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Executive Summary 

The specification presented in this document utilises the requirements described in 

previous deliverables together with the latest NFV and virtualisation requirements 

defined by various industry bodies including the ETSI ISG NFV and ITU-T, as well as 

excerpts of relevant parts of the ETSI ISG MANO WG architecture and associated 

Functional Entities (FEs). Information assembled via this process was used as the 

critical input into a two stage process. Stage 1 consisted of a research and design 

phase, where a systems engineering approach was adopted to define the key 

functional blocks and their associated capabilities. Stage 2 defined both the reference 

architectures and its FEs, which are described in this document. Both the architecture 

and associated FEs are presented in a technology agnostic manner to decouple the 

specifics of the implementations details. An additional third stage which constitutes 

the key activities within WP3/4 will address the specifics of the appropriate 

technologies to be utilised and their operation. 

Section 1 introduces the main technical areas addressed by this deliverable such as 

virtualisation, the evolution of IT compute technologies in to the carrier domain, the 

advent of software defined networking etc. In addition, it also presents the T-NOVA 

solution constituted by both the T-NOVA Orchestration platform and the T-NOVA 

Infrastructure Virtualisation Layer (IVM) platform. This section concludes by 

presenting and describing its functional architecture. 

Section 2, provides a concise review of the current state-of-the-art technologies and 

industry/academic initiatives that are relevant to the Orchestration and Infrastructure 

Virtualisation layers in T-NOVA.  While there is strong focus on ETSI related activities, 

a broad perspective has been adopted in this deliverable in order to ensure that all 

relevant influences are suitably considered and filtered to make sure that the 

architectural components considered in this document include the state-of-the-art 

architectural and technology related approaches in their design and specification. 

Section 3 provides the Orchestration layer specifications by starting with an overview 

of its framework, the Orchestrator Domain, followed by the requirements of the 

associated FEs, and concluding by presenting and describing its functional 

architecture. 

Section 4 presents the overall integrated architecture for the IVM layer together with 

the architecture of the various domains that comprise the IVM with their respective 

internal and external interfaces. Collectively, these reference architectures and FEs 

instantiate the requirements that were identified for the T-NOVA Orchestrator and 

IVM together with their goals and objectives. 

Section 5 presents the key Virtualised Network Function (VNF) and Network Service 

(NS) workflows that should be supported by the T-NOVA architecture. The reference 

architectures were interrogated and validated at a functional level through the 

development of these NS and VNF workflow diagrams, which illustrated the key 

actions and interactions within the T-NOVA system during standard operational 

activities related to the deployment and management of NS and VNF services. 
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Section 6 provides the results of a focused gap analysis that was carried out to 

determine what steps need to be taken in order to move NFV/SDN from its current 

state to a position that can fully realise the needs of carrier grade deployments. 

Annexes A and B contain the requirements for Orchestrator’s and IVM’s Functional 

Entities, while Annex C contains a definition for several terms used throughout the 

present deliverable. Finally, Appendix I constitute a repository of relevant information 

on the ETSI ISG NFV framework. 
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1. INTRODUCTION 

This deliverable outlines the outputs and the results of the activities carried out in 

Tasks 2.3 and 2.4 in Work Package 2 (WP2). These outputs and results are focused on 

the infrastructure virtualisation layer as well as of the management and orchestration 

layer within the T-NOVA system. 

1.1. Virtualisation 

Virtualisation is a general term that can apply to a variety of different technology 

approaches such as hardware, operating system, storage, memory and network. It is 

the key enabler technology that allows traditional physical network functions to be 

decoupled from fixed appliances and to be deployed onto industry standard servers 

large Data Centres (DCs). This approach is providing operators with key benefits such 

as greater flexibility, faster delivery of new services, a broader ecosystem enhancing 

innovation in the network etc. 

1.1.1 The Virtualisation Concept 

From a computing perspective virtualisation abstracts the computing platform and, in 

doing so, hides its physical characteristics from users or applications. Dating back to 

the 1960’s, the concept of virtualisation was first introduced with the Atlas Computer 

with the concept of virtual memory, and paging techniques for system memory. IBM’s 

M44/44X project building on these innovations developed an architecture which first 

introduced the concept of virtual machines (VMs). Their approach was based on a 

combination of hardware and software allowing the logical slicing of one physical 

server into multiple isolated virtual environments (1). Virtualisation has now evolved 

from its initial mainframe origins to now being supported by the X86 architecture and 

being adopted by other non-computing domain such as storage and networking. 

The term Full Virtualisation describes the technique where a complete simulation of 

the underlying hardware is provided. This approach has its origins in IBM’s control 

programs for the CP/CMS operating system. Today this approach is used to emulate 

a complete hardware environment in the form of a VM, in which a guest Operating 

System (OS) runs in isolation. Full virtualisation wasn’t completely possible with the 

x86 architecture until the addition of Intel’s VT and AMD-V extensions in 2005-2006. 

In fact, full x86 virtualisation relies on binary translation to trap and virtualise the 

execution of certain sensitivity “non-virtualisable” instructions. With this approach, 

critical instructions are discovered and replaced with traps into the Virtual Machine 

Manager (VMM), also called a hypervisor, to be emulated in software. 

Virtualisation is now found in applications for other domains such as storage, and 

network to deliver similar benefits to those realised in the compute domain. 

 Storage virtualisation refers to a process by which several physical disks 

appear to be a single unit. Virtualised storage is typically block-level rather 

than file-level, meaning that it looks like a normal physical drive to computers. 
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The key advantages of the approach are: (i) easier management of 

heterogeneous storage environments, (ii) better utilisation of resources, (iii) 

greater flexibility in the allocation of storage to VMs, 

 Network virtualisation comes in many forms like Virtual Local Area Networks 

(VLANs), Logical Storage Area Networks (LSANs) and Virtual Storage Area 

Networks (VSANs) that allow a single physical Local Area Networks (LAN) or 

Storage Area Networks (SAN) architecture to be carved up into separate 

networks without dependence on the physical connection. Virtual Routing 

and Forwarding (VRF) allows separate routing tables to be used on a single 

piece of hardware to support different routes for different purposes. The 

benefits of network virtualisation are very similar to server virtualisation, 

namely increased utilisation and flexibility. 

These technologies in the form of cloud computing are now being rapidly adopted 

by network operators in their carrier network domains in order to consolidate 

traditional network devices onto standard high volume x86 servers, switches and 

storage in the form of VNFs. In doing so, they allow service providers to transform 

their network functions into an elastic pool of resources while seeking compatibility 

with network and operational management tools. Building on cloud DCs allows 

operators to create an orchestration environment for the management and control of 

their compute, network and storage resources. For VNFs to function properly the 

configuration of the network underneath them is critical. To provision or adapt VNFs 

to changing network conditions or customer requests requires the ability to configure 

or adapt network routes in a highly expeditious manner. 

The advent of Software Defined Networking (SDN) with its support for programmatic 

provisioning transforms service delivery from weeks to a matter of minutes or even 

seconds. SDN is based around a new networking model where control of the network 

is decoupled from the physical hardware allowing a logically centralised software 

program (a network controller) to control the behaviour of an entire network. The use 

of centralised network control and a common communication layer protocol across 

the switching elements in the network can enable increased network efficiency, 

centralised traffic engineering, improve troubleshooting capabilities and the ability to 

build multiple virtual networks running over a common physical network fabric. In 

SDN, network elements are primarily focused on packet forwarding, whereas 

switching and routing functions are managed by centralised network controller which 

dynamically configures network elements using protocols such as OpenFlow. SDN is 

starting to be deployed in data centre and enterprise environments e.g. Google. 

Virtual networks to support VNF deployment can be deleted, modified or restored in 

a matter of seconds in much the same manner that we provision virtual machines in 

cloud environments. 

Virtualisation and its adoption in the key constituent elements of networks and data 

centres has created an agility for service providers that was not previously possible. 

Virtualisation of infrastructure, networks as well as the applications and services that 

run on top will allow service providers to rapidly transform their networks and to 

embrace new innovations. 
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1.1.2 The Pros and Cons of NFV Deployments 

As highlighted by the ETSI ISG NFV in its first white paper (2), the scenario which 

defines the situation faced by most network operators nowadays, relates to the 

physical components of their networks, which are characterised by the use of a wide 

range of proprietary hardware appliances. This problem of appliance and technology 

diversity continues to grow for operators as new equipment is added to previous 

generations of equipment in the network. 

This leads to significant challenges related to the launch of new services, increasing 

energy costs and capital investments coupled with the difficulty of finding people 

with the most appropriate skills to handle the design, integration and operation of 

increasingly complex hardware-based appliances. In addition, the trend towards 

shorter operational lifespan of hardware also affects revenues, leading to situations 

where there is no return on investment or where there is no time for innovation. 

As previously outlined in the T-NOVA project scope (3), Network Functions 

Virtualisation (NFV) will address these challenges by leveraging standard Information 

Technology (IT) virtualisation technology to consolidate various network equipment 

types onto industry standard high volume servers, switches and storage located in 

DCs, Network Nodes and in the end user premises. In this context, NFV refers to the 

virtualisation of network functions carried out by specialised hardware devices and 

their migration to software-based appliances, which are deployed on top of 

commodity IT (including Cloud) infrastructures. 

Virtualising Network Functions potentially offers many benefits, including: 

 Reduction in both equipment costs and power consumption, 

 Reduced time to market, 

 Availability of network appliances that support multiple-versions and multi-

tenancy, with the ability to share resources across services, 

 Targeted service introduction based on geography or customer type, where 

services can be quickly scaled up/down as required, 

 Enabling a wide variety of eco-systems, 

 Encouraging openness within the ecosystem. 

One of the challenges in the deployment of NFV in the carrier domain is to leverage 

the advantages of the IT ecosystem while minimising any of the associated 

disadvantages. Standard high volume servers and software must be modified to meet 

the specific reliability requirements in the telecoms environment, including 99.999 

percent uptime availability. This mission critical level of reliability is a key requirement 

and differentiates traditional IT (just reboot the system!) and telecom (where 

downtime or poor performance is not acceptable) environments. To meet design 

goals without sacrificing performance, software applications must be specifically 

designed or rewritten to run optimally in virtualised telecom environments to meet 

carrier grade requirements. Otherwise, applications ported to virtualised 

environments may experience significant performance issues and may not scale 

appropriately to the required network load. An additional challenge for virtualisation 

in a telecom network environment is the requirement to deliver low latency to handle 

real-time applications such as voice and video traffic. In addition to performance, 



T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation, 

Management and Orchestration - Interim 

 

© T-NOVA Consortium 

 
14 

other operational characteristics that are crucial to successful deployments include: 

maturity of the hypervisor; Reliability, Availability, and Serviceability (RAS); scalability, 

security, management and automation; support and maintainability. 

Deploying NFV also incurs other well-defined risks, e.g. scalability in order to handle 

carrier network demands; management of both IT and network resources in support 

of network connectivity services and Network Functions (NFs) deployment; handling 

of network fault and management operations; Operations Supporting System (OSS) / 

Business Supporting System (BSS) backwards compatibility in migration situations; 

interoperability required to achieve end-to-end services offerings, including end-to-

end Quality of Service (QoS). In addition, essential software appliances should achieve 

performance comparable to their hardware counterparts which is currently not always 

possible due a variety of reasons such as the performance of the virtualisation 

technologies. 

1.2 The T-NOVA Solution 

The T-NOVA project is focused on addressing some of the key challenges of 

deploying NFVs in carrier grade environments by designing and implementing an 

integrated architecture, which includes a novel integrated open-source Orchestration 

platform. This platform is explicitly dedicated to the orchestration of cloud and 

network resources for NFVs, as well as the automated provisioning, management, 

monitoring and optimisation of Network Functions-as-a-Service (NFaaS) over 

virtualised Network/IT infrastructures. The T-NOVA Orchestrator controls the 

infrastructure resources that host the VNFs via the T-NOVA IVM. The IVM is 

comprised of a number of functionalities, which collectively provide the virtualised 

compute, storage and network connectivity required to host VNFs. 

The overall T-NOVA system architecture is depicted in the next figure and is on the 

basis of the T-NOVA solution, which includes two platforms specified in the present 

deliverable: the T-NOVA Orchestration platform and the T-NOVA IVM platform. 
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Figure 1: High-level view of overall T-NOVA System Architecture 

(Source: D2.21 (4)) 

1.2.1 The T-NOVA Orchestration Platform 

The T-NOVA architecture has been conceived using a layer stratification approach 

where the Orchestration layer is positioned between the Service Layer and the 

Infrastructure Management layers. This stratification approach, together with the 

envisaged high level modules within the Orchestrator layer, is illustrated in Figure 1 

above. 

The capabilities of the T-NOVA Orchestrator are required to extend beyond 

traditional cloud management as the T-NOVA scope is not restricted to a single DC. 

The Orchestrator therefore needs to manage and monitor Wide-Area Networks 

(WANs) as well as distributed cloud (compute/storage) services and resources in 

order to couple basic network connectivity services with added-value NFs. 

Orchestration layer capabilities that could improve the deployment of VNFs onto 

private, heterogeneous cloud, includes: 

 Application assignment to hardware platforms capable of improving its 

performance though specific features, such as special purpose instructions or 

accelerators, 

 Allocation of an Single Root I/O Virtualisation (SR-IOV) virtual function to VMs 

running VNFs that can benefit from the capability, 

 Enabling live-migration. 
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The Orchestrator’s requirements together with its detailed conception and 

description in terms of FEs constitute the outputs of Task T2.3 which are described in 

Section 3. 

