

Deliverable D4.01

Infrastructure Virtualisation and
Management

Editor Michael J. McGrath (﴾Intel)﴿

Contributors Vincenzo Riccobene (﴾Intel)﴿. Eleni Trouva, George Xilouris (﴾NCSRD)﴿.
Aurora Ramos (﴾ATOS)﴿, Beppe Coffano, Luca Galluppi, Pierangelo
Magli (﴾HP)﴿. Kimon Karras (﴾FINT)﴿, L. Zuccaro, F. Delli Priscoli, A.
Pietrabissa (﴾CRAT)﴿, G. Dimosthenous, S. Charalambides (﴾PTL)﴿. J.
Carapinha (﴾PTIN)﴿, Piyush Harsh, Antonio Cimmino, Glorjan Çadri
(﴾ZHAW)﴿, Evangelos Markakis (﴾TEIC)﴿, Paolo Comi (﴾Italtel)﴿. G.
Gardikis, I. Koutras (﴾SPH)﴿

Version 1.0

Date 19th December, 2014

Distribution PUBLIC (﴾PU)﴿

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

2

Executive Summary

This deliverable presents the current activities and interim results of the four active
tasks in Work Package 4 of the T-‐NOVA project. This work package is focused on the
key elements of the T-‐NOVA Infrastructure Virtualisation Layer (﴾IVM)﴿. Current
activities are focused on the identification of appropriate virtualisation mechanisms
and enablers; implementation and characterisation of a virtualised software defined
networking (﴾SDN)﴿ control plane; implementation of an SDN software development
kit; infrastructure monitoring and maintenance subsystems for the IVM.
Section 2 describes the inter task dependencies of WP4. These inter dependencies are
being carefully considered and monitored to ensure that the tasks in the work
package receive appropriate input to guide their activities. These inputs are
important in aligning the outputs of each task in WP4 in order meet the expectations
and needs of the dependent tasks.
Section 3 describes the activities of Task 4.1 which are focusing on aspects of virtual
Node (﴾vNode)﴿ resource virtualisation, workload characterisation; technology
enhancements and optimisations required for supporting Virtualised Network
Functions (﴾VNFs)﴿ and Network Services (﴾NS)﴿ deployments on vNodes. These activities
have the explicit goal of determining the most appropriate composition of
technology components and integration approaches to implement a functional T-‐
NOVA IVM. The implementation of the IVM and its functional entities is required to
provide a performant environment for hosting VNFs and NS.
Section 4 outlines the activities Task 4.2 which is designing and developing a
virtualised SDN Control Plane to support virtual network creation and management
over OpenFlow-‐enabled networks. The task is also investigating the most appropriate
architecture for the SDN controller implementation in T-‐NOVA. Options being
investigated are focused on centralised and distributed approaches.
The third topic of WP4 is described in Section 5. Task 4.3 is designing and
implementing a software development kit (﴾SDK)﴿ for the SDN Control Plane (﴾SDK for
SDN)﴿. The key aim of this task is to provide the SDN community with a single
framework to develop SDN applications regardless of the underlying API.
Monitoring and Maintenance issues of the virtualised infrastructure are dealt with in
the fourth task of WP4. Section 5 outlines the activities in the design and
development of a monitoring framework that will monitor the physical and virtual
resources of the IVM and make this information available to the T-‐NOVA
Orchestration layer.
Finally Section 7 outlines the technologies that have selected for the implementation
of the IVM and its functional components namely the virtualised infrastructure
manager (﴾VIM)﴿, network function virtualised infrastructure (﴾NFVI)﴿ and transport
network manager (﴾TNM)﴿. A rational for the selection of each technology component
is provided together with the alternative technologies that were investigated. A
mapping of T-‐NOVA requirements to the technology is provided to ensure that the
selected technology can support these requirements in an appropriate manner.

Table of Contents

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

3

1. INTRODUCTION .. 7	

2. WP4 INTER TASK DEPENDENCIES .. 10	

2.1. TASK 4.1 RESOURCE VIRTUALISATION TASK DEPENDENCIES .. 10	

2.2. TASK 4.2 SDN CONTROL PLANE TASK DEPENDENCIES .. 10	

2.3. TASK 4.3 SDK FOR SDN TASK DEPENDENCIES .. 11	

2.4. TASK 4.4 MONITORING AND MAINTENANCE TASK DEPENDENCIES 12	

3. RESOURCE VIRTUALISATION .. 13	

3.1. CANDIDATE TECHNOLOGY SELECTION AND RATIONAL ... 14	

3.1.1. Platforms ... 14	

3.1.2. Hardware ... 16	

3.1.3. Software ... 20	

3.2. PROPOSED ARCHITECTURE OF VIRTUALISATION TESTBED ... 23	

3.3. CHARACTERISATION AND OPTIMISATION EXPERIMENTAL PROTOCOLS 25	

3.3.1. Initial Experimental Protocols .. 26	

3.3.2. Planned Experimental Protocols ... 31	

3.4. CONCLUSIONS AND FUTURE WORK ... 33	

4. SDN CONTROL PLANE .. 34	

4.1. KEY REQUIREMENTS .. 34	

4.2. GENERIC ARCHITECTURE OF THE SDN CONTROL PLANE .. 35	

4.2.1. Functional components .. 36	

4.2.2. Interfaces ... 39	

4.3. CANDIDATE SOLUTIONS ... 39	

4.3.1. SDN Controller .. 40	

4.3.2. Distributed Control Plane .. 41	

4.3.3. Network Virtualisation ... 43	

4.4. IMPLEMENTATION CHOICES ... 45	

4.5. CONCLUSIONS ... 46	

5. SDK FOR SDN .. 47	

5.1. STATE OF THE ART ... 48	

5.1.1. NetIDE Project ... 48	

5.1.2. Popular SDN Controllers and API Comparison ... 52	

5.1.3. Popular Cloud Libraries .. 57	

5.2. REQUIREMENTS GATHERING .. 58	

5.3. INITIAL HIGH LEVEL ARCHITECTURE .. 60	

5.4. CONCLUSIONS AND NEXT STEPS .. 61	

6. MONITORING AND MAINTENANCE .. 62	

6.1. REQUIREMENTS OVERVIEW AND CONSOLIDATION .. 62	

6.2. CHALLENGES AND INNOVATIONS ... 63	

6.3. MONITORING FRAMEWORKS FOR VIRTUALISED INFRASTRUCTURES SURVEY 64	

6.3.1. IT/Cloud monitoring .. 64	

6.3.2. Network Monitoring .. 71	

6.4. T-‐NOVA VIM MONITORING FRAMEWORK ... 73	

6.4.1. Overview of Collected Metrics .. 74	

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

4

6.4.2. VIM Monitoring Manager .. 75	

6.4.3. VNF Monitoring Agent ... 76	

6.4.4. Compute, Hypervisor and Storage Monitoring .. 77	

6.4.5. Network Monitoring .. 78	

6.5. CONCLUSIONS ... 78	

7. TECHNOLOGY SELECTIONS ... 79	

8. CONCLUSIONS .. 86	

9. LIST OF ACRONYMS ... 88	

10. REFERENCES .. 93	

11. ADDITIONAL CONTRIBUTORS .. 96	

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

5

Index of Figures

Figure 3.1 Mapping of ONP components to T-‐NOVA IVM. ... 16	

Figure 3.2 High level architecture of an SDN switch ... 17	

Figure 3.3 Dual-‐socket -‐socket configurations of Intel E5-‐2600 v2 Xeon processor
with 89xx communications chipset .. 20	

Figure 3.4 Proposed Architecture for the Virtualisation Testbed ... 24	

Figure 3.5 (﴾a)﴿ First testing scenario .. 27	

Figure 3.6 (﴾b)﴿ Second testing scenario ... 27	

Figure 3.7 Throughput comparison for the first testing scenario .. 27	

Figure 3.8 Throughput comparison for second test scenario .. 28	

Figure 3.9 Throughput varying the core pinning configuration for DPDK vSwitch. 29	

Figure 3.10 Throughput varying the core pinning configuration for the VM. 29	

Figure 3.11 The effect of core pinning configuration on throughput 30	

Figure 3.12 Packet throughput performance with huge page sizes of 2MB and 1GB . 31	

Figure 4.1 T-‐NOVA SDN Control Plane Architecture .. 36	

Figure 4.2 Distributed SDN Control Plane Architecture ... 38	

Figure 4.3 Simple VTN network ... 43	

Figure 4.4 VTN tunnels .. 44	

Figure 4.5 VTN high-‐level architecture ... 44	

Figure 4.6 OpenDove components .. 45	

Figure 5.1 NetIDE Architecture .. 50	

Figure 5.2 Pyretic ... 50	

Figure 5.3 Main Differences T-‐Nova versus NetIDE ... 51	

Figure 5.4 Ryu Architecture ... 53	

Figure 5.5 OpenDaylight Architecture .. 54	

Figure 5.6 SDK for SDN Initial Architecture .. 60	

Figure 6.1 Overview of Openstack Telemetry architecture ... 65	

Figure 6.2 Communication of monitoring metrics in an OpenFlow-‐enabled
architecture .. 72	

Figure 6.3 Overview of the VIM monitoring framework .. 74	

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

6

Index of Tables
Table 2.1 Outline of Task 4.1 inter-‐task dependencies .. 10	

Table 2.2 Outline of Task 4.2 inter-‐task dependencies .. 11	

Table 2.3 Outline of Task 4.3 inter-‐task dependencies .. 11	

Table 2.4 Outline of Task 4.4 inter-‐task dependencies .. 12	

Table 3.1 Typical NIC Characteristics ... 19	

Table 3.2 Selected performance metrics for the IVM. .. 26	

Table 4.1 Requirements mapping for Task 4.2 .. 35	

Table 4.2 SDN Control Plane Functional Components ... 37	

Table 4.3 Distributed SDN Control Plane Components ... 39	

Table 4.4 Alterative SDN Controller Considered ... 41	

Table 4.5 Alternative Distributed Control Plane Technologies .. 43	

Table 4.6 Mapping between T-‐NOVA and OpenDaylight Components 46	

Table 5.1 NetIDE versus T-‐Nova .. 52	

Table 5.2 Comparing the Ryu and OpenDaylight support for OpenStack (﴾Modules)﴿ . 55	

Table 5.3 Ryu and OpenDaylight Controllers’ support towards generic networks
(﴾Modules)﴿ ... 55	

Table 5.4 REST APIs Comparison for OpenStack Neutron Support 56	

Table 5.5 Ryu and OpenDaylight REST support for generic networks 57	

Table 5.6 SDK for SDN Functional Requirements ... 60	

Table 6.1 IVM requirements which affect the monitoring framework 63	

Table 6.2 OpenFlow monitoring applications .. 73	

Table 6.3 Identification of metrics to be collected ... 75	

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

7

1. INTRODUCTION

Work package 4 is focused on the characterisation of virtualisation mechanisms and
enablers, the SDN control plane, an SDN SDK, as well as the infrastructure monitoring
and maintenance subsystems for the T-‐NOVA system. The output of these tasks play
a key role in the definition, implementation, functional testing and performance
validation of the key components that will be utilised in the T-‐NOVA Infrastructure
Virtualisation and Management (﴾IVM)﴿ layer. This deliverable outlines the key activities
and findings to date from the four active tasks in WP4.

The IVM layer is responsible for providing a performant virtualised hosting and
execution environment for VNFs and NSs. The IVM is comprised of a Network
Function Virtualised Infrastructure (﴾NFVI)﴿ domain, a Virtualised Infrastructure
Manager (﴾VIM)﴿ and a Transport Network Manager (﴾TNM)﴿ as previously described in
D2.31. The IVM provides full abstraction of these resources to VNFs by using
virtualisation technologies. However many virtualisation technologies find their
origins in the IT domain where performance constraints can be more flexible than
those required in carrier grade telecoms environments. Virtualisation has also
expanded beyond its initial focus on compute resource virtualisation to encompass a
variety of different technology approaches such as hardware, operating system,
storage, memory and network. Collectively these approaches have enabled the
complete virtualisation of infrastructure resources found it a traditional data centre.

Virtualisation is the key enabler technology that allows traditional physical network
functions to be decoupled from fixed appliances and to be deployed onto industry
standard servers in large Data Centres (﴾DCs)﴿. This approach is providing key benefits
to operators such as greater flexibility, faster delivery of new services, a broader
ecosystem enhancing innovation in the network etc.

While virtualisation brings many benefits to Enterprise IT and more recently to the
Telecoms domain it also brings many challenges particularly in achieving the same
level of performance in comparison to the traditional fixed appliance approach. The
composition, configuration and optimisation of the virtualised resources are critical in
achieving the required levels of performance. Additionally given the origins of many
virtualisation technologies such as cloud OS environments there are capability gaps
that need to be addressed in order to adequately support VNF/NS type workloads.
This WP is addressing some of these gaps by extending existing technologies in a
manner that is compatible with their current instantiation, implementing bespoke
solutions where necessary and integrating them into existing technology solutions in
order to extend them. These approaches are necessary, firstly to address T-‐NOVA
requirements and secondly to illustrate the benefits of these modifications in order to
influence the communities that are developing these technologies and their
roadmaps. For example a T-‐NOVA extension to OpenStack’s functional could form
the basis for an OpenStack Blueprint contribution.

Another challenge is to ensure the orchestration layer fully exploits the capabilities of
the servers it manages. Currently within cloud environments the resources are highly
abstracted which again causes issues for the performant deployment of VNFs and

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

8

NSs. It is important to expose the specific platform features such as unique CPU
instructions and attached devices, such as acceleration cards, co-‐processors or
Network Interface Cards (﴾NICs)﴿ with advanced capabilities. Additionally many
hardware devices, such as NICs, have additional dependencies, such as the availability
of supporting software libraries -‐ e.g. DPDK -‐ in order for a VNF to function in an
optimal manner.

The combination of hardware and software technology components plays a critical
role in implementation of the IVM and its composite functional entities namely the
NFVI, VIM and TNM. Individual and collective performance of these functional entities
has a significant impact on the VNFs/NSs hosted within the IVM. For any given
function more than one technology choice maybe available. It is therefore important
to understand how the technology options will performance and specifically within
the context of the T-‐NOVA system. These topics are addressed by Task 4.1 specifically
focusing on aspects of vNode resource virtualisation, workload characterisation,
technology enhancements and optimisations to support VNF/NS deployments on
vNodes in a performant manner.

The lack of platform and infrastructural awareness is a major drawback since many
virtual appliances have intense I/O requirements and could benefit from access to
high-‐performance instructions, accelerators and NICs for workloads such as
compression, cryptography and transcoding. Identification of the relevant platform
features than can influence VNF/NS performance is also a focus within Task 4.1. Key
findings from the task will be an important input into Task 3.2 in WP3 which is
focused on provisioning a resource repository to the T-‐NOVA Orchestration layer. In
addition Task 3.2 is identifying mechanisms to improve the intelligence of the VM
provisioning process within the VIM. This involves exposing key platform features
identified in Task 4.1 to the scheduling function within the cloud environment. This
capability should help to improve VNF/NS performance through improved
provisioning of appropriate resources.

In Task 4.2 the focus is on the design and development of an SDN Control Plane to
support virtual network creation and management over OpenFlow-‐enabled networks.
Starting with an in-‐depth analysis of the existing solutions, extensions and necessary
modifications will be identified to address the requirements identified for the T-‐
NOVA system. Specifically, the task is evaluating distributed approaches to overcome
network control plane centralisation limitations and to improve the performance and
reliability of the network controller. Additionally network encapsulation techniques
are being considered in order to provide enhanced connectivity services in multi-‐
tenant scenarios. In this context the key issues to be addressed are resource
optimisation, QoS support and live migration of the VMs hosting the NFV
applications.

The third task of WP4 is the design and implementation of a Software Development
Kit (﴾SDK)﴿ for the SDN Control Plane (﴾SDK for SDN)﴿. The SDK for SDN task is
undertaking a detailed analysis of the interactions between virtualised and physical
network elements in a DC to identify potential bottlenecks and potentials for
optimisations through adoption of SDN capable network elements. The task, based
on the outcome of this analysis will provide libraries and code examples to alleviate
some of the identified bottlenecks. A prominent aim of this task is to provide the

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

9

community a single framework to develop SDN applications regardless of the
underlying controller API. The northbound APIs of several popular SDN controllers
will be analysed to identify the common feature-‐set to be unified under the initial
release of the SDK, with controlled support for the disparate elements in various SDN
controllers to be exposed to application developers. The SDK will also provide useful
libraries to aid the development process – debugging support, test environments
using Mininet or another similar frameworks. Requirements emerging from different
tasks in T-‐NOVA will be collected, specifically from WP5 where most of the NFs are to
be virtualised; the SDK design will be guided in part by these requirements in order
to facilitate the NFV development process.

The final topic in WP4 relates to monitoring and maintenance issues in virtualised
infrastructures. The collection and exposure of dynamic metrics reflecting the current
status of the IVM is critical for supporting most of the T-‐NOVA use cases. Task 4.4 is
designing, implementing and integrating a monitoring framework within the VIM
which collects metrics from computing and network nodes (﴾both virtual and physical)﴿,
aggregates the metrics and analyses them. Generic VNF metrics are also collected
and processed. As an output of the metrics processing workflow, selected
measurements and alarms/events are communicated to the Orchestrator via an API
to be also defined in this task, in order to facilitate service mapping and management
procedures.
	
 	

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

10

2. WP4 INTER TASK DEPENDENCIES

The outputs of the tasks within WP4 have a number of key dependencies with other
tasks in WP4 and with tasks in other work packages, including WP3 and WP5 as
outlined in Tables 2.1 to 2.4. Therefore on-‐going close cooperation and coordination
between the dependent tasks will be required to ensure that the outputs are
appropriate and meet the expectations of the dependent task. The following tables
provide a brief description of the task dependencies.

2.1. Task 4.1 Resource Virtualisation Task Dependencies

Dependent Task Dependency

Task 3.1 – Orchestrator
Interfaces

Task 4.1 will provide an input on the metadata that
must be sent by the Orchestrator in order to support
platform aware VNF scheduling in OpenStack Nova

Task 3.2 - Infrastructure
Repository

Task 4.1 will identify appropriate platform features that
should be collected and stored in the Infrastructure
Repository. These features are expected to be useful
during the OpenStack Nova scheduling and filtering
processes in order to improve VNF placement
decisions.

Task 3.3 - Resource
Mapping

Task 4.1 will identify the workload, platform and
infrastructure features that have a significant impact on
VNF performance. The features will act as inputs into
the design and development of the resource mapping
algorithm which maps VNF to the most appropriate
platform locations.

Task 4.5 - Infrastructure
Integration and
Deployment

Task 4.1 will help to define the technology components
including both software and hardware and their most
appropriate configuration required to implement a
performant IVM in Task 4.5.

Task 5.4 - Performance
Assessment and
Optimisation

Task 4.1 will provide some best practices relating to the
design and the configuration of virtualisation
infrastructure which will be taken as an input by Task
5.4 which is focused performance assessment and
optimisation of T-‐NOVA’s VNFs.

Table 2.1 Outline of Task 4.1 inter-task dependencies

2.2. Task 4.2 SDN Control Plane Task Dependencies

Dependent Task Dependency

Task 4.1 - Resource
Virtualisation

Task 4.1 is investigating resource allocation for various
processing workloads in order to share the same
resources efficiently. SDN control plane plays a

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

11

significant role when the processing workloads
requiring network resources. Therefore, the SDN
control plane will allow sharing of the same network
resources by creating and maintaining isolated vNets.

Task 3.1 - Orchestrator
Interfaces

One of the objectives of Task 3.1 is the implementation
of the southbound interfaces, which will communicate
with the underlying layers; the SDN control plane and
the cloud controllers. Thus, Task 4.2 is directly related
with Task 3.1, which will provide the communication
between the SDN controller and the Orchestrator.

Task 3.2 (Infrastructure
Repository)

The discovery engine of Task 3.2 will interact with the
SDN controller in order to store network topology
information.

Task 4.5 Infrastructure
Integration and
Deployment

Task 4.5 will handle the deployment and integration
activities for T-‐NOVA’s infrastructure. Part of this work
includes the validation of the SDN Control plane that
will be defined and developed in Task 4.2. Thus, the
work that will be carried out in Task 4.2 will be one of
the initial starting points in Task 4.5.

Table 2.2 Outline of Task 4.2 inter-task dependencies

2.3. Task 4.3 SDK for SDN Task Dependencies

Dependent Task Dependency

Task 2.4 – Specification
of IVM

Task 4.3 will enable the user to fulfil the requirements
defined by Task 2.4 in terms of setting up, managing
and monitoring networks.

Task 4.2 - SDN Control
Plane

Task 4.2 is focused on providing an abstraction layer to
SDN application developers building network
applications allowing them to avoid having a detailed
understanding of the underlying controller. Task 4.3 will
support the SDN Controller northbound interface, by
building an abstraction layer and exposing it to SDN
applications developers.

Task 3.4 - Service
Provision, Management
and Monitoring

Task 3.4 will use a generic northbound interface
provided by Task 4.3, allowing the implementation of
the Orchestrator to be agnostic of the underlying SDN
controller. The T-‐NOVA framework is not strictly
dependent on the specific SDN controller, as long as
the SDK toolset provides translation of the generic-‐to-‐
specific-‐new-‐controller northbound interface.

Task 5.3 - Development
of VNFs

The VNFs developed in Task 5.3 may require significant
interaction with the underlying SDN network
infrastructure. The VNF developers will use the SDK to
simplify the interaction with the actual SDN controller.

Table 2.3 Outline of Task 4.3 inter-task dependencies

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

12

2.4. Task 4.4 Monitoring and Maintenance Task Dependencies

Dependent Task Dependency

Task 2.4 - Specification
of IVM

IVM specifications and requirements drive Task 4.4
design and implementation decisions.

Task 3.1 - Orchestrator.
Interfaces

The approaches taken in Task 4.4 affect the interface to
the Orchestrator for communication of monitoring
metrics.

Task 3.3 - Service
Mapping

Service mapping strongly depends on IVM metrics.

Task 3.4 - Service
Provision, Management
and Monitoring

IVM metrics are essential for proper service monitoring.

Task 4.1 - Resource
Virtualisation

The technical approach of the monitoring framework
strongly depends on the technical specifications of the
NFVI substrate.

Task 4.2 - SDN Control
Plane

The technical approach of the monitoring framework
strongly depends on the technical specifications of the
SDN Control Plane.

Task 4.5 - Infra.
Integration and
Deployment

The IVM monitoring framework is one of the
components to be integrated by Task 4.5.

Task 5.3 - Development
of VNFs

The implementation of NFs will affect how NF resources
will be monitored.

