
T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   | P a g e  
 

1 

 

 

 

 

 

  

Deliverable D3.41 

Service Provisioning, 
Management and Monitoring – 
Interim  

  

Editor Jordi Ferrer Riera (i2CAT) 

Contributors J. Carapinha, P. Neves, M. Dias, B. Parreira (PTIn), M. McGrath, 
G. Petralia, V. Riccobene (INTEL), P. Paglierani (ITALTEL), J. 
Batallé (i2CAT), M. Di Girolamo, P. Magli, L. Galluppi, G. 
Coffano (HP), A. Ramos, J. Melián  (ATOS), P. Harsh (ZHAW) 

Version 1.0 

Date December 31st, 2015 

Distribution PUBLIC (PU) 

Ref. Ares(2016)2347437 - 20/05/2016



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   2| P a g e  

Executive Summary 

The Orchestrator is the core sub-system of the T-NOVA Architecture, which has been 
mentioned several times. From now on, such core sub-system will be identified as 
TeNOR.  

TeNOR is the name adopted in order to strengthen the potential outreach of the 
open-source system, once it is released during Y3. It was selected by the General 
Assembly of the project.  

This deliverable provides an interim report of the developments done in terms of 
service management, monitoring, and provisioning in the T-NOVA orchestrator, in 
the context of task T3.4, which at the same time is integrating the developments 
produced within the rest of the work package three tasks.  

In essence, this document contains a brief description of TeNOR, and all its internal 
components, i.e. micro-services. Due to its interim nature, not all the micro-services 
are finished, thus the manuscript only reports the current status of each one.  

The key takeaways of this deliverable are:  

• Micro-service based architecture for the T-NOVA Orchestrator, developed 
within T3.4, and which integrates the interfaces (T3.1), the infrastructure 
repository (T3.2), and the service mapping (T3.3) outcomes.  

• TeNOR as the elected branding name for the software system released within 
work package three.  

• Technologies selected for the implementation of all the micro-services, the 
catalogues, the repositories, and all other tools composing the TeNOR system 

• Current status of the data models utilized in the system 
• Sequence diagrams of the most important TeNOR operations and 

interactions with other components, i.e. service provisioning and service 
monitoring 

  



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   3| P a g e  

Table of Contents 

1. INTRODUCTION ........................................................................................................ 6	

1.1. READING THIS REPORT ...................................................................................................................... 7	

2. ORCHESTRATOR MICRO-SERVICES ARCHITECTURE ............................................ 8	

2.1. WHAT ARE MICRO-SERVICES ............................................................................................................ 8	
2.2. WHY MICRO-SERVICES ...................................................................................................................... 8	
2.3. TENOR’S ARCHITECTURE .................................................................................................................. 9	
2.4. DETAILS ON IMPLEMENTATION OF EACH MICRO-SERVICE ............................................................ 9	

2.4.1. NS Manager .......................................................................................................................... 10	
2.4.2. NS Catalogue ....................................................................................................................... 12	
2.4.3. NS Provisioning ................................................................................................................... 12	
2.4.4. Service mapping .................................................................................................................. 14	
2.4.5. NS Monitoring ...................................................................................................................... 14	

2.5. SLA ENFORCEMENT ........................................................................................................................ 15	
2.6. VNF MANAGER ............................................................................................................................... 16	
2.7. VNF CATALOGUE ............................................................................................................................ 16	
2.8. VNF MONITORING ......................................................................................................................... 17	
2.9. VNF PROVISIONING ....................................................................................................................... 18	
2.10. AUXILIARY SERVICES ..................................................................................................................... 18	

2.10.1. Management GUI ............................................................................................................. 18	
2.10.2. VNFD Validator ................................................................................................................. 18	
2.10.3. NSD Validator .................................................................................................................... 18	
2.10.4. HOT Generator .................................................................................................................. 19	
2.10.5. Gatekeeper .......................................................................................................................... 19	
2.10.6. expression-evaluator ....................................................................................................... 20	

3. CATALOGUES AND REPOSITORIES ...................................................................... 21	

3.1. CATALOGUES ................................................................................................................................... 21	
3.1.1. VNF catalogue ..................................................................................................................... 21	
3.1.2. NS catalogue ........................................................................................................................ 21	

3.2. REPOSITORIES .................................................................................................................................. 21	
3.2.1. Provisioning repositories .................................................................................................. 21	
3.2.2. Monitoring repositories ..................................................................................................... 22	

4. PROVISIONING WORKFLOW ................................................................................ 23	

4.1. PROVISION OF A NETWORK SERVICE ............................................................................................ 23	

5. MONITORING WORKFLOW .................................................................................. 25	

5.1. PARAMETER SUBSCRIPTION ............................................................................................................ 25	
5.2. PARAMETER READINGS ................................................................................................................... 26	

6. INTERACTING WITH TENOR ................................................................................. 27	

6.1. CONTEXT .......................................................................................................................................... 27	
6.2. THE WORKFLOW .............................................................................................................................. 27	

7. CONCLUSIONS AND FUTURE WORK ................................................................... 29	



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   4| P a g e  

8. ACRONYMS............................................................................................................. 30	

9. REFERENCES ........................................................................................................... 32	

ANNEX A TENOR BRANDING ................................................................................... 34	

ANNEX B TENOR OVERALL ARCHITECTURE ........................................................... 36	

ANNEX C TENOR NSD CURRENT VERSION ............................................................. 39	

ANNEX D TENOR VNFD CURRENT VERSION .......................................................... 42	

ANNEX E TENOR SUPPORTED REQUESTS (EXAMPLE) ........................................... 45	

	

  



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   5| P a g e  

Figures 

Figure 1-1: The T-NOVA Orchestrator Architecture, simplified. .............................................. 6	
Figure 2-1: Gemfile: Dependencies declaration .......................................................................... 10	
Figure 2-2: NS Manager configuration file ................................................................................... 11	
Figure 2-3: The UML Sequence Diagram documenting the integration of the WICM 
with TeNOR. .............................................................................................................................................. 13	
Figure 2-4: TeNOR NS Provisioning micro-service internal structure ................................ 13	
Figure 2-5: Service Mapping micro-service's UML Sequence Diagram. ............................ 14	
Figure 2-6: SLA enforcement sequence diagram ....................................................................... 16	
Figure 2-7: Registering a new service in Gatekeeper. ............................................................... 19	
Figure 2-8: An example of a workflow using the Gatekeeper micro-service. ................. 20	
Figure 4-1: Network Service provisioning's UML Sequence Diagram. ............................... 23	
Figure 5-1: Parameter subscription UML Sequence Diagram. .............................................. 25	
Figure 5-2: Parameter readings' UML Sequence Diagram. .................................................... 26	
Figure 6-1: The UML Sequece Diagram expalining how the Marketplace interacts with 
TeNOR. ........................................................................................................................................................ 28	
Figure 9-1: TeNOR Logo ...................................................................................................................... 34	
Figure 9-2: TeNOR Logo Rationale .................................................................................................. 34	
Figure 9-3: Postman Example for TeNOR Requests .................................................................. 45	

  



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   6| P a g e  

1. INTRODUCTION 

Following the previous WP3 deliverable objectives, the primary goal of Task 3.4, 
entitled Services Provisioning, Management and Monitoring, is to implement the T-
NOVA Orchestrator, from now on called TeNOR1. The TeNOR name was decided by 
the consortium GA in the meeting held in Limassol, Cyprus during Y2 by means of a 
closed voting as expressed in the Grant Agreement.  