1.2.2 The T-NOVA IVM Platform 

The IVM layer in the T-NOVA system is responsible for providing the hosting and 

execution environment for VNFs. The IVM is comprised of a Network Function 

Virtualised Infrastructure (NFVI) domain containing a Virtualised Infrastructure 

Manager (VIM) and a Transport Network Manager (TNM). The IVM provides full 

abstraction of these resources to VNFs. The IVM achieves this by supporting 

separation of the software that defines the network function (the VNF) from the 

hardware and generic software that creates the NFVI. Control and management of 

the NFVI is carried out by the VIM in unison with the Orchestrator. While the IVM 

provides orchestration of the virtualised resources in the form of compute, storage 

and networking, responsibility for the orchestration of the VNFs is solely a function of 

the Orchestration layer given its system wide view of the T-NOVA system and 

centralised coordination role in the system. 

A major challenge for vendors developing NFV-based solutions is achieving near-

native performance (i.e., similar to non-virtualised) in a virtualised environment. One 

critical aspect is minimising the inherent overhead associated with virtualisation, and 

there has been significant progress thanks to a number of key innovations. An 

example is hardware-assisted virtualisation in CPUs, such as Intel’s Xeon 

microprocessors with Intel VT, which reduces VM context switching time, among 

other things. 

Another challenge is ensuring the orchestration layer fully exploits the capabilities of 

the servers it manages. Typical orchestration layer products can identify 

infrastructural features (e.g., CPU type, Random Access Memory (RAM) size and host 

operating system); however, some orchestrators are unaware of attached devices, like 

acceleration cards or network interface cards (NICs) with advanced capabilities. In 

such cases, they are unable to proactively load an application onto a platform 

capable of accelerating its performance, as in assigning an IP security (IPsec) VPN 

appliance to a server with cryptographic algorithm acceleration capabilities. Other 

features of the platform may be of interest, i.e. the model and version of CPU, the 

number of cores, and other specific features. 

The lack of platform and infrastructural awareness is a major drawback since many 

virtual appliances have intense I/O requirements and could benefit from access to 

high-performance instructions, accelerators and Network Interface Cards (NICs) for 

workloads such as compression, cryptography and transcoding. This will be a key 

focus in WP3 (Task 3.2) and WP4 (Task 4.1). Undoubtedly, making the orchestration 

layer aware of the innate capabilities of the devices attached to server platforms can 

help maximise network performance. 

The outputs of Task 2.4 with respect to the overall integrated architecture of the IVM 

layer are presented in Section 4. 
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2. SOTA SURVEY 

The following sections present a concise review of the current state-of-the-art (SOTA) 

technologies and industry/academic initiatives that are relevant to T-NOVA 

Orchestration and T-NOVA IVM layers. While there is strong focus on European 

Telecommunications Standards Institute (ETSI) related activities, a broad perspective 

is adopted. This is to ensure that all relevant influences are appropriately considered 

and filtered so that architectural components considered in this deliverable include 

the most appropriate state-of-the-art approaches in their design and specification. 

2.1. Global specifications coming from main SDOs/Fora 

2.1.1 ETSI ISG NFV 

The ETSI ISG NFV framework has been previously presented in deliverable D2.21 

(D2.21) (4). The main outputs i.e. the high-level NFV framework and the reference 

architecture as well as the work carried out in the most relevant Working Groups 

(WGs) have been described in detail. In addition, the current status of the work has 

been outlined and their key achievements since the beginning of 2013. Finally their 

planned roadmap up to the end of 2014 has been discussed. By that time, the current 

ETSI ISG NFV mandate will end and publication of documents for ETSI ISG NFV 

Release 1 will take place. However, plans and activities that are being promoted in 

order to create an ETSI ISG NFV phase 2, which is expected to start by the beginning 

of 2015, have also been described. Among those activities special focus on the 

creation of the Open Platform for NFV (OPN) has been provided. 

As stated above, this extensive research work has already been outlined in D2.21 (4), 

as such the contents of this subsection will focus on the activities of the INF, SWA 

and MANO WGs that have specific relevance to T2.3 (Orchestration) and T2.4 

(Infrastructure Virtualisation). 

The complete output of the research work carried out can be found in Appendix I. 

2.1.1.1.  WG INF (Infrastructure Architecture) 

This WG is responsible for the NFVI. They have identified three sub-domains within 

the NFVI, which are as follows: 

• Hypervisor Sub-domain, which operates at a virtual level, encompassing the 

computing and storage slices, 

• Compute Sub-domain, which operates at the lowest level, also in the 

computing and storage slices,  

• Network Sub-domain, which operates both at the virtual level and the 

hardware level, of the network slice. 

The global architecture of the NFVI domain details the specific infrastructure-related 

Functional Entities. Basically, all the three sub-domains are decomposed into smaller 



T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation, 

Management and Orchestration - Interim 

 

© T-NOVA Consortium 

 
18 

functional blocks, both at the virtual and hardware levels as well as the three domains 

outlined above. In addition, the VIM, part of the MANO domain, is also shown in 

Figure 2 as it manages this specific infrastructure level from the architecture level, or 

functional level perspective. 

 

Figure 2 High Level Overview of the NFVI Domains and Interfaces 

(Source: DGS NFV INF 005 v0.3.0 (2014-05) (5)) 

2.1.1.2.  WG SWA (Software Architecture) 

As described in the Terms of Reference (ToR) of the NFV SWA WG in the ETSI portal 

(http://portal.etsi.org/TBSiteMap/NFV/NFVWGsEGsToR.aspx) (6), the main 

responsibilities of this group are to: 

• Define a reference software architecture for network functions to be deployed, 

provisioned, run and managed on virtualised infrastructure, 

• Describe the functionalities specific to VNFs, i.e. functional behaviour, deployment 

model, and characteristics such as security and performance, 

• Identify/define the reference points/interfaces with other NFV WG building 

blocks, typically MANO and INF, and preserve reference points/interfaces to 

legacy OSS and BSS, 

• Collect and define requirements for this reference SWA architecture from relevant 

stakeholders, i.e. provided by MANO, INF and legacy OSS/BSS, 

• Validate this reference functional software architecture with concrete use cases, 

• Identify gaps, where existing standards/specifications do not fulfil the 

requirements of the reference architecture. 

http://portal.etsi.org/TBSiteMap/NFV/NFVWGsEGsToR.aspx
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With respect to the architecture, and taking into account that the WG is devoted to 

the domain that handles the VNFs and their manager, i.e. the VNF lifecycle, the 

detailed architecture is depicted in Figure 3. 

 

Figure 3: SWA Architectural Framework and interfaces types 

(Source: DGS NFV SWA 001 v0.2.0 (2014-05) (7)) 

2.1.1.3.  WG MANO (Management and Orchestration Architecture) 

The ToRs indicated in the ETSI portal for this WG are to: 

• Develop ETSI deliverables on the issues related to the deployment, instantiation, 

configuration and management framework of network services based on NFV 

infrastructure, focused on: 

– abstraction models and Application Programming Interfaces (APIs), 

– provisioning and configuration, 

– operational management, 

– interworking with existing OSS/BSS, 

• Provide requirements for orchestration and management, 

• Identify gaps in current standards and best practices. 

The current working architecture conceived by the NFV MANO WG is shown in Figure 

4. 
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Figure 4: NFV MANO reference architectural framework 

(Source: DGS NFV MAN 001 v0.6.3 (2014-09) (8)) 

2.1.2 ITU-T 

2.1.2.1 Virtualisation in ITU-T 

The ITU Telecommunication Standardization Sector (ITU-T) has been active in 

virtualisation although its specification constitutes part of a broader area designated 

by Future Networks, which will be briefly described in the last part of this section. 

The framework that characterises virtualisation in ITU-T is described, in order to 

indicate the manner in which this technology is being handled. A brief explanation on 

the work that is being carried out in the ITU-T as well as other associated areas in of 

standardisation is provided. 

2.1.2.1.1 The Virtualisation concept 

In the ITU-T virtualisation framework, the definition of Network Virtualisation (NV) 

associated to a network that enables the creation of Logically Isolated Network 

Partitions (LINPs) over shared physical network infrastructures so that multiple 

heterogeneous virtual networks can simultaneously coexist over the shared 

infrastructures. This includes the aggregation of multiple resources and makes the 

aggregated resources appear as a single resource. 

As such, NV is seen as a method that allows multiple virtual networks, called LINPs, to 

coexist in a single physical network. In order to provide LINPs, physical resources are 

partitioned and abstracted as virtual resources and the virtual resources are 

interconnected to create an LINP. 

The definition of LINP states that it is a network that is composed of multiple virtual 

resources which is isolated from other LINPs. Moreover, the term virtual resource, or 

logical resource, is related to an independently manageable partition of a physical 
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resource, which inherits the same characteristics as the physical resource and whose 

capability is bound to the capability of the physical resource. 

In terms of reference architecture, it is necessary to consider that NV is implemented 

introducing a virtualisation layer or an adaptation layer, where the virtualisation layer 

creates and manages LINPs. The virtualisation layer is a layer positioned between 

physical hardware and the software running on a physical resource. This layer enables 

the creation of an isolated partition of the physical resource. Each partition is 

designed to accommodate different architectures and applications. Figure 5 

illustrates the conceptual or reference architecture of a NV: 

 

Figure 5: Conceptual architecture of network virtualization 

(Source: Rec. ITU-T Y3011 (9)) 

2.1.2.1.2 Problems addressed by VNs 

This section lists the problems of current networks that network virtualisation is 

expected to address in order to mitigate their impact, according to ITU-T Rec. Y.3011 

(9): 

 Coexistence of multiple networks, 

 Simplified access to resources, 

 Flexibility in provisioning, 

 Evolution. 
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2.1.2.1.3 Design and goals of VNs 

This section addresses the design goals of realising network virtualisation covering 

various aspects such as capabilities, characteristics and some challenging issues, once 

again according to ITU-T Rec. Y.3011 (9): 

 Isolation, 

 Network abstraction, 

 Topology awareness and quick reconfiguration, 

 Performance, 

 Programmability, 

 Management, 

 Mobility, 

 Wireless. 

In addition to the problems, design and goals listed above, the deployment of 

virtualised networks should also be taken into account including the impact that 

environmental and security issues may have in this context. 

2.1.2.1.4 Virtualisation requirements 

When considering the evolution of networks, it should be considered that while some 

requirements for new networks do not change, other requirements are evolving and 

changing, while new requirements may also arise, forcing networks and their 

architecture to evolve. 

It is, therefore, reasonable to expect that some requirements can be realised by the 

new network architectures and supporting technologies, and that these could be the 

foundation of networks of the future, whose trial services and phased deployment 

ITU-T estimates to fall approximately between 2015 and 2020. 

This target date does not mean that a network will change by that estimated 

timeframe, but that parts of a network are expected to evolve. Evolution and 

migration strategies may be employed to accommodate emerging and future 

network technologies. Such evolution and migration scenarios are topics for further 

study. 

In the following, a list of the requirements identified by ITU-T in ITU-T Rec. Y3012 (10) 

will be indicated: 

 Physical resource management, 

 Virtual resource management, 

 LINP management, 

 Service management, 

 Authentication, authorisation, and accounting, 

 LINP federation, 

 Service Mobility. 
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Again, in addition to the handling of these virtualised requirements, the deployment 

of virtualized networks should also be taken into account the impact that 

environmental and security issues may have in this context. 

2.1.2.2 Work carried out by ITU-T SG13 

This section outlines the status of the work that has been carried out in ITU-T, and in 

particular in Study Group 13 (SG13), which has held responsibility for virtualisation 

since 2009. 

As stated before, the virtualisation technology doesn’t constitute a standalone area, 

instead it is included in a broader scope designated by Future Networks (FNs). 

In the following subsections, FNs are briefly described, in terms of their formal 

definition, objectives, design and goals. Finally the attributes that characterise NV are 

discussed in order to determine their suitability for deployment in FNs. 

2.1.2.2.1 Future Networks 

According to ITU-T Rec. Y.3011 (9), FNs are networks that will be able to provide 

revolutionary services, capabilities, and facilities that are difficult to support using 

existing network technologies. One of the basic objectives of FNs is service 

awareness. The number and range of services are expected to explode in the coming 

years and FNs need to adapt to the surge in the number of services. That surge 

makes it difficult to satisfy the requirements of every service on a common network 

architecture. However, it is unrealistic to realise heterogeneous network architectures 

using multiple physical networks because of the installation, operation, and 

maintenance costs. 

Therefore one of the key requirements of a FN is to realise diverse services and 

heterogeneous network architectures on a common physical network. 

Objectives of FNs 

The list of the objectives for FNs identified by ITU-T in ITU-T Rec. Y3001 (11)are as 

follows: 

 Service awareness, 

 Data awareness, 

 Environmental awareness, 

 Social and economic awareness. 

Design goals of FNs 

According to ITU-T Rec. Y3001 (11), the set of design and goals that must be 

considered when elaborating specifications for FNs are as follows: 

 Service diversity, 

 Functional flexibility, 

 Virtualisation of resources, 

 Data access, 
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 Energy consumption, 

 Service universalisation, 

 Economic incentives, 

 Network management, 

 Mobility, 

 Optimisation 

 Identification, 

 Reliability and security. 

Figure 6 shows the relationships between the four objectives outlined in the previous 

section and the design goals described above. It should be noted that some design 

goals, such as network management, mobility, identification, and reliability and 

security, may relate to multiple objectives. Figure 6 shows only the relationships 

between a design goal and its most relevant objectives. 

 

Figure 6: Y.3001: Four objectives and twelve design goals of future networks 

(Source: Rec. ITU-T Y3001 (11)) 

Virtualisation as a key candidate technology for deploying FNs 

Network virtualisation is a technology that realises isolated and flexible networks in 

order to support a broad range of network architectures, services, and users that do 

not interfere with others. It also enables the establishment of experimental networks 

with greater ease and accelerates research and development on future network 

technologies. Therefore, network virtualisation is considered as a key technology for 

realising FNs. 