Task 6.3 - User
Dashboard

It is assumed that some IVM metrics will be presented
on the dashboard.

Task 6.4 - SLAs and
Billing

SLA monitoring procedures strongly depend on IVM
metrics.

Table 2.4 Outline of Task 4.4 inter-task dependencies

	
 	

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

13

3. RESOURCE VIRTUALISATION
This section relates to the activities of Task 4.1, which is focused on the identification,
characterisation and optimisation of the hardware and software components that will
be used in the implementation of the T-‐NOVA IVM. Task 4.1 is also examining the
inter-‐relationship of VNFs and their host virtualised environments. The task will also
look at the challenges than can exist around co-‐competing optimisation criteria e.g.
performance vs resource consumption, cost vs reliability, infrastructure homogeneity
vs heterogeneity etc. The key outputs of this task will be a set of best practices and
insights regarding the appropriate configuration of the infrastructural components
and the technologies to be used in the implementation of the T-‐NOVA IVM.

The VNFs and the Networks Services that are composed from them have varying
compute, storage and network requirements that are context specific. It is therefore
important from an IVM point of view to develop an understanding of how VNF type
workloads interact and consume resources in their host environments and how these
interactions vary on a temporal basis. While Task 4.4 is looking at the collection and
exposure of dynamic IVM system metrics to the Orchestration layer, Task 4.1 will
specifically work on identifying both dynamic and static metrics that are correlated
with VNF performance and its host environment. These metrics should enable
insights into the specific composition of resources and their configuration.

The ESTI NFV Group Specification provide some guidance on the types of metrics
that should monitored and will inform the initial set of metrics to be capture and
analysed [1]. While metrics can play an important role in the characterisation of VNF
workloads and their environments the volume of potential metrics can be
overwhelming and can dilute their value particularly in an operational context.
Additionally, the identification of the key static metrics is a key input into Task 3.2
which is focused on the implementation of a resource repository for the T-‐NOVA
Orchestrator.

While current cloud environments do track some limited static metrics in terms of
platform characteristics -‐ e.g. CPU speed -‐ these are very limited in scope. They are
currently not considered sufficient for the intelligent placement of VNFs onto
virtualised infrastructures. For example a VNF which has a dependency on DPDK
(﴾Data Plane Development Kit [2])﴿ libraries for accelerating packet processing
performance cannot be deployed onto the appropriate compute node without using
enhanced compute scheduling mechanisms. An initial step in this direction is to
identify non-‐generic platform features both hardware e.g. AES-‐NI, TXT, SR-‐IOV
capable NICs and software e.g. DPDK libraries, which need to be exposed to allow the
Orchestrator to make better workload placement decisions. Additionally,
mechanisms, which can be utilised to expose these, enhanced platform features to
the scheduling and filtering mechanisms in cloud compute environments, will also be
explored.

As a technology, NFV encompasses a wide variety of network functions which have a
diversity of resource requirements. It is important therefore to develop an
understanding of the workload types and their affinity for certain platform features
and technologies. While it is not possible to identify all the affinities for all VNFs
within the scope of Task 4.1, the development of a robust methodology is possible.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

14

To support workload characterisation activities in the task, a flexible test-‐bed
platform is being developed which will be composed of the technologies that are
relevant to the IVM and will enable to rapid evaluation of technologies that may
emerge over the lifetime of the T-‐NOVA project. In the design and implementation of
the test-‐bed industry initiatives such as ONP (﴾Open Network Platform)﴿ and OPNFV
(﴾Open Platform for NFV)﴿ are being monitored closely and their outputs are being
utilised were appropriate.

The Task 4.1 test-‐bed will also make use of instrumentation to capture a full set of
metrics from system counters that will be reduced to a set that are most highly
correlated with workload or system performance. In this way, the test-‐bed will enable
the benchmarking of potential technologies and workloads. Key considerations such
as VM start-‐up time, network latency etc. will be investigated.

Finally the Task 4.1 will develop a set of Best Known Methods (﴾BKMs)﴿ for virtualised
environment implementation for the performant deployment and management of
VNFs. It is expected that these BKMs will be used by other tasks in the setup and
configuration of test infrastructures for their task activities. It is also expected that
output of Task 4.1 will be used in WP7 for guiding the pilot integration and field
trials.

3.1. Candidate Technology Selection and Rational

A key activity for Task 4.1 is the identification of the key software and hardware
components that will form the IVM platform and specifically each functional entity
within the IVM. While more than one technology may exist for a specific role within
the IVM (﴾e.g. SDN Controller)﴿ initial selections are made around the most appropriate
match to the requirements identified in D2.31 and the level of community or
commercial support for the technology. The section presents the initial set of
platform, hardware and software technologies that will be used in the
implementation of a tested to evaluate the technologies, determine the most
appropriate configuration and to develop optimisations for VNF deployments within
a cloud environment.

3.1.1. Platforms

Open source software and open standards are playing a key role in networking,
communications, and cloud infrastructure by supporting the transition from fixed-‐
function, complex network equipment based on proprietary architectures, to
solutions based on lower cost and open technologies.

Two of the leading approaches designed to address the needs of telecommunication
industry are NFV and SDN. These approaches enable demand-‐driven scalable service
provision across pooled elastic infrastructures and have been discussed in detail in
previous T-‐NOVA deliverables.

In order to accelerate the migration towards SDN and NFV, technology companies
have been developing platform based solutions that combine interoperable hardware
and open source software ingredients based on standards that enable Telco’s
evaluate and deploy NFV and SDN solutions into their networks. A key effort in this

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

15

direction is Intel’s ONP, which provides an application-‐ready solution supported by
the open software community, commercial software, system integration alliances, and
industry standards bodies. ONP accelerates and simplifies the deployment of those
technologies, extending the capability to test, deploy and scale new generation
services. It involves two reference design specifications, respectively related to
switches [3] and servers [4].

Of particular interest to T-‐NOVA is, the ONP Server Reference Design based on a set
of open source software components and software/hardware configurations
integrated together on standard servers to deliver a working platform and an
infrastructural framework for efficiently virtualising Network Functions (﴾NFs)﴿.

In ONP, the Fedora 20 (﴾64-‐bit)﴿ Linux distribution is the based Operating System (﴾OS)﴿.
Integration of QEMU1-KVM Virtual Machine Monitor (﴾VMM)﴿ is provided to support
the execution of VMs on the physical infrastructure coupled with libvirt as the
hypervisor manager, OpenStack as the Cloud Controller to control the VM lifecycle
(﴾instantiation, resource allocation, termination, and so forth)﴿ and OpenDaylight as the
Network Controller, to control the traffic paths between Virtual Network Function
Components (﴾VNFCs)﴿. In terms of virtual switching technology, ONP proposes Open
vSwitch and Intel’s DPDK vSwitch as the open standard solution.

In the latest release, OpenDaylight is not integrated with OpenStack but only with the
virtual switching technology. Analysing the T-‐NOVA IVM requirements, the
integration between Neutron and OpenDaylight is necessary in order to provide the
deployment of virtual network across the physical infrastructure. For this reason, the
ONP requires extension with the integration of the ML2 Plugin [6] from a T-‐NOVA
perspective, integrating the OpenStack Neutron network component with the Control
Plane controller (﴾i.e. OpenDaylight)﴿. Figure 3.1 provides a mapping of the main
software and hardware components in ONP with respect to the functional entities of
the T-‐NOVA IVM.

In September 2014 the Linux Foundation
announced the Open Platform for NFV Project
(﴾OPNFV)﴿ [7] which is focused on developing
carrier-‐grade, integrated, open source
reference platform. The initial scope of OPNFV
will be on building NFV Infrastructure (﴾NFVI)﴿,
Virtualised Infrastructure Management (﴾VIM)﴿,

and including application programmable interfaces (﴾APIs)﴿ to other NFV elements,
which together form the basic infrastructure required for VNF and Management and
Network Orchestration (﴾MANO)﴿ components. The platform is expected to be based
on existing open source projects including OpenDaylight, OpenStack, Open vSwitch
and the Linux kernel among others [7]. Task 4.1 will monitor the outputs of this
project closely and will integrate outputs as appropriate.

1 QEMU is an open source Virtual Machine emulator [5] QEMU. (﴾2014)﴿. Open Source
Processor Emulator. Available: http://wiki.qemu.org/Main_Page.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

16

Figure 3.1 Mapping of ONP components to T-NOVA IVM.

3.1.2. Hardware

This section describes the key characteristics and capabilities of the hardware
components considered in the design and deployment of the Task 4.1 testbed. In
addition to identifying the hardware components, Task 4.1 will also evaluate their
performance, as well as interrogating various configuration options to identify the
appropriate set of hardware resources and configurations for use in Task 4.5
(﴾Infrastructure Integration and Deployment)﴿.

3.1.2.1. SDN Switches – Features and Capabilities

The most important feature introduced by the SDN approach is the separation of the
Control Plane (﴾CP)﴿ and Data plane. SDN switches (﴾both physical and virtual)﴿ are based
on the replacement of the local CP with a programmatic interface supporting
standard flow control protocols (﴾see Figure 3.2)﴿. This supports the migration of the
network device CP to a centralised controller that has holistic view of the overall
network and can dynamically respond to changes: the controller makes decisions
about the CP and automatically configures the switches accordingly through their
northbound interface.

The most common protocol used to implement this interface is OpenFlow [8]. It is an
open standard that defines how the controller interacts with the Data Plane and
makes adjustments to the network, adapting to changing requirements or conditions.
When a switch receives an unknown packet it sends a packet-in event to the
controller, requesting instructions on what actions to apply in order to process the

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

17

packet appropriately; the controller installs on the switch one or more entries in the
flow tables that match the specific packet providing a set of actions to be executed
during the forwarding phase. Thereafter, each time the switch will receive a new
packet that matches the new flow entries; it will execute the specified actions without
recall to the controller.

While OpenFlow is regarded as de-‐facto standard protocol for SDN, new vendor led
open source SDN protocols are also emerging, such as OpFlex from Cisco [9]. OpFlex
takes a different approach to switch configuration. Instead of sending specific
configuration instructions to downstream networking equipment, it sends down an
application policy or the application's network requirements, allowing the devices to
self-‐configure accordingly. OpFlex comprises of both the protocol and the set of
standards used to communicate the policies.

It is important for the T-‐NOVA project to continuously monitor developments in both
the OpenFlow protocol and other protocol initiatives to ensure that the T-‐NOVA
solution evolves appropriately overtime.

SDN switches are commonly focused on Top-‐of-‐Rack (﴾ToR)﴿ access switching
providing 1Gbe (﴾or faster)﴿ connectivity to servers with high-‐speed uplinks to the next
level of aggregation switching. Switches with SDN support are available from a
variety of vendors, including Extreme Networks, Cisco, NEC, etc. The first generation
of SDN switches such as the PICA8 supported 1 Gbps line rate speed. Most SDN
switches commercially available at present support at least 10 Gbps line rates. Many
10 Gbps switches offer from 2 to 4 40Gbe uplink ports to provide switch fabric
connectivity. Switches which provide various fixed configurations of 10, 40 and 56
Gbe QSFP/SPF+ ports are also available from vendors such as Mellanox, Arista,
Brocade, etc. However they can be relatively expensive for large-‐scale deployment.

Figure 3.2 High level architecture of an SDN switch

SDN switches typically support Layer 2 and Layer 3 forwarding in 48 or 64 port
configurations with IPv4/IPv6 support. The physical switch connections are mainly
SFP+ with either optical cabling or direct attached copper cabling. Some vendors also
offer switches with 10Gbase-‐T connections over Category 6/7 cabling preferable for
lab base test beds due to the lower cost of connections.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

18

An important feature which can affect performance of an SDN switch is the memory
used to store forwarding tables. OpenFlow 1.0 switches typically used the Ternary
Content-‐Addressable Memory (﴾TCAM)﴿, which is a specialised type of high-‐speed
memory that searches its entire contents in a single clock cycle. TCAM supports
efficient flow instantiation updates from an SDN controller and its lookups match
explicit 1s and 0s but also have a “don’t care” bit. In OpenFlow this is referred to as a
wildcard bit often depicted in diagrams with a ‘*’. However, the use of TCAM in an
SDN switch is not without issues. TCAM is power hungry, expensive and can have a
large silicon footprint, and is often the most expensive component on the switch [10].
Some vendors now use a blend of BCAM memory, SRAM, NPUs and software
algorithms to perform ternary lookups instead of utilising expensive TCAM.

From a T-‐NOVA system perspective there is a number of considerations regarding
the choice of switch for the IVM layer that comes from the analysis of the
requirements, outlined in D2.31. First, the switch should support the OpenFlow
protocol, due its open source nature and its broad industry adoption, OpenDaylight
support and its de facto industry standard status. At a minimum the switch needs to
support OpenFlow version 1.0. Ideally, the switch should feature OF version 1.3 which
is currently supported the Helium release of OpenDaylight. Additional support for
open source protocols such as VxLAN is desirable to support alternative research
configurations/investigations if necessary. Use of TCAM memory would be desirable
to maximise flow table lookup performance. Finally, the switch vendor should have a
robust and timely roadmap for SDN support to ensure that the switch can be
upgraded to the latest technology developments over the lifetime of the T-‐NOVA
project.

3.1.2.2. Network Interface Cards (﴾NICs)﴿

The cost of 10GB Ethernet has fallen significantly over the last few years and it is
becoming more common place in many datacentres. Typically a 10GB NIC costs in
the range of $500 -‐ $1000 depending on its feature set. 10-‐gigabit Ethernet (﴾10GE,
10GbE, or 10 GigE)﴿ was first defined by the IEEE 802.3ae-‐2002 standard. The standard
only defines full duplex point-‐to-‐point links which are generally connected by
network switches. Connections between ports can be provided by either copper or
fibre cabling. The standard supports a number of different physical layer (﴾PHY)﴿
standards including XFP, XENPAK, QSFP, enhanced small form-‐factor pluggable
transceiver, (﴾SFP+)﴿ and 8P8C (﴾RJ45)﴿. SFP+ has become the most popular socket on
10GbE systems, however with additional cost considerations over copper. Due to the
high bandwidth requirements, higher-‐grade copper cables are required in
comparison the 10/100/1000 MB standards. Category 6a or Class F/Category 7 cable
are necessary for links up to 100m in length. 10GbE network interface cards are
available from several manufacturers with a variety of options as outlined in Table 3.1.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

19

Feature Options

Physical Connectivity XFP, XENPAK, QSFP, (﴾SFP+)﴿ and 8P8C (﴾RJ45)﴿.

Power Management Thermal Design Power (﴾TDP)﴿

Technology Support

IWARP/RDMA,
Power Management,
SR-‐IOV,
VMDq,
On-‐chip QoS,
DPDK support,
Unified Networking (﴾LAN/SAN (﴾e.g. iSCSI)﴿ traffic support on the
same network fabric etc.
Packet Filtering
VLAN Support

Table 3.1 Typical NIC Characteristics

Another key consideration is backwards compatibility. Some NICs will only support
10GB connections while others provide backward compatibility with existing
1000Base-‐T networks such as Intel’s x540 Converged Ethernet NICs.

Most 10GB NICs support SR-‐IOV, which is a PCI SIG standard that allows a single PCIe
device to be subdivided into multiple virtual instances. These virtual instances, known
as virtual functions, can be assigned to separate VMs and appear to the VM as its
own individual NIC, without the need for packet traffic to traverse the hypervisor
layer. Theoretically up to 256 VFs can supported, however currently the practical limit
of 64 VFs appears to be the upper limit for most devices. From a T-‐NOVA system
perspective, the use of SR-‐IOV capable NIC introduces some important
considerations. Many SR-‐IOV NICs include basic L2 hardware switching on the NIC.
As a result, VM-‐to-‐VM traffic can be extremely fast (﴾up to 40 Gbps)﴿. However, when
traffic patterns change from VM-‐to-‐VM communications on the same SR-‐IOV NIC to
VM-‐to-‐VM on different cards, performance can change significantly. Depending on
the path and the involved NICs (﴾i.e. SR-‐IOV to SR-‐IOV vs SR-‐IOV to non SR-‐IOV NICs)﴿
performance will drop back to the physical layer speed or lower.

3.1.2.3. Compute Platform

The compute platform is a critical component in supporting the functional
deployment of VNFs. Initially, VNFs were deployed onto standard X86 servers that
were designed for Enterprise Cloud environments. While supporting virtualisation
technologies, standard servers lacked features to support VNFs that had high packet
processing requirements. Compute platforms that are targeted specifically at large-‐
scale communications infrastructure systems have started to emerge. Intel now offers
a platform targeted at NFV solutions which is based around its Xeon E5 v2/v3
product family and 89xx communication chipsets. This platform provides hardware-‐
based acceleration and the general purpose processing needed for Telco workloads.
The platform provides a number of key technologies to improve the performance of
NFV workload types, including QuickAssist, XL710 40GbE Ethernet Controllers and PCI
Express.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

20

The chipset series provides hardware-‐based cryptographic and compression
acceleration capabilities for a wide range of communications infrastructure
applications, such as high-‐end security appliances, enterprise routers, and wireless
infrastructure. The Intel Data Plane Development Kit (﴾DPDK)﴿ complements the
platform by improving packet processing speeds to handle increasing network traffic
data rates and associated infrastructure control/signalling requirements. The chipset
series also provides hardware offload assistance up to 20 Gbps for virtual private
networks (﴾VPNs)﴿ and helps storage and network optimisation applications better
handle compression and decompression tasks.

A range of processor options allows developers to create a family of products based
on one design. The specific number of cores required will typically be VNF
dependent, relating to the number of threads that have to be supported (﴾10 cores –
20 threads, 8 cores – 16 threads, 6 cores -‐ 12 threads)﴿. For multi socket systems
QuickPath Interconnects (﴾QPI)﴿ provide low latency connections between the
processors (﴾as shown in Figure 3.2)﴿ which is important for bandwidth intensive
applications.

Figure 3.3 Dual-socket -socket configurations of Intel E5-2600 v2 Xeon processor with

89xx communications chipset

3.1.3. Software

In this section the most important software components relevant to the
investigations of Task 4.1 are discussed.

3.1.3.1. Open vSwitch and DPDK vSwitch

Virtual Switch (﴾vSwitch)﴿ technology is a key component in realising NFV. Various
vSwitch technologies including Open vSwitch and DPDK vSwitch have previously
been described in D2.31. The section provides additional information on the

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

21

candidate technologies in order to further explore the different configuration options
and implementation features.

Open vSwitch (﴾OvS)﴿ [11] is a production quality, multilayer virtual switch licensed
under an Apache 2.0 open source license and it represents the de facto standard
technology in terms of vSwitches. Intel DPDK vSwitch is a branch of OvS, which
couples the original software switching technology with DPDK in order to improve
the performance of OvS, while maintaining its core functionality. The OvS source
code has been modified to enable fast packet switching and improves small-‐packet
performance.

Along with the DPDK vSwitch source code, a specific version of QEMU is also
provided: to enable efficient inter-‐VM communications by interfacing with the
accelerated vSwitch at the hypervisor layer.

DPDK vSwitch currently provides two communication methods between the Virtual
Machine (﴾VM)﴿ and the host: Userspace vHost and IVSHMEM (﴾Inter Virtual machine
SHared MEMory)﴿.

The Userspace vHost mechanism provides a virtio Poll Mode Driver (﴾PMD)﴿ as a
software solution for fast guest-‐VM-‐to–guest-‐VM communications and guest-‐VM-‐to-‐
host communications. vHost is a kernel module which works as the backend of virtio
(﴾a para-‐virtualisation driver framework)﴿ to accelerate the traffic from the guest to the
host. The DPDK kernel NIC interface provides the ability to attach vHost traffic to
userspace DPDK applications. Together with the DPDK PMD virtio, it significantly
improves the throughput between guest and host. Further details regarding these
mechanisms are available in the DPDK Programmer’s guide [12].

With the IVSHMEM mechanism, shared memory between the VM and the host is
utilised in order to improve the performance of information exchange. As a result of
the shared memory, zero copies between the guest and switch are required. This
option can be particularly useful for trusted applications that require very fast small
packet throughput. However, using this option means the Linux Kernel network stack
is completely isolated from the packet processing. Both the mechanisms and
configuration options are currently being investigated in Task 4.1.

In order to select the appropriate virtual switching technology, from a technical
perspective, a set of tests was been performed to measure the relative throughput,
comparing the performance levels of Open vSwitch and DPDK vSwitch. The results of
this comparison are presented in Section 3.3. DPDK vSwitch delivers superior
performance, based on the current versions of these technologies. However Intel has
recently announced that they are ceasing investment in DPDK vSwitch and will
instead focusing their efforts on OvS and advancing hardware acceleration. Intel’s
new mainstream OvS code called “DPDK-‐netdev” is already present in OvS version
2.3; however it is currently only available as an experimental feature and not all the
DPDK mechanisms are fully supported. It is expected the next release of OvS (﴾version
2.4)﴿ early next year will feature fully DPDK support. It is therefore expected that in T-‐
NOVA will adopted future releases of OvS for the IVM given recent developments.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

22

3.1.3.2. OpenStack

The Cloud Controller candidate solution selected for T-‐NOVA is OpenStack (﴾see
Section 7)﴿, which provides the software components for building and managing
cloud computing platforms for public and private clouds. Currently the Icehouse
version of OpenStack is the reference version for the project.

The role of the OpenStack platform in T-‐NOVA is twofold. First, it supports the
deployment and lifecycle management (﴾in cooperation with the Orchestration layer)﴿
of the VNFs deployed on VMs within the cloud infrastructure. It also provides a
common virtualisation layer across different platforms making the VNFs independent
of the actual underlying physical infrastructure.

It is worth noting that OpenStack was originally designed to address enterprise cloud
environment needs, managing the Compute and Hypervisor domains. From a T-‐
NOVA perspective, the Infrastructure Network domain is as important as the
Compute and the Hypervisor domains. Task 4.1 activities have been focusing on
identifying current gaps in OpenStack which need to be addressed in order to deliver
a cloud environment suitable for NFV/SDN. The gaps identified to date relate to the
exposure of granular platform features and characteristics to the Orchestrator. This is
necessary in order for the orchestrator to make the most appropriate allocation
decision according the best of match VNF service characteristics, constraints and
available infrastructural resources.

Technologies and features that are crucial for Telco workloads in terms of
performance include DPDK, co-‐processors (﴾GPUs or FPGAs)﴿, SR-‐IOV capable NICs,
Non-‐Uniform Memory Access (﴾NUMA)﴿ awareness, and so forth. Task 4.1 is focusing
on identifying which features and mechanisms are required to deliver increased
platform awareness within OpenStack. Task 3.2 is utilising this work to implement an
actual working solution within the context of OpenStack and to expose the
infrastructural landscape with increased fidelity to the T-‐NOVA Orchestration layer.
While platform awareness is important, it serves no useful purpose unless the
information can be utilised in an effective manner.