TeNOR is the system being developed in WP3, which will acquire and consolidate the 
outcomes of the different WP3 tasks, being T3.4 the major contributor to the system.  

In terms of functionalities, as previously expressed in T-NOVA Deliverables D2.22 [1] 
and D3.01 [2], TeNOR is one of the core components of the architecture. It is 
responsible for Network Services (NSs) and virtual network functions lifecycle 
management operations over distributed and virtualized network/IT infrastructures. 
In fact, TeNOR is focused on addressing two of the most critical issues related to NFV 
operational environments:  

• Automated deployment and configuration of NSs/VNFs;  
• Control and monitoring of networking and IT resources for VNFs hosting 

Figure 1-1 represents a simplified view of some of the T-NOVA Orchestrator (TeNOR) 
modules and the other sub-systems having interfaces with it. Refer to Deliverable 
D3.1 [3] for a complete specification of the interfaces utilized in order to 
communicate the different modules.  

 
Figure 1-1: The T-NOVA Orchestrator Architecture, simplified. 

                                                   
1 For further details on the TeNOR branding name refer to Appendix A.  



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   7| P a g e  

1.1. Reading this Report 

Considering the above depicted simplified architecture, this report contains the 
current implementation status of the different TeNOR components.  

It is worth to remark at this point that this deliverable is meant to be an interim 
report, and thus it is not a software prototype release. In this sense, the report avoids 
to include specific software deployment instructions and/or software configurations, 
since this will be provided at the end of the WP3, during Y3.  

Therefore, this report documents this work in the following chapters: 

• Chapter 2, describes the micro-services of which TeNOR is composed, where 
the motivation on utilizing micro-services and their different functionalities is 
described; 

• Chapter 3, describes the Catalogues and Repositories considered within 
TeNOR, where all the stored information of the system is permanently stored; 

• Chapter 4, describes the designed NS Provisioning workflows; where the 
sequence diagram of the TeNOR components utilized for NS provisioning is 
presented; 

• Chapter 5, similarly describes the designed NS Monitoring workflow; where 
the sequence diagram of the TeNOR components utilized for NS monitoring 
is presented; 

• Chapter 6, with the high-level description of the interaction between the 
Marketplace and TeNOR.  

• Chapter 7, with the Conclusions; 
• Chapter 8, with the list of used Acronyms. 
• Chapter 9, with the used References; 

Annexes detailed supporting information for the deliverable. These annexes are: 

• Annex A, details on the TeNOR branding name and the new designed logo; 
• Annex B, the detailed TeNOR updated functional architecture; 
• Annex C and D, the current XSD and JSON formats for the descriptors 

(catalogues and validators); 
• Annex E, examples on how different requests can be posted on the TeNOR 

system. 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   8| P a g e  

2. ORCHESTRATOR MICRO-SERVICES ARCHITECTURE 

This section justifies our option for micro-services as a base for TeNOR’s architecture, 
as well as it contains a detailed description of each micro-service, together with the 
current status of its implementation, since this deliverable is considered to be an 
interim report, and not the final outcome of Task T3.4.  

2.1. What are micro-services 

Micro-services [4] are “an approach to distributed systems that promote the use of 
finely grained services with their own lifecycles, which collaborate together”. 

One micro-service usually provides one business-valued feature (as opposed to a 
number of them), interacting with other micro-services usually over HTTP and in a 
REST-based architecture style. Due to this more focused and simple approach, Micro-
services are usually seen as being much more agile to develop and deploy. 
Furthermore, a single micro-service can evolve (in terms of scalability, for instance) 
independently of the other to which it provides or from which it consumes services. 

2.2. Why micro-services 

Micro-services [4] emerged when the previous related generation, Service-Oriented 
Architectures (SOA), began to fail to hold to its promises of making enterprise 
software development more agile [5]: basically, a service in a SOA does a lot of 
things, which implies that there are less of those services to manage, but evolving 
each one is slower then evolving a Micro-service, which does fewer things (preferably 
only one) but need more other micro-services to execute the same process. 

Furthermore, the evolution from a purely micro-service based into a SOA based 
architecture is easier than the other way around. 

Therefore, we are taking advantage of the faster approach that is developing micro-
services, without compromising the future, in case a more traditional and SOA-like 
approach is needed. This justification is also provided in Deliverable D3.1 [3]. 

Furthermore, from a long-term perspective, the use of micro-services enables high 
modularity of the orchestration system. Although compromising overall complexity of 
the system in terms of integration, high modularity improves the potential 
survivability of the system, since it enables rapid updates and changes into individual 
micro-services, as long as the interfaces between them remain untouched.  

Even, in the case of a sudden emergence of a novel technology for specific tasks, e.g. 
databases, the orchestration system could support a change in this component 
without the need to make any other modification to the rest of the micro-services.  



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   9| P a g e  

2.3. TeNOR’s Architecture 

Initial TeNOR’s architecture was contained in Deliverable D3.01 [2]. Since that, the 
architecture has been refined in order to accommodate the different workflows 
identified. TeNOR’s architecture is depicted in detail Annex B.  

In terms of software functionality, it is still a two-level functional architecture, split 
into a set of micro-services addressing the Network Service lifecycle management, 
and a set of micro-services addressing the Virtual Network Function lifecycle 
management. These sets of micro-services are complemented with a set of 
Catalogues and Repositories, fundamental for the permanent maintenance of 
information, as well as with a set of supporting micro-services, which provide 
enriched functionalities to TeNOR, such as logging, internal status monitoring, or 
even data model validations.  

From the functional perspective, apart from the WICM component included in the 
orchestration system, there are no further major changes in comparison to the 
functional architectures presented both in WP2 and WP3 during Y1.  

2.4. Details on implementation of each micro-service 

This sub-section describes each of the designed and implemented micros-services, 
and its relationship with the remaining ones. Not all the micro-services are finished. 
Some of them are work-in-progress at the moment of writing this manuscript.  

In general, the micro-services have been written using Ruby [6]. In detail, they run 
under Ruby 2.1.  

Therefore, TeNOR utilizes also a set of Ruby Gems to be executed. Those Ruby Gems 
can be seen as dependencies of the micro-services required to run.  

• Sinatra, Ruby framework 
• Thin, Web server 
• json, JSON specification 
• Sinatra-contrib, Extensions for Sinatra 
• Nokogiri, XML parser 
• JSON-schema, JSON schema validator 
• Rest-client, HTTP and REST client 
• Yard, Documentation generator tool 
• rerun, Restarts the app when a file change (used in development 

environment) 

Figure below depicts a generic example of a micro-service declaring its dependencies 
of the different Gems.  



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   10| P a g e  

 
Figure 2-1: Gemfile: Dependencies declaration 

In this case, it can be seen the set of required Gems and the versions in order to 
successfully run the given micro-service. In this sense, in order to download and 
install all the Gems required, it is needed to run the following command 

bundle install 

Each micro-service documentation is generated with yardoc, and can be executed 
with a rake task 

rake yard 

In order to visualize the documentation, there exists the need to start the server to 
browse the generated docs 

yard server 

Finally, in order to start the different micro-services, there exists the need to execute 
the following command 

rake start 

2.4.1. NS Manager 

This micro-service is mostly a façade [7] to all the other micro-services: TeNOR’s 
clients access it (see [8]) and then, depending on the request, it forwards it to the 
micro-service that will deliver the requested service.  

This option was chosen mainly to simplify TeNOR clients’ work, which use only one 
URI for most of the API calls. Details on the offered interface by the NS Manager can 
be found in deliverable D3.1 [3].  