FNs should provide a broad range of applications, services, and network 

architectures. Network virtualisation is a key technology supporting these goals and 
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enables the creation of logically isolated network partitions over a shared physical 

network infrastructure so that multiple heterogeneous virtual networks can 

simultaneously coexist over the same infrastructure. It also allows aggregation of 

multiple resources and makes the aggregated resources appear as a single resource. 

According to ITU-T Rec. Y3011 (10), many key properties of network virtualisation, 

such as flexibility, reconfigurability and network abstraction, make network 

virtualisation one of the key technologies for FNs. 

2.1.2.2.2 List of recommendations 

A non-exhaustive list of ITU-T recommendations elaborated by SG13 are as follows: 

 Rec. ITU-T Y.3001 “Future Networks: Objectives and Design Goals” (11), 

 Rec. ITU-T Y.3011 “Framework of network virtualization for future networks” (9), 

 Rec. ITU-T Y.3012 “Requirements of network virtualization for future networks” 

(10), 

 Rec. ITU-T Y.3021 “Framework of energy saving for future networks” (12), 

 Rec. ITU-T Y.3031 “Identification framework in future networks” (13), 

 Rec. ITU-T Y.3033 “Framework of data aware networking for future networks” 

(14), 

 Rec. ITU-T Y.3300 “Framework of software-defined networking” (15), 

 Rec. ITU-T Y.3320 “Requirements for applying formal methods to software-

defined networking” (16), 

 Rec. ITU-T Y.3501 “Cloud computing framework and high-level requirements” 

(17), 

 Rec. ITU-T Y.3502 “Information technology - Cloud computing - Reference 

architecture” (18), 

 Rec. ITU-T Y.3510 “Cloud computing infrastructure requirements” (19), 

 Rec. ITU-T Y.3512 “Cloud computing - Functional requirements of Network as a 

Service” (20), 

 Rec. ITU-T Y.3513 “Cloud computing - Functional requirements of Infrastructure 

as a Service” (21). 

2.1.2.2.3 Roadmap 

The envisaged timeline by ITU-T for the elaboration of recommendations regarding 

FNs and their four objectives is depicted in Figure 7. 

This timeline involves two study periods (2009-2012 and 2013-2016). The conceptual 

phase has been completed and preparation of detailed document is underway. With 

respect to network virtualisation, the first set of recommendations related to the 

requirements and architecture are in the process of being approved or have already 

been approved. 
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Figure 7: ITU-T Future networks activity timeline (Roadmap) 

(Source: ETSI 3
rd

 Future Networks Workshop (22)) 

2.1.3 IETF 

2.1.3.1 NETCONF 

NETCONF is designed to be a replacement for Command Line Interface (CLI) based 

programmatic interfaces. Network automation is currently blocked by available 

approaches where we need to write device specific CLI scripts. The CLI is used by 

humans, but increases the complexity and reduces the predictability of the API for 

real application usage. NETCONF allows the management console (manager or client) 

to issue commands and change configuration of networking devices (NETCONF 

agent or server). In this respect, it is somewhat similar to Simple Network 

Management Protocol (SNMP), but since it uses Extensible Markup Language (XML), 

provides a much richer set of functionality than the simple key/value pairs of SNMP. 

It is both session and connection-oriented and uses RPC for protocol operations, 

which are encoded in XML. Both the device configuration data, and the protocol 

itself, are encoded in XML. In order to exchange NETCONF messages, a client must 

first establish a NETCONF session with a server. When a session is established, each 

NETCONF peer exchanges a list of its capabilities with the other peer. 

2.1.3.2 YANG 

YANG is a data modelling language used to model configuration and state data 

manipulated by the NETCONF, NETCONF remote procedure calls, and NETCONF 

notifications in a “human readable” format (23). 
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YANG is used to model both configuration and state data of network elements. YANG 

structures the data definitions into tree structures and provides many modelling 

features, including an extensible type system, formal separation of state and 

configuration data and a variety of syntactic and semantic constraints. YANG data 

definitions are contained in modules and provide a strong set of features for 

extensibility and reuse. 

2.1.4 TMF – ZOOM 

The TM Forum has initiated a project to create a living blueprint for a new generation 

of service provider support systems to deliver true business agility and expert 

guidance on how to navigate the complexity of the journey– project Zero-touch 

Orchestration, Operations & Management (ZOOM). 

ZOOM specifically targets business agility by defining a framework that enables the 

delivery and management of physical and virtual resources and services while 

simultaneously dramatically lowering associated capital and operational expenditures. 

This necessitates a new architecture that supports dynamic adaptation between 

changing needs and the capabilities of the infrastructure, enabling targeted and 

personalised services to be rapidly created, changed, and retired. ZOOM leverages 

the capabilities of NFV and SDN. 

The main benefits of the ZOOM project are (24): 

 Zero-touch, self-service operations that can respond with the speed and 

agility to outpace competitors; 

 Adaptive automation, where changes in user needs, business goals, and/or 

environmental conditions are recognised, and a new, agile OSS uses these 

inputs to provide the resources and services needed at that point in time; 

 Customer-centric services that are easily configured to fit individual customer 

preferences and requirements, by the customer themselves; 

 Significantly lower operating costs and capital expenses achieved through 

automation of manual tasks, simplification of configuration, virtualisation and 

use of commodity-based resources; 

 Technology-driven innovation, where business agility meets rapid 

development and experimentation and enables the transition from NetOps 

and SysOps to DevOps. 

Three main Working Items (WIs) are under the scope of ZOOM (25): 

 DevOps Transformation Framework for the  Digital Ecosystem; 

 Blueprint for End-to-End Management; 

 Operations & Procurement Readiness. 

The DevOps Transformation Framework for the  Digital Ecosystem WI is focused 

on clarifying the requirements for a digital world in terms of approaches to hybrid 

and virtualised operations, specifically outlining how to transform from 
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SysOps/NetOps to an agile DevOps approach to introduce new services that make it 

possible to better compete in a digital world. 

The Blueprint for End-to-End Management will define the essential requirements 

for effective management of physical and virtualised services end-to-end across 

multiple provider environments, specifically outlining how to make end-to-end 

management happen and what common practices, architectural and integration 

principles are needed to get there. 

The Operations & Procurement Readiness WI will identify the key requirements – 

including technical, business, organizational, and cultural changes – necessary for 

service providers to include when sourcing agile services in a hybrid environment, 

specifically outlining how to best adhere to these requirements throughout the full 

sourcing lifecycle. This will help meet the NFV promise of service agility, Operational 

Expenditure (OPEX) reductions (NetOps to DevOps), and Capital Expenditure (CAPEX) 

reductions (migration from specialised and expensive telco hardware to standard 

low-cost IT fabric). 

At the time of writing this document, the TMF ZOOM group has released three 

documents, namely: 

 TR227: TM Forum Specifications relevant to MANO Work (26). 

The contents provide a description of the set of TM Forum documents that 

are relevant to MANO related activities. It identifies areas where each TM 

Forum document can help standardise the information presented and the 

interfaces of the MANO reference points. 

 TR228: TM Forum GAP Analysis related to MANO Work (27). 

The contents provide an initial ETSI NFV MANO Gap Analysis of the TM Forum 

specifications for MANO Interfaces and Information Elements. 

 TR229: ZOOM/NFV User Stories (24). 

This technical report provides a snapshot of the User Stories that have been 

identified by the ZOOM project team and have been derived from:  

- Scenarios being developed in The TM Forum NFV Catalyst program; 

- Requirements in ETSI and ATIS Reports; 

- Agile brainstorming sessions amongst Service Providers active in the 

ZOOM Project. 

2.1.5 CloudNFV 

CloudNFV is an industry lead initiative that is focused on the design of an open, 

highly flexible, cloud-driven implementation of the ETSI NFV specification, and 

secondly to develop an implementation of that design. The founding members of 

CloudNFV are 6WIND, CIMI Corporation, Dell, EnterpriseWeb, Overture Networks and 

Qosmos. CloudNFV has delivered a number of public demos during the 2014 

including the OpenStack Summit in Atlanta. 
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CloudNFV is based around the concept of an Active Contract that utilises service 

templates representing the structures of network functionality, which can be ordered, 

and includes variable parameters such as service locations, QoS, etc. When these 

values are specified, a Service Contract is created. The service contract is then 

dispatched to an Orchestrator for fulfilment. Policy rules and resource status from 

Active Resources (as shown in Figure 8) are used by the Orchestrator to determine 

the optimal location for the deployment of a VNF service and how to provide 

appropriate connectivity. 

This combination of where to host and how to connect instructions is known as a 

Manifest. The manifest is given to OpenStack, which uses NOVA compute and 

Neutron APIs to create VMs, provision network connectivity to the VMs and to deploy 

the VNF service. When virtual resources are deployed and connected they report their 

status and traffic to the Active Resource. Management processes can run against the 

Active Resource, which can take the form of a Multifunctional Information 

Distribution System (MIDS) that support current management systems or can be 

implementation specific depending on the customer requirements.  

Virtual management states are derived from the status of the hosts and networks. 

This approach represents what CloudNFV designates by contract resource 

management. The data model of the Active Contract is structured in a manner to 

reflect the TMF SID (GB922) (28) description of services and forms the basis for 

CloudNFV vision for contract-driven management. 

 

Figure 8: The CloudNFV Architecture (29) 
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2.2 VIM and Control specific areas 

The following sections review the key virtualisation technologies that are relevant to 

the T-NOVA virtualised infrastructure management and control capabilities together 

with their respective pros and cons. While not exhaustive the focus is on the leading 

candidate technologies, which will be most likely adopted during the implementation 

tasks in WP3 and WP4. A mapping of the technologies and their relationship to 

architectural components within the T-NOVA IVM is presented in Figure 9. The 

candidate technologies represent an initial starting point, however it is expected that 

these technologies choices will evolve and be refined during the course of the T-

NOVA project as new technology options emerge or as candidate technologies are 

found to be insufficient to meet the needs of the T-NOVA implementation or prove 

to be difficult to extent in an appropriate manner. 

 

Figure 9: Relation between virtualisation technologies and T-NOVA architecture 

2.2.1 IT Virtualisation Methods 

There are two primary methods commonly used nowadays to implement 

virtualisation: hypervisors and containers. The former is based on the usage of a 

Virtual Machine Monitor, whereas the latter is an operating system virtualisation 

mechanism, where the virtualisation software layer is installed on top of the operating 

system. The following sections will look both of these approaches in more detail. 



T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation, 

Management and Orchestration - Interim 

 

© T-NOVA Consortium 

 
31 

2.2.1.1 Hypervisors 

A hypervisor is a program that allows multiple operating systems to share the same 

hardware. By “virtualise”, we mean the division of resources (CPU, RAM etc.) in the 

physical computing environment (known as a host) into several smaller independent 

‘virtual machines’ known as guests. Each guest can run its own operating system, to 

which it appears the virtual machine has its own CPU and RAM, i.e. it appears as if it 

has its own physical machine even though it does not. 

One of the key functions of hypervisors is isolation, meaning that a guest cannot 

affect the operation of the host or any other guest, in any case. This is achieved by 

hardware emulation of a physical machine and (except under carefully controlled 

circumstances) prevention of direct access to real hardware by the guests. 

Hypervisor can be classified using different taxonomies. 

One approach is centred on the virtualisation approach used by the hypervisor. Three 

main approaches can be used to implement virtualisation: 

Full virtualisation - the hypervisor artificially emulates the hardware device with 

everything it needs to run an operating system. This allows VMs to run in a single 

server, each completely independent of the other. The drawback is the addition of 

another layer of software between the operating system and the hardware which can 

negatively influence performance, 

 Para-virtualisation – the hypervisor modifies the VM OS eliminating the need 

for binary translation. It offers potential performance advantages, but requires 

the use of specially modified operating system kernels that relies on ‘para-

virtualised drivers’ (an optimised interface to the hardware for the hypervisor 

is provided). This approach is generally only suited to Open Source OSs, (i.e. 

Linux and FreeBSD), 

 Hardware-assisted virtualisation – The underlying hardware has to provide 

specific instructions for virtualisation support to the hypervisor. This provides 

a simpler and a better solution in terms of performance in comparison to 

other solutions, giving direct access to resources without emulation. 

Another taxonomy approach relates to the type of hypervisor. There are two types of 

hypervisors, namely Type 1 and Type 2: 

 Type 1 hypervisors run directly on the system hardware, and are often 

referred to as a "native" or "bare metal" or "embedded" hypervisors. Each 

guest operating system runs atop the hypervisor. Examples of Type 1 

hypervisors are: VMware ESXi, Microsoft Hyper-V, Citrix XenServer and KVM1, 

 Type 2 hypervisors (also called ‘Hosted’ hypervisors) run inside an operating 

system, which in turn runs on the physical hardware. Each guest operating 

system then runs atop the hypervisor. Desktop virtualisation systems often 

                                                 

1
There is considerable debate over whether KVM is a type 1 or type 2 hypervisor 

http://searchservervirtualization.techtarget.com/news/2240034817/KVM-reignites-Type-1-vs-

Type-2-hypervisor-debate 
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work in this manner. Example of Type 2 hypervisors are: Microsoft Hyper-V, 

Oracle VirtualBox, VMware Workstation, Microsoft Virtual PC. 

Table 1 presents a summary of the respective advantages and disadvantages of type 

1 and 2 hypervisors. 

Table 1: Comparison of Hypervisor Types 

Hypervisor Type Advantages Disadvantages Examples 

1 – Bare Metal Hypervisor can “own” the 

device, for security, 

performance, SLAs, etc. 

Users cannot break the 

base environment 

Possibly more secure due 

to the smaller attack 

surface of the hypervisor 

(And the user cannot 

interact with the host OS) 

Better performance since 

your “OS” is a purpose-

built hypervisor instead 

of a general purpose OS 

Server and components 

need to be certified. 