OpenStack’s scheduling mechanism (﴾called Nova Scheduler)﴿ uses a filter-‐based
approach in the form of a Filter Chain to make decisions regarding the dispatching of
compute (﴾and volume)﴿ requests. This mechanism needs to utilise the additional
platform information effectively in the scheduling process. The Filter Chain can be
composed by built-‐in filters (﴾already provided by OpenStack)﴿ or custom filters
(﴾extending the standard catalogue of filters)﴿. At the end of the filtering process, a list
of acceptable hosts is provided and eventually subjected to a weighting process to
choose a node where to deploy a VM.

3.1.3.3. SDN Controller Selection

During the selection process of the SDN controller by the T-‐NOVA consortium the
level of community activity and support were considered. With this criteria in mind
the initial set of SDN controller options for T-‐NOVA were identified as: Ryu, Trema,
OpenDaylight, OpenIRIS, MUL and OpenContrail. ONOS from ON.Lab is currently
under development and potentially may offer interesting capabilities such as a

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

23

promised 100-‐millisecond recovery and the ability to process 1 million requests per
second. ONOS is designed to support a number of use cases such as SDN control of
multilayer networks. The potential value is the ability for service providers to operate
their complete networks assets i.e. both packet and optical in an integrated manner.
Other potential advantages of ONOS include the ability to reduce overprovisioning;
and SDN-‐based WAN control (﴾use of MPLS as the data plane, with an SDN Control
Plane)﴿ [13]. However; ONOS was not included as an option as at the time of writing
this deliverable its first release named Avocet was only made available on December
5th, 2014.

Another consideration in the selection of the SDN controller was the consortium’s
hands-‐on experience of the various controller options. When this criterion was
applied, Ryu and OpenDaylight were the remaining options.

Analysis of the feature sets and roadmaps for the two remaining candidates resulted
in the selection of OpenDaylight. OpenDaylight is a highly scalable open source
controller platform written in Java. It is designed to be a modular SDN platform which
differentiates it from many of the controllers reviewed in D2.31. It comes with support
for an abstraction layer above the southbound interface, a Graphical User Interface
(﴾GUI)﴿, northbound interface abstractions, network discovery, pluggable southbound
interfaces, L2 and L3 learning, path provisioning and a flexible northbound interface
using Representation State Transfer APIs (﴾REST APIs)﴿. Statistics collection mechanisms
are offered within an OpenFlow plugin which are accessible through REST APIs.
Improved customisation of the platform deployment is now supported in the latest
release (﴾Helium)﴿ through the use the Apache Karaf [14] container. This gives the user
significant flexibility in defining the complexity of their deployment, the required
feature set and footprint of the controller.

The available modules can be utilised for performing various tasks such as data
gathering, network devices identification and management, etc. based on field-‐
proven and popular technologies, such as Java, OSGi, REST, etc.

3.1.3.4. ML2 Plugin

The OpenStack Modular Layer 2 (﴾ML2)﴿ plugin is a framework that allows OpenStack
Neutron to simultaneously utilise a variety of Layer 2 networking technologies found
in data centres. It currently works with the existing Open vSwitch, Linux Bridge, and
Hyperv L2 agents. The ML2 framework was designed with a view to greatly simplify
adding new L2 networking technologies. OpenDaylight leverages the integration the
ML2 plugin provides for Neutron via a specific driver to enable communication
between Neutron and OpenDaylight. On the SDN controller side, OpenDaylight has
northbound APIs to interact with Neutron and to use OVSDB for southbound
configuration of vSwitches on compute nodes. OpenDaylight can therefore manage
network connectivity and setup GRE or VXLAN tunnels for compute nodes.

3.2. Proposed Architecture of Virtualisation Testbed

One of the main activities of the Task 4.1 is the implementation of a testbed platform
to support workload and technology characterisation activities within the task. The
initial architecture implemented for the experimental work outlined in the next

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

24

section is shown in Figure 3.4. The development and deployment of this architecture
is an ongoing activity within the task. It is expected that the architecture will evolve
over the course of the task towards a more data centre oriented configuration.

The testbed is currently composed of three nodes: one controller and two compute
nodes. The Controller acts as VIM (﴾Virtual Infrastructure Manager -‐ see Figure 3.1)﴿,
and hosts the Cloud Controller (﴾OpenStack Nova and Neutron)﴿ along with the
Network Controller (﴾OpenDaylight)﴿, integrated via the Neutron ML2 plugin.

The compute nodes include Nova Compute, which communicates with the controller
through the management network. Virtualisation of the compute resources is based
on the use of a KVM hypervisor and a libvirt hypervisor controller. Open and DPDK
vSwitches deliver VM connectivity through the Data Network.

From a hardware perspective, all the hosts include an X540-‐T2 NIC, which has dual
Ethernet 10GB ports, supporting SR-‐IOV and DPDK technologies: one port is
connected to the Management Network and the other is connected to the Data
Network. The controller and one of the compute nodes are based on Intel i7 4770,
3,40Ghz CPUs with 32 GB of RAM, the other compute node is a dual socket server
with XEON E5 2680 v2, 2.8GHz CPUs and 96GB of RAM. This XEON E5 computing
architecture provides 10 cores per processor (﴾20 cores in total)﴿, a set of platform
features of interest to T-‐NOVA (﴾e.g. VT-‐x, VT-‐d, Extended page tables (﴾EPT)﴿, TSX-‐NI,
Trusted Execution Technology (﴾TXT)﴿)﴿ and 8GT/s Quick Path Interconnects for fast
inter socket communications.

Figure 3.4 Proposed Architecture for the Virtualisation Testbed

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

25

3.3. Characterisation and Optimisation Experimental Protocols

As previously outlined, Task 4.1 is focused on technology, platform and workload
characterisation activities. In order to apply a structured approach to these activities
an initial experimental protocol has been defined.

In the migration roadmap from application-‐specific hardware to the generic
hardware/software environment as envisioned by T-‐NOVA, a definition of best
practices is required in order to help system owners (﴾or administrators)﴿ to provide a
suitable infrastructure, as well as Orchestrators to schedule VNF deployments in a
manner, which achieves SLA fulfilment and optimal resource usage.

Based on the analysis of the IVM requirements in D2.31 an initial set of experiments
have been performing. These experiments are focused on identifying metrics of
potential interest for the quantitative evaluation of VIM performance in an effort to
developing proposals with respect to potential optimisations. Table 3.2 lists the
metrics identified to date. The list is not exhaustive and will be updated as
appropriate in Deliverable 4.1.

It is important to identify which are the most influential parameters and to capture
empirical results that indicate whether and to what extent they affect system
performance. Table 3.2 specifies a concise list of parameters that could possibly affect
the performance of VNFs and, consequently, Network Services.

Metrics Description Possible Influencing
Parameters

Network
Throughput

The throughput provided by the
virtual network environment. It is
measured as the difference from
the number of sent and received
packets.

• Network technologies
configuration
o DPDK
o SR-‐IOV and VT-‐d

• NUMA CPU Pinning
• Core Pinning
• Hugepages Size

Network Latency

This time interval starts when a
packet leaves the source and
ends when the packet reaches its
destination.

• Network technologies
configuration
o DPDK
o SR-‐IOV and VT-‐d

• NUMA CPU Pinning
• Core Pinning
• Hugepage Size

VM Deployment
Time

This time interval starts when the
Orchestrator sends the VM
creation command and ends
when the VM is available over
the Network.

• Image Size
• Number of vNICs
• Type of vNICs
• Storage technologies and

configuration

Multiple VMs
Deployment Time

This time interval starts when the
Orchestrator sends the VM
creation command for the first
VM and ends when the last VM is

• Average image size
• Number of vNICs
• Type of vNICs
• Number of VM deployment

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

26

available over the Network. requests
• Storage technologies and

configuration

Live Migration
Down Time

This time interval starts when the
VM is no more reachable
through the network at the
source node and ends when the
VM is reachable again at the
destination node.

• Network technologies
configuration

• Storage technologies and
configuration

Live Migration
Overall Time

This time interval starts when a
VM receives the command to
migrate and ends when the VM
is reachable over the network
after the migration.

• Network technologies
configuration

• Storage technologies and
configuration

Table 3.2 Selected performance metrics for the IVM.

The design of experimental protocols is an on-‐going activity for Task 4.1. Some initial
experiments have been completed and are described in the next section.

3.3.1. Initial Experimental Protocols

The experiments performed so far have been focused mainly on the network
throughput metric. The Internet Engineering Task Force (﴾IETF)﴿ developed RFC2544
[15] which outlines a benchmarking methodology for network Interconnect Devices.
The methodology defines performance metrics such as latency, frame loss
percentage, and maximum data throughput.

Using the RFC as a basis, throughput was measured in millions of frames per second
where the frame size refers to Ethernet frames ranging from smallest frames of 64
bytes to largest frames of 1518 bytes. For 64-‐byte frames, a line rate of 10 Gbps
translates to 14.88 million packets per second for unidirectional traffic.

The Device under Test (﴾DUT)﴿ has 2 NICs, both connected to a packet generator: one
NIC receives the packets, whereas the other NIC is used to send back the traffic to the
packet generator that measures the throughput. The packet generator selected for
the experiments was DPDK Pktgen [16] which is an open source version of the Linux
Foundation Pktgen based on Intel’s DPDK library. It was selected due to its free
availability and its ability to send packets at 10Gbps line rate speeds. It is possible to
physically assign one or more CPU cores directly to the sending and receiving
processes over the NICs. In the current configuration, one core was assigned to the
processor that generates the packets and one core is assigned to each transmission
queue for transmitting packets onto the network. A new feature introduced in the
latest release is the capability to run more than one instance on the same host which
can be exploited in the creation of different packet flows.

To maximise the efficiency of the packet generator, a Command Line Interface (﴾CLI)﴿ is
available to set and start the transmission of the network traffic. Moreover, it is
possible to setup scripts using the LUA programming language [17] to automate the
packet generation process, defining traffic profiles and the behaviour of the packet

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

27

generator. Exploiting this feature for the purpose of this experiment, a LUA script has
been implemented, following the RFC 2544 recommendations, with different packets
sizes, automating the test for the various configurations under test.

3.3.1.1. Open vSwitch vs. DPDK vSwitch Throughput

Testing has been focused initially on comparing the throughput of both the Open
vSwitch and the DPDK vSwitch technologies in two different scenarios, respectively
shown in Figures 3.5 (﴾a)﴿ and (﴾b)﴿.

Figure 3.5 (a) First testing scenario Figure 3.6 (b) Second testing scenario

In the first scenario a physical-‐port-‐to-‐physical-‐port communication was
implemented by the vSwitch, which basically forwards the traffic received through
NIC1 onto NIC 2. The results obtained are shown in Figure 3.6.

Figure 3.7 Throughput comparison for the first testing scenario

The results clearly show that DPDK vSwitch provides significantly better packet
switching performance with respect Open vSwitch. In order to have a complete
comparison, the results of the second scenario (﴾as shown in Figure 3.5(﴾b)﴿)﴿ are shown
in Figure 3.7.

0

2

4

6

8

10

12

64 128 256 512 1024 1280 1518

M
ill

io
n

P
ac

ke
t p

er
 S

ec
on

d

Packet Size (Bytes)

Open vSwitch
DPDK vSwitch

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

28

Figure 3.8 Throughput comparison for second test scenario

From these results it is clear that the major bottleneck at the infrastructure layer is
related to the communication between the VM and the physical host. This is the main
reason why developers are encouraged to use the DPDK library within the VM in
order to achieve maximum throughput. Using DPDK in virtual switching technology
(﴾see Figure 3.7)﴿ provided superior performance in comparison the current
mainstream version of OVS. As previously discussed, these results will most likely
change, due to Intel’s renewed focus on integrating DPDK capabilities into the
upcoming OvS 2.4 mainstream code release.

The remaining experimental results described in this section referred to the second
configuration of scenario two (﴾using DPDK vSwitch and the Linux kernel packet
processing within the VM)﴿, since at the VIM level, there is no knowledge respect the
specific VNF a VM is hosting.

3.3.1.2. Processor Pinning influence on Throughput

Processor pinning (﴾or core pinning)﴿ enables the binding of a process to specific cores
within the CPUs in a manner that the process runs only on the specified core(﴾s)﴿.

A number of tests have been performed to identify the impact of processor pinning
on vSwitch and VM performance.

With DPDK vSwitch, it is mandatory to allocate cores that are dedicated to switching
operations. The minimum number of cores which can be assigned to DPDK vSwitch is
four. However, in order to tune the performance of the vSwitch, the impact of
increasing the number of allocated cores was investigated.

In Figure 3.8 throughput versus the number of allocated cores is shown. The results
indicated that the optimal assign of cores to vSwitch is four. In fact, increasing the
number of cores beyond four did not provide any measurable increase performance
in most cases. The data clearly indicates that the allocation of additional cores

0

1

2

3

4

5

6

7

64 128 256 512 1024 1280 1518

M
ill

io
n

P
ac

ke
t p

er
 S

ec
on

d

Packet Size (Bytes)

Open vSwitch

DPDK vSwitch

DPDK vSwitch + DPDK
Guest

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

29

beyond the default configuration of four can be considered as a waste of physical
resources that could otherwise be allocated to VMs.

Figure 3.9 Throughput varying the core pinning configuration for DPDK vSwitch.

Similar experiments have been conducted for a VM, in order to analyse the extent in
which a VNF can be influenced by processor pinning. Results are shown in Figure 3.9.
Four cores were statically assigned to the vSwitch for this experiment.

Figure 3.10 Throughput varying the core pinning configuration for the VM.

The results show that the usage of processor pinning can help to achieve improved
performance, if properly configured. In this experimental configuration a VNFC, using
just one core for processing incoming network traffic was found to be insufficient to
manage the processing overhead required by the VM. Assigning two cores (﴾yellow

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

64 128 256 512 1024 1280 1518

M
ill

io
n

P
ac

ke
t p

er
 S

ec
on

d

Packet Size (Bytes)

4 Cores

5 Cores

6 Cores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

64 128 256 512 1024 1280 1518

M
ill

io
n

P
ac

ke
t p

er
 S

ec
on

d

Packet Size (Bytes)

No Processor Pinning

1 Core

2 Cores

3 Cores

4 Cores

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

30

bars)﴿ it is possible to achieve improved performance in comparison to a non-‐pinned
configuration (﴾blue bars)﴿. These experiments to date are based on a single VM
deployment onto a server with two processors with 10 cores each with the assigned
cores on CPU1.

3.3.1.3. Influence of NUMA Awareness on Throughput

Non-‐Uniform Memory Access (﴾NUMA)﴿ is a computer memory access design used in
multiprocessing, where the memory access time depends on the memory location
relative to the processor. In multiprocessor systems the processors can be grouped
together with their own memory and possibly their own I/O channels. Each group of
CPUs and memory is called a NUMA node. Each CPU can also access memory
associated with another NUMA node in a coherent way however this is slower and
less efficient in comparison to accessing local memory. The allocation of CPUs and
hardware resources to a NUMA node is a hardware vendor specific implementation.

The test system utilised for the investigated NUMA configurations had two NUMA
nodes, containing one CPU per each. The NIC used for the experiment (﴾Intel Ethernet
Controller X540-‐T2)﴿ was installed on a PCI slot belonging to the first NUMA node.

During the experiments, the throughput has been measured for two different
configurations: in the first one the VM is pinned on two cores belonging to the first
NUMA node (﴾CPU1)﴿, whereas in the second the VM is pinned on two cores belonging
to the second NUMA node (﴾CPU2)﴿. The results obtained are shown in Figure 3.10.

Figure 3.11 The effect of core pinning configuration on throughput

The performance obtained in the second scenario was approximately 50% less than in
scenario one, indicating that NUMA awareness can have a significant influence on
system performance and should be considered appropriately at the Orchestration
layer and within the VIM functional entity of the IVM.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

64 128 256 512 1024 1280 1518

M
ill

io
n

P
ac

ke
t p

er
 S

ec
on

d

Packet Size (Bytes)

CPU 1

CPU 2

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

31

3.3.1.4. Hugepages Size Throughput

When executing instructions in an x86 architecture both the CPU and OS mark the
RAM as being used by a process. For efficiency, the CPU usually allocates RAM in 4K
blocks (﴾default value for Linux)﴿ named pages. Since these pages can be swapped to
the disk, the memory addresses are virtual and the operating system has to keep
track of which page belongs to which process and where they are stored on the disk.
As the number of pages increases, more time is taken to find where the memory has
been mapped too. Newer CPU architectures and operating systems support bigger
pages (﴾so less time spent on look-‐ups as is the number of pages required)﴿. This
feature is called Hugepages. Since the usage of DPDK vSwitch requires the
Hugepages, some tests have been performed by changing the size of the pages from
2Mbytes to 1Gbyte. The results obtained are shown in Figure 3.11.

Initial results obtained indicated there is no significant advantage in terms of
throughput by increasing the Hugepage size. Additional tests will be carried in order
to determine if the size of the Hugepage has an influence on other systems metrics
such as latency.

Figure 3.12 Packet throughput performance with huge page sizes of 2MB and 1GB

3.3.2. Planned Experimental Protocols

Starting with the parameters listed in Table 3.2, a set of scenarios are currently in
development and will be used to plan a set of experimental protocols to determine if
the parameters identified have a quantifiable impact on performance. For example,
one representative scenario involves the use of DPDK vSwitch to process the traffic
between VMs at a software level as well as the exploitation of hardware features, such
as VT-‐d and SR-‐IOV technologies, to reduce the overhead due to the VMM. Live
migration is another scenario of interest, where the bandwidth dedicated to the
information exchange between the source and the destination of a live migration
could affect both migration delay and down time. The test-‐bed defined in Section 3.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

64 128 256 512 1024 1280 1518

M
ill

io
n

P
ac

ke
t p

er
 S

ec
on

d

Packet Size (Bytes)

2MB

1GB

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

32

will be used to execute the protocols based on different system configurations,
network technologies etc.

Networking experiments may also involve the creation of simple service chains, each
of them intended as a chain of VMs traversed by the same traffic flow. Since the
analysis of the VNF application per se is out of the scope of the VIM (﴾in T-‐NOVA this
is delegated to the VNF developer)﴿ the goal here is to analyse the impact of the
underlying technologies and, for this purpose, the simplest known VNF can be used:
the L2/L3 Linux kernel stack.

Moreover, exploration of the different storage technologies available that can be
used within the T-‐NOVA IVM will be necessary, with a focus on configuration
parameters. An initial high level classification of different approaches/technologies
with respect to specific scenarios has been performed. Due to the high level of
potential customisation, not all the options will be considered in the experimental
plan. The focus is explicitly on those that are considered to most applicable to VNFs.

The following scenarios and options have been identified:

Scenario 1. Boot volumes of VMs can be located on:
a. Local disks of the Nova Compute Node
b. Shared disks (﴾of Nova Compute Nodes)﴿ residing on a SAN or an IP

based storage array; in this case a clustered file system is necessary in
order, for example, to control SCSI reservations when multiple
Compute Nodes access the shared volume

c. Disks presented by a Cinder Block Storage Node, disks that, in turn,
can be:

i. Local disks of the Cinder Node
ii. Shared disks (﴾of the Cinder Node)﴿ residing on a SAN based or

IP based storage array; Cinder Volume Agent would be moved
onto the Controller Node and will manage the SAN or IP based
storage array (﴾in case of where disks local to the Cinder Node
are used, the Cinder Volume Agent would run on the Cinder
Node itself)﴿.

Scenario 2. Additional (﴾non-‐boot)﴿ volumes of VMs can be located on:

a. Local disks of a Cinder Storage Node
b. Shared disks of a Cinder Node residing on a SAN or IP based storage

array; as highlighted above it would be the Controller Node which
manages the SAN or IP based storage array

Scenario 3. Volumes containing the VMs master images should be located
on the Object Storage: local disks of a Swift Object Storage Node; Swift has
been designed to be a multi-‐master replicated Object Storage, so creation or
modification of an object on a Swift Node is immediately replicated to the
other Swift Nodes.

As highlighted by the list above, more than one configuration can be used for each
scenario and technology (﴾with the exception of the Swift Object Storage)﴿. Any
configuration listed above could influence in diverse way behaviour and performance
of the cloud environment, impacting on some of the metrics listed at the beginning
of this section.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

33

3.4. Conclusions and Future Work

Task 4.1 is focused on the identification, characterisation and optimisation of the
hardware and software components that will be used in the implementation of the T-‐
NOVA IVM. The initial selection of candidate technologies has been completed and
presented in Section 7. These candidate technologies have been utilised in the design
and implementation of an IVM testbed. Initial technology characterisation
experiments have been conducted, which can be used to improve packet processing
performance. An extensive experimental protocol which will focus on workload and
technology characterisation is being developed. The output of this work will help to
identify dynamic and static metrics that are most highly correlated with workload or
system performance. Task 4.1 is also developing a set of Best Known Methods (﴾BKMs)﴿
for virtualised environment implementation for the performant deployment and
management of VNFs. These methods will be reported in Deliverable 4.1 and will be
used by a number of other tasks in the development of subsystem components for
the T-‐NOVA system.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

34

4. SDN CONTROL PLANE
The SDN Control Plane plays a key role in the T-‐NOVA system with responsibility in
the southbound direction for the configuration, management and monitoring of the
SDN-‐compatible network entities. Northbound it is responsible for delivering
enhanced network connectivity services to the Orchestrator and management
systems.

SDN has the potential to deliver benefits to NFV applications with a scalable, elastic
and on-‐demand network infrastructure, leveraging the programmability of
southbound network elements. However such elements, both physical and virtualised,
need to be properly configured to address the applications’ requirements. This
challenging task is the main objective of the SDN Control Plane.

In this regard, Task 4.2 proposes to design and develop an enhanced SDN controller
for network services provisioning to support NFV applications. The activities within
the task have been split into following focus areas:

• Programmatic Network Control: Dynamic and intelligent control of network
resources, thus enabling responsiveness to variable conditions, such as user
behaviour dynamics, application lifecycle, network performance, monitoring
events (﴾e.g. congestion, network malfunction)﴿, as well as flexible establishment
of service function chaining.

• Network Virtualisation: Deals with the deployment of virtual networks
(﴾vNets)﴿ supporting QoS and overlay encapsulation, through analysis of
frameworks (﴾i.e. Open vSwitch)﴿, protocols (﴾i.e. OpenFlow)﴿ and tunnelling
solutions (﴾i.e. NVGRE, VxLAN)﴿. The key output of this activity is to provide an
open, flexible and extensible interface for the instantiation, configuration and
monitoring of isolated virtual networks.