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   11| P a g e  

It is within the NS Manager that those users belonging to the Administrator role may 
configure all the micro-services the platform will provide. 

Functionalities of the NS Manager are limited to act as an internal coordinator for the 
different micro-services as well as the coordinator of the interactions between TeNOR 
and the external systems (e.g. Marketplace). Figure below depicts an example 
configuration file for the NS Manager. 

 
Figure 2-2: NS Manager configuration file 

Apart from the generic information such as the URI where the interface is published, 
and the environment where the micro-service is deployed (i.e. production, or 
development), the configuration file also contains information about the logstash 
address, the gatekeeper credentials, and the URIs and ports of the micro-services 
registered into the NS Manager.  

Further details of the current status of the implementation can be found in the 
private repository. During Y3 this micro-service will be released into the open GitHub 
project account.  

http://stash.i2cat.net/projects/TNOV/repos/wp3/browse/WP3/orchestrator_ns-
manager 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   12| P a g e  

2.4.2. NS Catalogue 

This micro-service manages the Catalogue of Network Services, receiving requests 
from the Marketplace for both registration of a new NS and updating already 
registered micro-services. 

NS Descriptors are described in JSON, and are stored in a MongoDB [9] (document-
oriented) NoSQL database, taking advantage of the dynamics that this kind of NoSQL 
databases possesses in managing documents with a flexible structure. 

Currently, at the time of writing the deliverable, the NS descriptor is not on its final 
version. It contains most of the fundamental parts to enable simple provisioning, and 
monitoring integrated within all the TeNOR micro-services.  

It is worth to mention that only valid NS Descriptors go into the Catalogue.  

The version utilized by the Catalogue and the validator micro-service can be found in 
Annex C.  

2.4.3. NS Provisioning 

This micro-service is responsible for the provisioning of the different Network 
Services available in the NS Catalogue.  

From the general perspective, the NS Provisioning is composed of the following 
phases (refer to Figure 2-3):  

1. If required, TeNOR creates a connectivity resource in the WICM, by means of 
sending the required information, such as the identifier, the Network Access 
Point, or the descriptor). It receives back the corresponding VLAN identifiers 
for both the ingress and egress traffic of the connection created.  

2. TeNOR starts the provisioning process, which is materialized by means of a 
HEAT orchestration template to be sent to the VIM, which is the responsible 
to actually instantiate the different components expressed in the template.  

3. After that, TeNOR updates the connectivity resource created before in order 
to adapt the traffic redirections to the instances created (both VMs and virtual 
networks) by the previous call.  

This process enables the completely automated end-to-end service provisioning 
including one or more NFVI-PoPs and the transport network managed by the WICM, 
although, in this phase, we have considered only very simple Virtual Links (VLs) and 
Virtual Network Function Forwarding Graphs (VNFFGs). These simple versions of VLs 
and VNFFGs will be improved, when we interact with the Service Forwarding Graph 
(SFG) that is being developed in the WP4 ([10]). 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   13| P a g e  

 
Figure 2-3: The UML Sequence Diagram documenting the integration of the WICM with 
TeNOR. 

However, from the detailed perspective, the second step (create_ns_instance(HOT)) 
involves not only one but several core micro-services in the process. Details of the 
designed NS Provisioning workflow and the interactions between the different 
TeNOR micro-services are detailed in Section 4.  

Detailed status of the micro-service can be found in the corresponding repository.  

http://stash.i2cat.net/projects/TNOV/repos/wp3/browse/WP3/orchestrator_ns-
provisioning 

Figure below depicts an example of the folder structure for the micro-service 

 
Figure 2-4: TeNOR NS Provisioning micro-service internal structure 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   14| P a g e  

 

2.4.4. Service mapping 

This micro-service encapsulates the optimization algorithms that have been designed 
and developed in Task 3.3. 

Its integration with the remaining components of TeNOR is shown in Figure 2-5. 

 
Figure 2-5: Service Mapping micro-service's UML Sequence Diagram. 

Basically, every time there is a new request to instantiate a Network Service, the 
Service Mapping is called, to determine which infrastructure to be used for that 
instance, i.e. on which infrastructure resources to deploy the VNFs composing the NS.  

In order to achieve this, the Service Mapping requires communication with both the 
Infrastructure Repository and the NS Catalogue. Basically, it uses the information 
available in the Infrastructure Repository (to know which resources are free or being 
used), as well as the NS Catalogue (to know exactly which VNFs the Network Service 
is composed of).  

It then creates the internal data structures needed to calculate the optimal solution 
and calculates this solution, returning an ordered list of possible PoPs (first is the 
best) where that service can be deployed.  

Finally, some performance indication about the service mapping is stored in the 
micro-service; e.g. received requests, successful mappings, performance time, etc. 
This information is showed later on the Management UI.  

2.4.5. NS Monitoring 

This micro-service is responsible of managing the monitoring of the different service 
metrics within the TeNOR system. Considering the characteristics of the NSs, which 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   15| P a g e  

are composed of VNFs, and due to the large amount of data to be monitored (i.e. 
transmitted from the VIM towards the Orchestrator and stored in the data 
repositories), we have designed a publish-subscribe mechanism.  

Thus, for each NS instance that is provisioned, the NS monitoring subscribes the 
monitoring parameters defined in the NSD. Further details on the complete sequence 
diagram for NS monitoring are provided later in Section 5.  

Finally, in order to store all the acquired and calculated data, the NS Monitoring is 
responsible of filling and managing the so-called ns-monitoring repository. The ns-
monitoring repository is basically a Cassandra database storing all the information 
related to the subscribed metrics for each one of the instantiated NSs. 

Considering Cassandra is an excellent tool for time series-based databases, the 
schema of the database utilized for storing the values of the metrics can be found in 
the repository in 

http://stash.i2cat.net/projects/TNOV/repos/wp3/browse/WP3/orchestrator_ns-
monitoring-repository/db/schema.txt 

In essence, the model is as follows 

CREATE KEYSPACE tnova_monitoring WITH REPLICATION = { 'class' : 'SimpleStrategy', 
'replication_factor' : 1 }; 

 

use tnova_monitoring; 

 

CREATE TABLE nsmonitoring ( instanceId text, date int, metricName text, value text, 
primary key(instanceId, metricName, date)); 

There is one common keyspace, with replication factor, automatically managed by 
the Apache Cassandra toolset. Within this space, used by only one service provider, 
as T-NOVA requirements were based on single-provider, each entry represents a 
value of a given metric, identified by the ID of the service instance (not the ID of the 
NSD), the name of the metric, the value of the metric, and the timestamp / date of 
the metric.  

Thus, the monitoring stores metric value entries, which can later on be easily queried 
and joined by means of the service instance ID and the metric name.  

2.5. SLA Enforcement 

At the time of writing this deliverable, this micro-service is the only one on this list 
that is still being designed and developed, which means will be integrated in the final 
release of TeNOR (due in Y3). It will concentrate the actions TeNOR will have to take 
to keep the agreed SLAs, as indicated by the Marketplace when instantiating the 
service.  

Taking into consideration the SLA thresholds, the actions that could be taken imply 
for example being able to scale a VNF composing the NS, scale the connections 
between VNFs, or even scaling both.  



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   16| P a g e  

Figure below depicts the internal SLA enforcement mechanism sequence diagram.  