 

Destructive install 

VMware ESXi 

Citrix XenServer 

KVM 

Microsoft 

Hyper-V 

2 - Hosted The users can install their 

own hypervisor 

Adding the hypervisor 

doesn’t destroy the 

existing OS 

Runs on most existing 

hardware that can run 

Linux, Windows, or Mac 

Possibly not as secure 

since the client cannot 

“trust” the base. (End 

user could run a screen 

recorder, key logger, 

etc.) 

No guarantee of 

performance. 

Two OSs to manage 

(host OS and guest VM 

OS) 

Oracle 

VirtualBox, 

VMware 

Workstation 

Microsoft 

Virtual PC 

2.2.1.2 Open Source and Commercial Hypervisors 

There are a variety of open source and commercial hypervisors available such as 

Oracle's VirtualBox, Parallels, Bochs, Xen, KVM, Qemu, various flavours of VMware. 

However, four hypervisors currently dominate the market, namely: 

 VMware ESXi,  

 Linux KVM,  

 Linux Xen (mainly with Citrix XenServer implementation), 

 Microsoft's HyperV. 

The choice of the hypervisor for the T-NOVA architecture will be fully interrogated in 

WP4 where the benefits of open source vs commercial will be analysed together with 
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the level of integrated with the chosen cloud platform.. The next sections present a 

short overview of the key hypervisor technologies. 

KVM 

KVM can run unmodified Linux or Windows images, but it 

requires CPU virtualisation extensions (Intel VT or AMD-V). It 

consists of a loadable kernel module, that provides the core 

virtualisation infrastructure, and a processor-specific module. 

KVM is used in conjunction with Qemu to emulate other hardware such as network 

card, hard disk, graphics adapter, etc. Qemu can be used in standalone mode (i.e. 

does not require a special kernel module, or CPU virtualisation extensions, or a 

hypervisor layer) and is capable of running unmodified operating system images. 

KVM and Qemu are normally used with libvirt, a C library for interfacing with the 

underlying virtual machines, that provides a stable, consistent API for machine 

management across a variety of virtualisation technologies and currently supports 

Xen, Qemu, KVM, User Mode Linux and VirtualBox, among others. Libvirt uses XML-

based configuration files to define the virtualised hardware. Libvirt is also used by the 

libvirtd daemon, used to mediate communication with the virtualisation system. 

XEN 

Xen dates back to a Cambridge University research project 

in 2003. Since it is a Type 1 hypervisor, its ‘dom0’ host runs 

on Linux, which in turn runs on Xen. The Xen community 

develops and maintains Xen as free and open-source 

software under GNU GPL licence. In 2013, it was announced that the Xen Project was 

moving to the Linux Foundation as a Collaborative Project. Key features include: small 

footprint and interface; operating system agnostic; driver isolation (it allows the main 

device driver for a system to run inside of a VM so that if the driver crashes, the VM 

containing the driver can be rebooted without affecting the rest of the system) and 

compatibility with hardware that doesn't support virtualisation extensions. 

vmware 

VMware’s ESXi hypervisor is very mature and 

extremely stable. It is popular among enterprise 

customers including many telco service providers 

where brand and the commercial guarantee of a rock 

solid hypervisor matters more than cost. The performance level of ESXi is similar 

other hypervisors for most workloads. However the orchestration performance is 

generally worse than either KVM or Xen (30). vSphere was developed as an enhanced 

suite of tools for cloud computing utilising VMware ESX/ESXi hypervisors. Some key 

components of this platform are: vMotion and Storage vMotion (for live migration of 

respectively VMs and vDisks); VMware High Availability (automatic restart of the VMs 

if the underling hardware goes down); DRS (Distributed Resource Scheduling for VM 

placement at the VM provisioning and VMs balancing among hosts; both can be 

manually or automatically done) and SDRS (Storage DRS); Fault Tolerance (a more 

powerful High Availability (HA) that runs in real time a mirrored VM); Distributed 
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Power Management and VMware Consolidated Backup (for both energy efficiency and 

data consolidation) and SRM (Site Recovery Manager, that manages a full failover 

and failback of a disaster event from a centralised console. Additionally full disaster 

simulation and testing is supported without interrupting the production 

environment). 

Hyper-V 

Hyper-V is a commercial hypervisor provided by 

Microsoft. While designed for running Windows, being a 

hypervisor it will run any operating system supported by 

the hardware platform. As a commercial hypervisor, the 

licensee must bear the cost of licensing Hyper-V itself. Arguably, the hypervisor itself 

is less well tested in the market place than any other hypervisor. Guest server 

performance appears reasonable, and is particularly good with Windows guests as 

expected. However, many orchestration actions can take more time than with KVM. 

Both networking and storage are a little limited which can affect the ability to scale. 

Until recently it has rarely been adopted for large deployments in enterprise 

environments although it has been used widely in small and medium business 

environments for a number of years. 

Table 2 compares the hypervisors discussed above. 

Table 2: Comparison of key open source and commercial hypervisor technologies 

Feature KVM Xen ESXi Hyper-V 

Licence Open Source (free) Open Source 

(free) 

Proprietary Proprietary 

Full virtual. yes yes yes yes 

Hw-assisted no yes yes yes 

Para-virtual. no yes yes yes 

Architecture X86-X64 X86 

X86-64 

ARM 

X86 

X86-64 

X86 

X86-64 

CPU 

Scheduling 

Features 

Linux schedulers 

(completely fair 

queuing scheduler, 

maximum 

throughput, 

weighted fair 

queuing) 

SEDF (Simple 

Earliest Deadline 

First) 

Credit - 

proportional fair 

share 

Proportional 

Share-based 

Algorithm, 

Relaxed 

Coscheduling, 

Distributed 

Locking with 

scheduling Cell 

Control with 

VM reserve, 

VM limit, 

relative 

weight 

SMP 

Scheduling 

Features 

SMP-Aware 

Scheduling 

Work-

Nonconserve, 

WorkConserve 

CPU Topology – 

aware load 

balancing 

CPU 

Topology 

based 

scheduling 

Speed Up to near native Up to native Up to near native Up to near 
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Relative to 

Host OS 

native 

2.2.1.3 Containers 

The alternative approach to hypervisor-based virtualisation is OS virtualisation, where 

the virtualisation software layer is installed on top of the operating system. This 

approach is commonly referred to as “containers”. Figure 10 provides a high-level 

view of the differences between container-based and hypervisor-based virtualisation. 

One of the most popular container technologies is Docker (31). All of the guest 

systems run on top of this layer using the same operating system as the host OS, but 

with each guest having its own resources and running in complete isolation from the 

other guest machines. The main identifying differentiator for OS virtualisation is the 

fact that every guest OS must be identical to the host. This is a cost effective and 

efficient approach, but it is only practical for certain situations. 

 

Figure 10: Hypervisor versus container based virtualisation approaches 

However containers currently lag behind VMs from a security standpoint particularly 

for isolation since the only way to have real isolation with Docker is to either run one 

Docker per host, or one Docker per VM. A comparison of the hypervisor versus 

container based virtualisation approaches is presented in Table 3. 

Table 3: Comparison of Hypervisors and Container Approaches 

 Container-based Hypervisor-based 

Common Features (i) Migration between hardware nodes 
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(ii) Root access 

(iii) Web-based remote control (restart, shutdown) 

(iv) Backup. 

Operating System 

Limited number of simultaneously 

OSs, container-based 

virtualisation. 

Highly flexible and allows 

installation of most operating 

system. 

Advantages 

More efficient, high concentration 

of containers per hardware node 

(hundreds of containers per 

hardware node), low overhead per 

container. 

Potentially more economical and 

is charged less than hypervisor-

based virtualisation.  

QOS is best effort. 

The kernel is upgraded by the 

provider. 

Full control on the operating 

system and its parameters.  

Full control on version and 

upgrade of the OS. 

Hardware resources are fully 

dedicated to VMs. QoS (quality of 

service) is therefore a 

commitment. The virtual machine 

presents itself exactly as a 

hardware node. 

Mix of operating system on the 

same hardware node. 

Disadvantages 

No control on the kernel: only the 

provider controls the version and 

upgrades of the kernel. 

Only one kernel can run on the 

hardware node. 

The provider generally supports a 

limited number of OS.  

Security isolation concerns. 

More costly and higher overhead 

per virtual machine. 

Customer has full responsibility on 

maintenance. 

Less VMs can run on a hardware 

node (order of magnitude: a few 

per hardware node). 

Licence 

Operating system licence included 

in the container price. 

OS licence fees not included in the 

virtual machine price. 

It can be bought over the provider 

or bring your own licence. 

Set-up 

Quick, usually ready in a few 

seconds. 

Fully automation possible. 

Can have a longer set-up phase, 

from a few minutes to hours 

depending on the OS. Install times 

reduced with automation in cloud 

environments.  

2.2.2 Compute, Network I/O and Storage Virtualisation 

Virtualisation has now extended into the domains of storage and infrastructure 

(L2/L3) network resources. Storage virtualisation is replacing the need for locally 

attached storage through pooling of physical storage from multiple network storage 

devices into what appears to be a single storage device that is accessed via a 

controller. Similarly with network I/O virtualisation, a single physical network interface 
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card can be abstracted into virtual NICs or L2 virtual switching and L3 virtual routing 

to provide inter/intra-VM connectivity or connectivity to the transport network. 

The key value that virtualisation brings to those new domains is improved scalability 

and resource utilisation. Additionally, virtualisation supports the centralisation of 

administrative tasks such day-to-day updates or large-scale deployments and 

migrations. These capabilities are very important in enabling the roll-out of VNFs into 

networks by service providers. 

2.2.2.1 Microprocessor Virtualisation 

Microprocessor virtualisation extensions consist of extra instruction sets called virtual 

machine extensions (VMX). There are two modes to run under virtualisation: VMX root 

operation and VMX non-root operation. Normally only the hypervisor runs under root 

operation, while OS’s run on top of the VMs under non-root operation. Software 

running on top of the VMs is commonly referred to as ‘guest software’. 

More recent microprocessors have an extension called EPT (Extended Page Tables) 

which allow each guest to have its own page table to keep track of memory 

addresses. Without this extension, the VMM has to exit the virtual machine to 

perform address translation. The exiting-and-returning task reduces performance. 

Context switching and its associated cost can have a significant impact on the 

performance of VNF applications. While EPT increases virtualisation performance, 

careful consideration must be given to overall design of the VNF. 

2.2.2.2 Intel Virtualisation Technology (Intel VT) 

Intel Virtualisation Technology (Intel VT) is a set of hardware enhancements to Intel 

server and client platforms that provide software-based virtualisation solutions. Intel 

VT allows a platform to run multiple operating systems and applications in 

independent partitions, allowing one computer system to function as multiple virtual 

systems. VT-x provides basic support for virtualisation software and affords the 

capabilities needed to deliver hardware assistance to a VMM. VT-x allows virtual 

machine to run at privilege levels in the processor that enable its proper operation. 

On some motherboards the VT-x feature must be enabled in the BIOS before 

applications can make use of it. 

2.2.2.3 AMD's Virtualisation (AMD-V) Opteron 

AMD's Virtualisation (AMD-V) technology takes some tasks that virtual machine 

managers (VMMs) perform in software, through emulation, and simplifies them 

through enhancements to the AMD Athlon 64 and Opteron instruction set. AMD 

Virtualisation Technology was announced in 2004, under the code-name Pacifica, and 

AMD released technical details in mid-2005. The latest release AMD-V 2.0 includes 

extra features, such as I/O level Virtualisation, and Extended Migration. AMD-V is 

supported in almost all latest AMD mobile and desktop processors, whereas AMD V 

supported only in the latest generation of AMD server-class CPUs. 



T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation, 

Management and Orchestration - Interim 

 

© T-NOVA Consortium 

 
38 

2.2.2.4 Storage Virtualisation 

Storage virtualisation consists in implementing an abstraction layer between physical 

resources (disks and storage networking) and logical resources that can be served up 

to applications (VNFs in case of T-NOVA). Multiple benefits are offered by virtual 

storage. It makes the overall pool of storage easier to manage, and enables the 

allocation of storage as and when it is needed. Furthermore, it can optimise power 

utilisation, and improves the ability to support disaster recovery scenarios, as data 

can be replicated and moved within the overall storage pool with minimum 

disruption to users and applications. 

Storage virtualisation can occur internally within storage arrays (usually known as 

storage-based virtualisation), or externally among storage arrays (usually called 

network-based storage virtualisation). External virtualisation can operate across arrays 

of the same brand and model or in a network of heterogeneous arrays. External 

virtualisation can facilitate tiered storage to disparate devices as well as providing 

simplified management of storage across a large enterprise. Implementation choices 

should take into account the characteristics of the whole virtualised environment, 

since there are different underlying technologies whose effectiveness and 

performance can depend upon the kind of server virtualisation environment in place. 

The most common enabling technologies are as follows: 

 Thin Provisioning - storage-optimisation technique that relies on on-

demand allocation of blocks of data, rather than on traditional upfront block 

allocation. This approach makes it possible to implement over-allocation, 

storage capacity to host applications than has actually been provisioned). It 

may be paired with other techniques, like thin reclamation and data de-

duplication. Thin reclamation automatically reclaim unused space associated 

with deleted data within system storage volumes, while data de-duplication is 

a data compression technique for eliminating duplicate copies of redundant 

data. Both techniques ensure that thin volumes stay as lean and efficient as 

possible. These techniques are popular and integrated in many enterprise 

storage array products from companies such as HP, 3PAR, and EMC, VNX (32). 

 Automatic Storage Tiering - this approach is based on the ability to save 

data on different tiers of disks, each characterised by different performance 

and redundancy schemes. For example, a typical 2-tier array could have SSD 

disks as Tier 0 and SAS disks as Tier 1. Automatic Storage Tiering is a 

technique used to automatically promote or demote data between storage 

tiers, based on actual application usage. Many storage vendors (e.g. HP with 

3PAR Adaptive Optimisation (33) and EMC with its FAST technology (34)) 

nowadays implement automatic storage tiering in hardware. 