• Control Plane Virtualisation: Refers to the virtualisation of the network
controller to ensure reliability and high availability in large-‐scale scenarios. For
these purposes, cloud computing capabilities combined with distributed
clustered approaches are being investigated in order to ensure elasticity, auto-‐
scaling and load balancing of the SDN control plane.

In Task 4.2, work has initially focused on determining the SDN platform that most
appropriately addresses the T-‐NOVA requirements. This selection was carried out
after a thorough analysis of the SDN controller implementations currently available,
the features they offer, the mechanisms they support for enhanced network services
(﴾i.e. slicing, chaining, QoS)﴿, the way they approach the distribution of the control
workload. The information presented in this section reports the progress on these
activities.

4.1. Key Requirements

The first step involved the identification of key requirements affecting the network
controller procedures and mechanisms. Table 4.1 provides a summary of the high-‐
level requirements identified in T-‐NOVA concerning the SDN Control Plane. A full list
of requirements have been collected and documented in D2.31.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

35

Requirement Description

Network connectivity and
isolation

Applications and services must be connected to isolated
networks, ensuring that the processing of packets on each
network is independent of all the others.

Resource Monitoring
The provision of monitoring information should make
management and orchestration entities aware of the status
and performance of the network infrastructure

QoS support
Applications and services may have specific performance
needs, requiring mechanisms for QoS provisioning over the
network infrastructure.

Performance

In large-‐scale scenarios where many nodes need to be
controlled, the control plane may suffer slower performance
in terms of processed requests per second/average response
time. Therefore, mechanisms to limit this issue should be
provided.

Scalability

The control plane should adapt to a variety of applications
and scale according to their network load. This means that in
some cases a distributed control plane may be required;
therefore the T-‐NOVA control plane must be able to
accommodate this requirement.

Robustness/Fault
tolerance

The controller itself might fail and therefore leave the
network inoperable. Through redundancy mechanisms, it
must be guaranteed that the controller does not represent a
single point of failure.

Service chaining support The network controller must be able to dynamically enforce
and modify the chaining of network service functions.

Inter-datacentre
connectivity

The solution adopted for the control plane should be able to
support inter-‐datacenter (﴾inter-‐DC)﴿ connectivity, as in many
practical cases this will be required due to the physical
dispersion of resources.

Table 4.1 Requirements mapping for Task 4.2

4.2. Generic Architecture of the SDN Control Plane

Within Task 4.2, a key activity was the design of the preliminary architecture for the
network controller. The components, modules and interfaces of the T-‐NOVA SDN
Control Plane were identified.

Figure 4.1 shows the SDN control plane functional architecture; it has been defined
starting from an idealised SDN framework model which has been selected as an initial
reference point [18]. It has then been extended and properly adapted to fulfil the
requirements previously described.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

36

Figure 4.1 T-NOVA SDN Control Plane Architecture

4.2.1. Functional components

Table 4.2 outlines the main functional components that have been identified with a
brief description of their role within the network controller.

Component Functionalities

Topology Manager

The Topology Manager learns and manages topology
information specific to devices and their reachability.
Information gathered about the networks’ elements is
essential to discovering the topology.

Network Element
Manager

The Network Element Manager stores, manages and provides
the details (﴾e.g. switch id, SW version, capabilities, etc.)﴿ of the
network nodes as they are discovered.

Path/Flow Manager

This module provides the flow programming services including
forwarding rule installation and removal of data paths
configurations. Typically used when high-‐level policies
specified by the northbound are translated into flows by a
service module (﴾Service Chaining, Slice Manager)﴿ that in turn
communicates with this module to proactively push the flows
down to network elements. Path reconfiguration (﴾after
network failures or VM migration)﴿ and QoS support are in
charge of this module.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

37

Component Functionalities

Host Tracker

The host tracker module learns, statically or dynamically about
VM hosts in the network. It stores and provides host
information, such Host's IP address, MAC address, switch ID,
port, and VLAN. Moreover it periodically refreshes the hosts’
data to track the element location (﴾switch, port, MAC, or
VLAN)﴿, and notifies the listening applications of host related
events.

Stats Manager
This module stores and provides network statistics data with
different levels of data granularity (﴾flow, port and table
statistics)﴿.

vNet Manager

This functional module allows the creation of multiple,
isolated, virtual tenant networks on top of a single physical
network, in order to enable complete separation between the
logical and physical plane, hiding the complexity of the
underlying network and optimising network resources usage.

Service Chaining
This functional module supports applying service chains as
ordered graph of network services (﴾e.g. firewalls, load
balancers)﴿ by configuring accordingly traffic steering.

Table 4.2 SDN Control Plane Functional Components

4.2.1.1. Distributed Control Plane

In order to address performance, scalability and fault-‐tolerance requirements, a
distributed approach for the deployment of the SDN controller platform is under
investigation.

In this regard, following the concept of a "distributed, but logically centralised"
controller [19] [20], the SDN control plane in T-‐NOVA proposes the virtualisation of
the network controller through multiple instances organised in clusters, while
keeping the benefits of centralised network control. The core concept is to exploit
cloud-‐computing capabilities to virtualise each instance of a controller on dedicated
virtual machines, allowing dynamic deployment and enabling the distribution of the
network control workload across the cluster.

To support deployments in a distributed scenario, new functional components are
required. These additional components, shown in Figure 4.2, have the goal of
extending the architecture defined before, where each CP block corresponds to a
single instance of the control plane.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

38

Figure 4.2 Distributed SDN Control Plane Architecture

In Table 4.3 a brief description of all the Distributed SDN Control Plane components
is provided.

Component Functionalities

Distributed Data
Repository

This component is responsible for consistently maintaining a
global view of the network across the control plane instances
belonging to the cluster. The information collected is useful
maintaining a global view of the topology and the state of
the network, including switch, port, link, and host status.
Northbound applications/internal CP components can take
advantage of the global network view in making forwarding
and policy decisions, which are in turn stored into the
network view. Mechanisms for the distribution of the network
state among the CP instances require evaluation and analysis
that will be explored later in the project.

Northbound Request
Handler

Mainly responsible for distributing northbound requests
among the available controller instances. It is essential to
make the network control plane accessible by the
northbound API as a unique single instance.

CP Coordinator

The CP Coordinator supervises and coordinates the operation
in the cluster. Specifically it has to:

• Properly instruct the Northbound Requests Handler
in spreading the northbound requests.

• Dynamically configure the controller-‐to-‐switch
connections by assigning each switch to one or more
controller instances.

• Decide whether to add or remove a controller
instance to the cluster depending on the network
needs

• Monitor the status of the cluster
The role of coordinator may be carried out by one of the CP
instances available in the cluster, by means of a procedure of
leader election.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

39

Component Functionalities

CP Agent

The CP Agent is in charge of collecting information about the
current resource utilisation (﴾CPU load, memory usage, control
messages arrival rate, etc.)﴿ at each CP instance and enforcing
the switch-‐to-‐controller instance connection rules as
established by the Coordinator. These rules are used by each
switch to identify the controller instance/s to which the
southbound requests must be forwarded.

Table 4.3 Distributed SDN Control Plane Components

4.2.2. Interfaces

The following is a description of main functionalities supported at the control plane
interfaces divided into Northbound, Southbound and West-‐Eastbound. The detailed
specification of these interfaces is currently ongoing; therefore the following is a
provisional description of the roles and high-‐level functions.

• Northbound Interface:
This interface identifies the application programming interface (﴾API)﴿, often
RESTful, serving the higher systems such as orchestrators or cloud managers
or applications to gather network intelligence, run algorithms and manage
network resources.

• Southbound Interface:
This interface supports the exchange of control information between the
physical and virtual switches and the SDN controller platform. The
southbound interface is capable of supporting multiple protocols, proprietary
and standards based, can be used for flow programmability (﴾e.g. OpenFlow
1.0/1.3, BGP-‐LS, etc.)﴿ and device configuration (﴾e.g. OVSDB, SNMP, NETCONF)﴿
of the data plane entities.

• Westbound Interface:
This interface is required to address the scalability and high-‐availability
requirements imposed by DC environments. It supports the control of large-‐
scale DCs by enabling the interconnection of multiple SDN controllers,
organised in clusters.

• Eastbound interface
This interface is used for the communication with control planes of non-‐SDN
domains (﴾i.e. MPLS)﴿ and it is also responsible for managing inter-‐DC
connectivity.

4.3. Candidate Solutions

Given the rising number of SDN solutions available an important task concerns the
selection of appropriate technologies for the development of the functional
components described previously. Therefore, a detailed survey among existing
solutions was carried out with the goal of selecting the best technologies as the initial

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

40

starting point for the implementation of the T-‐NOVA SDN Control Plane. Specifically,
the following topics were addressed:

o SDN controllers
o Distributed controller approaches
o Network tunnelling protocols
o Network virtualisation frameworks

Sections below present the complete list of candidate technologies and the rationale
behind the selection.

4.3.1. SDN Controller

4.3.1.1. OpenDaylight

Table 4.4 presents a list of the currently available SDN controllers.

Name Descriptions

NOX
Open-‐source controller developed by Nicira Networks, implemented in
C++ and Python. It offers support for the OpenFlow v1.0 protocol. NOX is
not being actively developed at this time.

POX
Open-‐source controller developed by Nicira Networks, implemented in
Python. It offers support for the OpenFlow v1.0 protocol. POX is not
being actively developed at this time.

Maestro
Open-‐source controller developed by Rice University, implemented in
Java. It offers support for the OpenFlow v1.0 protocol. Maestro is not
actively developed at this time.

Beacon
Open-‐source controller developed by Stanford University, implemented
in Java. It offers support for the OpenFlow v1.0 protocol. Beacon is not
being actively developed at this time.

Floodlight

Open-‐source controller developed by Big Switch Networks, implemented
in Java. It offers support for the OpenFlow v1.0 protocol and a Quantum
plug-‐in for OpenStack support. Floodlight is not being actively developed
at this time.

ONOS
Open-‐source SDN controller platform developed by ON.LAB. ONOS is
being actively developed. The first public release was made available on
the 5th of December.

Ryu

Open-‐source controller developed by NTT, implemented in Python. It
offers support for the OpenFlow v1.0, OpenFlow v1.2, OpenFlow v1.3 and
OpenFlow v1.4 protocols, as well as OpenStack support. Ryu is being
actively developed at this time.

Nodeflow Open-‐source controller developed by CISCO, implemented in Javascript.
Nodeflow is not being actively developed at this time.

Trema

Open-‐source controller developed by NEC, implemented in C and Ruby.
It offers support for the OpenFlow v1.0, OpenFlow v1.2 and OpenFlow
v1.3.X protocol and a Quantum plug-‐in for OpenStack support. Trema is
being actively developed at this time

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

41

Name Descriptions

OpenIRIS
Open-‐source controller developed by ETRI, implemented in Java. It offers
support for the OpenFlow v1.0.1 to v1.3.2. OpenIRIS is being actively
developed at this time.

MUL
Open-‐source controller developed by Kulcloud, implemented in C. It
offers support for the OpenFlow v1.0, OpenFlow v1.3 and OpenFlow v1.4.
MUL is being actively developed at this time.

Jaxon Open-‐source controller based on NOX and implemented in Java. It is not
being actively developed at this time.

OpenContrail

Open-‐source SDN platform developed by Juniper Networks. The
OpenContrail Controller, which is part of the platform, is implemented in
Python, while the projects comprising OpenContrail are implemented in
various programming languages (﴾Python, C++ and JavaScript)﴿. It offers
OpenStack support but the current version lacks of OpenFlow support.
OpenContrail is being actively developed at this time.

Table 4.4 Alterative SDN Controller Considered

The first criterion to be applied in the SDN controller selection process was to
consider only those still under active development. The next step was to take into
account the consortium’s hands-‐on experience with the various controller options.
Ryu and OpenDaylight were the solutions that emerged based on this criterion.

The final choice between these two candidates was the OpenDaylight platform due to
the high level of community support, strong roadmap, growing maturity and its
numerous features, as outlined in Sections 3.1.3.3 and 7.0.

4.3.2. Distributed Control Plane

4.3.2.1. ODL Clustering Service

OpenDaylight supports a cluster based High Availability (﴾HA)﴿ model where several
instances of ODL controller act as a single logical controller. The global state of the
network is maintained through a distributed data store.

The Clustering Service Provider module is responsible for providing the clustering
services to all the functional components of the controller as well as to applications
on the northbound side of the controller. From the northbound side the cluster is
accessible via a REST API; a request can land on any controller in the cluster. On the
southbound side (﴾specifically OpenFlow)﴿, switches need to be explicitly connected to
the controllers in the cluster via their IP address.

The Connection Manager is the module responsible for managing connection
information between the ODL instances and the OF switches. For the time being, the
connection schemes supported are: SINGLE_CONTROLLER (﴾all the switches connected
to only one controller)﴿ and ANY_CONTROLLER_ONE_MASTER (﴾any switch connected
to any controller, with only one master)﴿. Other schemes (﴾i.e. ROUND_ROBIN and
LOAD_BALANCED)﴿ have been defined but have not yet been implemented.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

42

In this regard, the T-‐NOVA SDN Control Plane proposes to extend the Clustering
Service offered by ODL with an algorithm implementing the LOAD_BALANCED
connection scheme. This form of algorithm will be in charge of determining when to
add/remove controllers to/from the cluster and to dynamically balance the switch-‐to-‐
controller connections according to the current controllers’ load estimation.
Specifically it has to assign each switch to a subset of controllers, of which one will be
the master, in order to reduce the control traffic load while maintaining resiliency.
The dynamic switch assignment will be achieved through a migration protocol to
minimise packet loss or duplication.

Name Description

Pratyaastha

It distributes the SDN control plane application state (﴾consisting of
network flows related to a VNFs or vNets)﴿ as a variant of a multi-‐
dimensional bin-‐packing problem. The goal is to reduce the
operating cost of controllers and reduce flow setup latencies, in
comparison to other approaches that use static assignments of SDN
switches to controllers and make use of distributed data stores for
state sharing.
Application states and controller load may change dynamically, and
if needed states and switches may need to be reassigned as well as
new controllers added or removed as per the load. When switch
reassignment is required, Pratyaastha proposes to use the switch
migration protocol of ElastiCon.

ElastiCon

ElastiCon is a distributed controller architecture in which the
controller pool is dynamically grown or shrunk depending on the
traffic conditions. The SDN switch mapping to a controller is not
static and an OpenFlow compliant switch handover protocol has
been created to support dynamic reallocation of a switch to a
different controller. The switch migration algorithm ensures the
aliveness and safety of operations.
ElastiCon exploits the features introduced in OpenFlow 1.3 where a
controller can be configured as master, equal, or slave. The
controller can register its role with the switch it is managing. A
switch can connect to multiple controllers, but only one of them
acts as the master controller.
The ElastiCon distributed controller design consists of clusters of
autonomous controller nodes that coordinate among themselves to
provide consistent control logic. ElastiCon also uses a distributed
data store that helps the cluster of controllers to coordinate itself
and thus to show a behaviour similar to a logically centralised
controller.

ONOS

ONOS is an open source distributed network operating system
initially developed by researchers at Stanford University. The core
architecture is implemented by using several other open source
components including Zookeeper (﴾for distributed coordination)﴿,
Cassandra (﴾in memory DHT)﴿, Titan (﴾graph DB)﴿, to name a few. The
project uses Floodlight as the SDN controller that receives
configurations from control applications running on top of ONOS
and sets up the necessary flows between forwarding devices using
OpenFlow. The architecture allows for multiple SDN controllers to

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

43

manage parts of network components exclusively (﴾sharding)﴿ and
algorithms to minimise message flows between network silos. High
availability with failover is enabled through a distributed registry
(﴾Zookeeper)﴿. The network topology is learned by monitoring
OpenFlow events (﴾such as PKTIN)﴿ and eventually achieves
consistency. ONOS reduces the complexity of the network by
segregating network topology maintenance and the path
computation process. At the time of writing -‐ dynamic clustering in
ONOS was not recommended and the static clustering mechanism
was suggested

Table 4.5 Alternative Distributed Control Plane Technologies

4.3.3. Network Virtualisation

Network virtualisation deals with the decoupling of the hardware elements that form
a physical network, from the logical networks operating over it to enable application
or tenant isolation. Network virtualisation is accomplished by means of frameworks
and technologies providing network abstraction over the physical environment. In the
following sections, existing solutions designed for this scope are presented.

4.3.3.1. OpenDaylight VTN

OpenDaylight Virtual Tenant Network (﴾ODL VTN)﴿ is a framework that provides multi-‐
tenant virtual network on an SDN controller. As such it implements a logical
abstraction plane that enables the complete separation of the logical plane from
physical plane. Multiple logical networks can be applied on the same physical
infrastructure, while at the same time remaining completely segregated from each
other. Networks for applications and end user needs can be deployed without
knowledge of the underlying physical network topology. ODL VTN networks are
constructed by mean of the following objects: virtual bridge (﴾vBridge)﴿, virtual router
(﴾vRouter)﴿, virtual interface (﴾vInterface)﴿ and virtual link (﴾vLink)﴿. Figure 4.3 shows a
simple logical network.

Figure 4.3 Simple VTN network

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

44

In a more complicated real world scenario, the following objects are also
provided: virtual tunnel (﴾vTunnel)﴿, virtual Tunnel End Point (﴾vTEP)﴿, virtual
connectivity between controlled networks (﴾vBypass)﴿. Figure 4.4 shows this more
complex logical network.

Figure 4.4 VTN tunnels

Another function in ODL VTN is the Flow Filter that can be comparable in
functionality Access Control Lists (﴾ACLs)﴿. In other words communication can be
allowed, prohibited or redirected based upon particular conditions that a packet
can meet.

With ODL VTN virtual networks can also be configured across multiple SDN
controllers. This feature applies usually in a multi-‐DC environment. In this case it
is still possible to apply a single Flow Filter policy to VTN virtual objects
distributed over different DCs.

ODL VTN main components are the VTN Coordinator and VTN Manager that, as
shown in Figure 4.5, communicates via Web APIs, implemented by REST protocol.
ODL VTN uses three different methods of mapping frames to virtual networks:
port, VLAN and MAC mapping.

Figure 4.5 VTN high-level architecture

4.3.3.2. OpenDOVE

Open DOVE is an overlay network virtualisation platform for the DC. It runs over any
IP network and provides logically isolated multi-­‐tenant networks with layer2 or layer3
connectivity. The OpenDove components are:

• oDMC (﴾OpenDove Management Controller)﴿: acts as the control/access point
into the OpenDove management plane

• oDCS (﴾OpenDove Connectivity Server)﴿: acts as the control point for the
OpenDove control plane

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

45

• oDGW (﴾OpenDove Gateway)﴿: provides gateway functionality between overlay
and the outside world, thus enabling OpenDove to provide connectivity to
external networks

• OpenDove OVS Agent: provides the interface between OVS and OpenDove
control plane.

The relationship between these components is shown in Figure 4.6

Figure 4.6 OpenDove components

The main OpenDove features are: control plane implementation with address, policy
and mobility management; management interfaces for programmatic configuration,
including OpenStack enablement;  open data plane implementation for Linux/KVM
and VxLAN encapsulation; software gateway for connecting to non-­‐virtualised
network and external hosts. OpenDove virtual switches are implemented on Open
vSwitch. It leverages OVS native encapsulation/tunnelling support (﴾VxLAN frame
format)﴿. OpenDOVE has not been submitted to the incubated projects list for the
Helium version of ODL.

4.4. Implementation Choices

A mapping of the T-‐NOVA SDN controller components and the OpenDaylight
modules is being carried out. Table 4.7 summarises the initial analysis aimed at
identifying the extensions required to be implemented in ODL to address the gaps in
the SDN control plane functionalities requested by the T-‐NOVA system.

Functionality
in T-NOVA

Functional Module
in OpenDaylight

Extensions
to be implemented

Path/Flow Manager
Forwarding Rule
Manager / Flow
Programmer

QoS Support

Path reconfiguration

vNet Manager
VTN Coordinator

VTN Manager
Support for live migration of VM

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

46

Functionality
in T-NOVA

Functional Module
in OpenDaylight

Extensions
to be implemented

Traffic Steering
VTN Coordinator

VTN Manger
Support for service chaining through the
enforcement of traffic steering policies.

High
Availability/Clustering Clustering Service Support for dynamic deployment of

control plane instances.

Northbound request
handler None

Solutions to be investigated:

• Anycast virtual IP
• Round-‐robin DNS
• HTTP load-‐balancer

Southbound traffic
balancing Connection Manager

Provide a load balanced connection
scheme across the clustered controllers
by migrating switches from overloaded
controllers to lightly-‐loaded ones.

Table 4.6 Mapping between T-NOVA and OpenDaylight Components

4.5. Conclusions

OpenDaylight was selected from the available open source SDN controllers as the
reference framework for the SDN control plane software implementation in T-‐NOVA.
In addition, the Virtual Tenant Network service has been selected as the first option
to support the Network Virtualisation functionalities. Finally, the clustering service
included in OpenDaylight has been evaluated as an effective solution for the
distributed control plane.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

47

5. SDK FOR SDN

Modern computing is rapidly becoming dominated by resources being provisioned
on demand, for the duration of the task being processed, and is increasingly being
driven by the credit-‐card mind-‐set (﴾instant-‐gratification)﴿, far away from the resource-‐
requisition model that was satisfied through a centralised IT. The compute (﴾CPUs)﴿,
storage and networking needs of the consumers are being increasingly met by cloud
computing providers -‐ both internal and external to an organisation. In order to
provide on-‐demand self-‐provisioning, the underlying network fabric has to be
increasingly flexible. SDN is being seen as a likely paradigm that can support
consumers' desires for a programmable network (﴾management and configuration)﴿.
Software defined networks can also be seen as a means to reduce the complexity and
costs of the legacy networking setups, enabling innovation through rapid,
uncomplicated deployment of protocol optimisations, and also possibly improving
the throughput in a virtualised cloud environment by rendering the layers of
encapsulation of various protocols (﴾for tenant segregation)﴿ unnecessary.

Since the advent of OpenFlow [21] and with the maturity of several software
implementations of basic network functions – open vSwitch [11] firewalls [22] etc.,
there is an increasing diversity of SDN controllers available today.

SDN controllers today not only allow management of flows (﴾typically through
OpenFlow protocol support in the physical/virtual switches)﴿, but also unified access
to popular packages (﴾open vSwitch)﴿, and other network protocols (﴾ICMP)﴿, and in
some cases to popular cloud platform networking management modules, for
example OpenStack Neutron. Additionally, the telecommunication industry is gearing
up for NFV framework adoption, and after the NFV recommendation from the ETSI
MANO [23] working group, such activities have been gathering pace.

