use the 
message bus. 

• Via polling information by Telemetry, which polls the APIs of the components 
being monitored at regular intervals to collect information. The data are 
stored usually in a database and are available through the Ceilometer REST 
API. This method is least preferred due to the inherent difficulty in making 
such a component resilient. 

Each meter measures a particular aspect of resource usage or on-‐going performance. 
All meters have a string name, a unit of measurement, and a type indicating whether 
values are monotonically increasing (﴾cumulative)﴿, interpreted as a change from the 
previous value (﴾delta)﴿, or a standalone value relating only to the current duration 
(﴾gauge)﴿. Samples are individual data points associated with a particular meter and 
have a timestamp and a value. The aggregation of a set of samples for a specified 
duration (﴾start-‐end time)﴿ is called a statistic. Each statistic also has a period 
associated with it, which is a repeating interval of time that the samples are grouped 
for aggregation. Currently there are five aggregation functions implemented: count, 
max, min, avg and sum. 

These metering data can go through pipelines, composed by chains of transformers 
that change the data before sending them to the collector via a publisher. A 
transformer can be, for example, a unit conversion, a rate of change calculation and 
an accumulator of metering data. Telemetry is able to publish the metering data 
multiple times to multiple destinations, possibly using a different transport method 
(﴾RPC, UDP, files)﴿ and frequency of publication. The pipelines can be configured via a 
YAML file. 

As already mentioned, another feature of Telemetry is alarming. An alarm is a set of 
rules defining a monitor of a statistic that will trigger when a threshold condition is 
breached. An alarm can be set on a single meter, or on a combination of meters and 
can have three states, alarm (﴾the threshold condition is breached)﴿, ok (﴾the threshold 
condition is not met)﴿ and insufficient data (﴾not enough data has been gathered to 
determine if the alarm should fire or not)﴿. The transition to these states can have an 
associated action, which is either writing to a log file or an http post to a URL. The 
concept of a meta-‐alarm is also supported; meta-‐alarms aggregate over the current 
state of a set of other basic alarms combined via a logical operator (﴾AND/OR)﴿. For 
example, a meta-‐alarm could be triggered when three basic alarms are active at the 
same time. 

6.3.1.2.  Other Cloud/Data Centre Monitoring Tools 

In this section a brief description of the most popular tools used for monitoring cloud 
and data centre architectures is given. Prior to the introduction of the OpenStack 
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Telemetry module, several projects and related tools were used for monitoring and 
metering an OpenStack-‐based cloud. The presented tools can still be used, especially 
if these tools are monitoring others parts of the infrastructure as well. 

Zabbix 

Zabbix [34] is an open source, general-‐purpose, enterprise-‐class network and 
application monitoring tool that can be customised for use with OpenStack. It can be 
used to automatically collect and parse data from monitored cloud resources. It also 
provides distributed monitoring with centralised Web administration, a high level of 
performance and capacity, JMX monitoring, SLAs and ITIL KPI metrics on reporting, as 
well as agent-‐less monitoring. An OpenStack Telemetry plugin for Zabbix is already 
available. 

Using Zabbix the administrator can monitor servers, network devices and 
applications, gathering statistics and performance data. Monitoring performance 
indicators such as CPU, memory, network, disk space and processes can be supported 
through an agent, which is available as a native process for Linux, UNIX and Windows 
platforms. With OpenStack infrastructure Zabbix can monitor: 

● Core OpenStack services: Nova, Keystone, Neutron, Ceilometer (﴾OpenStack 
Telemetry)﴿, Horizon, Cinder, Glance, Swift Object Storage, and OVS (﴾Open 
vSwitch)﴿ 

● Core infrastructure components: MySQL, RabbitMQ, HAProxy, memchached, 
and libvirtd. 

● Operating system statistics: Disk I/O, CPU load, free RAM, etc. 
Zabbix is not limited to OpenStack cloud infrastructures: it can be used to monitor 
VMware vCenter and vSphere installations for various VMware hypervisor and virtual 
machine properties and statistics. 

Nagios 

Nagios is an open source tool that provides monitoring and reporting for network 
services and host resources [35]. The entire suite is based on the open-‐source Nagios 
Core which provides monitoring of all IT infrastructure components -‐ including 
applications, services, operating systems, network protocols, system metrics, and 
network infrastructure. Nagios does not come as a one-‐size-‐fits-‐all monitoring 
system with thousands of monitoring agents and monitoring functions; it is rather a 
small, lightweight system reduced to the bare essential of monitoring. It is also very 
flexible since it makes use of plugins in order to setup its monitoring environment. 

Nagios Fusion enables administrators to gain insight into the health of the 
organisation's entire network through a centralised view of their monitoring 
infrastructure. In addition, they can automate the response to various incidents 
through the use of the Nagios Incident Manager and Reactor. The Network Analyser, 
which is part of the suite, provides an extensive view of all network traffic sources and 
potential security threats allowing administrators to quickly gather high-‐level 
information regarding the status and utilisation of the network as well as detailed 
data for complete and thorough network analysis. All monitoring information is 
stored in the Log Server that provides monitoring of all mission-‐critical infrastructure 
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components – including applications, services, operating systems, network protocols, 
systems metrics, and network infrastructure. 

Nagios and Telemetry are quite complementary products which can be used in an 
integrated solution. Enovance has developed plugins for the Nagios monitoring 
environment to ensure that OpenStack components are still functioning, while the 
ICCLab, which operates within the ZHAW’s Institute of Applied Information 
Technology, has developed a Nagios plugin which can be used to capture metrics 
through the Telemetry API, thus allowing Nagios to monitor VMs inside OpenStack. 
Finally, the Telemetry plugin can be used to define thresholds and triggers in the 
Nagios alerting system. 

Shinken 

Shinken is an open source system and network monitoring application [36]. It is fully 
compatible with Nagios plugins. It started as a proof of concept for a new Nagios 
architecture, but since the proposal was turned down by the Nagios authors, Shinken 
became an independent tool. It is not a fork of Nagios; it is a total rewrite in Python. 
It watches hosts and services, gathers performance data and alerts users when error 
conditions occur and again when the conditions clear. Shinken's architecture is 
focused on offering easier load balancing and high availability capabilities. The main 
differences and advantages toward Nagios are: 

• A more efficient distributed monitoring and high availability architecture 

• Graphite integration in the Web UI 

• Improved performance, mostly due to the use of a distributed database 
(﴾MongoDB)﴿ 

Icinga 

Icinga is an open-‐source network and system monitoring application which 
originated from a Nagios fork [37]. It maintains configuration and plug-‐in 
compatibility with the latter. Its new features are as follows: 

• A modern Web 2.0 style user interface; 
• An interface for mobile devices; 
• Additional database connectors (﴾for MySQL, Oracle, and PostgreSQL)﴿; 
• RESTful API. 