 
Figure 2-6: SLA enforcement sequence diagram 

Basically, the values of the metrics get the NS Monitoring micro-service through the 
NS Manager. The expression evaluator is responsible to analyse the formulas and 
provide the result for all the metrics at the service level. These obtained metrics 
(calculations in the diagram) are then stored in the corresponding data repository, 
and analysed by the SLA enforcement component.  

In detail, SLA and scaling will be included in the last WP3 deliverable in Y3, 
deliverable D3.4, which will contain the final TeNOR prototype release.  

The current status of the micro-service can be found in the software repository 

http://stash.i2cat.net/projects/TNOV/repos/wp3/browse/WP3/orchestrator-sla-
enforcement 

2.6. VNF Manager 

Like the NS Manager (see above), this micro-service acts as mostly a façade [7] to all 
the micro-services that deal with a VNF at a time. 

The VNF Manager passes the right micro-service the requests it receives, and 
orchestrates their answers back to the requester. 

Besides being a façade, the VNF Manager has been designed with the possibility of 
being replaced by the specific VNF Manager that may come with certain VNFs, a 
feature where the micro-service based architecture will shine. This feature will be 
developed until the end of the task, in April, 2016. 

The current status of the micro-service can be found in the software repository. 

http://stash.i2cat.net/projects/TNOV/repos/wp3/browse/WP3/orchestrator_vnf-
manager 

2.7. VNF Catalogue 

This micro-service manages the Catalogue of Virtual Network Functions (VNFs), 
receiving VNF Descriptors (VNFDs) from the NF Store for both registration of a new 
VNF and updating an already registered VNF. The interaction of updating a VNF 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   17| P a g e  

creates a versioned document, this way it is possible to keep tracking of what were 
the changes that were introduced to update an existing VNFD. 

VNFDs are JSON format documents that are stored in a MongoDB [8] (document-
oriented) NoSQL database, taking advantage of the dynamics that this kind of NoSQL 
databases possesses in managing documents with a flexible structure. 

At the time of writing this deliverable, the VNFD is not on its final version. It contains 
most of the fundamental parts to enable provisioning and monitoring, integrated 
with all the other relevant TeNOR micro-services. 

Only valid VNF Descriptors go into the Catalogue and this validation is done by the 
VNFD Validator micro-service. 

As an example, the source code below depicts the VNF model ruby class we utilize for 
the VNF Catalogue micro-service.  

module BSON 
 class ObjectId 
  def to_json(*args) 
   to_s.to_json 
  end 
 
  def as_json(*args) 
   to_s.as_json 
  end 
 end 
end 
 
class Vnf 
 include Mongoid::Document 
 include Mongoid::Timestamps 
 include Mongoid::Pagination 
 include Mongoid::Versioning 
 
 field :name, type: String 
 field :vnf_manager, type: String 
 field :vnfd, type: Hash 
 
 validates :name, :vnfd, :presence => true 
end 

 

The current model can be seen in Annex D.  

The current status of the micro-service can be found in the software repository 

http://stash.i2cat.net/projects/TNOV/repos/wp3/browse/WP3/orchestrator_vnf-
catalogue 

2.8. VNF Monitoring 

This micro-service is responsible for managing the monitoring at the VNF level. 

Whenever a new VNF instance is created, as a consequence of a request for a new NS 
instance coming from the Marketplace, the relevant (to the service) monitoring 
parameters are passed to the VNF Monitoring (from the NS Monitoring micro-
service, see above) and are subscribed in the VIM Monitoring Framework (see [9]). 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   18| P a g e  

As a consequence of a successful subscription, readings of that parameter start 
reaching TeNOR. These readings are stored in the VNF Monitoring Repository, the 
related NS instance identified, and the reading is passed to the NS Monitoring 
micro-service (see above). 

See also Section 5 about the monitoring workflow below.  

The current status of the micro-service can be found in the software repository 

http://stash.i2cat.net/projects/TNOV/repos/wp3/browse/WP3/orchestrator_vnf-
monitoring 

2.9. VNF Provisioning 

This micro-service is responsible for the provisioning of the different VNFs that 
compose a given NS, that are available in the VNF Catalogue. 

The provisioning of each VNF is done by dynamically generating a HEAT 
Orchestration Template (HOT), using the HOT Generator micro-service (see below). 
This HOT file is then sent to the VIM, which is the responsible to actually instantiate 
the different components expressed in the template. 

The current status of the micro-service can be found in the software repository 

http://stash.i2cat.net/projects/TNOV/repos/wp3/browse/WP3/orchestrator_vnf-
provisioning 

 

2.10. Auxiliary services 

This section describes the micro-services that were needed but that do not directly 
represent a business value. 

2.10.1. Management GUI 

TeNOR provides a Graphical User Interface (GUI) tool that allows authorized user(s) to 
manage it. This is being a work in progress, which is expected to be completed by the 
end of T3.4 during Y3 of the project.  

2.10.2. VNFD Validator 

This micro-service is called by the VNF Catalogue micro-service whenever a new 
VNF, or a new version of one existing, is provided by the NFStore. 

It uses a JSON schema to validate the content of the VNF Descriptor (in JSON). 
TeNOR also supports VNF Descriptors in XML, using an XML schema for the 
validation. 

2.10.3. NSD Validator 

This micro-service is called by the NS Catalogue micro-service whenever a new 
Network Service, or a new version of one existing, is provided by the Marketplace. 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   19| P a g e  

Like the VNFD Validator (see above), it uses a JSON schema to validate the content 
of the NS Descriptor (in JSON). TeNOR also supports NS Descriptors in XML, using an 
XML schema for the validation. 

2.10.4. HOT Generator 

This micro-service receives, from the VNF Provisioning, the VNFD relative to a single 
VNF along with the T-NOVA deployment flavour and generates the Heat 
Orchestration Template (HOT) that is necessary for the VIM (OpenStack). 

2.10.5. Gatekeeper 

This micro-service implements TeNOR’s Athentication and Authorization mechanism 
that allows simple actions such as user-registration/authentication and inter-services 
authorization based on tokens. 

The registration of a new service is ilustrated in Figure 2-7 (registering a new user is a 
similar flow). 

 
Figure 2-7: Registering a new service in Gatekeeper. 

The workflow of authenticating and authorizing the usage of a service is shown in 
Figure 2-8. 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   20| P a g e  

 
Figure 2-8: An example of a workflow using the Gatekeeper micro-service. 

2.10.5.1.  Using a ruby gem to access the micro-service 

In order to further abstract the usage of the micro-service, we have built a ruby gem, 
sinatra-gkauth-gem. 

Using this generated gem the gatekeeper functionalities can be directly utilized by 
the Sinatra framework, which enables the REST-based communication of the different 
micro-services.  

2.10.6. expression-evaluator 

This micro-service is called by the NS Provisioning micro-service with the 
mathematical expression that allows the calculation of the monitoring parameters at 
the NS level. The expression is validated and ‘compiled’ to be later used in calculating 
the values of those parameters, whenever new readings are provided. 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   21| P a g e  

3. CATALOGUES AND REPOSITORIES 

This section describes the options taken when designing TeNOR’s catalogues and 
repositories. 

We separate the two because they are very different in nature, both in the kind of 
data that they have to store, and the frequency of readings and writings, among 
other characteristics.  

3.1. Catalogues 

Catalogues hold data describing the main entities that can be instantiated. 

3.1.1. VNF catalogue 

This catalogue holds the successfully on-boarded VNF descriptors, submitted by the 
NFStore. 

3.1.2. NS catalogue 

This catalogue holds the successfully on-boarded NS descriptors, submitted by the 
Marketplace. 