With the increasing adoption of SDN in big data centres and the push from
telecommunication vendors worldwide towards NFV – the developer community is
seeing increased activity in the SDN application development space. There is also an
increasing diversity in SDN controllers developed by numerous consortia and
individual companies. In order to sustain the quality development of SDN
applications a uniform way is required for programmers to access the various SDN
capabilities exposed by numerous controllers. Moreover a convenient compilation of
useful networking libraries will aid the SDN application development process
tremendously.

The SDK for SDN task in the T-‐NOVA project aims to alleviate some of the pain
points of SDN application developers, and DC implementers by providing a toolkit
that will abstract out the differences of the northbound APIs (﴾nAPIs)﴿ of popular SDN
controllers. The SDK for SDN task is also evaluating the fine-‐grained interactions
between the virtualised and physical aspects of DC networking in order to better
understand the bottlenecks in the data and control path, so as to include the
necessary tools to aid DC planners.

Typically, a software development kit can comprise of the following:

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

48

• Language specific API wrappers
• Debugging capabilities typically built into the integrated development

environment
• Testing and runtime environments (﴾example: Mininet [24] for SDN

applications)﴿
• Sample codes showing how to use the SDK
• Supporting technical notes clarifying and supplementing the original feature

usage guide

Some SDKs can provide additional functionalities such as a widget library, GUI
builder, etc. for visual composition of features in the target application. There is also a
need to compile a priority list of features needed by other tasks in this project, along
with generally desired features to have in such a SDK. Understanding the interactions
between virtual and physical network elements in a DC is critical in order to develop
an understanding of the feature list to be supported by this task. In the following
sections the requirements on the SDK for SDN are identified, along with an initial
discussion on a possible architecture for the target SDK for SDN. The links and
dependencies on other T-‐NOVA tasks and work-‐packages are described.

5.1. State of the Art

The following sections provides an brief review of the current state of the art that has
relevance to the activities of Task 4.3

5.1.1. NetIDE Project

In order to identify possible overlap areas between NetIDE [25] and T-‐NOVA (﴾WP4)﴿
projects, a brief overview of both the project scopes and activities is required
together with an analysis of the possible synergies and differences between the two
projects. Although project external goals would be the provisioning of development
environment, to be utilised by SDN programmers, this analysis provides a comparison
that assesses and identifies the key differences.

5.1.1.1. Overview

NetIDE is an FP7 project which started, together with T-‐NOVA, in January of 2014
with a duration of 36 months. The project is focused on delivering a single IDE to
support the whole development lifecycle of portable network controller programs in
a vendor-‐independent fashion.

The project objectives encompass:

• An abstraction layer for developing SDN platform independent network
programs

• An IDE and associated tools that work on objects in the SDN abstraction layer
• A framework that interfaces the SDN abstraction layer with real and

simulated/emulated network appliances
• Proof-‐of-‐concept implementations of network applications and services

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

49

The project is defining a framework for network applications developers who need to
re-‐code their solutions every time they encounter a network infrastructure based on a
different controller. Since the developers would have to develop different solutions
for different high-‐level control plane network programming languages (﴾Frenetic [26]
Procera [27] etc.)﴿, this may result in network programs that are neither reusable nor
shareable. The advantages of OpenFlow (﴾uniform interface between the controller
and the network infrastructures)﴿ are therefore not fully utilised. NetIDE proposes to
deliver a single Integrated Development Environment to support the whole
development lifecycle of network controller programs in a vendor-‐independent
fashion.

The proposed NetIDE abstractions will allow the development of SDN solutions
independent from the actual SDN controller used in each case. In particular NetIDE
will:

• Define an abstraction layer for developing solution-‐independent SDN
programs;

• Design and implement an IDE and associated tools that work on objects on
the SDN abstraction layer;

• Provide a framework that interfaces the SDN abstraction layer with real and
simulated/emulated network. In particular the development environment is
controller-‐agnostic.

The overall architecture of the NetIDE project is shown in Figure 5.1, which separates
into three respective blocks: the developer toolkit, the network app engine (﴾mediator)﴿
and the network elements / emulators.

The developer toolkit represents the programming environment based on the NetIDE
concept of Interchange Representation Format (﴾IRF)﴿ -‐ a central language element
(﴾lingua franca)﴿ [28] that covers orthogonal aspects of deployment models of different
SDN approaches. It consists in a set of integrated tools, in an Eclipse-‐like
environment, that allows software developers to code, configure, and deploy network
Apps.

IRF provides a common representation of the network that is later processed by
NetIDE tools (﴾e.g. debugger, compiler, etc.)﴿. Network programs described through
different languages can be transformed to IRF (﴾and vice versa)﴿. Network programs
described through IRF can be executed on top of different controllers thanks to a set
of specific driver.

A library that translates the various constructs in network applications into
representation to be used by the mediator layer below supports the IRF: NetIDE
Network App Engine. This is a runtime environment that hosts Network Apps and
acts as virtual controller of the network, leveraging existing network controllers.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

50

Figure 5.1 NetIDE Architecture

For achieving interoperability between controllers, NetIDE utilises pyretic [29] and its
backend (﴾Figure 5. 2)﴿.

Figure 5.2 Pyretic

Subsequently, the client is rewritten for the Ryu controller. In this way the portability
of applications by POX Ryu and vice versa is enabled. Furthermore an alpha version
for OpenDaylight (﴾ODL)﴿ has already been developed.

5.1.1.2. Differences between NetIDE and T-‐NOVA SDK

NetIDE is a project with a large allocated budget and therefore its objectives are
broader compared to those of Task 4.3. In any case, both share the objective of the
creation of a programming framework for SDN. While Task 4.3 is more focused on
achieving unification of SDN controller nAPIs, NetIDE in comparison is oriented
towards architectures that may involve LAN, Core and Metro networks and in
principal any type of configuration or environment with programmable switches or
NEs. The focus of SDK4SDN is restricted to particular topologies and sectors: DC SDN

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

51

and SDN for orchestration of NFV. Therefore Task 4.3 represents both a subset of
NetIDE’s scope (﴾i.e. DCs)﴿ but also an extension of NetIDE objectives because it is
dealing with a particular architecture design of NFV (﴾Orchestration)﴿. NetIDE does not
address de facto cloud architectures or specific platforms like OpenStack.

An analysis of differences is presented in Figure 5.3. In the left side brackets, some
annotations regarding NetIDE objectives are shown, and thoughts about targeting
NFV and utilisation of cloud infrastructures are analysed.

In the right side brackets, T-‐NOVA and SK4SDN objectives are shown and annotated
next to the different layers of the NetIDE architecture. One important requirement of
T-‐NOVA is that the SDK will be used in the NFV VIM / orchestration phase thus at the
quasi runtime phase, compared to the NetIDE programming environment, which is
positioned for use during the design phase of SDN applications.

Furthermore, Task 4.3 will also focus on the interplay between physical and virtual
network elements in a DC with a focus on providing tools to assess the bottlenecks in
the data plane and libraries for programmers to support them in alleviating those
bottlenecks.

Figure 5.3 Main Differences T-NOVA versus NetIDE

In particular NFV orchestration involving SDN will deal with problems such as:

• Network Virtualisation and Cloud => Layer encapsulation, tunnelling,
preconfigured virtual network flows between the VMs implementing the NFVs
and the VMs and storage servers.

• Defining a library to help programmability of configurations or pre-‐
configuration of SDN elements, both physical and virtual, for specific blocks of
network functions

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

52

The SDK may address, for example, inclusion of existing OpenStack Neutron nAPIs
features for SDN based elements. Table 5.1 shows comparison of the characteristics
of Task 4.3 with the NetIDE project.

Table 5.1 NetIDE versus T-NOVA

5.1.2. Popular SDN Controllers and API Comparison

Currently there is a variety of SDN controllers available in the market. Since analysing
all of them would require a significant effort, an internal analysis of the popular SDN
controllers within the project has been conducted which narrowed the controller
choices down to two candidates – OpenDaylight and Ryu. In the first iteration of the
SDK release, the task will aim at supporting both. A brief description of the controllers
and a preliminary analysis of their APIs is provided in the following sections.

5.1.2.1. Ryu

Ryu is an open source, component-‐based software defined networking framework,
which is written in python. Developers can easily create network management and
control applications by using software components with well-‐defined APIs provided
by Ryu.

Ryu supports various protocols such as OpenFlow 1.0, 1.2, 1.3, 1.4, NETCONF [30] and
OFconfig [31]. At the Northbound APIs layer, Ryu has an OpenStack Neutron plug-‐in
that supports VLAN and GRE configurations. Ryu also supports a REST interface for its
OpenFlow operations.

Figure 5.4 shows the Ryu Framework Architecture. There are numerous "Ryu built-‐in
apps", including firewalls, topology discover, tenant isolation, etc.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

53

Figure 5.4 Ryu Architecture

5.1.2.2. OpenDaylight

OpenDaylight is a modular and pluggable open source framework written in Java.
The controller is contained within a Java Virtual Machine (﴾JVM)﴿ and can be deployed
in any operating system platform that supports Java.

OpenDaylight supports the Open Service Gateway Initiative (﴾OSGi)﴿ [32] framework
and the REST interface for the nAPIs. For applications that are running in the same
address space as the controller, the OSGi framework is used; whereas for applications
that are not running in the same address space as the controller a REST API is utilised.

To perform required network tasks like host tracker or switch manager, the controller
platform contains a collection of dynamically pluggable modules. The southbound
interface supports multiple protocols such as OpenFlow 1.0, 1.3, Border Gateway
Protocol (﴾BGP)﴿, NETCONF, etc. Figure 5.4 shows the OpenDaylight Framework
Architecture.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

54

Figure 5.5 OpenDaylight Architecture

5.1.2.3. Comparison of Ryu and OpenDaylight N-‐APIs

Tables 5.2 and 5.3 outline some of the standard modules and extensions of the Ryu
and OpenDaylight platforms where similar classes of REST methods can be found. For
example: in the OpenStack support comparison matrix (﴾Table 5.2)﴿, in Network
Configuration operations, the GET /v1.0/networks method provided by rest.py API
returns the list of networks. In OpenDaylight, the respective functionality can be
traced in the “Neutron Networks” extension and the actual REST call is: GET
/controller/nb/v2/neutron/networks.

Operations
OpenStack

Ryu Module File OpenDaylight Extension Name

Router
Configuration Neutron Routers Northbound

Firewall Neutron Firewall Northbound

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

55

Configuration Neutron Firewall Policy
Northbound

Neutron Firewall Rules
Northbound

Network
Configuration rest.py Neutron Networks Northbound

Switch
Configuration rest_conf_switch.py

Port Configuration rest.py Neutron Ports Northbound

Flow Programming

Statistics

Topology

Table 5.2 Comparing the Ryu and OpenDaylight support for OpenStack (Modules)

Operations
Generic Network

Ryu Module File OpenDaylight Extension Name

Router
Configuration rest_router.py Static Routing Northbound

Firewall
Configuration rest_firewall.py

Network
Configuration

Switch
Configuration Switch Northbound

Port Configuration

Flow Programming ofctl_rest.py Flow Programmer Northbound

Statistics ofctl_rest.py Statistics Northbound

Topology rest_topology.py Topology Northbound JAXRS

Table 5.3 Ryu and OpenDaylight Controllers’ support towards generic networks
(Modules)

The subset of REST calls available in the two SDN controllers that support OpenStack
Neutron, and generic network elements are presented in Tables 5.4 and 5.5.

Operations OpenStack

Ryu REST API OpenDaylight REST API

Return a list
of networks GET /v1.0/networks GET /controller/nb/v2/neutron/networks

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

56

Create a new
network

POST
/v1.0/networks/(﴾network-‐
id)﴿

POST /controller/nb/v2/neutron/networks

Update a
network

PUT
/v1.0/networks/(﴾network-‐
id)﴿

PUT
/controller/nb/v2/neutron/networks/(﴾netUUID)﴿

Delete a
network

DELETE
/v1.0/networks/(﴾network-‐
id)﴿

DELETE
/controller/nb/v2/neutron/networks/(﴾netUUID)﴿

List all ports
GET
/v1.0/networks/(﴾network-‐
id)﴿/

GET /controller/nb/v2/neutron/ports

Create new
port

POST
/v1.0/networks/(﴾network-‐
id)﴿/(﴾dpid)﴿_(﴾port-‐id)﴿

POST /controller/nb/v2/neutron/ports

Update port
PUT
/v1.0/networks/(﴾network-‐
id)﴿/(﴾dpid)﴿_(﴾port-‐id)﴿

PUT
/controller/nb/v2/neutron/ports/(﴾portUUID)﴿

Delete port
DELETE
/v1.0/networks/(﴾network-‐
id)﴿/(﴾dpid)﴿_(﴾port-‐id)﴿

DELETE
/controller/nb/v2/neutron/ports/(﴾portUUID)﴿

Table 5.4 REST APIs Comparison for OpenStack Neutron Support

Operations
Generic Networks

Ryu REST
API OpenDaylight REST API

Get the route
data

GET
/router/(﴾swi
tch_id)﴿/(﴾vla
n_id)﴿

GET
/controller/nb/v2/staticroute/(﴾containerName)﴿/route/(﴾route)﴿

Add a new
route

POST
/router/(﴾swi
tch_id)﴿/(﴾vla
n_id)﴿

PUT
/controller/nb/v2/staticroute/(﴾containerName)﴿/route/(﴾route)﴿

Delete a
route

DELETE
/router/(﴾swi
tch_id)﴿/(﴾vla
n_id)﴿

DELETE
/controller/nb/v2/staticroute/(﴾containerName)﴿/route/(﴾route)﴿

Add a flow
configuration

POST
/stats/flowe
ntry/add

PUT
/controller/nb/v2/flowprogrammer/(﴾containerName)﴿/node/(﴾n
odeType)﴿/(﴾nodeId)﴿/staticFlow/(﴾name)﴿

Delete a flow
configuration

POST
/stats/flowe

DELETE
/controller/nb/v2/flowprogrammer/(﴾containerName)﴿/node/(﴾n

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

57

ntry/delete odeType)﴿/(﴾nodeId)﴿/staticFlow/(﴾name)﴿

Modify a
flow
configuration

POST
/stats/flowe
ntry/modify

PUT
/controller/nb/v2/flowprogrammer/(﴾containerName)﴿/node/(﴾n
odeType)﴿/(﴾nodeId)﴿/staticFlow/(﴾name)﴿

Get flow
statistics for
a node

(﴾switch)﴿
GET
/stats/flow/
(﴾dpid)﴿

GET
/controller/nb/v2/statistics/(﴾containerName)﴿/flow/node/(﴾node
Type)﴿/(﴾nodeId)﴿

Get all the
links
configuration

GET
/v1.0/topol
ogy/links

GET /controller/nb/v2/topology/(﴾containerName)﴿/userLinks

Table 5.5 Ryu and OpenDaylight REST support for generic networks

As evident from the tables there are many points where the REST APIs provided by
the northbound layers of these two SDN controllers diverge considerably, or in some
cases are missing. This further strengthens the need for a unified layer to facilitate
software development for SDN applications in an environment agnostic manner.

5.1.3. Popular Cloud Libraries

The last number of years has seen the proliferation in cloud platforms, both from
commercial vendors and open source communities. Notable platforms are
OpenStack, Apache CloudStack, OpenNebula, Eucalyptus, etc. Each platform has their
own programmable interfaces, and there have been significant efforts by the
community to unify these interfaces to simplify application development over them.
Today in the SDN space we see similar needs, therefore in order to understand how
community solutions for cloud interface differences were devised, and to gain design
insights for the SDK for SDN solution, two most popular community cloud libraries
were analysed.

5.1.3.1. Jclouds

Apache jclouds is an open source library that provides an abstraction with Java or
Clojure API to control and manage various cloud software platforms such as Amazon,
Openstack or VMware vCloud 2. Jclouds is extremely flexible and allows developers to
invoke not only portable operations (﴾i.e. operations that are exposed by all supported
cloud platforms)﴿, which are controlled by services like ComputeService and
BlobStorage, but also platform-‐specific operations (﴾i.e. operations that are specific to
a single platform, or a subset of the supported platforms)﴿. Jcloud’s main concepts are:

▪ Views: Views are portable abstractions to allow writing code that uses generic
cloud services. The concept is similar to JDBC for a DB. The actual views
available are: ComputeService, BlobStorage and LoadBalancer.

2 A of supported providers can be found here https://jclouds.apache.org/reference/providers/

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

58

▪ APIs: APIs represents the specific call made in order to perform some action
on the cloud. Most APIs are HTTP based (﴾SOAP or REST)﴿, but in some cases
this may be different, depending on the specific cloud.

▪ Providers: A provider is a specific cloud platform API plus some specific values
like the endpoint URL. Each provider in jclouds implements one or more
Views.

▪ Contexts: A context represents a specific connection to a particular provider.
The concept is like a database connection to a specific DB.

In order to create their own applications with jclouds, developers instantiate a context
and connect to a specific Provider. As soon as the connection is established,
developers can use Views to invoke portable operations exposed by the provider, or
APIs for provider-‐specific operations.

5.1.3.2. libcloud

Apache libcloud is a Python library for interacting with many popular cloud service
providers through a unified API. Similar to jClouds, it was created in order to allow
developers to build applications that can work seamlessly with all supported cloud
providers. libcloud can manage the following categories of resources:

▪ Compute – Cloud Servers and Block Storage services, e.g. Amazon EC2,
OpenStack Nova/Cinder

▪ Object Storage – e.g. Amazon S3, OpenStack Swift

▪ Load Balancer – e.g. Amazon Elastic Load Balancer, Rackspace Load Balancer

▪ DNS – e.g. Amazon Route 53, Google DNS

For a full list of supported providers, please refer to the project official website [33].
Similar to jClouds, Libcloud supports both cross-‐platform and platform-‐specific
operations: the former are exposed through a common, unified API layer, while the
latter are exposed through API extensions. Furthermore, Libcloud supports a driver-‐
based architecture, which allows integrating new cloud platforms that are not natively
supported, by developing and registering a 3rd party driver.

5.2. Requirements Gathering

An SDK must take into account various requirements that affect design and
implementation issues. Three main categories can be identified here:

• The first is the software design phase where a number of design tricks can
help in the implementation phase.

• The use of abstract classes allow you to change how an object works
without breaking code

• The limited use of inherited classes only exposes absolutely necessary
functions.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

59

• The use of small interfaces will limit the chance of breaking existing
code while the reduction of big interfaces benefits the SDK by not
limiting the SDK to the predefined design

• The second is end user design issues where again a number of design
tricks can help in the implementation phase.

• The use of a good definition in describing the terms used inside the
SDK provides a good starting point.

• The use of namespaces based on how often a set of objects will be
used.

• The use of intelligent code completion providing in this way can be an
instant help in the programmer.

• The third is Language and Terms Design where the main concept is not to
use terms that people need to look up.

• Language and terms really help determine what objects and
functionality need to be defined as code.

• The language used must be self-‐evident to other developers.

Apart from the generic guidelines above, which are vital for the successful design and
implementation of any SDK, the SDK for SDN in T-‐NOVA has some specific
requirements that have been captured in the Table 5.6.

Requirement
Name Requirement Description Justification of

Requirement Category

SDK4SDN-
OpenDayLight

SDK for SDN MUST support
OpenDaylight]

Comes from the T-‐
NOVA consortium

Functional

SDK4SDN-Testing SDK for SDN MUST provide
testing capabilities

Comes from SDK-‐
general

Functional

SDK4SDN-Diff-
OpenFlow

SDK for SDN MUST expose
OpenFlow differences in a safe
manner

Comes from DoW Functional

SDK4SDN-Source-
CODE

SDK for SDN MUST be
available as open source
software

Comes from DoW Functional

SDK4SDN-
Contrlollers

SDK for SDN SHALL support a
variety of SDN Controllers

Comes from DoW Functional

SDK4SDN-Libraries SDK for SDN SHALL provide all
the necessary dependencies
and tools in order that
developers can validated their
installation

Comes from DoW Functional

SDK4SDN-
Languages

SDK for SDN-‐MUST support
multiple languages

Comes from DoW Functional

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

60

SDK4SDN-
OpenFlow Versions

SDK for SDN support multiple
OpenFlow versions

Comes from DoW Functional

Table 5.6 SDK for SDN Functional Requirements

Considering these requirements and leveraging the approaches of the jCloud and
libcloud libraries for cloud platforms, first iteration of SDK for SDN platform
architecture is outlined in Section 5.3.

5.3. Initial High Level Architecture

Figure 5.6 shows the initial high-‐level architecture of the SDK for SDN tool to be
developed in this task. The design phase of this task has not yet concluded (﴾at the
time of writing of this deliverable)﴿, and therefore it is likely that the architecture may
undergo additional changes as the task progresses.

Figure 5.6 SDK for SDN Initial Architecture

This initial iteration only shows the architectural elements for the unification of the
different APIs exposed by the various popular SDN controllers. The elements shown
outside of the boxed area are not part of the SDK but are external elements over
which the SDK will be developed and deployed. At the bottom layer of the
architecture are the various drivers for the target SDN controllers who’s APIs are to
be supported by the SDK, apart from any T-‐NOVA specific integration features. The
SDN controllers APIs are analysed and common feature sets are offered out from the
Unified API Layer component. Controller specific features, which cannot be made
available by the Unified API Layer, can be exposed to the developers by individual
Controller Specific API extensions.

APIs developed by the various T-‐NOVA services for 3rd party integrators, can be
supported as part of the SDK as well. An example case using the T-‐NOVA
Marketplace component is indicated in the architecture. These will be offered
through individual extension modules in the SDK in phases. Furthermore, providing

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

61

support for OpenStack Neutron is being considered, and is therefore shown as a
dashed-‐box in the architecture.

The APIs and features to be supported by the SDK can be generally categorised into
network control and network management APIs. In addition -‐ the SDK will provide
additional tools to facilitate application debugging, network packet analysis to
understand interactions between the virtual and physical network elements in a DC,
and additional tools and code examples to help an application developer optimise
the DC networking fabric.

The highest layer in the architecture diagram is the popular programming language
bindings, which are the Java/Python API wrappings. Other language supports can be
incorporated at a later date depending on the community demand for such bindings.
The architecture will evolve in coming months to include mechanisms to include
testing and runtime environments using Mininet [24] or similar external platform.
Discussions on a clean-‐slate network research approach by including appropriate
libraries (﴾frame detection, error correction codes, etc.)﴿ is still on-‐going, and the
overall architecture document will be updated as this task progresses.