Currently there are two flavours of Icinga that are maintained by two different 
development branches: Icinga 1 (﴾the original Nagios fork)﴿ and Icinga 2 (﴾where the 
core framework is being replacement by a full rewrite)﴿. 

Zenoss 

Zenoss is an open source monitoring platform released under a GPLv2 license [38]. It 
provides an easy-‐to-‐use Web UI to monitor performance, events, configuration, and 
inventory. Zenoss is one of the best options for unified monitoring as it is cloud-‐
agnostic and open source. Zenoss provides powerful plug-‐ins named Zenpacks, 
which support monitoring on hypervisors (﴾ESX, KVM, Xen and HyperV)﴿, private cloud 
platforms (﴾CloudStack, OpenStack and vCloud/vSphere)﴿, and public cloud (﴾AWS)﴿. In 
OpenStack Zenoss integrates with Nova, Keystone and OpenStack Telemetry. 
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Ganglia 

Ganglia is a scalable distributed system monitor tool for high-‐performance 
computing systems such as clusters and grids [39]. Its structure is based on a 
hierarchical design using a tree of point-‐to-‐point connections among cluster nodes. 
Ganglia is based on an XML data representation, XDR for compact and RRDtool for 
data storage and virtualisation. The Ganglia system contains: 

1. Two unique daemons, gmond and gmetad 
2. A PHP-‐based web front-‐end 
3. Other small programs 

gmond runs on each node to monitor changes in the host state, to announce 
applicable changes, to listen to the state of all Ganglia nodes via a unicast or 
multicast channel based on installation, and to respond to requests. gmetad (﴾Ganglia 
Meta Daemon)﴿ polls at regular intervals a collection of data sources, parses the XML 
and saves all metrics to round-‐robin databases. Aggregated XML can then be 
exported. 

Ganglia’s web frontend is written in PHP. It uses graphs generated by gmetad and 
provides collected information like CPU utilisation for the past day, week, month, or 
year. Ganglia has been used to link clusters across university campuses and around 
the world and can scale to handle clusters with 2000 nodes. However, further work is 
required in order for it to become more cloud-‐agnostic. 

StackTach 

StackTach is a debugging and monitoring utility for OpenStack that can work with 
multiple Data Centres, including multi-‐cell deployment [40]. It was initially created as 
a browser-‐based debugging tool for OpenStack Nova. In the interim StackTach has 
evolved into a tool that can perform debugging, monitoring and auditing. StackTach 
is quickly moving into Metrics, SLA and Monitoring territory with version 2 and the 
inclusion of Stacky, the command line interface to StackTach. StackTach contains a 
worker process that reads notifications from the OpenStack’s RabbitMQ queues and 
stores them in a database. From there, StackTach reviews the stream of notifications 
to glean usage information and assemble it in an easy-‐to-‐query fashion. Users can 
inquire about instances, requests, servers, etc. using the browser interface or the 
Stacky command line tool. Rackspace is working on StackTach integration with 
Telemetry. 

Healthmon 

Healthmon by HP is focused on delivering a unique point of contact for all OpenStack 
Cloud Resources and Infrastructure monitoring requirements, covering Inventory, 
Utilisation and Alert [41]. Some key characteristics of Healthmon are: 

• Monitoring Service for Cloud Resources and Infrastructure with a pluggable 
framework; 

• Resource Model and Persistence; 
• Cloud Resource Life Cycle Event/Alarm Collection (﴾compute host, instances, 

bare metal, network, etc.)﴿; 
• Cloud Service Event Collection Framework (﴾Nova, Keystone, etc.)﴿; 
• Integration with Telemetry; 
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• RESTful access to the stored Cloud Resource Inventory, utilisation / usage 
data; 

• Data Provider; 
• Proxy Driver for the underlying hypervisor (﴾KVM, ESX and Hyper-‐V are 

supported)﴿. 
Healthmon integrates with the Horizon interface, adding a dedicated Healthmon tab 
to it. 

SeaLion 

SeaLion is a cloud-‐based system monitoring tool for Linux servers. It installs an agent 
on the system, which can run as an unprivileged user [42]. The agent collects data at 
regular intervals across servers and this data will be available on your workspace. 
Sealion provides a high-‐level view (﴾graphical overview)﴿ of Linux server activity. The 
monitoring data are transmitted over SSL to the SeaLion servers. The service provides 
graphs, charts and access to the raw gathered data. 

MonALISA 

MONitoring Agents using a Large Integrated Services Architecture (﴾MonaLISA)﴿ is 
based on Dynamic Distributed Service Architecture and is able to provide complete 
monitoring, control and global optimisation services for complex systems [43]. The 
MonALISA system is designed as a collection of autonomous multi-‐threaded, self-‐
describing agent-‐based subsystems which are registered as dynamic services, and are 
able to collaborate and cooperate in performing a wide range of information 
gathering and processing tasks. 

The agents can analyse and process the information in a distributed way, in order to 
provide optimisation decisions in large-‐scale distributed applications. The scalability 
of the system derives from the use of a multithreaded execution engine, that hosts a 
variety of loosely coupled self-‐describing dynamic services or agents, and the ability 
of each service to register itself and to be discovered and used by any other services, 
or clients that require such information. The system is designed to easily integrate 
existing monitoring tools and procedures and to provide this information in a 
dynamic, customised, self-‐describing way to any other services or clients. 