3.2. Repositories 

Repositories hold data resulting from instantiating the entities that are part of the 
Catalogues. 

We have chosen two different kinds of databases for TeNOR’s repositories. 

3.2.1. Provisioning repositories 

Provisioning repositories hold all the information resulting from a successful 
provisioning of a Network Service and all its related components: VNFs, VNFFGs, etc. 

For this kind of repository we initially used the PostgreSQL [13] relational database. 
The reason for this option was that the information we had to store was distributed 
into related tables, the optimal use case for a Relational Database. 

Since service instances are not created every second, writings in these repositories 
are fairly distributed in time, while readings are rather frequent. 

However, we finally opted for utilizing a NoSQL database, i.e. MongoDB, due to the 
constant changes in the NSDs and VNFDs during the development stage, which 
implied several changes in the relational database model.  

The source code of the model follows, although the complete repository code can be 
found in the repository.  

module BSON 
  class ObjectId 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   22| P a g e  

    def to_json(*) 
      to_s.to_json 
    end 
    def as_json(*) 
      to_s.as_json 
    end 
  end 
end 
 
module Mongoid 
  module Document 
    def serializable_hash(options = nil) 
      h = super(options) 
      h['id'] = h.delete('_id') if(h.has_key?('_id')) 
      h 
    end 
  end 
end 
 
class NsInstance 
  include Mongoid::Document 
  include Mongoid::Timestamps 
  include Mongoid::Attributes::Dynamic 
  field :vnfs, type: Array 
 
  field :nsr_instance, type: Array 
  field :ns_id, type: String 
  field :status, type: String 
  field :version, type: String 
  field :vnfrs, type: Array 
  field :marketplace_callback, type: String 
 
end  

3.2.2. Monitoring repositories 

Monitoring repositories hold all the information resulting from monitoring the 
provisioned Network Services  

For this kind of repository we have used the Cassandra [10] NoSQL (column 
oriented) database. The reason for this option was that the information we had to 
store (monitoring data) is better modelled as columns (as opposed to rows in a SQL 
database). The information to be retrieved is a series of (monitoring) values, which, if 
stored in a SQL database, would imply first to retrieve all the rows and then choose 
the relevant column. By using a column-oriented database, data is store in columns, 
therefore accelerating its retrieval. 

These repositories will have to support a high frequency of writings, with monitoring 
data coming in to be stored. This data will arrive in small chunks (the value read and 
some more metadata). Readings, on the other hand, will be less frequent, but made 
in chunks: typically, a set of (parameter) readings between two time stamps. 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   23| P a g e  

4. PROVISIONING WORKFLOW 

This section describes the provisioning workflow whenever a new instance of a 
Network Service is requested. 

4.1. Provision of a Network Service 

Provisioning a Network Service implies provisioning every VNF that compose that 
service, as well as the connections between them. 

Figure 4-1 shows a UML Sequence Diagram of a typical NS provisioning request. 

 
Figure 4-1: Network Service provisioning's UML Sequence Diagram. 

The sequence of messages is the following: 

1. Whenever a new NS instantiation request reaches TeNOR coming from the 
Marketplace, it is passed to the NS Provisioning micro-service (see 2.4.3. NS 
Provisioning, above); 

2. The NS Provisioning micro-service grabs the NS id from that request and 
grabs its data from the NS Catalogue micro-service (see 2.4.2. NS Catalogue 
above); 

3. With that information, merged with the request information, the NS Mapping 
micro-service (see 2.4.4. Service mapping, above) is called; which returns a list 
of possible PoP’s where to allocate the required resources, sorted from best to 
worst; 

4. With the PoP location, a loop is started and each VNF that is part of the NS is 
then passed to the VNF Manager, for it to provision them. With the 
instantiation data is received, the VNF repositories are filled, as well as the NS 
Repositories; 

5. For each successful NS instantiation request an SLA is created (through the 
SLA Enforcement micro-service, see 2.5. SLA Enforcement, above) and the 
necessary monitoring parameters are subscribed (through the NS 
Monitoring micro-service, see 2.4.5. NS Monitoring, above). 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   24| P a g e  

After this the Marketplace has all the data on the new NS instance available, namely 
in terms of monitoring data (see below). 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   25| P a g e  

5. MONITORING WORKFLOW 

This section describes the monitoring workflow that allows TeNOR to dynamically, for 
each NS instance that is provisioned, follow its behaviour and adjust it according to 
the agreed SLA. Furthermore, monitoring data is also made available to the 
Marketplace. 

Since monitoring data, collected at the VNF component level, can be overwhelming 
in volume, we opted for a publish/subscribe schema, such that only the required 
monitoring parameters are received. 

TeNOR is also interested in monitoring the NS instance performance end-to-end, 
given that the (customer) agreed SLA is at that level. We therefore map the collected, 
VNF Component level monitoring data to service level monitoring data in this 
workflow. 

The remaining of this section further details the two main processes of this workflow: 
the parameter subscription and the parameter readings. 

5.1. Parameter subscription 

As described above, given the (high) volume of monitoring data that is usually 
available, we have decided to constrain a bit the amount that we want to receive. 
Therefore, we have opted to use a publish-subscribe mechanism to restrict that 
amount. This section describes the subscription part. 

The UML Sequence Diagram describing the subscription of a monitoring parameter is 
shown in Figure 5-1. 

 
Figure 5-1: Parameter subscription UML Sequence Diagram. 

The sequence of messages is the following: 

1. For each NS instance that is successfully provisioned (see section 4. 
Provisioning workflow, above) the NS Provisioning micro-service (see 2.4.3. 
NS Provisioning, above) asks the NS Monitoring micro-service (see 2.4.5. NS 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   26| P a g e  

Monitoring, above) to subscribe the monitoring parameters that are specified 
in the NSD; 

2. Every VNF instance that is part of this NS instance is then passed to the VNF 
Manager micro-service (see 2.6. VNF Manager, above) 

3. The VNF Manager finds out which parameters are needed and asks the VNF 
Monitoring micro-service (see 2.8. VNF Monitoring, above) to subscribe them 
on the VIM Monitoring Framework [9]. 

This finishes the subscription sequence. It’s only from this moment on that the 
subscribed parameters may reach TeNOR and start being processed. The subscription 
is a callback URL that will later be called whenever there’s a reading to report. 

5.2. Parameter readings 

This section explains how (monitoring) parameter readings reach TeNOR and how 
they get transformed from VNF-based reading into a NS-based reading. 

The UML Sequence Diagram that shows this workflow is shown in Figure 5-2. 

 
Figure 5-2: Parameter readings' UML Sequence Diagram. 

The sequence of messages is the following: 

1. Whenever the VIM Monitoring Framework has a parameter reading to 
report, it calls the URL provided in the subscription phase (see sub-section 5.1. 
Parameter subscription, above) with that data; 

2. The NS Manager micro-service, being a façade, receives the request and 
passes its data to the VNF Manager micro-service, another façade (this one 
exists due to the possibility of the VNFM being proposed together with a (set 
of) VNF(s)), which passes to the VNF Monitoring micro-service (see 2.8. VNF 
Monitoring, above) for storing in the VNF Monitoring Repository; 

3. From the VNF Component ID that comes with the data reading, the VNF 
Manager gets the NS ID and the VNF ID from the VNF Provisioning micro-
service, which is passed back to the NS Manager; 

4. The NS Manager micro-service passes these IDs to the NS Monitoring 
micro-service, which allows it to store the reading data (and the 
corresponding relationships) in the NS Monitoring Repository. 