5.4. Conclusions and Next Steps

The SDK for SDN task will not only provide common development libraries (﴾with
support for multiple SDN controllers)﴿ to the SDN application developers, it will also
undertake a detailed analysis of interactions among virtual and physical network
elements in a typical cloud DC. The aim of the study will be to identify bottlenecks in
the network stack, and to develop specific libraries to aid developers in the
minimisation or removal of bottlenecks. In this section, an initial draft architecture of
the SDK has been presented which over the course of next couple of months will be
further refined based on the close interactions planned with other tasks in T-‐NOVA.
The two initial SDN controllers that will be targeted by this task will be OpenDaylight
and Ryu -‐ the final two controllers filtered by the T-‐NOVA consortium. Other
controllers’ support can be included over the course of time if required.

API language bindings for Java and Python will be provided to aid the development
process. The goals for the next few months in this task are to finalise the API analysis
of the northbound APIs exposed by OpenDaylight and Ryu, and to refine the
architecture further with inputs from other tasks in T-‐NOVA. Actual code
development will commence early next year together with the cloud DC analysis.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

62

6. MONITORING AND MAINTENANCE

This section outlines the work currently being carried out in Task 4.4 (﴾Monitoring and
Maintenance)﴿. Task 4.4 focuses on the implementation and integration of a
monitoring framework, which is able to extract and process monitoring information
from both physical and virtual nodes at the IVM level. In other words, the scope of
the monitoring framework being developed in Task 4.4 covers the two lower layers of
the T-‐NOVA architecture, namely the NFVI and VIM.

Metrics are collected at the NFVI layer, processed at the VIM and forwarded to the
upper layers (﴾Orchestrator and Marketplace)﴿. Task 4.4 focuses specifically on the
collection of dynamic metrics, i.e. metrics which change frequently in relation to
resource usage. Static information reflecting the status and capabilities of
infrastructure, e.g. number of installed compute nodes, processing resources per
node etc. are assumed to be handled by Task 3.2 (﴾Infrastructure Repository)﴿.

6.1. Requirements Overview and Consolidation

Deliverable D2.31 has defined and identified architectural concepts and requirements
for the IVM (﴾NFVI and VIM)﴿ layer. The technical requirements for the IVM monitoring
framework can be directly derived/inherited by the specific IVM requirements. Table
6.1 outlines the IVM requirements that directly affect the monitoring framework and
their required specialisations within the monitoring framework.

IVM
Req.ID

IVM Requirement
Name

Requirement specialisation for the Monitoring
Framework

VIM.1
Ability to handle
heterogeneous
physical resources

The MF must provide a vendor agnostic mechanism for
physical resource monitoring.

VIM.3 API Exposure The MF must provide an interface to the Orchestrator for
the communication of monitoring metrics.

VIM.7

Translation of
references between
logical and physical
resource identifiers

The MF must re-‐use resource identifiers when linking
metrics to resources.

VIM.9 Control and
Monitoring

The MF must monitor in real time the physical network
infrastructure as well as the vNets instantiated on top of
it.

VIM.24 Virtualised
Infrastructure Metrics

The MF must collect utilisation metrics from the
virtualised resources in the NFVI.

C.7 Compute Domain
Metrics The MF must collect compute domain metrics.

H.1 Compute Domain
Metrics The MF must collect metrics from the Hypervisor.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

63

H.12 Alarm/Error
Publishing

The MF must receive and process any alarms sent by the
Hypervisor.

N.6 Usage monitoring The MF must collect metrics from physical and virtual
networking devices.

N.9 OpenFlow The MF must leverage OpenFlow monitoring capabilities.

Table 6.1 IVM requirements which affect the monitoring framework

By consolidating the aforementioned requirements, it becomes clear that the basic
functionalities required the IVM monitoring framework are as follows:

• Collection of IT and networking metrics from virtual and physical devices of
the NFVI. It should be noted that at the IVM level, metrics correspond only to
physical and virtual nodes and are not associated to services since the VIM
does not have knowledge of end-‐to-‐end Network Services. Metrics are
mapped to Network Services at the Orchestrator level;

• Processing and generation of events and alarms;

• Communication of monitoring information and events/alarms to the
Orchestrator in a scalable manner;

6.2. Challenges and Innovations

With regard to the basic functionalities identified in the previous section, metrics
collection (﴾Functionality 1)﴿ can be achieved by re-‐using a number of the pre-‐existing
monitoring mechanisms for virtualised infrastructures, as surveyed in the following
section. Apart from selecting and properly integrating the appropriate technologies
and possibly selecting the appropriate set of metrics, limited progress beyond the
state-‐of-‐the-‐art should be expected in this field.

On the other hand, the actual challenges and envisaged innovation of the monitoring
framework are seen to be associated with Functionalities 2 and 3. Specifically, the
following challenges have been identified:

• Events and alarms generation: Moving beyond the typical approach, which is
found in most monitoring systems and is based on static thresholds (﴾i.e.
generate an alarm when a metric has crossed a pre-‐defined threshold)﴿ the aim
is to study and adopt dynamic methods for fault detection. Such methods
should be based on statistical methods and self-‐learning approaches,
identifying outliers in system behaviour and triggering alarms reactively or
even proactively (﴾e.g. before the actual fault has occurred)﴿. This anomaly
detection procedure, in the context of T-‐NOVA, can clearly benefit from the
fact that the monitored services are composed of VNFs rather than generic
VMs. As virtual appliances dedicated to traffic processing, VNFs are expected
to expose some common characteristics (﴾e.g. the CPU load is expected to
proportionally rise, not necessarily linearly, with the increase of processed
traffic)﴿. A significant deviation from this correlation could, for example,
indicate a potential malfunction.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

64

• Communication with the Orchestrator: With this functionality, scalability is the
key requirement that needs to be fulfilled. In an operational environment, the
Orchestrator is expected to manage tens or hundreds of NFVI-‐PoPs (﴾or even
thousands, if micro-‐data centres distributed in the access network are
envisaged)﴿. It is impossible for the Orchestrator to handle the full set of
metrics from all the physical and virtual nodes under its control. The challenge
is to optimise communication of monitoring information to the Orchestrator
so that only necessary information is transmitted. This optimisation does not
only imply fine-‐tuning of the polling frequency, careful definition of a minimal
set of metrics or the proper design of the communication protocol, but also
requires an intelligent aggregation procedure at the VIM level. This procedure
should achieve the grouping/aggregation of various metrics from various
parts of the infrastructure as well as alarms, and the dynamic identification of
information that is of actual value to the Orchestrator.

To achieve the aforementioned innovations, Task 4.4 work plan involves in its
initial stage the establishment of a baseline framework which fulfils the basic
functionalities by collecting and communicating metrics and, as a second step,
the study, design and incorporation of innovative techniques for anomaly
detection and metrics aggregation.

6.3. Monitoring Frameworks for Virtualised Infrastructures
Survey

This section presents a brief overview of existing frameworks for monitoring
virtualised IT infrastructures as well as SDN-‐enabled networks, and discusses the
technologies which could be partially re-‐used in T-‐NOVA.

6.3.1. IT/Cloud monitoring

6.3.1.1. OpenStack Telemetry

OpenStack’s Telemetry module, formerly called Ceilometer, reliably collects
measurements with respect to the utilisation of physical and virtual resources that
comprise deployed clouds. Telemetry persists data for subsequent retrieval and
analysis and triggers actions when defined criteria are met. It efficiently collects the
metering data of guest machines (﴾VMs)﴿ and the hosts (﴾Nova)﴿, the network, the
Operating System images (﴾Glance)﴿, the disk volumes (﴾Cinder)﴿, the identities
(﴾Keystone)﴿, the object storage (﴾Swift)﴿, the orchestration (﴾Heat)﴿, the energy
consumption (﴾Kwapi)﴿ and also user-‐defined meters.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

65

Figure 6.1 Overview of Openstack Telemetry architecture

Figure 6.1 depicts an overall logical architecture of the Telemetry module. Each of the
telemetry services are designed to scale horizontally. Additional workers and nodes
can be added depending on the expected load. The system consists of the following
basic components:

• Polling agents; these are:
o Compute agents (﴾ceilometer-‐agent-‐compute)﴿: they run on each

compute node and poll for resource utilisation statistics;
o Central agents (﴾ceilometer-‐agent-‐central)﴿: run on one or more central

management servers to poll for resource utilisation statistics for
resources not tied to instances or compute nodes;

• Notification agents; these run on one or more central management servers to
monitor the message queues (﴾for notifications and for metering data coming
from the agent)﴿;

• Collectors (﴾ceilometer-‐collector)﴿: designed to gather and record event and
metering data created by notification and polling agents.

• Databases, containing Events, Meters and Alarms; these are capable of
handling concurrent writes (﴾from one or more collector instances)﴿ and reads
(﴾from the API module)﴿;

• An Alarm Evaluator and Notifier (﴾ceilometer-‐alarm-‐notifier)﴿: Runs on one or
more central management servers to allow configuration of alarms based on
threshold evaluation for a collection of samples.

• An API module (﴾ceilometer-‐api)﴿: Runs on one or more central management
servers to provide access to the data from the data store.

Telemetry offers three independent ways to collect metering data, allowing easy
integration of any OpenStack-‐related project which needs to be monitored:

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

66

• Via listening to events generated on the notification bus and transforming
them into Ceilometer samples. This is the preferred method of data collection,
since it is the most simple and straightforward. It requires, however, that the
monitored entity uses the bus to publish events, which may not be the case
for all OpenStack-‐related projects.

• Via pushing information to Telemetry, which requires adding a component to
each of the nodes that need monitoring, thus, making data collection more
complex. It is the recommended solution for modules which do not use the
message bus.

• Via polling information by Telemetry, which polls the APIs of the components
being monitored at regular intervals to collect information. The data are
stored usually in a database and are available through the Ceilometer REST
API. This method is least preferred due to the inherent difficulty in making
such a component resilient.

Each meter measures a particular aspect of resource usage or on-‐going performance.
All meters have a string name, a unit of measurement, and a type indicating whether
values are monotonically increasing (﴾cumulative)﴿, interpreted as a change from the
previous value (﴾delta)﴿, or a standalone value relating only to the current duration
(﴾gauge)﴿. Samples are individual data points associated with a particular meter and
have a timestamp and a value. The aggregation of a set of samples for a specified
duration (﴾start-‐end time)﴿ is called a statistic. Each statistic also has a period
associated with it, which is a repeating interval of time that the samples are grouped
for aggregation. Currently there are five aggregation functions implemented: count,
max, min, avg and sum.

These metering data can go through pipelines, composed by chains of transformers
that change the data before sending them to the collector via a publisher. A
transformer can be, for example, a unit conversion, a rate of change calculation and
an accumulator of metering data. Telemetry is able to publish the metering data
multiple times to multiple destinations, possibly using a different transport method
(﴾RPC, UDP, files)﴿ and frequency of publication. The pipelines can be configured via a
YAML file.

As already mentioned, another feature of Telemetry is alarming. An alarm is a set of
rules defining a monitor of a statistic that will trigger when a threshold condition is
breached. An alarm can be set on a single meter, or on a combination of meters and
can have three states, alarm (﴾the threshold condition is breached)﴿, ok (﴾the threshold
condition is not met)﴿ and insufficient data (﴾not enough data has been gathered to
determine if the alarm should fire or not)﴿. The transition to these states can have an
associated action, which is either writing to a log file or an http post to a URL. The
concept of a meta-‐alarm is also supported; meta-‐alarms aggregate over the current
state of a set of other basic alarms combined via a logical operator (﴾AND/OR)﴿. For
example, a meta-‐alarm could be triggered when three basic alarms are active at the
same time.

6.3.1.2. Other Cloud/Data Centre Monitoring Tools

In this section a brief description of the most popular tools used for monitoring cloud
and data centre architectures is given. Prior to the introduction of the OpenStack

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

67

Telemetry module, several projects and related tools were used for monitoring and
metering an OpenStack-‐based cloud. The presented tools can still be used, especially
if these tools are monitoring others parts of the infrastructure as well.

Zabbix

Zabbix [34] is an open source, general-‐purpose, enterprise-‐class network and
application monitoring tool that can be customised for use with OpenStack. It can be
used to automatically collect and parse data from monitored cloud resources. It also
provides distributed monitoring with centralised Web administration, a high level of
performance and capacity, JMX monitoring, SLAs and ITIL KPI metrics on reporting, as
well as agent-‐less monitoring. An OpenStack Telemetry plugin for Zabbix is already
available.

Using Zabbix the administrator can monitor servers, network devices and
applications, gathering statistics and performance data. Monitoring performance
indicators such as CPU, memory, network, disk space and processes can be supported
through an agent, which is available as a native process for Linux, UNIX and Windows
platforms. With OpenStack infrastructure Zabbix can monitor:

● Core OpenStack services: Nova, Keystone, Neutron, Ceilometer (﴾OpenStack
Telemetry)﴿, Horizon, Cinder, Glance, Swift Object Storage, and OVS (﴾Open
vSwitch)﴿

● Core infrastructure components: MySQL, RabbitMQ, HAProxy, memchached,
and libvirtd.

● Operating system statistics: Disk I/O, CPU load, free RAM, etc.
Zabbix is not limited to OpenStack cloud infrastructures: it can be used to monitor
VMware vCenter and vSphere installations for various VMware hypervisor and virtual
machine properties and statistics.

Nagios

Nagios is an open source tool that provides monitoring and reporting for network
services and host resources [35]. The entire suite is based on the open-‐source Nagios
Core which provides monitoring of all IT infrastructure components -‐ including
applications, services, operating systems, network protocols, system metrics, and
network infrastructure. Nagios does not come as a one-‐size-‐fits-‐all monitoring
system with thousands of monitoring agents and monitoring functions; it is rather a
small, lightweight system reduced to the bare essential of monitoring. It is also very
flexible since it makes use of plugins in order to setup its monitoring environment.

Nagios Fusion enables administrators to gain insight into the health of the
organisation's entire network through a centralised view of their monitoring
infrastructure. In addition, they can automate the response to various incidents
through the use of the Nagios Incident Manager and Reactor. The Network Analyser,
which is part of the suite, provides an extensive view of all network traffic sources and
potential security threats allowing administrators to quickly gather high-‐level
information regarding the status and utilisation of the network as well as detailed
data for complete and thorough network analysis. All monitoring information is
stored in the Log Server that provides monitoring of all mission-‐critical infrastructure

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

68

components – including applications, services, operating systems, network protocols,
systems metrics, and network infrastructure.

Nagios and Telemetry are quite complementary products which can be used in an
integrated solution. Enovance has developed plugins for the Nagios monitoring
environment to ensure that OpenStack components are still functioning, while the
ICCLab, which operates within the ZHAW’s Institute of Applied Information
Technology, has developed a Nagios plugin which can be used to capture metrics
through the Telemetry API, thus allowing Nagios to monitor VMs inside OpenStack.
Finally, the Telemetry plugin can be used to define thresholds and triggers in the
Nagios alerting system.

Shinken

Shinken is an open source system and network monitoring application [36]. It is fully
compatible with Nagios plugins. It started as a proof of concept for a new Nagios
architecture, but since the proposal was turned down by the Nagios authors, Shinken
became an independent tool. It is not a fork of Nagios; it is a total rewrite in Python.
It watches hosts and services, gathers performance data and alerts users when error
conditions occur and again when the conditions clear. Shinken's architecture is
focused on offering easier load balancing and high availability capabilities. The main
differences and advantages toward Nagios are:

• A more efficient distributed monitoring and high availability architecture

• Graphite integration in the Web UI

• Improved performance, mostly due to the use of a distributed database
(﴾MongoDB)﴿

Icinga

Icinga is an open-‐source network and system monitoring application which
originated from a Nagios fork [37]. It maintains configuration and plug-‐in
compatibility with the latter. Its new features are as follows:

• A modern Web 2.0 style user interface;
• An interface for mobile devices;
• Additional database connectors (﴾for MySQL, Oracle, and PostgreSQL)﴿;
• RESTful API.

Currently there are two flavours of Icinga that are maintained by two different
development branches: Icinga 1 (﴾the original Nagios fork)﴿ and Icinga 2 (﴾where the
core framework is being replacement by a full rewrite)﴿.

Zenoss

Zenoss is an open source monitoring platform released under a GPLv2 license [38]. It
provides an easy-‐to-‐use Web UI to monitor performance, events, configuration, and
inventory. Zenoss is one of the best options for unified monitoring as it is cloud-‐
agnostic and open source. Zenoss provides powerful plug-‐ins named Zenpacks,
which support monitoring on hypervisors (﴾ESX, KVM, Xen and HyperV)﴿, private cloud
platforms (﴾CloudStack, OpenStack and vCloud/vSphere)﴿, and public cloud (﴾AWS)﴿. In
OpenStack Zenoss integrates with Nova, Keystone and OpenStack Telemetry.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

69

Ganglia

Ganglia is a scalable distributed system monitor tool for high-‐performance
computing systems such as clusters and grids [39]. Its structure is based on a
hierarchical design using a tree of point-‐to-‐point connections among cluster nodes.
Ganglia is based on an XML data representation, XDR for compact and RRDtool for
data storage and virtualisation. The Ganglia system contains:

1. Two unique daemons, gmond and gmetad
2. A PHP-‐based web front-‐end
3. Other small programs

gmond runs on each node to monitor changes in the host state, to announce
applicable changes, to listen to the state of all Ganglia nodes via a unicast or
multicast channel based on installation, and to respond to requests. gmetad (﴾Ganglia
Meta Daemon)﴿ polls at regular intervals a collection of data sources, parses the XML
and saves all metrics to round-‐robin databases. Aggregated XML can then be
exported.

Ganglia’s web frontend is written in PHP. It uses graphs generated by gmetad and
provides collected information like CPU utilisation for the past day, week, month, or
year. Ganglia has been used to link clusters across university campuses and around
the world and can scale to handle clusters with 2000 nodes. However, further work is
required in order for it to become more cloud-‐agnostic.

StackTach

StackTach is a debugging and monitoring utility for OpenStack that can work with
multiple Data Centres, including multi-‐cell deployment [40]. It was initially created as
a browser-‐based debugging tool for OpenStack Nova. In the interim StackTach has
evolved into a tool that can perform debugging, monitoring and auditing. StackTach
is quickly moving into Metrics, SLA and Monitoring territory with version 2 and the
inclusion of Stacky, the command line interface to StackTach. StackTach contains a
worker process that reads notifications from the OpenStack’s RabbitMQ queues and
stores them in a database. From there, StackTach reviews the stream of notifications
to glean usage information and assemble it in an easy-‐to-‐query fashion. Users can
inquire about instances, requests, servers, etc. using the browser interface or the
Stacky command line tool. Rackspace is working on StackTach integration with
Telemetry.

Healthmon

Healthmon by HP is focused on delivering a unique point of contact for all OpenStack
Cloud Resources and Infrastructure monitoring requirements, covering Inventory,
Utilisation and Alert [41]. Some key characteristics of Healthmon are:

• Monitoring Service for Cloud Resources and Infrastructure with a pluggable
framework;

• Resource Model and Persistence;
• Cloud Resource Life Cycle Event/Alarm Collection (﴾compute host, instances,

bare metal, network, etc.)﴿;
• Cloud Service Event Collection Framework (﴾Nova, Keystone, etc.)﴿;
• Integration with Telemetry;

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

70

• RESTful access to the stored Cloud Resource Inventory, utilisation / usage
data;

• Data Provider;
• Proxy Driver for the underlying hypervisor (﴾KVM, ESX and Hyper-‐V are

supported)﴿.
Healthmon integrates with the Horizon interface, adding a dedicated Healthmon tab
to it.

SeaLion

SeaLion is a cloud-‐based system monitoring tool for Linux servers. It installs an agent
on the system, which can run as an unprivileged user [42]. The agent collects data at
regular intervals across servers and this data will be available on your workspace.
Sealion provides a high-‐level view (﴾graphical overview)﴿ of Linux server activity. The
monitoring data are transmitted over SSL to the SeaLion servers. The service provides
graphs, charts and access to the raw gathered data.

MonALISA

MONitoring Agents using a Large Integrated Services Architecture (﴾MonaLISA)﴿ is
based on Dynamic Distributed Service Architecture and is able to provide complete
monitoring, control and global optimisation services for complex systems [43]. The
MonALISA system is designed as a collection of autonomous multi-‐threaded, self-‐
describing agent-‐based subsystems which are registered as dynamic services, and are
able to collaborate and cooperate in performing a wide range of information
gathering and processing tasks.

The agents can analyse and process the information in a distributed way, in order to
provide optimisation decisions in large-‐scale distributed applications. The scalability
of the system derives from the use of a multithreaded execution engine, that hosts a
variety of loosely coupled self-‐describing dynamic services or agents, and the ability
of each service to register itself and to be discovered and used by any other services,
or clients that require such information. The system is designed to easily integrate
existing monitoring tools and procedures and to provide this information in a
dynamic, customised, self-‐describing way to any other services or clients.

By using MonALISA the administrator is able to monitor all aspects of complex
systems, including:

• System information for computer nodes and clusters;
• Network information (﴾traffic, flows, connectivity, topology)﴿ for WAN and LAN;
• Monitoring the performance of applications, jobs or services; and
• End-‐user systems and end-‐to-‐end performance measurements.

collectd, StatsD and Graphite

Cloud instances may also be monitored by using a collection of separate open source
tools. collectd is a daemon which collects system performance statistics periodically
and provides mechanisms to store the values in a variety of ways [44]. collectd
gathers statistics about the system it is running on and stores this information. These
statistics can then be used to find current performance bottlenecks (﴾i.e. performance
analysis)﴿ and predict future system load (﴾i.e., capacity planning)﴿. collectd is written in
C for performance and portability, allowing it to run on systems without scripting

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

71

language or cron daemon, such as embedded systems. At the same time it includes
optimisations and features to handle big amounts of data sets. StatsD [45] is a
Node.JS daemon [46] that listens for messages on a UDP to TCP port. StatsD listens
for statistics, like counters and timers and then parses the messages, extracts metrics
data, and periodically flushes the data to other services in order to build graphs. A
tool that can be used to build graphs afterwards is Graphite [47], which is able to
store numeric time-‐series data and render graphs of the data on demand.

vSphere

The vSphere statistics subsystem collects data on the resource usage of inventory
objects [48]. Data on a wide range of metrics is collected at frequent intervals,
processed and archived in a database. Statistics regarding the network utilisation are
collected at Cluster, Host and Virtual Machine levels. In addition vSphere supports
performance monitoring of guest operating systems, gathering statistics regarding
network utilisation among others.