By using MonALISA the administrator is able to monitor all aspects of complex 
systems, including: 

• System information for computer nodes and clusters; 
• Network information (﴾traffic, flows, connectivity, topology)﴿ for WAN and LAN; 
• Monitoring the performance of applications, jobs or services; and  
• End-‐user systems and end-‐to-‐end performance measurements. 

collectd, StatsD and Graphite  

Cloud instances may also be monitored by using a collection of separate open source 
tools. collectd is a daemon which collects system performance statistics periodically 
and provides mechanisms to store the values in a variety of ways [44]. collectd 
gathers statistics about the system it is running on and stores this information. These 
statistics can then be used to find current performance bottlenecks (﴾i.e. performance 
analysis)﴿ and predict future system load (﴾i.e., capacity planning)﴿. collectd is written in 
C for performance and portability, allowing it to run on systems without scripting 
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language or cron daemon, such as embedded systems. At the same time it includes 
optimisations and features to handle big amounts of data sets. StatsD [45] is a 
Node.JS daemon [46] that listens for messages on a UDP to TCP port. StatsD listens 
for statistics, like counters and timers and then parses the messages, extracts metrics 
data, and periodically flushes the data to other services in order to build graphs. A 
tool that can be used to build graphs afterwards is Graphite [47], which is able to 
store numeric time-‐series data and render graphs of the data on demand. 

vSphere 

The vSphere statistics subsystem collects data on the resource usage of inventory 
objects [48]. Data on a wide range of metrics is collected at frequent intervals, 
processed and archived in a database. Statistics regarding the network utilisation are 
collected at Cluster, Host and Virtual Machine levels. In addition vSphere supports 
performance monitoring of guest operating systems, gathering statistics regarding 
network utilisation among others. 

Amazon CloudWatch 

Amazon CloudWatch is a monitoring service for AWS cloud resources and the 
applications running on AWS [49]. It provides real-‐time monitoring to Amazon's EC2 
customers on their resource utilisation such as CPU, disk and network. However, 
CloudWatch does not provide any memory, disk space, or load average metrics 
without running additional software on the instance. It was primarily designed for use 
with Amazon Elastic Load Balancing and Auto Scaling with load balancing in mind: 
the service checks CPU usage on multiple instances and automatically creates 
additional ones when the load increases. 

6.3.2. Network Monitoring 

Network monitoring is a domain that has attracted significant attention from the 
research community over the past decades, with well-‐established technologies and 
standards with regard to measurement processes (﴾active and passive)﴿ as well as the 
communication of monitoring metrics (﴾SNMP, IPFIX, sFlow etc.)﴿. 

In the context of T-‐NOVA, where network management, at least within each NFVI-‐
PoP is based on OpenFlow, the measurement process will leverage OpenFlow’s 
monitoring capabilities. 

OpenFlow provides the capability to report per-‐flow and per-‐port metrics, reported 
by the switch itself. These metrics are then collected by the Controller and 
communicated to SDN control applications via the northbound API of the Controller 
it-‐self (﴾Figure 6.2)﴿. Almost all SDN controllers offer the capability to expose 
monitoring metrics, either via API calls or language bindings. In this respect, the 
OpenFlow-‐based architecture provides the capability to monitor all network elements 
in a uniform and vendor-‐agnostic manner. 
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Figure 6.2 Communication of monitoring metrics in an OpenFlow-enabled architecture 

In this context, several monitoring applications have been developed, leveraging 
OpenFlow capabilities for integrated network management tasks. Some of these 
applications are presented in Table 6.2. 
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DCM DCM [52] allows switches to 
collaboratively achieve flow-‐
monitoring tasks and balance 
measurement loads.  

None (﴾native 
OF)﴿ 

No Not 
available 

FlowSense FlowSense [53] achieves a push-‐
based approach to performance 
monitoring in flow-‐based 
networks, where the network 
informs of performance 
changes, rather than query it. 

None (﴾native 
OF)﴿ 

No Not 
available 

Table 6.2 OpenFlow monitoring applications 

In addition, many of the monitoring frameworks described in Section 6.3 for cloud 
infrastructures can be also used for monitoring OpenFlow infrastructures, via the 
appropriate plugins. 

6.4. T-NOVA VIM Monitoring Framework 

The overall architecture of the T-‐NOVA VIM monitoring framework can be defined by 
taking into account the technical requirements, as identified in Section 6.2, as well as 
the technical choices made for the NFVI and VIM infrastructure. The specification 
phase has concluded that the OpenStack platform will be used for the control of the 
virtualised IT infrastructure, as well as the OpenDaylight controller for the 
management of the SDN network elements. 

In this context, it is appropriate to leverage OpenDaylight (﴾Statistics API)﴿ and 
OpenStack (﴾Telemetry API)﴿ capabilities for metrics collection, rather than directly 
polling the network elements and the hypervisors at the NFVI layer, respectively. 

Theoretically, it would be possible for the Orchestrator to directly poll the cloud and 
network controllers of each NFVI-‐PoP and retrieve resource metrics respectively. This 
approach, although simple and straightforward, would fail to address the challenges 
outlined in Section 6.3 and in particularly would introduce significant scalability issues 
on the Orchestrator side. It is therefore appropriate to introduce a 
mediator/processing entity at the VIM level to collect, consolidate, process metrics 
and communicate them to the Orchestrator. This entity is called the VIM Monitoring 
Manager (VIM MM), and acts as a stand-‐alone software component. 

OpenStack and OpenDaylight already provide a rich set of metrics for both physical 
and virtual nodes, which should be sufficient for most T-‐NOVA requirements. 
However, in order to gain a more detailed insight on the VNF status and operation, it 
would be advisable to be able to connect a rich set of metrics from the guest OS of 
the VNF container, including information which cannot be obtained via the 
hypervisor. This enhanced monitoring capability is expected (﴾yet still needs to be 
assessed)﴿ to significantly augment the effectiveness of the VIM MM with regard to 
status awareness and proactive fault detection. 

For this purpose, it is decided to introduce an additional optional entity deployed 
within the VNF container, namely the VNF Monitoring Agent (VNF MA). The latter will 
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be optionally pre-‐packaged within the VNF image and will provide enhanced VNF 
monitoring capabilities. The monitoring agent will collect generic information about 
guest OS status, processes and resources, rather than VNF-‐specific information. The 
latter will be directly communicated by the VNF application itself to the VNF 
Manager. 

Based on the need outlined above, the architecture of the VIM monitoring framework 
can be defined as shown in Figure 6.3. 

 
Figure 6.3 Overview of the VIM monitoring framework 

The VIM MM aggregates metrics by polling the cloud and network controllers and by 
receiving additional information from the VNF monitoring agents, consolidates these 
metrics, produces events/alarms if appropriate and communicates them to the 
Orchestrator. For the sake of scalability and efficiency, it was decided that metrics will 
be pushed by the VIM MM to the Orchestrator, rather than being polled by the latter. 
Moreover, the process of metrics collection/communication and event generation 
can be partially configured by the Orchestrator via a relevant configuration service to 
be exposed by the VIM MM. More details on the introduced modules can be found in 
the following sections. 