 Virtual SAN solutions - For many years, local storage was not the best 

option for virtualised infrastructures, however due to technology advances 

and, in particular, the introduction of Solid State Disks, it can now be used as 

an effective and cheaper solution with respect to standard NAS or SAN 

enterprise solutions. Moreover, software vendors have introduced 
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functionality to use shared local storage into a fully-featured shared storage 

array, for example VMware Virtual SAN and HP StoreVirtual VSA. 

2.2.2.5 Software and Hardware -Assisted Network Virtualisation 

The Network Virtualisation process strongly involves the lower levels of the ISO/OSI 

protocol stack: virtual machines require L2 NICs to connect to virtual network 

segments; all the VMs in a segment need to connect to one or more (virtual) switches 

that manage different VLANs. 

Two main approaches are commonly used to implement virtualisation at the edge of 

the network: software-assisted and hardware-assisted virtualisation. 

Software-assisted network virtualisation 

In software-assisted network virtualisation, communication capabilities are provided 

by the hypervisor through vSwitches, according to the Edge Virtual Bridging (EVB) 

specifications. More specifically, Edge Virtual Bridging is the term for a range of new 

technologies and protocols that are being standardised in terms of coordination and 

management of virtualised architectures at the edge of the network. A vSwitch is a 

software component managed by the hypervisor that, in turn, manages both the 

traffic flows from and to VMs that are running on a physical server. EVB technologies 

are embraced within the IEEE 802.1Qbg standardisation project (35). The two most 

common approaches included in EVB and currently used in commercial available 

technologies are: 

 Virtual Ethernet Bridge (VEB),  

 Virtual Ethernet Port Aggregator (VEPA). 

External communications (i.e. the communication between a VM and an external 

node) are managed by both VEB and VEPA in the same way: packets are sent through 

the physical interface of hosting node to reach external network. This allows the 

traffic to be handled by an external physical switch and, consequently, to be 

monitored, managed and secured using all the tools available to the physical switch. 

The difference between VEB and VEPA is related to the management of internal 

communication (i.e. the communication between VMs running on the same physical 

host). 

 

Figure 11: VEB vs. VEPA 
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Using the first approach, internal communications are managed directly by the VEB 

that resolves the L2 destination address of the target machine and avoids sending 

traffic through external switches. Consequently, the internal traffic is managed only 

by software, and, for this reason, it is not captured by the external network devices: 

this makes network traffic monitoring difficult and, at the same time, delegates to the 

host the network address resolution overhead, affecting the performance. On the 

contrary, VEPA forces the traffic between local VMs to pass through the adjacent real 

switch. Therefore, using this approach the traffic can be easily monitored and 

secured, reducing the node overhead. On the other hand, the internal traffic uses the 

physical port, with impacts to bandwidth and latency as a result. 

Hardware-assisted network virtualisation 

The disadvantage of a software-assisted approach is that, when multiple guests run 

on the host and the network traffic volumes are high, the virtual switch can be a 

potential bottleneck. To avoid this, multiple NICs should be used in the host, 

adjusting the virtual switch connected to each NIC such that the network bandwidth 

used by the guest can be distributed. However, this method is not particularly 

efficient for some tasks, such as placing guests dynamically and moving a guest to 

another host using live migration. To address these limitations Intel has developed its 

VT-c suite of technologies. 

Single Root I/O Virtualisation (SR-IOV) enables a single PCI Express (PCIe) network 

adapter to appear to the hypervisor as multiple special-purpose network adapters. 

These special-purpose network adapters, termed Virtual Functions (VF), are only 

available for direct presentation to VMs. By providing a VF directly to a VM, the 

hypervisor’s virtual switch is no longer required to process network traffic. This 

hypervisor bypass increases network throughput, lowers latency, and reduces overall 

CPU utilisation. 

Network adapters that feature SR-IOV are comprised of one Physical Function (PF) 

and multiple VFs per port. The PF is responsible for the management and 

configuration of its associated VFs. On the host server, the administrator configures a 

PF to present a defined number of VFs. 
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Figure 12: SR-IOV PF and VF conceptual overview 

Virtualisation technology for Directed I/O (VT-d) developed by Intel is implemented 

in I/O devices and provides support for virtualisation of I/O transactions. It helps the 

VMM to better utilise hardware by improving application compatibility and reliability, 

and providing additional levels of manageability, security, isolation, and I/O 

performance. VT-d is primarily implemented in a chipset, and not in the CPU itself. In 

emulation based I/O, the intermediate software layer controls all the I/O between the 

VMs and the device. The data gets transferred through the emulation layer to the 

device and vice versa (36). 

Virtualisation technology for Connectivity (VT-c) is a collection of input/output (I/O) 

virtualisation technologies primarily concerned with I/O. VT-c is complementary to 

but independent of VT-d. The key technologies are:  

 I/O Acceleration Technology for the Reduction of CPU Loads – For network 

applications the key technology is Intel’s Data Plane Development Kit (DPDK); 

 Virtual Machine Device Queues (VMDq) improve traffic management within 

the server by offloading traffic sorting and routing from the hypervisor’s 

virtual switch to an Intel Ethernet Controller for the reduction of system 

latency;  

 Virtual Machine Direct Connect (VMDc) is implemented using the PCI-SIG 

standard called Single Root I/O Virtualisation (SR-IOV) which allows 

partitioning of a single Ethernet Server Adapter port into multiple virtual 

functions. Administrators can use these virtual ports to create multiple 

isolated connections to virtual machines for the improvement of network I/O 

throughput. 

2.2.2.6 Data Plane Development Kit (DPDK) 

One of the most important issues which must be tackled in NFV is the plane 

performance for VNFs. In fact, even if the commercial vSwitches offers good 
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performance, they are generally not comparable with real network device. To enable 

VNFs to be efficiently deployed and provide the performance that support their 

requirements the internal mechanisms for communication management within 

hypervisors are being improving. 

One approach that is being widely adopted is Intel’s Data Plane Development Kit 

(Intel DPDK). It is a set of libraries and drivers for fast packet processing on x86 

platforms that can improve packet-processing performance by up to ten times. DPDK 

support, which actually depends on the processor, is integrated in all recent Intel 

Atom and Xeon processors. 

In order to accelerate the adoption of DPDK and its usage in NFV deployments, Intel 

also released a DPDK-enabled version of the popular OpenvSwitch, called Intel DPDK 

vSwitch (37). Open vSwitch (38) is an open source virtual switch that supports 

distribution across multiple physical servers. It can be integrated with multiple Linux-

based hypervisors (including Xen, XenServer, KVM and VirtualBox) and supports 

different features, like STP, NIC bonding with source MAC load balancing, IPv6 

support, standard 802.1Q VLAN tagging and trunking, tunnelling protocols (GRE, 

VXLAN, IPsec), monitoring capabilities of internal VM communication via NetFlow or 

sFlow, QoS control, OpenFlow protocol and multi-table forwarding pipeline, and 

user-space forwarding engine options, and so forth. 

Open vSwitch architecture is composed by a small portion of in-kernel code, a kernel 

module called openvswitch_mod.ko, which implements the part of the behaviour of 

switch that interacts with the ovs-vswitchd demon, running in user-space. These 

modules implement the switching logic. Moreover, there is also another module, 

called ovsdb-server, which behaves as a lightweight database containing information 

regarding the configuration parameters of the switch and it is queried by the ovs-

vswitchd module. There are also other modules that provide interfaces which are 

useful for configuring the system both locally and remotely. 

Coupling OpenvSwitch and Intel DPDK acceleration technology, Intel DPDK vSwitch 

has been developed with the aim of realising a virtual switching platform with high 

performance capabilities, reducing network access time of the VM traffic and the 

computation overload on the hypervisor. This specific solution is based on QEMU and 

is part of an open source project called Packet Processing (39). 

The Intel DPDK vSwitch has been realised through modification of the Open vSwitch 

kernel forwarding module (data plane) by building the switching logic directly on top 

of the DPDK library: it significantly improves the switching throughput. Intel DPDK 

vSwitch currently provides four different communication methods between the virtual 

machine and the host (each one optimised for a specific communication application) 

with the purpose to optimise the copy operations due to the VMs’ communication. 

This product, which is freely available, is currently focused on fast L2 switching, with 

more advanced features (like dynamic flows, tunnel support and multiple table 

support) coming in later releases. 
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2.2.3 Cloud Environments and Controllers  

Cloud management platforms are integrated tools that provide management of 

cloud environments. These tools incorporate self-service interfaces, provisioning of 

system images, enabling metering and billing, and providing some degree of 

workload optimisation through established policies. Through the self-service interface 

(e.g. based on OCCI) the user can request virtual infrastructure. This request is issued 

to a Cloud Controller, which provisions this virtual infrastructure somewhere on 

available resources within the DC. The Cloud Controller provides the central 

management system for cloud deployments as shown in Figure 13. 

 

Figure 13: Cloud Management System Deployments 

The most popular cloud management platforms include open source solutions such 

as OpenStack, CloudStack and Eucalyptus and commercial solutions from Microsoft 

and VMware. This section provides an overview of some of these solutions, on the 

Cloud Controller component. In the T-NOVA context, the Cloud Controller is a key 

component that needs to deliver end-to-end provisioning of virtual infrastructure, to 

enable full control over it and also to provide a detailed and real-time view of the 

infrastructure load. 

2.2.3.1 OpenStack 

OpenStack is a cloud OS that controls large pools of compute, 

storage, and networking resources throughout a DC, all managed 

through a dashboard that gives administrators control while 

empowering their users to provision resources through a web 

interface  (40; 40). As an open source solution, OpenStack is 

developed and supported by a global collaboration of developers 

and cloud computing technologists. The project seeks to deliver 

solutions for all types of clouds by being simple to implement, scalable, and feature 

rich. The technology consists of a series of interrelated projects delivering various 

components for a cloud infrastructure solution. All OpenStack source code is 

available under an Apache 2.0 license. 
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OpenStack has a modular design that enables integration with legacy and third-party 

technologies. It is built on a shared-nothing, messaging-based architecture with 

modular components, each of which manages a different service; these services, 

together to instantiate an IaaS Cloud. The primary component of the cloud operating 

environment is the Nova compute service. Nova compute orchestrates the creation 

and deletion of compute/VM instances. Nova is designed to operate as much as 

possible as hypervisor-agnostic. It works with open source libraries such as libvirt. 

Similar to other OpenStack components, Nova is based on a modular architectural 

design where services can be co-resident on a single host or, more commonly, on 

multiple hosts. The core components of Nova include the following: 

 The nova-api accepts and responds to end-user compute API calls. It also 

initiates most of the orchestration activities (such as running an instance) as 

well as enforcing some policies. 

 The nova-compute process is primarily a worker daemon that creates and 

terminates VM instances via hypervisor APIs (XenAPI for XenServer/XCP, libvirt 

for KVM or QEMU, VMwareAPI for vSphere, etc). 

 The nova-scheduler process keeps a queue of VM instance requests and for 

each request it determines where the VM instance should run (specifically, 

which compute node it should run on). 

 The Nova service itself does not come with a hypervisor, but manages 

multiple hypervisors, such as KVM or ESXi. Nova orchestrates these 

hypervisors via APIs and drivers. For example, Hyper-V is managed directly by 

Nova and KVM is managed via libvirt, while Xen and vSphere can be managed 

directly or through management tools such as libvirt and vCenter for vSphere, 

respectively. 

2.2.3.2 Eucalyptus 

Eucalyptus (Elastic Utility Computing Architecture Linking 

Your Programs To Useful Systems) is an open-source Cloud 

that provides on-demand computing instances and shares 

the same APIs as Amazon’s EC2 cloud. Eucalyptus was designed as a highly-modular 

framework in order to enable extensibility with minimal effort (41). The Cloud 

Controller (CLC) in Eucalyptus acts as the Cloud entry-point by exposing and 

managing the virtualised resources. The CLC offers a series of web services oriented 

towards resources, data and interfaces (EC2-compatible and Query interfaces). In 

addition to handling incoming requests, the CLC acts as the administrative interface 

for cloud management and performs high-level resource scheduling and system 

accounting. The CLC accepts user API requests from command-line interfaces like 

euca2ools or GUI-based tools like the Eucalyptus Management Console and manages 

the underlying compute, storage, and network resources. 

2.2.3.3 Cloudstack 

Apache CloudStack is open source software designed to 

deploy and manage large networks of virtual machines, as a 

highly available, highly scalable Infrastructure as a Service (IaaS) cloud computing 



T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation, 

Management and Orchestration - Interim 

 

© T-NOVA Consortium 

 
45 

platform (42). CloudStack is used by a number of service providers (e.g. BT) to offer 

public cloud services, and by many companies to provide an on-premises (private) 

cloud offering, or as part of a hybrid cloud solution. CloudStack is a turnkey solution 

that includes the entire "stack" of features most organisations want with an IaaS 

cloud: compute orchestration, Network-as-a-Service, user and account management, 

a full and open native API, resource accounting, and a first-class User Interface (UI). 

CloudStack is a framework that allows pooling of computing resources in order to 

IaaS cloud services that can be used to provide IT infrastructure such as compute 

nodes (hosts), networks, and storage as a service to the end users on demand. 

CloudStack Management Server is the main component of the framework, consisting 

of managing resources such as hosts, storage devices and IP addresses. The 

Management Server runs on a dedicated host in a Tomcat container and requires a 

MySQL database for persistence. The Management Server controls allocation of VMs 

to hosts and assigns storage and IP addresses to VM instances. This component also 

controls or collaborates with the hypervisor layers on the physical hosts over the 

management network and thus controls the IT infrastructure. 

2.2.3.4 VMware vCloud Suite 

VMware’s vCloud Suite - is a comprehensive, integrated 

cloud platform for building and managing cloud 

environments (43). Tools for cloud management are 

delivered through VMware vCenter Server, a centralised and extensible platform for 

managing virtual infrastructure. The tools included in the vCenter Server framework 

support: configuration of ESX servers and VMs, performance monitoring throughout 

the entire infrastructure, using events and alerts. The objects in the virtual 

infrastructure can be securely managed with roles and permissions. 