Amazon CloudWatch

Amazon CloudWatch is a monitoring service for AWS cloud resources and the
applications running on AWS [49]. It provides real-‐time monitoring to Amazon's EC2
customers on their resource utilisation such as CPU, disk and network. However,
CloudWatch does not provide any memory, disk space, or load average metrics
without running additional software on the instance. It was primarily designed for use
with Amazon Elastic Load Balancing and Auto Scaling with load balancing in mind:
the service checks CPU usage on multiple instances and automatically creates
additional ones when the load increases.

6.3.2. Network Monitoring

Network monitoring is a domain that has attracted significant attention from the
research community over the past decades, with well-‐established technologies and
standards with regard to measurement processes (﴾active and passive)﴿ as well as the
communication of monitoring metrics (﴾SNMP, IPFIX, sFlow etc.)﴿.

In the context of T-‐NOVA, where network management, at least within each NFVI-‐
PoP is based on OpenFlow, the measurement process will leverage OpenFlow’s
monitoring capabilities.

OpenFlow provides the capability to report per-‐flow and per-‐port metrics, reported
by the switch itself. These metrics are then collected by the Controller and
communicated to SDN control applications via the northbound API of the Controller
it-‐self (﴾Figure 6.2)﴿. Almost all SDN controllers offer the capability to expose
monitoring metrics, either via API calls or language bindings. In this respect, the
OpenFlow-‐based architecture provides the capability to monitor all network elements
in a uniform and vendor-‐agnostic manner.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

72

Network	
 Devices

Southbound	
 API
(OpenFlow)

CONTROLLERS
(NOX,	
 POX,	
 OpenDaylight,	
 Floodlight,	
 Beacon,	
 Ryu,	
 Trema,	
 Mul,	

Jaxon,	
 Maestro,	
 NodeFlow,	
 Ovs-­‐controller,	
 NDDI-­‐OESS)

Northbound	
 API

SDN	
 Applications

Monitoring

Figure 6.2 Communication of monitoring metrics in an OpenFlow-enabled architecture

In this context, several monitoring applications have been developed, leveraging
OpenFlow capabilities for integrated network management tasks. Some of these
applications are presented in Table 6.2.

Monitoring
Application

Brief description Controller

Used

Open
Source

Available
at

OpenNetMon OpenNetMon [50] continuously
monitors all flows between
predefined link destination pairs
on throughput, packet loss and
delay

POX Yes

ht
tp

s:/
/g

ith
ub

.co
m

/T
U

D
el

ftN
AS

/S
D

N
-‐

O
pe

nN
et

M
on

/

Payless Payless [51] provides a flexible
RESTful API for flow statistics
collection at different
aggregation levels. It uses an
adaptive statistics collection
algorithm that delivers highly
accurate information in real-‐
time without incurring
significant network overhead.

POX, NOX,
OpenDayLight

Yes

ht
tp

://
gi

th
ub

.co
m

/s
rc

vi
ru

s/
flo

od
lig

ht
.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

73

DCM DCM [52] allows switches to
collaboratively achieve flow-‐
monitoring tasks and balance
measurement loads.

None (﴾native
OF)﴿

No Not
available

FlowSense FlowSense [53] achieves a push-‐
based approach to performance
monitoring in flow-‐based
networks, where the network
informs of performance
changes, rather than query it.

None (﴾native
OF)﴿

No Not
available

Table 6.2 OpenFlow monitoring applications

In addition, many of the monitoring frameworks described in Section 6.3 for cloud
infrastructures can be also used for monitoring OpenFlow infrastructures, via the
appropriate plugins.

6.4. T-NOVA VIM Monitoring Framework

The overall architecture of the T-‐NOVA VIM monitoring framework can be defined by
taking into account the technical requirements, as identified in Section 6.2, as well as
the technical choices made for the NFVI and VIM infrastructure. The specification
phase has concluded that the OpenStack platform will be used for the control of the
virtualised IT infrastructure, as well as the OpenDaylight controller for the
management of the SDN network elements.

In this context, it is appropriate to leverage OpenDaylight (﴾Statistics API)﴿ and
OpenStack (﴾Telemetry API)﴿ capabilities for metrics collection, rather than directly
polling the network elements and the hypervisors at the NFVI layer, respectively.

Theoretically, it would be possible for the Orchestrator to directly poll the cloud and
network controllers of each NFVI-‐PoP and retrieve resource metrics respectively. This
approach, although simple and straightforward, would fail to address the challenges
outlined in Section 6.3 and in particularly would introduce significant scalability issues
on the Orchestrator side. It is therefore appropriate to introduce a
mediator/processing entity at the VIM level to collect, consolidate, process metrics
and communicate them to the Orchestrator. This entity is called the VIM Monitoring
Manager (VIM MM), and acts as a stand-‐alone software component.

OpenStack and OpenDaylight already provide a rich set of metrics for both physical
and virtual nodes, which should be sufficient for most T-‐NOVA requirements.
However, in order to gain a more detailed insight on the VNF status and operation, it
would be advisable to be able to connect a rich set of metrics from the guest OS of
the VNF container, including information which cannot be obtained via the
hypervisor. This enhanced monitoring capability is expected (﴾yet still needs to be
assessed)﴿ to significantly augment the effectiveness of the VIM MM with regard to
status awareness and proactive fault detection.

For this purpose, it is decided to introduce an additional optional entity deployed
within the VNF container, namely the VNF Monitoring Agent (VNF MA). The latter will

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

74

be optionally pre-‐packaged within the VNF image and will provide enhanced VNF
monitoring capabilities. The monitoring agent will collect generic information about
guest OS status, processes and resources, rather than VNF-‐specific information. The
latter will be directly communicated by the VNF application itself to the VNF
Manager.

Based on the need outlined above, the architecture of the VIM monitoring framework
can be defined as shown in Figure 6.3.

Figure 6.3 Overview of the VIM monitoring framework

The VIM MM aggregates metrics by polling the cloud and network controllers and by
receiving additional information from the VNF monitoring agents, consolidates these
metrics, produces events/alarms if appropriate and communicates them to the
Orchestrator. For the sake of scalability and efficiency, it was decided that metrics will
be pushed by the VIM MM to the Orchestrator, rather than being polled by the latter.
Moreover, the process of metrics collection/communication and event generation
can be partially configured by the Orchestrator via a relevant configuration service to
be exposed by the VIM MM. More details on the introduced modules can be found in
the following sections.

6.4.1. Overview of Collected Metrics

A crucial task when defining the T-‐NOVA approach to monitoring is the identification
of metrics that need to be collected from the virtualised infrastructure. Although the

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

75

list of metrics that are available via existing controllers can be extensive, it is
necessary, for the sake of scalability and efficiency, to restrict this list to include only
the information that is actually needed for the implementation of the T-‐NOVA Use
Cases, as defined in Deliverable D2.1. This is only an initial tentative approach to the
list of metrics, which will be continuously iterated on and updated throughout the
project.

Domain Metric Units Origin Relevant UCs

VM/VNF CPU utilisation % VNF Mon.Agent UC3, UC4

VM/VNF No. of VCPUs # VNF Mon.Agent UC4

VM/VNF RAM allocated MB VNF Mon.Agent UC3, UC4

VM/VNF RAM available MB VNF Mon.Agent UC3, UC4

VM/VNF Disk read/write rate MB/s VNF Mon.Agent UC3, UC4

VM/VNF Network Interface in/out
bitrate

Mbps VNF Mon.Agent UC3, UC4

VM/VNF Network Interface in/out
packet rate

pps VNF Mon.Agent UC3, UC4

VM/VNF No. of processes # VNF Mon.Agent UC4

Compute Node CPU utilisation % OS Telemetry UC2, UC3, UC4

Compute Node RAM available MB OS Telemetry UC2, UC3, UC4

Compute Node Disk read/write rate MB/s OS Telemetry UC3, UC4

Compute Node Network i/f in/out rate Mbps OS Telemetry UC3, UC4

Storage (﴾Volume)﴿ Read/write rate MB/s OS Telemetry UC3, UC4

Storage (﴾Volume)﴿ Free space GB OS Telemetry UC2, UC3, UC4

Network
(﴾virtual/physical
switch)﴿

Port in/out bit rate Mbps ODL Statistics UC2, UC3, UC4

Network
(﴾virtual/physical
switch)﴿

Port in/out packet rate pps ODL Statistics UC3, UC4

Network
(﴾virtual/physical
switch)﴿

Port in/out drops # ODL Statistics UC3, UC4

Table 6.3 Identification of metrics to be collected

6.4.2. VIM Monitoring Manager

The VIM Monitoring Manager is the core component of the monitoring framework.
Taking into account its core functionalities and required features, the VIM MM should
be composed of the following modules:

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

76

• Agent connector (﴾Agent listener)﴿, to receive information from the VNF Agents;
• OpenStack connector, in order to poll for compute metrics (﴾client for

Telemetry API)﴿. The connector should periodically poll all deployed physical
and virtual nodes for information. Efficiency can be improved if polling
frequency is dynamically adjusted i.e. decreased for resources which are found
to fluctuate less frequently;

• OpenDaylight connector, in order to poll for networking metrics (﴾client for
Statistics API)﴿. As with the OpenStack connector, the polling is periodic and
refers to all network nodes, with an adjustable polling frequency;

• Orchestrator connector, which allows communication with the Orchestrator
for:

o Receiving monitoring configuration, e.g. registration to specific
metrics, setting of thresholds etc. (﴾server-‐side)﴿,

o Dispatching (﴾pushing)﴿ metrics and events in a push-‐based approach
(﴾client-‐side)﴿;

• Local database for storing metrics, configuration and any auxiliary information
which requires persistence. The typical relational database model is
considered adequate;

• Processing engine, which performs statistical processing on stored metrics,
detects events and generates alarms;

• User interface for presenting collected information. Although a user GUI for
the VIM MM does not directly serve any of the T-‐NOVA use cases, it is
considered as a useful tool to monitor and manage the IVM infrastructure.

With regard to implementation, the initial approach for the VIM MM will be
developed in JavaScript, under the node.js environment [46]. Node.js is a
development platform providing an asynchronous event framework, designed to
build scalable network applications. The reason is that the main functionality of VIM
MM is data communication and the node.js environment offers several services to
facilitate communication, especially via Web services, as well as event-‐driven
networking.

6.4.3. VNF Monitoring Agent

The VNF Monitoring Agent will be pre-‐installed within the VM image hosting the
VNFC. It will be automatically launched upon VNF start-‐up and run continuously in
the background. The agent collects a wide range of metrics from the local OS. For
this purpose, it is planned to exploit the collectd daemon, described in Section
6.3.1.2.

The VNF MA will be also assigned with monitoring heterogeneous compute nodes.
Heterogeneous compute nodes comprise, apart from the common compute node
hardware, also specialised hardware accelerators that can be exploited for some tasks
to be performed within a VM. It is reasonable to also include performance metrics
related to these devices in the T-‐NOVA monitoring architecture. Integration of the
monitoring agent into the compute node depends largely on the nature of the
compute node itself. In D2.31 we distinguished between two types of heterogeneous
compute nodes: the first is composed by typical general-‐purpose processor (﴾x86,
ARM, etc.)﴿ whereas the second is constituted by nodes with special purpose

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

77

acceleration resources, in the form, for instance, of GPUs, FPGAs and others.
Incorporating the monitoring agent into compute nodes of the former types is
notably easier, since the standard agent that will be developed within T-‐NOVA will be
able to be executed on the processor of the system and communicate with the
monitoring manager using standard methods. Compute nodes belonging to the
latter category however will need to include a custom but compatible monitoring
agent through some other means. For example in an FPGA-‐based system, the agent
will have to be implemented in the programmable fabric of the FPGA and is a subject
of future research.

It has to be noted that there can be no universal approach for the definition of the
performance metrics to characterise the load of the application running on the
programmable fabric of an FPGA or FPGA/SoC. The reason is that these metrics
depend on the application currently running on the device and may vary from IOPS
for a soft processor core to MAC/s for a DSP application. Thus, the monitoring
framework has to accommodate also custom metric formats. Moreover, the
Orchestrator and VIM have to be aware of these custom metrics upon VNF
deployment. It is evident that the implications of deploying heterogeneous compute
nodes are far-‐reaching and involve considerable effort.

In any case, for both generic and platform-‐specific metrics, the VNF MA will connect
to the VIM MM and push measurements periodically. The push frequency will be
configurable (﴾either manually or automatically)﴿. The set of metrics (﴾selection among
all available ones)﴿ to be communicated will also be configurable and may vary among
VNFs, according to VNF specificities.

6.4.4. Compute, Hypervisor and Storage Monitoring

Monitoring of computing, hypervisor and storage status and resources will be
performed directly via the OpenStack Telemetry framework (﴾see Section 6.3.1.1)﴿. The
VIM MM (﴾OpenStack connector)﴿ will periodically poll Telemetry for metrics regarding
the currently deployed physical and virtual resources. Although these metrics could
be retrieved by directly accessing the Telemetry database, since the scheme of the
latter may evolve in future OpenStack versions, it is more appropriate to use the
REST-‐based API offered by Telemetry [54] The VIM MM will issue GET requests to the
service referring to a specific resource and meter, and the result will be returned in
JSON format.

Fortunately, the Telemetry support for the hypervisor selected for T-‐NOVA (﴾KVM)﴿
offers the widest possible list of available monitoring metrics, compared to other
hypervisors, such as Xen or vSphere.

Moreover, collecting metrics via the API allows exploiting additional features of
Telemetry such as:

• Meter grouping: it is possible to define set of metrics and retrieve an entire set
with a single query;

• Sample processing: it is possible to define basic aggregation rules (﴾average,
max/min etc.)﴿ and retrieve only the aggregate instead of a set of metrics;

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

78

• Alarming: it is possible to set alarms based on thresholds for the collection of
samples. An alarm can depend on a single meter, or a combination. The VIM
MM may use the API to set an alarm and define an HTTP callback service to
be called when the alarm has been set off.

6.4.5. Network Monitoring

Monitoring of network resources (﴾on physical and virtual nodes)﴿ will leverage
OpenFlow capabilities. Nevertheless, metrics will not be collected via the OpenFlow
protocol (﴾i.e. by polling directly the OF-‐enabled switches)﴿. Instead, as outlined
previously, it will be achieved by exploiting the Statistics REST API of OpenDaylight.
The VIM Monitoring Manager (﴾OpenDaylight connector)﴿ will poll the ODL REST API,
and in turn ODL will poll the underlying OpenFlow switches via its OpenFlow
southbound plugin.

The OpenDaylight Statistics API [55], more specifically the StatisticsNorthbound
service, exposes node and flow metrics to high-‐level network applications.

The VIM MM will issue GET requests to the service, referring to a specific node. The
response, structured in JSON, contains metrics for each port, such as:

• number of received packets
• number of transmitted packets
• number of received bytes
• number of transmitted bytes
• receive/transmit drops
• receive/transmit errors (﴾frame/overrun/CRC)﴿

As aforementioned, for scalability reasons, per-‐flow statistics will not be collected, so
the per-‐flow monitoring capability of ODL (﴾also offered via the StatisticsNorthbound
service)﴿ will not be exploited.

6.5. Conclusions

The current state-‐of-‐the-‐art of monitoring tools and frameworks for cloud computing
environments has been presented. Infrastructure metrics and statistics currently
available from the OpenStack and OpenDaylight controllers have been considered.
These metrics relating to the resources of an NFVI-‐PoP must be exposed to the T-‐
NOVA Orchestrator. A proposed VNF monitoring agent has been described which an
optional component, responsible for collecting a rich set of metrics from within VNF
containers. Finally the solution being developed by Task 4.4 will deliver visibility of
the IVM status to the Orchestrator and the Marketplace.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

79

7. TECHNOLOGY SELECTIONS

A key output of the Task 1-‐4 and in particular Task 4.1 is to identify the appropriate
technologies that will be used to implement the T-‐NOVA IVM in Task 4.5. The
following section contains a list of the initial candidate technologies that have been
identified and the rational for their selection. These technologies are currently under
evaluation in WP4. These selections however may change during the course of the
activities within WP4 as technical issues arise or other viable technology options
emerge. Final details of the technologies ultimately used to implement IVM will be
provided in the next set of deliverables from WP4.

The following tables outline the selected technology for each function, the alternative
options available at this point in time, the requirements that each technology satisfies
(﴾requirements are referred to the ones in Deliverable 2.31)﴿, the trade-‐offs and the
justification (﴾e.g. the rationale behind the selection)﴿.

Technology Cloud Controller

Choice § Open Stack
Deployment and lifecycle management of the VNF/NS deployed
on VMs within the Cloud Infrastructure. Provisioning of a
common virtualisation layer across different heterogeneous
platforms.

Alternatives • CloudStack
• Eucalyptus
• VMware vCloud Suite

Requirements
Related

VIM1, 2, 3, 4, 5, 6, 7, 10, 16, 20, 21, 22, 23

C2, 7, 9, 10

H1

N13

Trade-off Currently no support for enhanced platform awareness
External control of scheduling/filtering mechanism not supported.
Deterministic behaviour difficult to achieve

Justification Significant industry support with over 400 companies and
organisation backing OpenStack
Open source and community led development with active roadmap
Adoption into major commercial NFV platforms e.g. Cloudband,
NFV Director etc.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

80

Technology SDN Controller

Selection § OpenDaylight
Open-‐source SDN controller platform backed by the Linux
Foundation and developed by an industrial consortium, which
includes Cisco, Juniper and IBM, among many others.
OpenDaylight is implemented in Java. Provides a flexible
northbound interface using Representation State Transfer APIs
(﴾REST APIs)﴿, and includes support for the OpenStack cloud
platform.

Alternatives • POX
• NOX
• RYU
• Floodlight
• Trema
• Jaxon

• Maestro
• ONOS
• Contrail
• Beacon
• Nodeflow
• MUL

Requirements
Related

VIM3, 5 6, 7, 8, 9, 11, 13, 14, 16, 17, 18, 24

N6, 11, 12, 14

Trade-off Implemented in Java which may have performance implications

Justification Supports integration with OpenStack via ML2 plugin
Supports OpenFlow, OVSDB, BGP-‐LS
Support for VTN
Strong roadmap

Topic Network Tunnelling Protocols

Choice • VXLAN – this technique used to encapsulate L2 frames in UDP
packets. From a VM perspective, VxLAN offers the abstraction of
L2 regardless of the physical location. Compared to VLAN,
VxLAN permits a much wider addressing space by using a 24-‐bit
LAN ID.

Alternatives • VLAN
• GRE
• STT

Requirements
Related

VIM6 8

N5 11 13 14	

Trade-off Small performance downgrade with respect to traditional VLANs,
mainly related to encapsulation/decapsulation of VXLAN/GRE
frames in the tunnel.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

81

Justification Tunnelling protocols are fundamental in a NFV environment in order
to implement true network virtualisation, where tenants can be
provision dynamically in networks (﴾overlay)﴿ without any impact on
the underlying physical infrastructure (﴾underlay)﴿.

The VXLAN tunnelling protocol was chosen mainly because it is
quickly becoming a de-‐facto standard, with very large support in the
IT industry. Major IT vendors (﴾HP, Cisco, VMware, Red Hat etc.)﴿
natively support VXLAN in their products, both at
virtualisation/cloud level (﴾i.e. OpenStack and hypervisors)﴿ and at a
HW infrastructure level (﴾e.g. new HP switches integrate VXLAN
gateways in hardware)﴿.

Topic Network Virtualisation Framework

Choice • VTN -‐ OpenDaylight Virtual Tenant Network (﴾ODL VTN)﴿ is a
framework that provides multi-‐tenant virtual network on an SDN
controller. As such it implements a logical abstraction plane that
enables the complete separation of logical plane from physical
plane. Networks for applications and end user needs can be
deployed without knowing the underlying physical network
topology.

Alternatives • OpenDOVE.
• OVSDB+VXLAN

Requirements
Related

VIM2 7 8 13 14

N2 4 5 11 12 13 14

Trade-off Even if the solution composed of OVSDB and the Network
Tunnelling Protocol could be considered as a Network Virtualisation
Framework, they actually operate at a lower level than VTN and
OpenDOVE. The latter present instead a more comprehensive
approach in term of multi-‐tenant network virtualisation. Both VTN
and OpenDOVE are included into the OpenDaylight project list,
where VTN seems to have a (﴾little)﴿ more focus. This may be due to
the importance of the VTN Manager implementation, i.e. the VTN
component located at the “Controller Platform” level.

Justification VTN Manager together with the presence of the already developed
component at the “Network Application Orchestration and Services”
level, i.e. the VTN Coordinator, would make VTN the most obvious
choice for the Network Virtualisation Framework. Furthermore it is
part of the OpenDaylight package which will ensure a seamless
integration with the remaining components selected in this task.
Open DOVE implements more modest functionality than ODL VTN
and has considerably less industry support being an IBM-‐driven
initiative. OVSDB on the other hand offers very limited functionality
in comparison to ODL VTN.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

82

Topic Distributed Controller

Choice • ODL Clustering Service -‐ supports a cluster based HA model
where several instances of ODL controller act as a single logical
controller. The global state of the network in maintained
through a distributed data store.

Alternatives • Pratyaastha
• ElastiCon

Requirements
Related

VIM 3, 10, 17, 18

Trade-off The adoption of distributed data structures may lead to an
inconsistent or stale global network view. Higher rates of control
synchronisation and communication overhead can help to achieve
consistent state in the global network view. However, this may have
an impact on the responsiveness of the system.

Justification The choice was highly dependent on the selection of the SDN
controller platform. The clustering service built in OpenDaylight
represents a valid solution to support to high availability and
horizontal scaling. Nevertheless, in order to fit the requirements
identified in T-‐NOVA, further extensions and improvements are
required.

Technology SDN Capable Switch

Choice OpenFlow version 1.0 or higher switch with 10GBase-‐T interfaces,
TCAM and VLAN support

Alternatives OpFlex

Requirements
Related

N10, 11, 12

Trade-off Cost of switch increases with speed
OSF+ interfaces provide better environment, but are most expensive
More expensive than non-‐SDN switches

Justification Commercial 10Gb SDN switch with OpenFlow support, 10GBase-‐T
physical interfaces to reduce connection costs. 10Gb switch
considered standard for top of rack switching

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

83

Technology NIC

Choice • Intel X540 Converged Ethernet Adapter
PCIe, dual port NIC with RJ45 connectors. Support for DPDK and
SR-‐IOV (﴾up to 64 virtual ports)﴿. Backwards compatibility with
1000Base-‐T networks.