6.4.1. Overview of Collected Metrics 

A crucial task when defining the T-‐NOVA approach to monitoring is the identification 
of metrics that need to be collected from the virtualised infrastructure. Although the 
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list of metrics that are available via existing controllers can be extensive, it is 
necessary, for the sake of scalability and efficiency, to restrict this list to include only 
the information that is actually needed for the implementation of the T-‐NOVA Use 
Cases, as defined in Deliverable D2.1. This is only an initial tentative approach to the 
list of metrics, which will be continuously iterated on and updated throughout the 
project. 

Domain Metric Units Origin Relevant UCs 

VM/VNF  CPU utilisation   % VNF Mon.Agent UC3, UC4  

VM/VNF No. of VCPUs  # VNF Mon.Agent UC4  

VM/VNF RAM allocated  MB VNF Mon.Agent UC3, UC4 

VM/VNF RAM available  MB  VNF Mon.Agent UC3, UC4 

VM/VNF Disk read/write rate  MB/s VNF Mon.Agent UC3, UC4 

VM/VNF Network Interface in/out 
bitrate 

Mbps VNF Mon.Agent UC3, UC4 

VM/VNF Network Interface in/out 
packet rate 

pps VNF Mon.Agent UC3, UC4 

VM/VNF No. of processes  # VNF Mon.Agent UC4  

Compute Node  CPU utilisation   %  OS Telemetry UC2, UC3, UC4  

Compute Node RAM available  MB OS Telemetry UC2, UC3, UC4 

Compute Node Disk read/write rate MB/s OS Telemetry UC3, UC4 

Compute Node Network i/f in/out rate Mbps OS Telemetry UC3, UC4 

Storage (﴾Volume)﴿  Read/write rate  MB/s  OS Telemetry UC3, UC4 

Storage (﴾Volume)﴿  Free space  GB  OS Telemetry UC2, UC3, UC4 

Network 
(﴾virtual/physical 
switch)﴿ 

Port in/out bit rate  Mbps ODL Statistics  UC2, UC3, UC4 

Network 
(﴾virtual/physical 
switch)﴿ 

Port in/out packet rate  pps  ODL Statistics  UC3, UC4 

Network 
(﴾virtual/physical 
switch)﴿ 

Port in/out drops  #  ODL Statistics  UC3, UC4 

Table 6.3 Identification of metrics to be collected 

6.4.2. VIM Monitoring Manager 

The VIM Monitoring Manager is the core component of the monitoring framework. 
Taking into account its core functionalities and required features, the VIM MM should 
be composed of the following modules: 
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• Agent connector (﴾Agent listener)﴿, to receive information from the VNF Agents; 
• OpenStack connector, in order to poll for compute metrics (﴾client for 

Telemetry API)﴿. The connector should periodically poll all deployed physical 
and virtual nodes for information. Efficiency can be improved if polling 
frequency is dynamically adjusted i.e. decreased for resources which are found 
to fluctuate less frequently; 

• OpenDaylight connector, in order to poll for networking metrics (﴾client for 
Statistics API)﴿. As with the OpenStack connector, the polling is periodic and 
refers to all network nodes, with an adjustable polling frequency; 

• Orchestrator connector, which allows communication with the Orchestrator 
for: 

o Receiving monitoring configuration, e.g. registration to specific 
metrics, setting of thresholds etc. (﴾server-‐side)﴿, 

o Dispatching (﴾pushing)﴿ metrics and events in a push-‐based approach 
(﴾client-‐side)﴿; 

• Local database for storing metrics, configuration and any auxiliary information 
which requires persistence. The typical relational database model is 
considered adequate; 

• Processing engine, which performs statistical processing on stored metrics, 
detects events and generates alarms; 

• User interface for presenting collected information. Although a user GUI for 
the VIM MM does not directly serve any of the T-‐NOVA use cases, it is 
considered as a useful tool to monitor and manage the IVM infrastructure. 

With regard to implementation, the initial approach for the VIM MM will be 
developed in JavaScript, under the node.js environment [46]. Node.js is a 
development platform providing an asynchronous event framework, designed to 
build scalable network applications. The reason is that the main functionality of VIM 
MM is data communication and the node.js environment offers several services to 
facilitate communication, especially via Web services, as well as event-‐driven 
networking. 

6.4.3. VNF Monitoring Agent 

The VNF Monitoring Agent will be pre-‐installed within the VM image hosting the 
VNFC. It will be automatically launched upon VNF start-‐up and run continuously in 
the background. The agent collects a wide range of metrics from the local OS. For 
this purpose, it is planned to exploit the collectd daemon, described in Section 
6.3.1.2. 

The VNF MA will be also assigned with monitoring heterogeneous compute nodes. 
Heterogeneous compute nodes comprise, apart from the common compute node 
hardware, also specialised hardware accelerators that can be exploited for some tasks 
to be performed within a VM. It is reasonable to also include performance metrics 
related to these devices in the T-‐NOVA monitoring architecture. Integration of the 
monitoring agent into the compute node depends largely on the nature of the 
compute node itself. In D2.31 we distinguished between two types of heterogeneous 
compute nodes: the first is composed by typical general-‐purpose processor (﴾x86, 
ARM, etc.)﴿ whereas the second is constituted by nodes with special purpose 
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acceleration resources, in the form, for instance, of GPUs, FPGAs and others. 
Incorporating the monitoring agent into compute nodes of the former types is 
notably easier, since the standard agent that will be developed within T-‐NOVA will be 
able to be executed on the processor of the system and communicate with the 
monitoring manager using standard methods. Compute nodes belonging to the 
latter category however will need to include a custom but compatible monitoring 
agent through some other means. For example in an FPGA-‐based system, the agent 
will have to be implemented in the programmable fabric of the FPGA and is a subject 
of future research. 

It has to be noted that there can be no universal approach for the definition of the 
performance metrics to characterise the load of the application running on the 
programmable fabric of an FPGA or FPGA/SoC. The reason is that these metrics 
depend on the application currently running on the device and may vary from IOPS 
for a soft processor core to MAC/s for a DSP application. Thus, the monitoring 
framework has to accommodate also custom metric formats. Moreover, the 
Orchestrator and VIM have to be aware of these custom metrics upon VNF 
deployment. It is evident that the implications of deploying heterogeneous compute 
nodes are far-‐reaching and involve considerable effort. 