2.2.4 Network Resource Virtualisation and Management 

Virtualising the Network Infrastructure refers to the environment that supports the 

coexistence of multiple Virtual Networks (VNs) on the same physical substrate, also 

realising different isolated domains of nodes characterised by a specific topology that 

can be managed as real networks. In the T-NOVA architecture those nodes are Virtual 

Machines (VMs) that host the VNFs. VMs are connected to VLANs that can be within 

a single DC or distributed over different DCs. In this last case, tunnelling protocols are 

needed in order to encapsulate the VLAN L2 frames in L3 transport networks. In the 

T-NOVA architecture the inter-DC connectivity is provided by the Transport Network 

Manager (TNM), whose capabilities and functionalities are discussed in Section 4.7. 

This section provides an overview of the common Tunnelling Protocols which can be 

of interest to T-NOVA, followed by a review of the major SDN initiatives of interested 

finally some common open source NaaS frameworks are reviewed. 

2.2.4.1 Tunnelling Protocols 

As mentioned above, a single physical server may host a number of different VNF 

services that need to be connected to different VLANs. Moreover, each of these 
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VLANs may span several DCs interconnected via L3 networks; all the VMs in a 

segment have to be connected to a virtual switch that can manage different VLANs. 

The most important standardisation activities carried out on VLAN specification is 

802.1Q. This standard however does inherently support the expansion of VLANs over 

L3 technologies. The continuity of L2 segments (i.e. VLANs) among different DCs is a 

requirement for the T-NOVA architecture. In order to preserve the L2 segments 

continuity amongst the NFVI-Point of Presence (NFVI-PoP), tunnelling protocols 

(heavily used in today’s cloud services) will be exploited. 

In the following subsections a brief introduction to IEEE 802.1Q is presented and the 

three most common tunnelling protocols are discussed namely VxLAN (44), Network 

Virtualization using Generic Routing Encapsulation (NVGRE) (45) and Stateless 

Transport Tunneling (STT) (46). 

IEEE 802.1Q and L2 Virtualisation 

IEEE 802.1Q is the networking standard that supports virtual LANs (VLANs) on an 

Ethernet network. The standard defines a system of VLAN tagging for Ethernet 

frames and the accompanying procedures to be used by bridges and switches in 

handling these frames. The standard also contains provisions for a quality of service 

prioritisation scheme (commonly known as IEEE 802.1p) and defines the Generic 

Attribute Registration Protocol. 

Network segments, which are VLAN-aware (i.e., IEEE 802.1Q conformant) may include 

VLAN tags. Traffic on a VLAN-unaware (i.e., IEEE 802.1D conformant) segment of the 

network will not contain VLAN tags. When a frame enters the VLAN-aware segment 

of the network, a tag is added to represent the VLAN membership of the frame's port 

or the port/protocol combination, depending on whether port-based or port-and-

protocol-based VLAN classification is being used. Each frame must be distinguishable 

as being within exactly one VLAN. A frame in the VLAN-aware portion of the network 

that does not contain a VLAN tag is assumed to be flowing on the native (or default) 

VLAN. 

The standard was developed by IEEE 802.1, a working group of the IEEE 802 

standards committee, and continues to be actively revised with notable revisions 

including IEEE 802.1ak, IEEE 802.1Qat and IEEE 802.1Qay. 

In T-NOVA, 802.1q VLANs can be established within a NFVI-PoP, e.g. to facilitate 

communication among Virtual Network Function Components (VNFCs) of the same 

service. 

L3 tunnelling protocols 

While L2 virtualisation seems adequate within a single L2 topology, transporting L2 

frames via a L3 network (e.g. a wide-area transport network interconnecting data 

centres) mandates the use of tunnelling protocols. 

The aim of a tunnelling protocol is to virtualise (abstract) the physical network 

topology and bring functionality like isolation of multiple tenants, isolation of 

overlapping address space between multiple tenants, expanded VLAN/tenant ID 

address space, and enhanced VM mobility by providing L2 services over an L3 
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network (L2 over L3). ). In T-NOVA, the use of a tunnelling protocol is considered 

essential in order to interconnect VNFCs dispersed among remote NFVI-PoPs. 

The three commonly used L3 tunnelling protocols are: 

 VXLAN - A Layer 2 overlay scheme over a Layer 3 network. It uses MAC 

Address-in-User Datagram Protocol (MAC-in-UDP) encapsulation to provide a 

means to extend Layer 2 segments across the data centre network. VXLAN is a 

solution to support a flexible, large-scale multitenant environment over a 

shared common physical infrastructure. The transport protocol over the 

physical data centre network is IP plus UDP (44). 

 NVGRE - Network virtualisation method that uses encapsulation and 

tunnelling to create large numbers of virtual LANs (VLANs) for subnets at layer 

2 that can extend across dispersed data centres) at layer 3 . The purpose is to 

enable multi-tenant and load-balanced networks that can be shared across 

on-premises and cloud environments. NVGRE was designed to solve problems 

caused by the limited number of VLANs that the IEEE 802.1Q specification 

enables, which are inadequate for complex virtualised environments, and 

make it difficult to stretch network segments over the long distances required 

for dispersed data centres (45), 

 STT - Proposed by Nicira, it is written from a software centric view point 

rather than from a network centric view point. The main advantage of the STT 

proposal is its ability to be implemented in a software switch while still 

benefitting from NIC hardware acceleration. STT uses a 64-bit network ID 

rather than the 24 bit IDs used by NVGRE and VXLAN. STT is particularly 

useful when some tunnel endpoints are in end-systems, as it utilises the 

capabilities of standard network interface cards to improve performance (46), 

Each protocol has a different set of advantages and disadvantages. Table 4 presents 

the main strengths and weaknesses for each protocol.  

Table 4: Common VLAN Tunnelling Protocols 

Item VxLAN NVGRE STT 

Proposed/used by VMware, Cisco, 

Broadcom, Red 

Hat 

Microsoft, HP, 

Intel, Broadcom 

Nicira, VMware 

Encapsulation UDP GRE TCP 

Standard No No No 

Overhead 

(additional header 

information) 

54 bytes 46 bytes 80 bytes of new header for 

the first segment of this 

packet, 62 for each following 

segment 

Tenant space 

(network identifier 

length) 

24-bit 24-bit 64-bit 
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OpenFlow Yes (OF v1.4) No? No? 

OVS Yes Yes Yes 

Hardware-based 

TCP Segmentation 

Offload (TSO) 

support 

No No Yes 

2.2.4.2 Software Defined Network Controllers 

A key abstraction of the SDN paradigm is the separation of the network control and 

forwarding planes. Conceptually, in SDN networks, resources are treated as a dynamic 

collection of arbitrarily connected forwarding devices with minimal intelligence. The 

control logic is implemented on top of a so-called SDN controller. The controller is a 

logically centralised entity which is responsible for a set of tasks, including the 

extraction and maintenance of a global view of the network topology and state, as 

well as the instantiation of forwarding logic appropriate to a given application 

scenario. In practice the controller manages connections to all substrate switches 

using a southbound protocol such as OpenFlow, and installs, modifies and deletes 

forwarding entries into the forwarding tables of the connected switches by using 

protocol specific control messages. 

While it is possible to implement single purpose controllers, e.g. for L2 forwarding or 

routing, available SDN controller implementations typically provide an extendable 

software platform on top of which SDN applications may be developed and 

deployed. Such a controller framework offers easy to use (northbound) APIs to the 

functionality provided by the SDN substrate. Further, it may include helper functions 

that provide, for example topology discovery or flow statistics collection. As a result 

an SDN controller may be regarded as a layer between the SDN substrate and the 

SDN application layer, which implements the logic for concrete network services (see 

Figure 14). Typically, SDN controllers are executed on commodity server hardware. 

While conceptually SDN controllers are centralised, in real world deployments the 

controller functionality may be distributed across multiple devices to ensure 

scalability and failure resilience. 
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Figure 14: Open Networking Foundation Software-Defined Network Architecture 

The NOX controller was the first widely available OpenFlow controller (47). NOX was 

originally developed by Nicira and released as open-source software. Due to its early 

availability and its simplicity NOX quickly become the de-facto reference design for 

OpenFlow controllers. As a result it has been used to test new OpenFlow features, 

novel controller ideas and it has been employed extensively in research and feasibility 

studies. NOX applications – called modules – are implemented using the C 

programming language. NOX is event based; each module essentially consists of a 

collection of callback functions, triggered by the arrival of specific OpenFlow protocol 

messages. A spin-off of NOX called POX (48) enables the use of Python for 

programming modules. While NOX/POX is extremely versatile it is not primarily 

aimed for production use, as it is not optimised for performance and stability and 

lacks resilience features. 

Other controller frameworks aimed at deployment in production environments, 

include Beacon (49), Maestro (50) and FloodLight (51), all of which are implemented 

in Java. FloodLight is the open source basis for Big Switch’s commercial OpenFlow 

controller. OpenDayLight (52) is currently the newest and also largest SDN controller 

platform. It is backed by the Linux Foundation and developed by an industrial 

consortium, which includes Cisco, Juniper and IBM, among many others. 

OpenDayLight includes numerous functional modules which are interconnected by a 

common service abstraction layer. Further, OpenDayLight provides a flexible 

northbound interface using Representation State Transfer APIs (REST APIs), and 

includes support for the OpenStack cloud platform. Table 5 summarises the main 

features of existing SDN controllers: 

Table 5: Key features of common SDN controllers 
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Controller Developer Open Source Language Openflow 

support 

Openstack 

support 

NOX  Nicira Yes  C++ / 

Python  

v1.0  No  

POX  Nicira Yes  Python  v1.0  No  

Maestro  Rice 

University  

Yes  Java  v1.0  No  

Beacon  Stanford 

University  

Yes  Java  v1.0  No  

Floodlight  Big Switch 

Networks  

Yes  Java  v1.0  Quantum 

plug-in  

ONOS  Open 

Networking 

Lab  

Yes  Java   

Ryu NTT  Yes  Python  v1.0-v1.4 

&Nicira 

extensions  

Neutron 

plug-in 

(Havana and 

Grizzly)  

Nodeflow CISCO  Yes  Javascript   

Trema NEC  Yes  C & Ruby  v1.0  Quantum 

plug-in  

OpenDayLight Linux 

Foundation  

Yes  Java  v1.0, v1.3  Neutron 

plug-in  

Iris  ETRI  Yes  Java  v1.0.1-v1.3.2   

MUL  Kulcloud Yes  C  v1.0, v.1.3   

Jaxon  Independent 

developers  

Yes  Java    

JunosV 

Contrail  

Juniper  No   No  Yes  

Another framework that is attracting attention is OpenContrail led by Juniper 

Networks. Actually it is more than a SDN controller: it is a modular project that 

provides an environment for network virtualisation and published northbound APIs. 

In particular, the network virtualisation is provided by means of a set of building 

blocks and high level policies; it integrates an SDN controller to support network 

programmability and automation, and a well-defined data model to describe the 

desired state of the network; an analytics engine is designed for very large scale 

ingestion and querying of structured and unstructured data. It also provides an 

extensive REST API to configure and gather operational and analytics data from the 

system. 
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2.2.4.3 NaaS platforms 

Network service delivery and management models remain an area of on-going 

evolution, and are additionally being continually revised in tandem with the 

constantly evolving needs of the R and E community. The network as a service 

concept represents an interesting service model from which T-NOVA can benefit. 

Network as a Service (NaaS) is a business model for delivering network services 

virtually over any network on a pay-per-use basis. It is not a new concept. However, 

its development has been hindered by some of the same concerns that have affected 

also other cloud computing services, such as high availability or service level 

agreements. In the following section a brief review of the NaaS platforms is 

presented. 

Open Network as a Service (OpenNaas) 

The NaaS model has been instantiated in the OpenNaaS easy prototyping and proof 

casing of NaaS concepts. OpenNaaS is an open-source framework, which provides 

tools for managing the different resources present in any network infrastructure. The 

software platform was created in order to offer a neutral tool to the different 

stakeholders comprising an Open Access Network (OAN). It allows them to 

contribute and benefit from a common NaaS software-oriented stack for both 

applications and services. It is based on a lightweight, abstracted, operational model, 

which is decoupled from actual vendors’ specific details, and is flexible enough to 

accommodate different designs and orientations. In fact, the OpenNaaS framework 

provides tools to implement the logic of an SDN-like control and management plane 

on top of the lightweight abstracted model. The manner in which it is designed 

allows the deployment of VNFs within it. The elements loaded in OpenNaaS contains 

a model which stores the information about the resource, and a set of capabilities 

that allows to access to the data of the model. 

Figure 15 depicts the layered architecture of the framework, with the platform layer, 

the resource abstraction layer with the NaaS manageable units, and the upper layer, 

where the network intelligence resides, as well as the integration of the framework 

with third-party components. Besides, the resource abstraction, the core platform 

concepts are also depicted. Different OpenNaaS deployment examples can be found 

in the following list of European projects extending the OpenNaaS framework: 

OFERTIE (53), CONTENT (54), and SODALES (55). Furthermore, authors in (56) used 

OpenNaaS in order to build a first proof-of-concept pilot for the VNF creation and 

management. 
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Figure 15: OpenNaaS Architecture (left), NaaS Resource Abstraction (right) 

OpenStack Neutron 

OpenStack Neutron (57), historically known as Quantum, is an OpenStack project 

focused on delivering Networking as a Service (NaaS). It is designed to address 

deficiencies in “baked-in” networking technology found in cloud environments, as 

well as the lack of tenant control (in multi-tenant environments) over the network 

topology and addressing, which makes it hard to deploy advanced networking 

services. 