Alternatives Emulex -‐ oce (﴾OneConnect OCe14000 family)﴿
Mellanox -‐ mlx4 (﴾ConnectX-‐3, ConnectX-‐3 Pro)﴿

Requirements
Related

Trade-off Cable length limited to 50M
More expensive than non DPDK NICs

Decision Selection of X540 PCIe provides greater flexibility with workstations
and server form factor compatibility. Full DPDK support.

Technology Virtual Switch

Choice • Intel DPDK vSwitch
A virtual switch implemented on top of OvS, coupling the
original software switching technology with DPDK in order to
improve the performance of OvS, while maintaining its core
functionality.

Alternative Open vSwitch

Requirements
Related

H14

N2, 5, 8

Trade-off Requires DPDK compatible NIC
Complex to configure

Justification Open vSwitch is a production quality, multilayer virtual switch
licensed under an Apache 2.0 open source license and it represents
the de facto standard technology in terms of vSwitches. The DPDK
version improves packet processing performance

Technology Compute Platform

Choices • Xeon E5 2620 v2/v3
Features 10 cores which can support up to 20 threads. Supports
VT-‐x, VT-‐d, Extended page tables, TSX-‐NI, AES Instructions and
Trusted Execution Technology (﴾TXT)﴿ and 8GT/s Quick Path

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

84

Interconnects for fast inter socket communications.
Requirements
Related

C 1

Trade-off General purpose processor solution for VNFs. Overprovision/under
provision will be an issue with some VNFs.
Overall performance can be limited by the performance of
peripherals devices

Justification Industry leading performance with extensive virtualisation support.
Inclusion of key technologies to accelerate the performance of
specific types of VNF e.g. cryptography. Large cache size to
minimise context switching. Large number of cores gives greater
flexibility

Technology Hypervisor and Hypervisor controller

Choices • KVM and Libvirt
KVM (﴾for Kernel-‐based Virtual Machine)﴿ is a full virtualisation
solution for Linux on x86 hardware containing virtualisation
extensions (﴾Intel VT or AMD-‐V)﴿
Libvirt is an open source API, daemon and management tool for
managing platform virtualisation. It provides a very useful API for
the orchestration layer of hypervisors in a cloud-‐based solution.

Alternatives Hypervisor
• Xen
• VMware ESXi
• Microsoft Hyper-‐V

Hypervisor Controller
• Xen Centre
• VMWare VSphere

Requirements
Related

VIM 1, 2

C 5

H 3, 4, 6, 7, 8, 10, 13, 14

Trade-off Lack extensive documentation in comparison to commercial
products

Justification Open Source, Free, It is the default hypervisor within OpenStack, so
it is fully implemented and supported, High performance, low
overhead, extensive industry adoption.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

85

Technology Operating System

Choices • Fedora

Fedora is a Linux-‐based operating system sponsored by Red Hat.
Distributed under a free and open source license and aims to be
on the leading edge of such technologies. Moreover, it is
supported by Intel’s Open Networking Platform.

Alternative • Ubuntu
• Windows Server

Requirements
Related

Trade-off Occasional device driver compatibility issues.

Decision Fedora better supports natively the virtual switching technology. It is
Open Source, Free. It is supported by the ONP specification.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

86

8. CONCLUSIONS
The activities in Work Package 4 are focused on developing an understanding of the
performance characteristics of technologies to be used in the T-‐NOVA IVM layer.
Task 4.1 is identifying appropriate mechanism for integrating these technologies and
developing optimisations that are required to deliver a functional, manageable and
performant IVM. A key component of the IVM is management of intra-‐Data Centre
communications based on SDN principles. Task 4.2 is looking in detail at the design
of the SDN Control Plane, including service chain traffic management, tenant
isolation and the SDN controller architecture. Task 4.3, SDK for SDN task, is focusing
on how to alleviate some of the key limiting factors for SDN application developers
and data centre implementers through the development of a toolkit. It is envisaged
that the toolkit will abstract the differences in popular SDN controllers allowing
developers to use their language of choice and to reduce the development lifecycle.
Management is an important aspect of the IVM. In order to manage the IVM
appropriately, measurements with respect to how the environment is behaving are
critical: here dynamic metrics play a critical role in providing the Orchestrator with the
necessary information on the physical and virtualised infrastructure environment
under its control. In this perspective, Task 4.4 is developing a monitoring solution that
will be deployed onto the compute nodes that comprises the IVM layer and will
report collected data to the T-‐NOVA Orchestration layer. Collectively, these tasks
have also developed an understanding of their various task dependencies as outlined
in Section 2 to ensure they receive appropriate input into their activities and their
outputs match the needs of dependent tasks.

Section 3 described the current and planned activities of Task 4.1. The task has
selected the initial candidate technologies for the implementation of the VIM
functional entity within the IVM. OpenStack has been chosen as the Cloud Controller
and OpenDaylight as the SDN Controller. The task has also selected some initial
technology components that will be used in the implementation of the NFVI
functional entity. These technologies are currently being evaluated in a testbed
environment. Initial technology characterisation experiments have focused on DPDK
and OVS. The results obtained to date indicate a significant improvement in packet
processing performance for the DPDK version of OVS in comparison to the standard
version. However the task has also identified that the VNF must natively utilised the
DPDK libraries. If the VNF does not have native support the performance benefit is
significantly reduced. In this scenario an improvement over OVS was observed in
terms of throughput. Task 4.1 has developed an initial version of its workload and
technology characterisation protocol which is included in this deliverable. The
outputs of this work will play an important role identifying dynamic and static metrics
that are most highly correlated with workload or system performance. The task is also
developing a set of Best Known Methods (﴾BKMs)﴿ for virtualised environment
implementation which will be used by other work packages in T-‐NOVA.

In Section 3 the initial architecture of the SDN control plane based the requirements
outlined in previous T-‐NOVA deliverables is described. In addition Task 4.2 have
analysed and identified the functional components and interfaces of the CP. Analysis
of a variety of candidate technologies has been carried out in order to identify a

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

87

suitable solution for the SDN controller implementation based on a balanced view of
the available and missing features. OpenDaylight was selected as the Network
Controller with Virtual Tenant Network (﴾VTN)﴿ as the multi-‐tenant network
virtualisation framework and clustering service for the controller deployment in large-‐
scale environments. Task 4.2 have developed an initial experimental plan to evaluate
the performance of the selected technologies under a number of different scenarios
and has initiated implementation of the test plan to collective quantitative data to
evaluate the Controller architecture options i.e. single instance vs. distributed.

In Section 4 the activities of the Task 4.3, SDK for SDN, which is working on providing
common development libraries (﴾with support for multiple SDN controllers)﴿ to the
SDN application developers were outlined. The task is also undertaking detailed
analysis of interactions among virtual and physical network elements in a typical
cloud data centre. The aim of this study is to identify bottlenecks in the network stack
and to provide requirements for the development of specific libraries to support
developers in minimises or removing such bottlenecks. Task 4.3 has created an initial
draft architecture for the SDK which over the course of next couple of months will be
further refined based on the close interactions planned with other tasks in T-‐NOVA.
The two initial SDN controllers that are targeted by this task are OpenDaylight and
Ryu -‐ the final two controllers filtered by the T-‐NOVA consortium.

Task 4.4 focuses on the development of a monitoring framework for the IVM
components. In Section 5 a brief state-‐of-‐the-‐art survey was presented and the
architecture of the T-‐NOVA VIM monitoring framework was specified. Taking into
account the use of OpenDaylight and OpenStack as the controller technologies in the
VIM, infrastructure metrics and statistics available from these controllers will be
collected. These metrics are aggregated and filtered into a centralised Monitoring
Manager, which exposes status and resource information of the NFVI-‐PoP to the
Orchestrator, as configured by the latter. A VNF monitoring agent was also
introduced, as an optional component, collecting a rich set of metrics from within
VNF containers. It is concluded that, with the proposed approach is technical feasible
with a goal of delivering an effective, efficient and scalable monitoring solution for
the T-‐NOVA IVM layer. The solution under development will be able to afford the
Orchestrator and the Marketplace enhanced awareness of the IVM status and
resources, while at the same time keeping the communication and signalling
overhead at minimum.

In Section 6 the candidate technologies that will be used in by WP4 in the
development, implementation and characterisation of the IVM and its functional
entities were described. The rational for the selection of the technology is provided
together with a mapping to the T-‐NOVA requirements that the technology will fulfil.

Each of the tasks will report again on their progress and their key finding/outcomes
in task level deliverables which are due between months M21 and M28 of the project.
Task 4.5 will also use the outputs of the tasks described in this deliverable to
implement a functional IVM will be a realisation of the technology artefacts and key
learnings generated by the WP4 tasks.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

88

9. LIST OF ACRONYMS

Acronym Description

ACL Access Control List

AES-NI Advanced Encryption Standard New Instructions

API Application Programming Interface

AVG Average

BCAM Binary Content Addressable Memory

BGP Border Gateway Protocol

BGP-LS Border Gateway Protocol Linkstate

BKM Best Known Method

CLI Command Line Interface

CP Control Plane

CPU Control Processing Unit

CRC Cyclic Redundancy Check

DC Data Centre

DOVE Distributed Overlay Virtual Ethernet

DoW Description of Work

DP Data Plane

DPDK Data Plane Development Kit

DSP Digital Signal Processing

DUT Device Under Inspection

EPT Extended Page Tables

ETSI European Telecommunications Standards Institute

FE Functional Entity

FPGA Field Programmable Gate Array

Gbps Giga bits per second

GPU Graphical Processing Unit

GRE Generic Routing Encapsulation

HA Hardware Abstraction

IaaS Infrastructure as a Service

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

89

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronics Engineer

IETF Internet Engineering Task Force

IRF Interchange Representation Format

I/O Input/Output

IOPS Input/Output Operations Per Second

IP Internet Protocol

IPFIX Internet Protocol Flow Information Export

iSCSI Internet Small Computer System Interface

IVM Infrastructure Virtualisation and Management

IVSHMEM Inter-‐Virtual machine Shared Memory

KVM Kernel-‐based Virtual Machine

KPI Key Parameter Indicator

L2 Layer 2

L3 Layer 3

LAN Local Area Network

MA Monitoring Agent

MAC Media Access Control

MANO Management and Orchestration

MF Monitoring Framework

ML2 Modular Layer 2

MM Monitoring Manager

MPLS Multiprotocol Label Switching

NC Network Controller

NF Network Function

NFaaS Network Functions-‐as-‐a-‐Service

NFV Network Functions Virtualisation

NFVI Network Functions Virtualisation Infrastructure

NFVI-PoP NFVI-‐Point of Presence

NIC Network Interface Cards

NS Network Service

NUMA Non-‐uniform Memory Access

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

90

NVGRE Network Virtualization using Generic Routing Encapsulation

ODCS OpenDOVE Server

ODGW OpenDOVE Gateway

ODL OpenDaylight

ODML OpenDOVE Management Controller

OF OpenFlow

ONF Open Networking Foundation

ONP Open Networking Platform

OPNFV Open Platform for Network Function Virtualisation

OS Operating System

OSGi Open Service Gateway initiative

OVSDB Open vSwitch Database Management Protocol

PCIe Peripheral Component Interconnect Express

PF Physical Function

PMD Poll Mode Driver

PPS Packets Per Second

QoS Quality of Service

QPI Quick Path Interconnect

QSFP Quad Small Form-‐factor Pluggable

OSGi Open Service Gateway initiative

RAM Random Access Memory

REST API Representation State Transfer API

RDMA Remote Direct Memory Access

RFC Request for Comments

RPC Remote Procedure Call

SAN Storage Area Network

SDN Software-‐Defined Networking

SDK Software Development Kit

SFP Small Form Factor Pluggable

SLA Service Level Agreement

SNMP Simple Network Management Protocol

SoC System on Chip

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

91

SOTA State-‐Of-‐The-‐Art

SR-IOV Single Root I/O Virtualisation

SSD Solid-‐State Disk

SW Software

TCAM Ternary Content Addressable Memory

ToR Top of Rack

TNM Transport Network Manager

T-NOVA Network Functions as-‐a-‐Service over Virtualised
Infrastructures

TXT Trusted Execution Technology

UDP User Datagram Protocol

vApp Virtual Application

VIM Virtualised Infrastructure Manager

VL Virtual Link

VLAN Virtual Local Area Network

VM Virtual Machine

VMDq Virtual Machine Device Queues

VMM Virtual Machine Manager

VMX Virtual Machine Extension

VNF Virtual Network Function

VNFC Virtual Network Function Component

vNode Virtual Node

VPN Virtual Private Network

vNIC Virtual Network Interface Cards

VPN Virtual Private Network

vNS Virtual Network Service

VT-d Virtualisation Technology for Directed I/O

VTEP Virtual Tunnel End Point

VT-x Virtualisation Technology for x86

VTN Virtual Tenant Network

vTunnel Virtual Tunnel

WAN Wide Area Network

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

92

WP Work Package

XFP 10 Gigabit Small Form Factor Pluggable

XML Extended Markup Language

YAML YAML Ain't Markup Language

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

93

10. REFERENCES

[1] ETSI, "Network Functions Virtualisation; Part 1: Infrastructure Architecture;
Sub-‐part 3: Architecture of Compute Domain," ETSI2014.

[2] DPDK. (﴾2014)﴿. DPDK: Data Plane Development Kit. Available: http://dpdk.org/
[3] Intel. (﴾2014)﴿. Intel® Open Network Platform Switch Reference Design (Intel®

ONP Switch Reference Design). Available:
http://www.intel.com/content/www/us/en/switch-‐silicon/ethernet-‐switch-‐
fm6764-‐controller.html

[4] Intel. (﴾2014)﴿. Intel® Open Network Platform Server Reference Design. Available:
http://www.intel.com/content/www/us/en/communications/open-‐network-‐
platform-‐server.html

[5] QEMU. (﴾2014)﴿. Open Source Processor Emulator. Available:
http://wiki.qemu.org/Main_Page

[6] OpenStack.org. (﴾2014)﴿. Neutron/ML2. Available:
https://wiki.openstack.org/wiki/Neutron/ML2

[7] OPNFV. (﴾2014)﴿. Open Platform for NFV. Available: https://www.opnfv.org/
[8] ONF. (﴾2014)﴿. OpenFlow. Available: https://www.opennetworking.org/sdn-‐

resources/openflow
[9] Cisco. (﴾2014)﴿. OpFlex: An Open Policy Protocol. Available:

http://www.cisco.com/c/en/us/solutions/collateral/data-‐center-‐
virtualization/application-‐centric-‐infrastructure/white-‐paper-‐c11-‐731302.html

[10] B. Salisbury. (﴾2012)﴿. TCAMs and OpenFlow – What Every SDN Practitioner Must
Know. Available: https://www.sdncentral.com/technology/sdn-‐openflow-‐
tcam-‐need-‐to-‐know/2012/07/

[11] Open vSwitch. (﴾2014)﴿. Production Quality, Multilayer Open Virtual Switch.
Available: http://openvswitch.org/

[12] Intel, "Intel® Data Plane Development Kit (﴾Intel® DPDK)﴿," 2014.
[13] P. Bernier. (﴾2014)﴿. SDN OS from ON.Lab is Now Available for Download.

Available: http://www.sdnzone.com/topics/software-‐defined-‐
network/articles/394771-‐sdn-‐os-‐from-‐onlab-‐now-‐available-‐download.htm

[14] The Apache Software Foundation. (﴾2014)﴿. Karaf. Available:
http://karaf.apache.org/

[15] S. Bradner and J. McQuaid. (﴾1999)﴿. Benchmarking Methodology for Network
Interconnect Devices. Available: https://www.ietf.org/rfc/rfc2544.txt

[16] Intel. (﴾2014)﴿. Pktgen version 2.7.7 using DPDK-1.7.1. Available:
https://github.com/pktgen/Pktgen-‐DPDK

[17] PUC-‐Rio. (﴾2014)﴿. Lua. Available: http://www.lua.org/
[18] T. Nadeau and K. Gray, SDN: Software Defined Networks. Sebastopol, CA, USA:

O'Reilly Media, 2013.
[19] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella, "Towards an

elastic distributed SDN controller," presented at the Proceedings of the
second ACM SIGCOMM workshop on Hot topics in Software Defined
Networking, Hong Kong, China, 2013.

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

94

[20] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B.
O'Connor, P. Radoslavov, W. Snow, and G. Parulkar, "ONOS: towards an open,
distributed SDN OS," presented at the Proceedings of the third workshop on
Hot topics in software defined networking, Chicago, Illinois, USA, 2014.

[21] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, "OpenFlow: enabling innovation in campus
networks," SIGCOMM Comput. Commun. Rev., vol. 38, pp. 69-‐74, 2008.

[22] Altor Networks. (﴾2008)﴿. Virtual network firewall for data centres. Available:
http://www.prosecurityzone.com/News_Detail_Virtual_network_firewall_for_da
ta_centres_3584.asp#axzz3KLsGYNm6

[23] M. Ersue, "ETSI NFV Management and Orchestration -‐ An Overview," in IETF,
Vancouver, BC, Canada, 2013.

[24] B. Lantz, B. Heller, and N. McKeown, "A network in a laptop: rapid prototyping
for software-‐defined networks," presented at the Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks, Monterey, California, 2010.

[25] F. M. Facca, E. Salvadori, H. Karl, D. R. Lopez, P. A. Aranda Gutierrez, D. Kostic,
and R. Riggio, "NetIDE: First Steps towards an Integrated Development
Environment for Portable Network Apps," in Software Defined Networks
(EWSDN), 2013 Second European Workshop on, 2013, pp. 105-‐110.

[26] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and D.
Walker, "Frenetic: a network programming language," SIGPLAN Not., vol. 46,
pp. 279-‐291, 2011.

[27] A. Voellmy, H. Kim, and N. Feamster, "Procera: a language for high-‐level
reactive network control," presented at the Proceedings of the first workshop
on Hot topics in software defined networks, Helsinki, Finland, 2012.

[28] F. Facca, E. Salvadori, H. Karl, D. Lopez, P. Aranda, D.Kostic, and R. Riggio,
"NetIDE: First steps towards an integrated development environment for
portable network apps," in The Second European Workshop on Software
Defined Networking (EWSDN'13), Berlin, Germany, 2013.

[29] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, "Composing
software-‐defined networks," in Proceedings of the 10th USENIX conference on
Networked Systems Design and Implementation, Lombard, IL, USA, 2013, pp. 1-‐
14.

[30] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, "Network
Configuration Protocol (﴾NETCONF)﴿," IETF2011.

[31] R. Narisetty, L. Dane, A. Malishevskiy, D. Gurkan, S. Bailey, S. Narayan, and S.
Mysore, "OpenFlow Configuration Protocol: Implementation for the of
Management Plane," in Research and Educational Experiment Workshop
(GREE), 2013 Second GENI, 2013, pp. 66-‐67.

[32] OSGi Alliance. (﴾2014)﴿. OSGi™ - The Dynamic Module System for Java™.
Available: http://www.osgi.org/

[33] The Apache Software Foundation. (﴾2013)﴿. Supported Providers. Available:
https://libcloud.readthedocs.org/en/latest/supported_providers.html

[34] ZABBIX. (﴾2014)﴿. The Enterprise-class Monitoring Solution for Everyone.
Available: http://www.zabbix.com/

[35] Nagios Enterprises. (﴾2014)﴿. Nagios Is The Industry Standard In IT Infrastructure
Monitoring. Available: http://www.nagios.org/

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

95

[36] J. Gabès. (﴾2014)﴿. Shinken. Available: http://www.shinken-‐monitoring.org/
[37] ICINGA. (﴾2014)﴿. ICINGA. Available: https://www.icinga.org/
[38] Zenoss Inc. (﴾2014)﴿. Zenoss User Community. Available: http://www.zenoss.org/
[39] Ganglia. (﴾2014)﴿. Ganglia Monitoring System. Available:

http://ganglia.sourceforge.net/
[40] Stacktach. (﴾2014)﴿. Event-based Monitoring & Billing solution for OpenStack.

Available: https://github.com/rackerlabs/stacktach
[41] HP. (﴾2013)﴿. Healthmon. Available: https://github.com/stackforge/healthnmon
[42] Sealion. (﴾2014)﴿. Quickly Diagnose Problems with you Linux Servers. Available:

https://sealion.com/
[43] Caltech. (﴾2014)﴿. MONitoring Agents using a Large Integrated Services

Architecture. Available: http://monalisa.caltech.edu/monalisa.htm
[44] collectd. (﴾2014)﴿. collectd – The system statistics collection daemon. Available:

https://collectd.org/
[45] StatsD. (﴾2014)﴿. Simple daemon for easy stats aggregation. Available:

https://github.com/etsy/statsd/
[46] Joyent. (﴾2014)﴿. node.js. Available: http://nodejs.org/
[47] Graphite. (﴾2014)﴿. A Highly Scalable Real-time Graphing System. Available:

https://github.com/graphite-‐project/graphite-‐web
[48] vmware. (﴾2014)﴿. vSphere. Available: http://www.vmware.com/products/vsphere
[49] Amazon. (﴾2014)﴿. Amazon CloudWatch. Available:

http://aws.amazon.com/cloudwatch
[50] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, "OpenNetMon: Network

monitoring in OpenFlow Software-‐Defined Networks," in Network Operations
and Management Symposium (NOMS), 2014 IEEE, 2014, pp. 1-‐8.

[51] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, "PayLess: A low cost
network monitoring framework for Software Defined Networks," in Network
Operations and Management Symposium (NOMS), 2014 IEEE, 2014, pp. 1-‐9.

[52] Ye Yu, C. Qian, and X. Li, "Distributed and Collaborative Traffic Monitoring in
Software Defined Networks," presented at the ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking (﴾HotSDN'14)﴿, Chicago, IL, USA,
2014.

[53] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. Madhyastha,
"FlowSense: Monitoring Network Utilization with Zero Measurement Cost," in
Passive and Active Measurement. vol. 7799, M. Roughan and R. Chang, Eds.,
ed: Springer Berlin Heidelberg, 2013, pp. 31-‐41.

[54] OpenStack.org. (﴾2014)﴿. Telemetry API v2 (CURRENT). Available:
http://developer.openstack.org/api-‐ref-‐telemetry-‐v2.html

[55] OpenDaylight.org. (﴾2014)﴿. StatisticsNorthbound. Available:
https://jenkins.opendaylight.org/controller/job/controlller-‐merge-‐hydrogen-‐
stable/lastSuccessfulBuild/artifact/opendaylight/northbound/statistics/target/
site/wsdocs/resource_StatisticsNorthbound.html

T-‐NOVA | Deliverable D4.01 Infrastructure Virtualisation and Management

© T-‐NOVA Consortium

96

11. ADDITIONAL CONTRIBUTORS

CRAT -‐ V. Suraci, F. Cimorelli, R. Baldoni