The step following these, which is still part of the on-going work, will be to check the 
relevant SLA and see if the collected data is within what is acceptable, or start a 
migration or scaling process. 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   27| P a g e  

6. INTERACTING WITH TENOR 

This section briefly describes how TeNOR can be accessed from the Marketplace, one 
of the systems in T-NOVA’s architecture. 

6.1. Context 

In T-NOVA there is a constant feedback between the Marketplace and TeNOR. The 
Marketplace needs an orchestrator in the lower layers to provision, run and manage 
the network services that are defined in its catalogue since it is totally unaware of the 
infrastructure below, but TeNOR is. In exchange, TeNOR provides back information 
related to the running instances, updated status and monitoring data so the 
Marketplace can show its users how the instances are running and bill them 
accordingly. 

6.2. The workflow 

The workflow between the Marketplace and TeNOR, illustrated in Figure 6-1, is as 
follows. 

A Function Provider (FP) that wants to upload a VNF to T-NOVA accesses the 
Marketplace and defines it by means of a form based on the ETSI VNFD information 
model: this will be the T-NOVA VNFD, that is stored, along with the VNF images in 
the NF Store, where TeNOR parses and runs tests over the VNFD and marks the new 
VNF as ‘available’ on success. 

The NSs the provider offers in the Business Service Catalogue are created by means 
of the combination of the available functions in the NF Store. The form to define the 
NS in the Marketplace follows the ETSI NSD specifications as well. Again, the 
Marketplace interacts with TeNOR to store a copy of this NSD and it is checked for 
potential availability of resources. 

Once a Customer selects a NS from the catalogue in the Marketplace, the first step is 
to connect it to the local network and to do so, the Customer provides a connection 
point, that it’s sent to the Orchestrator along with the id of the selected service as an 
instantiation request. This request is processed by TeNOR, which decides the amount 
of resources to be assigned to provision the NS and where, to be close enough to the 
connection point provided by the Customer in order to meet the SLA. 

After the mapping of the NS to the infrastructure is done, the NS components (VNFs) 
are deployed in the assigned POPs and linked as specified in the forwarding graph of 
the NSD. At this point, the NS is ready to start running and the monitoring starts as 
well. 

Each VNF provides monitoring of its own metrics and those are gathered and 
aggregated by TeNOR with two goals: Feed the Marketplace with it so the billing of 
the services and functions is accurate and to guarantee the instances are running as 
expected according to the indicated SLA parameters. 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   28| P a g e  

In case this is not happening, a readjustment is needed and the NS needs to be 
scaled out. 

All this underground functioning is transparent to the Customer, which only sees that 
the platform is stable and the NSs run smoothly thanks to TeNOR efforts. 

The communication that ends this process is the service termination request, which is 
sent from the Marketplace to TeNOR on user command: all resources are released 
and the Marketplace can bill the Customer and send a revenues report to the 
Provider. 

 
Figure 6-1: The UML Sequece Diagram expalining how the Marketplace interacts with 
TeNOR. 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   29| P a g e  

7. CONCLUSIONS AND FUTURE WORK 

The Orchestrator is the central sub-system of the whole T-NOVA system. From now 
on, the system is known as TeNOR.  

The interim report provides a snapshot of the current development activities within 
work package three. In essence, the report describes the micro-services based 
architecture of TeNOR, and the function assigned to each one of the micro-services. 
It initially introduces the technologies utilized to implement all the functionalities, 
catalogues, and repositories. Furthermore, the  

However, this being an interim report, we would like to emphasize that there are still 
developments under way, namely: 

• Scaling an end-to-end service: letting a VNF scale out or in automatically is a 
problem that has been solved and is currently part of the most advanced 
Datacentres. A different problem, however, is scaling an end-to-end Network 
Service that may be composed by more than one interconnected VNFs. We 
are still working and experimenting for solving this problem; 

• Supporting specific VNF Managers: as precluded by ETSI [11], each VNF may 
bring it’s own VNF Manager, which (as previously reported, see [2, 12]) brings 
a new set of problems to the infrastructure owner. TeNOR was designed to 
support this, but we would like to try to effectively on-board a specific VNF 
Manager that could exist in parallel with the generic one; 

Moreover, open-source software release and integration of TeNOR in the T-NOVA 
pilot test-bed in Athens is planned to happen in the third year of the project.  



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   30| P a g e  

8. ACRONYMS 

Acronym Explanation 

ACL Access Control List 

API Application Program Interface 

BSC Business Service Catalogue 

CPU Central Processing Unit 

FP Function Provider 

HA High Availability 

HOT HEAT Orchestration Template 

HTTP Hypertext Transfer Protocol 

IVM Infrastructure virtualisation and management 

JSON JavaScript Object Notation 

KPI Key Performance Indicator 

mAPI Middleware API 

NBI Northbound Interface 

NF(Store) Network Function (Store) 

NS Network Service 

OCCI Open Cloud Compute Interface 

ODL OpenDaylight (SDN Controller) 

OSS Operations Support System 

PoP Point-of-Presence 

RAM Random Access Memory 

REST Representational State Transfer 

SBI Southbound Interface 

SDN Software Defined Networking 

SLA Service Level Agreement 

SP Service Provider 

SSH Secure Shell 

SSL Secure Socket Layer 

TCP Transmission Control Protocol 

UDP Universal Datagram Protocol 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   31| P a g e  

UI User Interface 

URI Uniform Resource Identifier 

URL Uniform Resource Locator 

UUID Universally unique identifier ( 

vCPU Virtual Central Processing Unit 

VDU Virtual Deployment Unit 

VIM Virtual Infrastructure Manager 

VM Virtual Machine 

VNF Virtualised Network Function 

VNFC Virtualised Network Function Component 

VNFM Virtualised Network Function Manager 

WAN Wide Area Network 

WICM WAN Infrastructure Connection Manager 

 

  



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   32| P a g e  

9. REFERENCES 

[1] G. Xilouris, et. al., “T-NOVA Deliverable D2.22 Overall System Architecture and 
Interfaces” 

[2] J. Bonnet et. al., "T-NOVA Deliverable D3.01 Interim Report on the 
Orchestrator Platform Implementation" 

[3] J. Bonnet et. al., "T-NOVA Deliverable D3. 1 Orchestrator Interfaces" 

[4] S. Newman, Building Microservices, O'Reilly, 2015; 

[5]  M. Richards, "Microservices vs. Service-Oriented-Architecture", O'Reilly, 2015 

[6] https://www.ruby-lang.org/ Programming language 

[7] E. Gamma et. al., “Design Patterns: Elements of Reusable Object-Oriented 
Software”, Addison-Wesley, 1994; 

[8] https://www.mongodb.org/ 

[9] G. Gardikis et. al., "T-NOVA Deliverable D4.42 Monitoring and Maintenance -- 
Final" 

[10] http://cassandra.apache.org/ 

[11] "TCP vs. UDP" (http://www.diffen.com/difference/TCP_vs_UDP) 
[12] G. Banga , F. Douglis, M. Rabinovich, "Optimistic Deltas for WWW Latency 

Reduction" 
(https://www.usenix.org/legacy/publications/library/proceedings/ana97/full_p
apers/banga/banga_html/usenix.html) 

[13] http://www.postgresql.org  

  



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   33| P a g e  

	



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   34| P a g e  

Annex A TENOR BRANDING 

During Y3 the orchestrator source code will be completely released. In order to 
provide it with fully-functional identity outside the T-NOVA realm, the consortium 
decided to provide a branding name to the system. Thus, the T-NOVA Orchestrator, 
after a voting process held during the GA in Limassol, Cyprus, decided TeNOR as the 
name for the T-NOVA Orchestrator.  