In any case, for both generic and platform-‐specific metrics, the VNF MA will connect 
to the VIM MM and push measurements periodically. The push frequency will be 
configurable (﴾either manually or automatically)﴿. The set of metrics (﴾selection among 
all available ones)﴿ to be communicated will also be configurable and may vary among 
VNFs, according to VNF specificities.  

6.4.4. Compute, Hypervisor and Storage Monitoring 

Monitoring of computing, hypervisor and storage status and resources will be 
performed directly via the OpenStack Telemetry framework (﴾see Section 6.3.1.1)﴿. The 
VIM MM (﴾OpenStack connector)﴿ will periodically poll Telemetry for metrics regarding 
the currently deployed physical and virtual resources. Although these metrics could 
be retrieved by directly accessing the Telemetry database, since the scheme of the 
latter may evolve in future OpenStack versions, it is more appropriate to use the 
REST-‐based API offered by Telemetry [54] The VIM MM will issue GET requests to the 
service referring to a specific resource and meter, and the result will be returned in 
JSON format. 

Fortunately, the Telemetry support for the hypervisor selected for T-‐NOVA (﴾KVM)﴿ 
offers the widest possible list of available monitoring metrics, compared to other 
hypervisors, such as Xen or vSphere. 

Moreover, collecting metrics via the API allows exploiting additional features of 
Telemetry such as: 

• Meter grouping: it is possible to define set of metrics and retrieve an entire set 
with a single query; 

• Sample processing: it is possible to define basic aggregation rules (﴾average, 
max/min etc.)﴿ and retrieve only the aggregate instead of a set of metrics; 
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• Alarming: it is possible to set alarms based on thresholds for the collection of 
samples. An alarm can depend on a single meter, or a combination. The VIM 
MM may use the API to set an alarm and define an HTTP callback service to 
be called when the alarm has been set off. 

6.4.5. Network Monitoring 

Monitoring of network resources (﴾on physical and virtual nodes)﴿ will leverage 
OpenFlow capabilities. Nevertheless, metrics will not be collected via the OpenFlow 
protocol (﴾i.e. by polling directly the OF-‐enabled switches)﴿. Instead, as outlined 
previously, it will be achieved by exploiting the Statistics REST API of OpenDaylight. 
The VIM Monitoring Manager (﴾OpenDaylight connector)﴿ will poll the ODL REST API, 
and in turn ODL will poll the underlying OpenFlow switches via its OpenFlow 
southbound plugin. 

The OpenDaylight Statistics API [55], more specifically the StatisticsNorthbound 
service, exposes node and flow metrics to high-‐level network applications. 

The VIM MM will issue GET requests to the service, referring to a specific node. The 
response, structured in JSON, contains metrics for each port, such as: 

• number of received packets 
• number of transmitted packets 
• number of received bytes 
• number of transmitted bytes 
• receive/transmit drops 
• receive/transmit errors (﴾frame/overrun/CRC)﴿ 

As aforementioned, for scalability reasons, per-‐flow statistics will not be collected, so 
the per-‐flow monitoring capability of ODL (﴾also offered via the StatisticsNorthbound 
service)﴿ will not be exploited. 

6.5. Conclusions 

The current state-‐of-‐the-‐art of monitoring tools and frameworks for cloud computing 
environments has been presented. Infrastructure metrics and statistics currently 
available from the OpenStack and OpenDaylight controllers have been considered. 
These metrics relating to the resources of an NFVI-‐PoP must be exposed to the T-‐
NOVA Orchestrator. A proposed VNF monitoring agent has been described which an 
optional component, responsible for collecting a rich set of metrics from within VNF 
containers. Finally the solution being developed by Task 4.4 will deliver visibility of 
the IVM status to the Orchestrator and the Marketplace.  
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7. TECHNOLOGY SELECTIONS 

A key output of the Task 1-‐4 and in particular Task 4.1 is to identify the appropriate 
technologies that will be used to implement the T-‐NOVA IVM in Task 4.5. The 
following section contains a list of the initial candidate technologies that have been 
identified and the rational for their selection. These technologies are currently under 
evaluation in WP4. These selections however may change during the course of the 
activities within WP4 as technical issues arise or other viable technology options 
emerge. Final details of the technologies ultimately used to implement IVM will be 
provided in the next set of deliverables from WP4. 

The following tables outline the selected technology for each function, the alternative 
options available at this point in time, the requirements that each technology satisfies 
(﴾requirements are referred to the ones in Deliverable 2.31)﴿, the trade-‐offs and the 
justification (﴾e.g. the rationale behind the selection)﴿. 

Technology Cloud Controller  

Choice § Open Stack  
Deployment and lifecycle management of the VNF/NS deployed 
on VMs within the Cloud Infrastructure. Provisioning of a 
common virtualisation layer across different heterogeneous 
platforms. 

Alternatives • CloudStack 
• Eucalyptus 
• VMware vCloud Suite 

Requirements 
Related 

VIM1, 2, 3, 4, 5, 6, 7, 10, 16, 20, 21, 22, 23 

C2, 7, 9, 10 

H1 

N13 

Trade-off Currently no support for enhanced platform awareness 
External control of scheduling/filtering mechanism not supported. 
Deterministic behaviour difficult to achieve 

Justification Significant industry support with over 400 companies and 
organisation backing OpenStack 
Open source and community led development with active roadmap 
Adoption into major commercial NFV platforms e.g. Cloudband, 
NFV Director etc. 
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Technology SDN Controller  

Selection § OpenDaylight 
Open-‐source SDN controller platform backed by the Linux 
Foundation and developed by an industrial consortium, which 
includes Cisco, Juniper and IBM, among many others. 
OpenDaylight is implemented in Java. Provides a flexible 
northbound interface using Representation State Transfer APIs 
(﴾REST APIs)﴿, and includes support for the OpenStack cloud 
platform. 