Neutron provides a way for organisations to make it easier to deliver networking as a 

service in the cloud and provides REST APIs to manage network connections for the 

resources managed by other OpenStack services. 

It is designed to implement a “plugin” mechanism that will provide an option for 

network operators to enable different technologies via the Neutron API making it 

technology agnostic. 

Neutron provides native multi-tenancy support (isolation, abstraction and full control 

over virtual networks), letting tenants create multiple private networks and control 

the IP addressing on them, and exposes vendor-specific network virtualisation and 

SDN technologies. 

As a result of API extensions, administrators and users have additional control over 

security and compliance policies, QoS monitoring and troubleshooting, the ability to 

build sophisticated networking topologies, as well as the ability to easily deploy 

advanced network services, such as a firewall, L2-in-L3 tunnelling, end-to-end quality 

of service support intrusion detection or VPN. 

The core Neutron API includes support for Layer 2 networking and IP Address 

Management (IPAM), as well as an extension for a Layer 3 router construct that 

enables routing between Layer 2 networks and gateways to external networks. It is 

based on a simple model of virtual networks, subnet, and port abstractions to 

describe networking resources. Network is an isolated layer-2 segment, analogous to 

a VLAN in the physical networking world. More specifically, it is a broadcast domain 

reserved for the tenant that created it or explicitly configured as shared. Neutron 
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includes a growing list of plugins that enable interoperability with various commercial 

and open source network technologies, including routers, switches, virtual switches 

and SDN controllers. 

Starting with the Folsom release, Neutron is a core and supported part of the 

OpenStack platform. However, it is a standalone and autonomous service that can 

evolve independently to OpenStack.  

OpenDaylight Virtual Tenant Network (VTN) 

OpenDaylight Virtual Tenant Network (VTN) provides multi-tenant virtual network on 

an SDN controller (58). Traditionally physical networks have been configured as silos 

for each department within an organisation (or for each customer) by a service 

provider. This has resulted in significant and unnecessary hardware investments and 

operating expenses due to underutilised, redundant network equipment required to 

implement this scheme. 

VTN addresses this problem by providing an abstraction that enables the complete 

separation of the logical plane from physical plane of the network. This allows users 

to design and deploy virtual networks for their customers without needing to know 

the physical network topology or underlying operating characteristics. The VTN also 

allows the network designer to construct the virtual networks using common L2/L3 

network semantics. 

VTN allows the users to define the network with a look and feel of conventional L2/L3 

network. Once the network is designed on VTN, it is automatically mapped onto the 

underlying physical network, and then configured on the individual switches 

leveraging an SDN control protocol. The definition of the logical plane makes it 

possible not only to hide the complexity of the underlying network but also to better 

manage network resources. It achieves a reduction in the reconfiguration time of 

network services and minimising network configuration errors.  

Open DOVE 

Open DOVE (Distributed Overlay Virtual Ethernet) is a network virtualisation platform 

that provides isolated multi-tenant networks on any IP network in a virtualised DC 

(59). DOVE provides each tenant with a virtual network abstraction providing layer-2 

or layer-3 connectivity and the ability to control communications using access control 

policies. Address dissemination and policy enforcement in DOVE is provided by a 

clustered directory service. It also includes a gateway function to enable virtual 

machines on a virtual network to communicate with hosts outside the virtual network 

domain. 

Users interact with Open DOVE to create and manage virtual networks through the 

Open DOVE Management Console (DMC), which provides a REST API for 

programmatic virtual network management and a basic graphical UI. The DMC is also 

used to configure the Open DOVE Gateway to provide connectivity to non-virtualised 

networks. 

The Open DOVE Connectivity Server (DCS) supplies address and policy information to 

individual Open DOVE vswitches, which implement virtual networks by encapsulating 
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tenant traffic in overlays that span virtualised hosts in the data centre. The DCS also 

includes support for high-availability and scale-out deployments through a 

lightweight clustering protocol between replicated DCS instances. The Open DOVE 

vswitches serve as policy enforcement points for traffic entering virtual networks. 

Open DOVE uses the VxLAN encapsulation format but implements a scalable control 

plane that does not require the use of IP multicast in the data centre. 

The DOVE technology was originally developed by IBM Research and has also been 

included in commercial products. 

Flowvisor 

FlowVisor is the ON.LAB network slicer, which allows multiple tenants to share the 

same physical infrastructure (60). A tenant can be either a customer requiring his own 

isolated network slice; a sub-organisation that needs its own slice; or an experimenter 

who wants to control and manage some specific traffic from a subset of endpoints. 

FlowVisor acts as a transparent proxy between OpenFlow switches and various guest 

network operating systems. It supports network slicing and allows a tenant or an 

experimenter to control and manage some specific traffic from a subset of end 

points. This approach enables multiple experimenters to use a physical OpenFlow 

network without interfering with each other. 

FlowVisor enables network virtualisation by dividing a physical network into multiple 

logical networks ensuring that each controller touches only the switches and 

resources assigned to it. It also partitions bandwidth and flow table resources on 

each switch and assigns those partitions to individual controllers. 

FlowVisor slices a physical network into abstracted units of bandwidth, topology, 

traffic and network device CPUs. It operates as a transparent proxy controller 

between the physical switches of an OpenFlow network and other OpenFlow 

controllers and enables multiple controllers to operate the same physical 

infrastructure, much like a server hypervisor allows multiple operating systems to use 

the same x86-based hardware. Other standard OpenFlow controllers then operate 

their own individual network slices through the FlowVisor proxy. This arrangement 

allows multiple OpenFlow controllers to run virtual networks on the same physical 

infrastructure.  

FlowVisor, originally developed at Stanford University, has been widely used in 

experimental research and education networks to support slicing where multiple 

experimenters get their own isolated slice of the infrastructure and control it using 

their own network OS and a set of control and management applications. FlowVisor 

has been deployed on a Stanford production network and sponsors, such as GENI, 

Internet2, NEC and Ericsson, have been contributing to it and using it in their research 

labs. The SDN research community considers FlowVisor an experimental technology, 

although Stanford University has run FlowVisor in its production network since 2009. 

FlowVisor lacks some of the basic network management interfaces that would make it 

enterprise-grade. For example it currently does not any CLI or Web-based 

administration console but requires users to make changes to the technology with 

configuration file updates. 
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OpenVirteX 

OpenVirteX is a network hypervisor that can create multiple virtual and 

programmable networks on top of a single physical infrastructure (61). Each tenant 

can use the full addressing space, specify their own topology, and deploy the 

network OS of their choice. Networks can be reconfigured at run-time, and 

OpenVirteX can automatically recover from physical failures. 

OpenVirteX is actually a network hypervisor that enables operators to provide 

networks whose topologies, management schemes, and use cases are under the full 

control of their tenants. More specifically OpenVirteX builds on OpenFlow as protocol 

and FlowVisor for design. In this respect they share some common properties i.e. act 

as proxies between tenants and the underlying physical infrastructure. Unlike 

FlowVisor however, OpenVirteX provides each tenant with a fully virtualised network 

featuring a tenant-specified topology and a full header space. 
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3 THE T-NOVA ORCHESTRATION LAYER 

This section describes the Orchestration layer, starting with an overview of its main 

characteristics, challenges and framework (subsection 3.1); followed by a description 

of requirements associated with its FEs (subsection 3.2), and finally a description of its 

functional architecture (subsection 3.3). 

3.1 Orchestration Layer Overview 

NFV is an emerging concept, which refers to the migration of certain network 

functionalities, traditionally performed by dedicated hardware elements, to virtualised 

IT infrastructures where they are deployed as software components. NFV leverages 

commodity servers and storage to enable rapid deployment, reconfiguration and 

elastic scaling of network functionalities. 

Decoupling the network functions software from the hardware creates a new set of 

entities, namely: 

 Virtual Network Functions (VNFs): software-based network functions 

deployed over virtualised infrastructure; 

 Network Functions Virtualized Infrastructure (NFVI): virtualised hardware 

that supports the deployment of network functions; 

 Network Service (NS): chain of VNFs and/or Physical Network Functions 

(PNFs) interconnected through virtual network links (VLs). 

Since VNFs, NFVIs, NSs and the relationships between them did not exist before the 

NFV paradigm, handling them requires a new and different set of management 

orchestration functions. 

VNFs require more agile management procedures when compared with legacy PNFs 

deployed over dedicated appliances. Besides the traditional management procedures 

already in place for PNFs, in charge of BSSs/OSSs, such as customer management, 

accounting management and SLA management, VNFs  require new management 

procedures, e.g. to automatically create, to update and/or to terminate VNFs and 

NSs. Furthermore, the automatic deployment and instantiation procedures associated 

with a specific VNF need to be in place as well as the monitoring and automatic 

scaling procedures during the service runtime phase. 

Another challenge brought about by the NFV paradigm is the management of the 

virtualised infrastructure. In fact, one of the main advantages of virtualising the 

network functions is to enable the automatic adjustment of NFVI resources according 

to the network function demands. To achieve this, the VNF specific requirements, 

according to the contracted SLA, have to be mapped to the required virtualised 

infrastructure assets (compute – e.g. virtual and physical machines, storage and 

networking – e.g. networks, subnets, ports and addresses). The mapping procedures 

should also consider the network topology, connectivity and network QoS 

constraints, as well as function characteristics (e.g. some functions may require low 
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delay, low loss or high bandwidth). Since virtualised resources can be centralised in a 

single NFVI-PoP or distributed across several NFVI-PoPs, the management and 

orchestration entities will also have to decide what is the most appropriated NFVI-

PoP or NFVI-PoPs to deploy the function. 

Besides the VNFs and the NFVI-PoPs management challenges, new and more 

complex NSs will be provided based on the combination/chaining of several VNFs. 

Therefore, in addition to the managing and orchestrating of each VNF and of the 

associated NFVI-PoP, orchestration and management procedures also have to be 

defined at the service level. These will coordinate several VNFs, as well as their 

association through Virtual network Links (VLs). Moreover, since the NSs can also be 

composed by PNFs, the interconnections between these and the VNFs are also 

required. The NS composition includes the constituent VNFs, PNFs and VLs, in the 

VNF Forwarding Graph (VNFFG). Each NS can have one or more VNFFGs, if there are 

conditions to have alternatives in terms of path creation, which can be used as 

backups. 

Figure 16 illustrates the entities introduced by the NFV paradigm, as well as their 

relationships. 
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Figure 16: NSs & VNFs Complex Orchestration Overview 

The NS presented in Figure 16 is composed by the following entities: 

 Four VNFs: A, B, C and D; 

 One PNF; 

 Five VLs: 1 (interconnecting VNF A and PNF), 2 (interconnecting VNF A and 

VNF B, 3 (interconnecting VNF A and VNF C), 4 (interconnecting VNF B and 

VNF D) and 5 (interconnecting VNF C and VNF D). 

The VNFs are deployed over two different NVFI-PoPs: 

 NFVI-PoP I: supports VNF A and D deployments; 

 NFVI-PoP II: supports VNF B and C deployments. 

Two VNFFGs are illustrated: 

 VNFFG I: delivers the NS through the PNF – VNF A – VNF C – VNF D 

networking path; 
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 VNFFG II: delivers the NS through the PNF – VNF A – VNF B – VNF D 

networking path. 

Internally, the VNFs can be composed by one or more software components, also 

known as Virtual Network Function Components (VNFCs). Each VNFC is typically 

deployed in a single Virtual Machine (VM), although other deployment procedures 

can exist. As VNFs, VNFCs can be instantiated in a single NFVI-PoP or distributed 

across several NFVI-PoPs. The VNFCs interconnections are made through dedicated 

VLs. Figure 16 illustrates the internals of a specific (VNF D). The latter software 

components, namely web server (VNFC A), application server (VNFC B) and database 

(VNFC C), interconnected through VLs (VL6 and VL7). 

On top of all these entities (e.g. NS, VNF, VNFC, VL, NFVI-PoP, etc) stands the 

orchestrator, which has  responsibility for managing  the complexity associated with 

the NSs and VNFs lifecycle management (e.g. on-boarding/deployment, instantiation, 

supervision, scaling, termination), including the internals of the VNFs (not illustrated 

in the figure). 

In summary, the T-NOVA Orchestrator platform is focused on addressing two of the 

most critical issues in NFV: 

1. Automated deployment and configuration of NSs/VNFs; 

2. Management and optimisation of networking and IT resources for VNFs 

accommodation. 

To address the complex management processes related with the NSs and VNFs, the 

Orchestrator is split in two main FEs: 

1. NFV Orchestrator (NFVO): manages the virtualised NSs lifecycle procedures, 

including the networking links that interconnect the VNFs; 

2. VNF Manager (VNFM): manages the VNFs lifecycle procedures. 

The T-NOVA Orchestrator will also be able to deploy and monitor T-NOVA services 

by jointly managing WAN resources and cloud (compute/storage) assets (DCs). 

Indeed, the T-NOVA Orchestrator goes beyond traditional cloud management, since 

its scope is not restricted to a single DC; it needs to jointly manage WAN and 

distributed cloud resources in different interconnected DCs in order to couple the 

basic network connectivity service with added-value NFs. 

Further details regarding these T-NOVA Orchestrator entities and functionalities are 

provided in the following subsections. The VNF related concepts and architectural 

components are discussed extensively in Deliverable D2.41 (D2.41) (62). 

3.2 Orchestrator requirements 

As already outlined in subsection 3.1, the T-NOVA Orchestrator is composed by two 

main building blocks: the NFVO and the VNFM. 

The NFVO orchestrates the subset of functions that are responsible for the lifecycle 

management of Network Services (NSs). In addition, it is also responsible for the 

resource orchestration of the NFVI resources across: 
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 a single VIM, corresponding to a single NFVI-PoP, and/or 

 multiple VIMs, corresponding to multiple NFVI-PoPs, by using a specialized 

VIM designated by TNM. 