As part of the branding activities, during this period within T3.4 we designed the 
following logo, to be used in public presentations, and public releases of the system.  

 
Figure 9-1: TeNOR Logo 

The term TeNOR, is mostly known for being a type of classical male singing voice 
whose vocal range is one of the highest of the male voice types. The analogy of the 
logo with an actual TeNOR is depicted in Figure below.  

 
Figure 9-2: TeNOR Logo Rationale 

However, in systemic functional linguistics, the term TeNOR refers to the participants 
in a discourse, the relationships to each other, and their purpose [see 
https://en.wikipedia.org/wiki/Tenor_(linguistics)]. In fact, looking at the proposed 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   35| P a g e  

architecture, the different micro-services, and all the relationships between them, this 
meaning of the TeNOR term perfectly applies to the system. The TeNOR term refers 
to the distinct micro-services composing the orchestrator, the relationships between 
them (as defined by the already presented sequence diagrams and materialised 
through the interfaces defined in D3.1), and their purpose, being the main purpose of 
the system:  

• to automate the deployment and configuration of NSs/VNFs; and 
• to control and monitor network and IT resources devoted to VNF hosting 

 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   36| P a g e  

Annex B  TENOR OVERALL ARCHITECTURE 

The following figure depicts the updated functional architecture of the TeNOR 
system. 

The architecture is a two-layer based functional architecture. On the one hand, the 
upper layer, which is mainly devoted to the service lifecycle management; on the 
other hand, the lower part, devoted to virtual network function lifecycle management, 
as described in D3.01 [2].  

It is important to mention that the figure contains a functional schema of the 
architecture. The software architecture is not exactly the same. For example, the 
interfaces are depicted as a single functional entity both on the north and the 
southbound levels of TeNOR, while in reality every micro-service holds an operational 
interface (utilized either internally or externally by other components).  

 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   | P a g e  
 

37 

 

 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   | P a g e  
 

38 

 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   39| P a g e  

Annex C  TENOR NSD CURRENT VERSION 

The following listings represent the .xsd and .json versions of the descriptors utilized 
by both the service catalogues and the validator.  

It is worth to mention that this is not the final version, which will be commonly 
created between the Marketplace and the TeNOR system.  

Additionally, the catalogues will inherently support any change in the descriptor due 
to its NoSQL nature, where the inserted tuples do not necessarily need to hold the 
same internal structure.  

The basic NSD holds in essence the following structure, as initially identified in 
Deliverable D3.01 [2] 

• Identifier of the NS 
• Vendor 
• Version 
• Published to customers 
• Availability 
• List of VNFDs composing the service 
• Virtual network function forwarding graph 
• Virtual links description 
• Lifecycle events 
• VNF dependencies, in case there is any specific dependency in terms of 

instantiating order between the VNFs. 
• List of monitoring parameters for the service 
• SLA parameters 

.xsd version 

The .xsd version can be found also in the stash repository 

http://stash.i2cat.net/projects/TNOV/repos/wp3/browse/WP3/orchestrator_nsd-validator/assets/schemas/nsd.xsd 

 

As an example, we include the complete document here in the Appendix.  

<?xml version="1.0" encoding="utf-8" ?> 
<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified" 
xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
    <xs:element name="nsd"> 
        <xs:complexType> 
            <xs:sequence> 
                <xs:element name="id" type="xs:integer" /> 
                <xs:element name="vendor" type="xs:string" /> 
                <xs:element name="version" /> 
                <xs:element name="published_to_customers" /> 
                <xs:element name="availability" /> 
                <xs:element name="vnfd" maxOccurs="unbounded" /> 
                <xs:element name="vnffgd" maxOccurs="unbounded" /> 
                <xs:element name="vld" maxOccurs="unbounded" /> 
                <xs:element name="lifecycle_events" maxOccurs="unbounded"> 
                <xs:element name="vnf_dependencies" /> 
                <xs:element name="monitoring_parameters" minOccurs="0" maxOccurs="unbounded"> 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   40| P a g e  

                    <xs:complexType> 
                        <xs:sequence> 
                            <xs:element name="id" type="xs:integer" /> 
                            <xs:element name="name" type="xs:string" minOccurs="0" /> 
                            <xs:element name="description" type="xs:string" minOccurs="0" /> 
                            <xs:element name="definition" type="xs:string" minOccurs="0" /> 
                        </xs:sequence> 
                    </xs:complexType> 
                </xs:element> 
                <xs:element name="service_deployment_flavour" maxOccurs="unbounded"> 
                    <xs:complexType> 
                        <xs:sequence> 
                            <xs:element name="id" type="xs:integer" /> 
                            <xs:element name="flavour_key" type="xs:string" /> 
                            <xs:element name="constituent_vnf" maxOccurs="unbounded"> 
                                <xs:complexType> 
                                    <xs:sequence> 
                                        <xs:element name="vnf_reference" type="xs:integer" /> 
                                        <xs:element name="vnf-flavour_id_reference" type="xs:string" /> 
                                        <xs:element name="redundancy_model" type="xs:string" /> 
                                        <xs:element name="affinity" type="xs:string" /> 
                                        <xs:element name="capability" type="xs:string" /> 
                                        <xs:element name="number_of_instances" type="xs:string" /> 
                                    </xs:sequence> 
                                </xs:complexType> 
                            </xs:element> 
                        </xs:sequence> 
                    </xs:complexType> 
                </xs:element> 
                <xs:element name="sla_specification" maxOccurs="unbounded"> 
                    <xs:complexType> 
                        <xs:sequence> 
                            <xs:element name="sla_id" type="xs:integer" /> 
                            <xs:element name="service_deployment_flavour_reference" type="xs:string" /> 
                            <xs:element name="assurance_parameters" maxOccurs="unbounded"> 
                                <xs:complexType> 
                                    <xs:sequence> 
                                        <xs:element name="assurance_parameter" type="xs:integer" /> 
                                        <xs:element name="limit" type="xs:string" /> 
                                        <xs:element name="value" type="xs:string" /> 
                                        <xs:element name="unit" type="xs:string" /> 
                                        <xs:element name="violation" type="xs:string" /> 
                                        <xs:element name="penalty" type="xs:string" /> 
                                    </xs:sequence> 
                                </xs:complexType> 
                            </xs:element> 
                            <xs:element name="billing_model" maxOccurs="unbounded"> 
                                <xs:complexType> 
                                    <xs:sequence> 
                                        <xs:element name="id" type="xs:integer" /> 
                                        <xs:element name="type" type="xs:string" /> 
                                        <xs:element name="period" type="xs:string" /> 
                                        <xs:element name="price" type="xs:string" /> 
                                    </xs:sequence> 
                                </xs:complexType> 
                            </xs:element> 
                        </xs:sequence> 
                    </xs:complexType> 
                </xs:element> 
                <xs:element name="auto_scale_policies" minOccurs="0" maxOccurs="unbounded" /> 
                <xs:element name="connection_points" maxOccurs="unbounded"> 
                    <xs:complexType> 
                        <xs:sequence> 
                            <xs:element name="id" type="xs:integer" minOccurs="1" maxOccurs="1" /> 
                            <xs:element name="type" minOccurs="1" maxOccurs="1" /> 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   41| P a g e  

                        </xs:sequence> 
                    </xs:complexType> 
                </xs:element> 
                <xs:element name="pnfd" minOccurs="0" /> 
                <xs:element name="nsd_security" /> 
            </xs:sequence> 
        </xs:complexType> 
    </xs:element> 
</xs:schema> 

 

.json version 

The .json version can be found in the stash repository. For the sake of readability of 
the document it is not included here.  

http://stash.i2cat.net/projects/TNOV/repos/wp3/browse/WP3/orchestrator_nsd-
validator/assets/schemas/nsd_schema.json 

 

 

 

  



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   42| P a g e  

Annex D TENOR VNFD CURRENT VERSION 

The following listings represent the .xsd and .json versions of the descriptors utilized 
by both the VNF catalogue and the validator.  