Alternatives • POX  
• NOX 
• RYU  
• Floodlight 
• Trema 
• Jaxon 

• Maestro 
• ONOS 
• Contrail 
• Beacon 
• Nodeflow 
• MUL 

Requirements 
Related 

VIM3, 5 6, 7, 8, 9, 11, 13, 14, 16, 17, 18, 24 

N6, 11, 12, 14 

Trade-off Implemented in Java which may have performance implications 

Justification Supports integration with OpenStack via ML2 plugin 
Supports OpenFlow, OVSDB, BGP-‐LS 
Support for VTN 
Strong roadmap 

 

Topic Network Tunnelling Protocols  

Choice • VXLAN – this technique used to encapsulate L2 frames in UDP 
packets. From a VM perspective, VxLAN offers the abstraction of 
L2 regardless of the physical location. Compared to VLAN, 
VxLAN permits a much wider addressing space by using a 24-‐bit 
LAN ID. 

Alternatives • VLAN 
• GRE 
• STT 

Requirements 
Related 

VIM6 8 

N5 11 13 14	
  

Trade-off Small performance downgrade with respect to traditional VLANs, 
mainly related to encapsulation/decapsulation of VXLAN/GRE 
frames in the tunnel. 
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Justification Tunnelling protocols are fundamental in a NFV environment in order 
to implement true network virtualisation, where tenants can be 
provision dynamically in networks (﴾overlay)﴿ without any impact on 
the underlying physical infrastructure (﴾underlay)﴿. 

The VXLAN tunnelling protocol was chosen mainly because it is 
quickly becoming a de-‐facto standard, with very large support in the 
IT industry. Major IT vendors (﴾HP, Cisco, VMware, Red Hat etc.)﴿ 
natively support VXLAN in their products, both at 
virtualisation/cloud level (﴾i.e. OpenStack and hypervisors)﴿ and at a 
HW infrastructure level (﴾e.g. new HP switches integrate VXLAN 
gateways in hardware)﴿. 

Topic Network Virtualisation Framework  

Choice • VTN -‐ OpenDaylight Virtual Tenant Network (﴾ODL VTN)﴿ is a 
framework that provides multi-‐tenant virtual network on an SDN 
controller. As such it implements a logical abstraction plane that 
enables the complete separation of logical plane from physical 
plane. Networks for applications and end user needs can be 
deployed without knowing the underlying physical network 
topology.  

Alternatives • OpenDOVE. 
• OVSDB+VXLAN 

Requirements 
Related 

VIM2 7 8 13 14 

N2 4 5 11 12 13 14 

Trade-off Even if the solution composed of OVSDB and the Network 
Tunnelling Protocol could be considered as a Network Virtualisation 
Framework, they actually operate at a lower level than VTN and 
OpenDOVE. The latter present instead a more comprehensive 
approach in term of multi-‐tenant network virtualisation. Both VTN 
and OpenDOVE are included into the OpenDaylight project list, 
where VTN seems to have a (﴾little)﴿ more focus. This may be due to 
the importance of the VTN Manager implementation, i.e. the VTN 
component located at the “Controller Platform” level. 

Justification VTN Manager together with the presence of the already developed 
component at the “Network Application Orchestration and Services” 
level, i.e. the VTN Coordinator, would make VTN the most obvious 
choice for the Network Virtualisation Framework. Furthermore it is 
part of the OpenDaylight package which will ensure a seamless 
integration with the remaining components selected in this task. 
Open DOVE implements more modest functionality than ODL VTN 
and has considerably less industry support being an IBM-‐driven 
initiative. OVSDB on the other hand offers very limited functionality 
in comparison to ODL VTN. 
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Topic Distributed Controller  

Choice • ODL Clustering Service -‐ supports a cluster based HA model 
where several instances of ODL controller act as a single logical 
controller. The global state of the network in maintained 
through a distributed data store. 

Alternatives • Pratyaastha  
• ElastiCon  

Requirements 
Related 

VIM 3, 10, 17, 18 

Trade-off The adoption of distributed data structures may lead to an 
inconsistent or stale global network view. Higher rates of control 
synchronisation and communication overhead can help to achieve 
consistent state in the global network view. However, this may have 
an impact on the responsiveness of the system. 

Justification The choice was highly dependent on the selection of the SDN 
controller platform. The clustering service built in OpenDaylight 
represents a valid solution to support to high availability and 
horizontal scaling. Nevertheless, in order to fit the requirements 
identified in T-‐NOVA, further extensions and improvements are 
required. 

 

Technology SDN Capable Switch  

Choice OpenFlow version 1.0 or higher switch with 10GBase-‐T interfaces, 
TCAM and VLAN support 

Alternatives OpFlex 

Requirements 
Related 

N10, 11, 12 

Trade-off Cost of switch increases with speed 
OSF+ interfaces provide better environment, but are most expensive 
More expensive than non-‐SDN switches 

Justification Commercial 10Gb SDN switch with OpenFlow support, 10GBase-‐T 
physical interfaces to reduce connection costs. 10Gb switch 
considered standard for top of rack switching 
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Technology NIC  

Choice • Intel X540 Converged Ethernet Adapter 
PCIe, dual port NIC with RJ45 connectors. Support for DPDK and 
SR-‐IOV (﴾up to 64 virtual ports)﴿. Backwards compatibility with 
1000Base-‐T networks. 

Alternatives Emulex -‐ oce (﴾OneConnect OCe14000 family)﴿ 
Mellanox -‐ mlx4 (﴾ConnectX-‐3, ConnectX-‐3 Pro)﴿ 

Requirements 
Related 

 

Trade-off Cable length limited to 50M 
More expensive than non DPDK NICs 

Decision Selection of X540 PCIe provides greater flexibility with workstations 
and server form factor compatibility. Full DPDK support. 

 

Technology Virtual Switch  

Choice • Intel DPDK vSwitch  
A virtual switch implemented on top of OvS, coupling the 
original software switching technology with DPDK in order to 
improve the performance of OvS, while maintaining its core 
functionality.  

Alternative Open vSwitch 

Requirements 
Related 

H14 

N2, 5, 8 

Trade-off Requires DPDK compatible NIC 
Complex to configure 

Justification Open vSwitch is a production quality, multilayer virtual switch 
licensed under an Apache 2.0 open source license and it represents 
the de facto standard technology in terms of vSwitches. The DPDK 
version improves packet processing performance 

 

Technology Compute Platform  

Choices • Xeon E5 2620 v2/v3 
Features 10 cores which can support up to 20 threads. Supports 
VT-‐x, VT-‐d, Extended page tables, TSX-‐NI, AES Instructions and 
Trusted Execution Technology (﴾TXT)﴿ and 8GT/s Quick Path 
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Interconnects for fast inter socket communications. 
Requirements 
Related 

C 1 

Trade-off General purpose processor solution for VNFs. Overprovision/under 
provision will be an issue with some VNFs. 
Overall performance can be limited by the performance of 
peripherals devices  

Justification Industry leading performance with extensive virtualisation support. 
Inclusion of key technologies to accelerate the performance of 
specific types of VNF e.g. cryptography. Large cache size to 
minimise context switching. Large number of cores gives greater 
flexibility  

 

Technology Hypervisor and Hypervisor controller 

Choices • KVM and Libvirt 
KVM (﴾for Kernel-‐based Virtual Machine)﴿ is a full virtualisation 
solution for Linux on x86 hardware containing virtualisation 
extensions (﴾Intel VT or AMD-‐V)﴿ 
Libvirt is an open source API, daemon and management tool for 
managing platform virtualisation. It provides a very useful API for 
the orchestration layer of hypervisors in a cloud-‐based solution. 

Alternatives Hypervisor 
• Xen 
• VMware ESXi 
• Microsoft Hyper-‐V 

Hypervisor Controller 
• Xen Centre 
• VMWare VSphere 

Requirements 
Related 

VIM 1, 2 

C 5 

H 3, 4, 6, 7, 8, 10, 13, 14 

Trade-off Lack extensive documentation in comparison to commercial 
products 

Justification Open Source, Free, It is the default hypervisor within OpenStack, so 
it is fully implemented and supported, High performance, low 
overhead, extensive industry adoption. 
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Technology Operating System  

Choices • Fedora 

Fedora is a Linux-‐based operating system sponsored by Red Hat. 
Distributed under a free and open source license and aims to be 
on the leading edge of such technologies. Moreover, it is 
supported by Intel’s Open Networking Platform. 

Alternative • Ubuntu 
• Windows Server 

Requirements 
Related 

 

Trade-off Occasional device driver compatibility issues. 

Decision Fedora better supports natively the virtual switching technology. It is 
Open Source, Free. It is supported by the ONP specification. 
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8. CONCLUSIONS  
The activities in Work Package 4 are focused on developing an understanding of the 
performance characteristics of technologies to be used in the T-‐NOVA IVM layer. 
Task 4.1 is identifying appropriate mechanism for integrating these technologies and 
developing optimisations that are required to deliver a functional, manageable and 
performant IVM. A key component of the IVM is management of intra-‐Data Centre 
communications based on SDN principles. Task 4.2 is looking in detail at the design 
of the SDN Control Plane, including service chain traffic management, tenant 
isolation and the SDN controller architecture. Task 4.3, SDK for SDN task, is focusing 
on how to alleviate some of the key limiting factors for SDN application developers 
and data centre implementers through the development of a toolkit. It is envisaged 
that the toolkit will abstract the differences in popular SDN controllers allowing 
developers to use their language of choice and to reduce the development lifecycle. 
Management is an important aspect of the IVM. In order to manage the IVM 
appropriately, measurements with respect to how the environment is behaving are 
critical: here dynamic metrics play a critical role in providing the Orchestrator with the 
necessary information on the physical and virtualised infrastructure environment 
under its control. In this perspective, Task 4.4 is developing a monitoring solution that 
will be deployed onto the compute nodes that comprises the IVM layer and will 
report collected data to the T-‐NOVA Orchestration layer. Collectively, these tasks 
have also developed an understanding of their various task dependencies as outlined 
in Section 2 to ensure they receive appropriate input into their activities and their 
outputs match the needs of dependent tasks. 

Section 3 described the current and planned activities of Task 4.1. The task has 
selected the initial candidate technologies for the implementation of the VIM 
functional entity within the IVM. OpenStack has been chosen as the Cloud Controller 
and OpenDaylight as the SDN Controller. The task has also selected some initial 
technology components that will be used in the implementation of the NFVI 
functional entity. These technologies are currently being evaluated in a testbed 
environment. Initial technology characterisation experiments have focused on DPDK 
and OVS. The results obtained to date indicate a significant improvement in packet 
processing performance for the DPDK version of OVS in comparison to the standard 
version. However the task has also identified that the VNF must natively utilised the 
DPDK libraries. If the VNF does not have native support the performance benefit is 
significantly reduced. In this scenario an improvement over OVS was observed in 
terms of throughput. Task 4.1 has developed an initial version of its workload and 
technology characterisation protocol which is included in this deliverable. The 
outputs of this work will play an important role identifying dynamic and static metrics 
that are most highly correlated with workload or system performance. The task is also 
developing a set of Best Known Methods (﴾BKMs)﴿ for virtualised environment 
implementation which will be used by other work packages in T-‐NOVA. 

In Section 3 the initial architecture of the SDN control plane based the requirements 
outlined in previous T-‐NOVA deliverables is described. In addition Task 4.2 have 
analysed and identified the functional components and interfaces of the CP. Analysis 
of a variety of candidate technologies has been carried out in order to identify a 
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suitable solution for the SDN controller implementation based on a balanced view of 
the available and missing features. OpenDaylight was selected as the Network 
Controller with Virtual Tenant Network (﴾VTN)﴿ as the multi-‐tenant network 
virtualisation framework and clustering service for the controller deployment in large-‐
scale environments. Task 4.2 have developed an initial experimental plan to evaluate 
the performance of the selected technologies under a number of different scenarios 
and has initiated implementation of the test plan to collective quantitative data to 
evaluate the Controller architecture options i.e. single instance vs. distributed.  

In Section 4 the activities of the Task 4.3, SDK for SDN, which is working on providing 
common development libraries (﴾with support for multiple SDN controllers)﴿ to the 
SDN application developers were outlined. The task is also undertaking detailed 
analysis of interactions among virtual and physical network elements in a typical 
cloud data centre. The aim of this study is to identify bottlenecks in the network stack 
and to provide requirements for the development of specific libraries to support 
developers in minimises or removing such bottlenecks. Task 4.3 has created an initial 
draft architecture for the SDK which over the course of next couple of months will be 
further refined based on the close interactions planned with other tasks in T-‐NOVA. 
The two initial SDN controllers that are targeted by this task are OpenDaylight and 
Ryu -‐ the final two controllers filtered by the T-‐NOVA consortium.  