It is worth to mention that this is not the final version, which will be commonly 
created between the VNF Developers, the NFStore, and the TeNOR system.  

Additionally, the catalogue will inherently support any change in the descriptor due 
to its NoSQL nature, where the inserted tuples do not necessarily need to hold the 
same internal structure.  

The VNFD is mainly composed of the following structure: 

• Identifier of the VNF 
• Name of the VNF 
• Description of the VNF 
• Provider information 
• Type of the VNF 
• List of VDUs composing the VNF 
• Virtual links description 
• List of deployment flavours 
• List of lifecycle events 
• Billing model 

.xsd version 

The .xsd version can be found also in the stash repository 

http://stash.i2cat.net/projects/TNOV/repos/wp3/browse/WP3/orchestrator_vnfd-validator/assets/schemas/vnfd.xsd 

 

As an example, we include the complete document here in the Appendix 

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified" 
xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
  <xs:element name="vnfd"> 
    <xs:complexType> 
      <xs:sequence> 
        <xs:element type="xs:byte" name="id"/> 
        <xs:element type="xs:string" name="vendor"/> 
        <xs:element type="xs:string" name="descriptor_version"/> 
        <xs:element type="xs:string" name="version"/> 
        <xs:element name="vdus"> 
          <xs:complexType> 
            <xs:sequence> 
              <xs:element name="vdu" maxOccurs="unbounded" minOccurs="1"> 
                <xs:complexType> 
                  <xs:sequence> 
                    <xs:element type="xs:byte" name="id"/> 
                    <xs:element type="xs:string" name="vm_image"/> 
                    <xs:element type="xs:string" name="computation_requirement"/> 
                    <xs:element name="virtual_memory_resource_element"> 
                      <xs:complexType> 
                        <xs:simpleContent> 
                          <xs:extension base="xs:byte"> 
                            <xs:attribute type="xs:string" name="unit" use="required"/> 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   43| P a g e  

                          </xs:extension> 
                        </xs:simpleContent> 
                      </xs:complexType> 
                    </xs:element> 
                    <xs:element type="xs:string" name="lifecycle_events"/> 
                    <xs:element type="xs:byte" name="high_availability"/> 
                    <xs:element type="xs:byte" name="scale_in_out"/> 
                    <xs:element type="xs:string" name="OpenStack_Flavour"/> 
                    <xs:element name="vnfc"> 
                      <xs:complexType> 
                        <xs:sequence> 
                          <xs:element type="xs:byte" name="id"/> 
                          <xs:element name="connection_point" maxOccurs="unbounded" minOccurs="1"> 
                            <xs:complexType> 
                              <xs:sequence> 
                                <xs:element type="xs:byte" name="id"/> 
                                <xs:element type="xs:string" name="virtual_link_reference"/> 
                                <xs:element name="virtual_network_bandwidth_resource"> 
                                  <xs:complexType> 
                                    <xs:simpleContent> 
                                      <xs:extension base="xs:byte"> 
                                        <xs:attribute type="xs:string" name="unit" use="required"/> 
                                      </xs:extension> 
                                    </xs:simpleContent> 
                                  </xs:complexType> 
                                </xs:element> 
                                <xs:element type="xs:string" name="type"/> 
                              </xs:sequence> 
                            </xs:complexType> 
                          </xs:element> 
                        </xs:sequence> 
                      </xs:complexType> 
                    </xs:element> 
                    <xs:element name="cpu"> 
                      <xs:complexType> 
                        <xs:sequence> 
                          <xs:element type="xs:string" name="cpu_instruction_set_extension"/> 
                          <xs:element type="xs:string" name="cpu_model"/> 
                          <xs:element type="xs:byte" name="cpu_core_reservation"/> 
                        </xs:sequence> 
                      </xs:complexType> 
                    </xs:element> 
                    <xs:element name="memory"> 
                      <xs:complexType> 
                        <xs:sequence> 
                          <xs:element name="memory_parameter"> 
                            <xs:complexType> 
                              <xs:sequence> 
                                <xs:element type="xs:byte" name="number_of_large_pages_required_per_vdu"/> 
                              </xs:sequence> 
                            </xs:complexType> 
                          </xs:element> 
                        </xs:sequence> 
                      </xs:complexType> 
                    </xs:element> 
                    <xs:element name="hypervisor"> 
                      <xs:complexType> 
                        <xs:sequence> 
                          <xs:element type="xs:string" name="hypervisor_type"/> 
                          <xs:element type="xs:string" name="hypervisor_version"/> 
                          <xs:element type="xs:string" name="hypervisor_address_translation_support"/> 
                        </xs:sequence> 
                      </xs:complexType> 
                    </xs:element> 
                  </xs:sequence> 



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   44| P a g e  

                </xs:complexType> 
              </xs:element> 
            </xs:sequence> 
          </xs:complexType> 
        </xs:element> 
        <xs:element name="deployment_flavour"> 
          <xs:complexType> 
            <xs:sequence> 
              <xs:element type="xs:byte" name="id"/> 
              <xs:element type="xs:byte" name="flavour_key"/> 
              <xs:element name="constituent_vdu" maxOccurs="unbounded" minOccurs="1"> 
                <xs:complexType> 
                  <xs:sequence> 
                    <xs:element type="xs:byte" name="vdu_reference"/> 
                    <xs:element type="xs:byte" name="number_of_instances"/> 
                    <xs:element type="xs:byte" name="constituent_vnfc"/> 
                  </xs:sequence> 
                </xs:complexType> 
              </xs:element> 
            </xs:sequence> 
          </xs:complexType> 
        </xs:element> 
        <xs:element type="xs:string" name="auto_scale_policy"/> 
        <xs:element type="xs:string" name="manifest_file"/> 
        <xs:element type="xs:string" name="manifest_file_security"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
</xs:schema> 

 

.json version 

The .json version can be found in the stash repository. For the sake of readability of 
the document it is not included here. 

http://stash.i2cat.net/projects/TNOV/repos/wp3/browse/WP3/orchestrator_vnfd-
validator/assets/schemas/vnfd_schema.json 

 

 

 

 

  



T-NOVA | Deliverable D3.41  Interim Report 

© T-NOVA Consortium   45| P a g e  

Annex E TENOR SUPPORTED REQUESTS (EXAMPLE) 

TeNOR supports a huge amount of requests, as defined in their interfaces. 
Considering this document as an interim report, we provide in this Annex an example 
of some of the HTTP methods (REST-based calls) that can be performed over the 
TeNOR system.  

In this example, the methods are forwarded from the Postman application, provided 
by Google Chrome.  

 

Figure 9-3: Postman Example for TeNOR Requests 

Figure depicts the POST operation over the NS Catalogue. Basically, it can be seen 
the NSD utilized to onboard a new NS into the corresponding catalogue.   

 