Task 4.4 focuses on the development of a monitoring framework for the IVM 
components. In Section 5 a brief state-‐of-‐the-‐art survey was presented and the 
architecture of the T-‐NOVA VIM monitoring framework was specified. Taking into 
account the use of OpenDaylight and OpenStack as the controller technologies in the 
VIM, infrastructure metrics and statistics available from these controllers will be 
collected. These metrics are aggregated and filtered into a centralised Monitoring 
Manager, which exposes status and resource information of the NFVI-‐PoP to the 
Orchestrator, as configured by the latter. A VNF monitoring agent was also 
introduced, as an optional component, collecting a rich set of metrics from within 
VNF containers. It is concluded that, with the proposed approach is technical feasible 
with a goal of delivering an effective, efficient and scalable monitoring solution for 
the T-‐NOVA IVM layer. The solution under development will be able to afford the 
Orchestrator and the Marketplace enhanced awareness of the IVM status and 
resources, while at the same time keeping the communication and signalling 
overhead at minimum. 

In Section 6 the candidate technologies that will be used in by WP4 in the 
development, implementation and characterisation of the IVM and its functional 
entities were described. The rational for the selection of the technology is provided 
together with a mapping to the T-‐NOVA requirements that the technology will fulfil. 

Each of the tasks will report again on their progress and their key finding/outcomes 
in task level deliverables which are due between months M21 and M28 of the project. 
Task 4.5 will also use the outputs of the tasks described in this deliverable to 
implement a functional IVM will be a realisation of the technology artefacts and key 
learnings generated by the WP4 tasks.   
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9. LIST OF ACRONYMS 

Acronym Description 

ACL Access Control List 

AES-NI Advanced Encryption Standard New Instructions 

API Application Programming Interface 

AVG Average 

BCAM Binary Content Addressable Memory 

BGP Border Gateway Protocol 

BGP-LS Border Gateway Protocol Linkstate 

BKM Best Known Method 

CLI  Command Line Interface 

CP Control Plane 

CPU Control Processing Unit 

CRC Cyclic Redundancy Check 

DC Data Centre 

DOVE Distributed Overlay Virtual Ethernet 

DoW Description of Work 

DP Data Plane 

DPDK Data Plane Development Kit 

DSP Digital Signal Processing 

DUT Device Under Inspection 

EPT Extended Page Tables 

ETSI European Telecommunications Standards Institute 

FE Functional Entity 

FPGA Field Programmable Gate Array 

Gbps Giga bits per second 

GPU Graphical Processing Unit 

GRE Generic Routing Encapsulation 

HA Hardware Abstraction 

IaaS Infrastructure as a Service 
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ICMP Internet Control Message Protocol 

IEEE  Institute of Electrical and Electronics Engineer 

IETF Internet Engineering Task Force 

IRF Interchange Representation Format 

I/O Input/Output 

IOPS Input/Output Operations Per Second 

IP Internet Protocol 

IPFIX Internet Protocol Flow Information Export 

iSCSI Internet Small Computer System Interface 

IVM Infrastructure Virtualisation and Management 

IVSHMEM Inter-‐Virtual machine Shared Memory 

KVM Kernel-‐based Virtual Machine  

KPI Key Parameter Indicator 

L2 Layer 2 

L3 Layer 3 

LAN Local Area Network 

MA Monitoring Agent 

MAC Media Access Control 

MANO Management and Orchestration 

MF Monitoring Framework 

ML2 Modular Layer 2 

MM Monitoring Manager 

MPLS Multiprotocol Label Switching 

NC Network Controller 

NF Network Function 

NFaaS Network Functions-‐as-‐a-‐Service  

NFV Network Functions Virtualisation 

NFVI Network Functions Virtualisation Infrastructure 

NFVI-PoP NFVI-‐Point of Presence 

NIC Network Interface Cards 

NS Network Service 

NUMA Non-‐uniform Memory Access 



T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management 

© T-‐NOVA Consortium  
 

90 

NVGRE Network Virtualization using Generic Routing Encapsulation 

ODCS OpenDOVE Server 

ODGW OpenDOVE Gateway 

ODL OpenDaylight 

ODML OpenDOVE Management Controller 

OF OpenFlow  

ONF Open Networking Foundation 

ONP Open Networking Platform 

OPNFV Open Platform for Network Function Virtualisation 

OS Operating System 

OSGi Open Service Gateway initiative 

OVSDB  Open vSwitch Database Management Protocol 

PCIe Peripheral Component Interconnect Express 

PF Physical Function 

PMD Poll Mode Driver 

PPS Packets Per Second 

QoS Quality of Service 

QPI Quick Path Interconnect 

QSFP Quad Small Form-‐factor Pluggable 

OSGi Open Service Gateway initiative 

RAM Random Access Memory 

REST API Representation State Transfer API 

RDMA Remote Direct Memory Access 

RFC Request for Comments 

RPC  Remote Procedure Call 

SAN Storage Area Network 

SDN Software-‐Defined Networking 

SDK Software Development Kit 

SFP Small Form Factor Pluggable  

SLA Service Level Agreement 

SNMP Simple Network Management Protocol 

SoC System on Chip 
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SOTA State-‐Of-‐The-‐Art 

SR-IOV Single Root I/O Virtualisation 

SSD Solid-‐State Disk 

SW Software 

TCAM Ternary Content Addressable Memory 

ToR Top of Rack 

TNM Transport Network Manager 

T-NOVA Network Functions as-‐a-‐Service over Virtualised 
Infrastructures 

TXT Trusted Execution Technology 

UDP User Datagram Protocol 

vApp Virtual Application 

VIM Virtualised Infrastructure Manager 

VL Virtual Link 

VLAN Virtual Local Area Network 

VM Virtual Machine 

VMDq Virtual Machine Device Queues 

VMM Virtual Machine Manager 

VMX Virtual Machine Extension 

VNF Virtual Network Function 

VNFC Virtual Network Function Component 

vNode Virtual Node 

VPN Virtual Private  Network 

vNIC Virtual Network Interface Cards 

VPN Virtual Private Network 

vNS Virtual Network Service 

VT-d Virtualisation Technology for Directed I/O 

VTEP Virtual Tunnel End Point 

VT-x Virtualisation Technology for x86 

VTN Virtual Tenant Network 

vTunnel Virtual Tunnel 

WAN Wide Area Network 
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WP Work Package 

XFP 10 Gigabit Small Form Factor Pluggable 

XML Extended Markup Language 

YAML YAML Ain't Markup Language 
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