The VNFM is the functional block that is responsible for the lifecycle management of 

the VNFs. 

The deployment and operational behaviour of the Orchestrator is captured in 

deployment templates, where the most important for this subsection are the Network 

Service Descriptor (NSD), the Virtual Network Function Descriptor (VNFD). Other 

templates are also used, e.g., Virtual Link Descriptor (VLD), and the VNF Forwarding 

Graph (VNFFGD), which will be further detailed in subsection 3.3. 

This subsection details the Orchestrator requirements that have been identified after 

a research study involving several sources, e.g. use cases defined in D2.1 (63), ETSI 

ISG NFV requirements (64), ITU-T requirements for NV (10), as well as excerpts of 

relevant parts of the ETSI ISG MANO architecture and associated FEs (8). 

The list of requirements for each FE may be found in Annex A, where 35 requirements 

have been identified for the NFVO and 11 for the VNFM. However, it should be noted 

that none of these requirements imposes any specific solution at the implementation 

level, which will be performed in WP3/4. 

Taking into account that the list of requirements is quite extensive, the entire set of 

requirements has been classified and divided into types as indicated in the remaining 

part of the current subsection. 

3.2.1 NFVO requirements types 

Network Services under the responsibility of the NFVO, are composed by VNFs and, 

as such, are defined by their functional and behavioural specification. In this context, 

the NFVO coordinates the lifecycle of VNFs that jointly realise a NS. This coordination 

includes managing the associations between the different VNFs that make-up part of 

the NS, and when applicable between VNFs and PNFs, the network topology of the 

NS, and the VNFFGs associated with the NS. 

The operation of NSs defines the behaviour of the higher Orchestration layer, which 

is characterised by performance, dependability, and security specifications. The end-

to-end network service behaviour is the result of combining individual network 

function behaviours as well as the behaviours of the composition mechanisms 

associated with the underlying network infrastructure layer, i.e. the IVM layer. 

In terms of deployment and operational behaviour, the requirements of each NS are 

carried in a deployment template, the NSD, and stored during the NS on-boarding 

process in the NS catalogue, for future selection once the instantiation of the service 

takes place. The NSD fully describes the attributes and requirements necessary to 

implement a NS, including the service topology, i.e. constituent VNFs and the 

relationships between them, VLs, VNFFGs, as well as NS characteristics, e.g. in terms 

of SLAs and any other information necessary for the NS on-boarding and lifecycle 

management of its instances. 
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As the NS is the main responsibility of the NFVO, the NS lifecycle constitutes the 

most relevant technical area regarding the NFVO classification in terms of 

requirements. 

As indicated below, the other requirement types are related with the VNF lifecycle 

management with respect to the actions and procedures taken by the NFVO, which 

also includes the second FE that constitutes part of the Orchestrator, together with 

the NFVO: the VNFM. The actions and procedures associated with the VNFM’s 

behaviour, and in particular those related to the VNF lifecycle, will be further 

discussed in subsection 3.2.2. 

Regarding the remaining requirement types, it should be noted that there is one type 

related to the NFVO, which handles the management of the resources located in 

the VIM and in the TNM; another one related with the policy management; and 

another one, specific to the T-NOVA system, which is concerned with the most 

relevant interactions with the Marketplace, the layer immediately above the 

Orchestration layer. 

Finally, there are still two further types that relate to NS lifecycle operations: 

connectivity handling and the monitoring process. A decision was taken to create 

separate groups for these two (sub)types in order to emphasize the importance they 

play in the overall operation of the Orchestrator. 

3.2.1.1 NS Lifecycle 

A Service Provider (SP) may choose one or more VNFs to compose a new NS, by 

parameterising those VNFs, selecting a SLA, etc. within the context of the T-NOVA 

system. The NFVO is then notified of the composition of this new NS, by the 

reception of a request that includes a NSD, which is validated in terms of description. 

In a similar process, when a Customer subscribes to a NS, the Marketplace notifies 

the NFVO, which instantiates the NS according to its NSD description, agreed SLA 

and the current status of the overall infrastructure usage metrics. Upon a successful 

instantiation, the Orchestrator notifies the Marketplace, thus triggering the 

accounting process of the subscribed NS as well as of the customer. 

After these steps the NFVO becomes responsible for NS lifecycle management, where 

lifecycle management refers to a set of functions required to manage the 

instantiation, maintenance and termination of a NS. 

3.2.1.2 VNF Lifecycle 

The NFVO performs its capabilities by using the VNFM operation in what concerns 

the handling of the VNF lifecycle. Although the VNFM is the FE in charge of the 

management of the VNF lifecycle, as further described in subsection 3.2.2, some 

operations require the intervention of the NFVO. 

The requirement type specified in the current subsection refers precisely to those 

parts of the VNF lifecycle management that are performed by the NFVO. 

In this context, Function Providers (FPs) publicise their VNFs in the Network 

Function Store (NF Store). This implies the use of a VNFD describing the 
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infrastructure (computation, storage, network infrastructure and connection) needed 

for the VNF to be instantiated later on by a request sent to the Orchestrator. 

After a validation of the VNFD, the NFVO publicises the VNF to the Marketplace as 

being ready to be part of a NS. Associated with the VNFD, there may be potentially a 

VM image that will make part of the deployment of such VNF. 

As the FP provides newer versions this process is repeated. If and when the FP wishes 

to withdraw the VNF, the reverse process is executed taking into consideration the 

current status of NS exploiting the under deletion VNF. 

3.2.1.3 Resource Handling 

The NFVO is the Orchestrator FE that performs the resource handling of the subset of 

Orchestrator functions that are responsible for global resource management 

governance. 

In terms of scope, the following domains and associated IT virtualised resources are 

managed by the NFVO: Compute, i.e. virtual processing CPUs and virtual memory; 

Storage, i.e. virtual storage; and Network, i.e. virtual links intra/interconnecting VNFs 

within the Data Centre Network (DCN). In T-NOVA, the NFVO also manages the 

resources of the TNM network domain. 

The governance described above is performed by managing the between the VNF 

instances and the NFVI resources allocated to those VNF instances and by using the 

Infra Resources catalogue as well as information received from the VIM and from the 

TNM. 

According to the characteristics of each service (agreed SLA) and the current usage of 

the infrastructure (computation, storage infrastructure and connectivity), there is an 

optimal allocation for the required infrastructure. 

This optimal infrastructure allocation will be the responsibility of an allocation 

algorithm (or a set of algorithms) that will be defined, in WP3. 

3.2.1.4 Monitoring Process 

One of the key aspects of the T-NOVA project is not only the ability to optimally 

allocate infrastructures for a NS, but also to react, in real time, to the current 

performance of a subscribed NS, so that the agreed SLA is maintained. To accomplish 

these two aspects, it is crucial that a meaningful set of infrastructure (computational, 

storage, infrastructure and connectivity) usage metrics be collected. 

NS metrics must be defined together with the SLA(s) to be provided with every NS 

instantiation. 

It is expected that the data to be collected will be significant with a high frequency of 

change, so adequate strategies will have to be designed to support collecting large 

volumes of data. 

As such, during the NS lifecycle, the NFVO may monitor the overall operation of a NS 

with information provided by the VIM and/or by the TNM, if such requirements were 

captured in the NS deployment template. 
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Such data may be used to derive usage information for NFVI resources being 

consumed by VNF instances or groups of VNF instances. For instance, the process 

may involve collecting measurements about the number of NFVI resources consumed 

by NFVI interfaces, and then correlating NFVI usage records to VNF instances. 

Beyond the infrastructure usage metrics sets of NS usage metrics, need to be defined 

upon service composition, in order to allow tracking of the agreed SLA and to 

determine if it is being maintained or not. 

These metrics are more service oriented than infrastructure oriented, and are built on 

top of infrastructure usage metrics. For instance, a metric such as “the current 

number of simultaneous sessions” is something that the infrastructure cannot 

measure, but the “current maximum network latency” is something available at the 

infrastructure level, which might make sense at the service level as well. The choice 

between which metrics to track is made by the Marketplace, at service composition 

time. 

The collection of these measurement metrics may be reported to external entities, 

e.g. the Customer, the SP or the FP, via the Marketplace, if such requirements were 

captured in the NS deployment template. 

In addition, this information may be compared with additional information included 

in the on-boarded NS and VNF deployment templates, as well as with policies 

applicable to the NS that can be used to trigger automatic operational management 

of the NS instance, e.g. automatic scaling of VNF instances that are part of the NS. 

3.2.1.5 Connectivity Handling 

The NFVO has an abstracted view of the network topology and interfaces to the 

underlying VIMs and TNMs in order to handle connectivity services by performing 

the management of the NS instances, e.g., create, update, query, delete VNFFGs. 

Connectivity management must be handled over the same domains as those 

indicated for resource handling. 

3.2.1.6 Policy Management 

Policies are defined by conditions and corresponding actions/procedures, e.g. a 

scaling policy may state execution of specific actions/procedures if the required 

conditions occur during runtime. Different actions/procedures defined by the policy 

can be mutually exclusive, which implies a process of selection of a particular 

action/procedure (or set of actions/procedures) to be executed either automatically 

or manually. 

In the context of T-NOVA, once declared, a policy may be bound to one or more NS 

instances, VNF instances, and NFVI resources. Policy management always implies 

some degree of evaluation for the NS instances and VNF instances, e.g., in term of 

policies related with affinity/anti-affinity, lifecycle operations, geography, regulatory 

rules, NS topology, etc. 
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In addition, policy management also refers to the management of rules governing 

the behaviour of Orchestrator functions, e.g., management of NS or VNF scaling 

operations, access control, resource management, fault management, etc. 

Associated with the policy management terminology is the concept of policy 

enforcement, i.e. polices are defined by certain entities and are then enforced in other 

entities, which may in their turn enforce them in additional entities. 

In the T-NOVA context, policies may be defined by external entities, e.g. the 

Customer, the SP or the FP, and are then enforced into the NFVO, via the 

Marketplace. In its turn, the NFVO may enforce them into the VNFM. 

Policy enforcement may be static or on-demand. 

3.2.1.7 Marketplace-specific interactions 

The Marketplace is the T-NOVA layer that interfaces with external entities, e.g., 

Customers, SPs and FPs. In the T-NOVA global architecture, it interacts with the 

Orchestration layer through an interface whose requirements are defined in 

subsection 3.4. 

The deployment and behaviour of the Marketplace imposes requirements that the 

Orchestration must fulfil in order to offer those external entities an entire set of 

functionalities, which are defined in D2.41 (62). 

The request made by the Marketplace for those requirements as well as the 

correspondent responses from the Orchestrator are, most of the time, implicit in the 

current description of the Orchestrator requirements. 

However, for some of those requirements that are based within D2.1 (63), e.g. 

publishing the outcome of the NS instantiation, publishing NS metrics, or reporting 

usage metrics, it was decided to create a separate group in order to highlight their 

processing mechanisms. 

For instance, the various kinds of metrics described above may be used by business-

oriented processes residing in the Marketplace, namely to start and stop tracking of 

the usage a NS for billing purposes. 

3.2.2 VNFM requirements types 

The deployment and operational behaviour requirements of each VNF is captured in 

a deployment template, the VNFD, and stored during the VNF on-boarding process 

in the VNF catalogue as part of a VNF Package, for future use. The deployment 

template describes the attributes and requirements necessary to realise such the VNF 

and captures, in an abstracted manner, the requirements to manage its lifecycle. 

The VNFM performs the lifecycle management of a VNF based on the requirements 

included in this template. As such, the VNF lifecycle constitutes the most relevant 

type in the VNFM classification of requirements in relation to the procedures taken in 

this global process. 

As also decided for the NFVO, there is still a further type that constitutes, in fact, an 

area of operation that belongs to the VNF lifecycle: the monitoring process. Once 
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again, the reason behind the creation of a separate group for this (sub)type is related 

to emphasising the importance of its rule in the Orchestrator’s operation. 

3.2.2.1 VNF Lifecycle 

The VNFM is responsible for the VNF lifecycle management, where lifecycle 

management refers to a set of functions required to manage the instantiation, 

maintenance and termination of a VNF. 

3.2.2.2 Monitoring Process 

During the lifecycle of a VNF, the VNF Management functions may monitor Key 

Parameter Indicator (KPIs) of a VNF, if such KPIs were captured in the deployment 

template. The management functions may use this information for scaling operations. 

Scaling may include changing the configuration of the virtualised resources (scale 

down, e.g., add CPU, or scale up, e.g., remove CPU), adding new virtualised resources 

(scale out, e.g., add a new VM), shutting down and removing VM instances (scale in), 

or releasing some virtualised resources (scale down). 

So, every VNF will usually provide its own usage metrics to the VNFM, which will be, 

in general, specific to the function the VNF provides, although they might be based 

on the infrastructure on top of which the VNF has been deployed. 

The treatment of the information collected during the VNF monitoring process is very 

similar to the one described for the NS process and may result in reports being sent 

external entities, via the Marketplace, and/or to trigger automatic operational 

management of the VNF instance, e.g. automatic scaling. 

3.3 Functional Orchestrator Architecture 

This subsection describes the Orchestrator reference architecture, including its 

functional entities as well as external interfaces. 

3.3.1 Reference Architecture 

The Orchestrator reference architecture, as well as the interfaces with the external 

Functional Entities (FEs) is depicted in Figure 17. In detail, the orchestrator interacts 

with the Marketplace, which is the T-NOVA domain responsible for accounting, SLA 

management and business functionalities. Besides the Marketplace, the Orchestrator 

also interfaces with the IVM, and in particular with the VIM, for managing the data 

centre network/IT infrastructure resources, as well as with the TNM for WAN 

connectivity management. Finally, the Orchestrator interacts with the VNF itself, 

which in the T-NOVA scope is located in the IVM domain, to ensure its lifecycle 

management. 

Internally, the T-NOVA Orchestrator consists of two main components and a set of 

repositories. One of the core elements is the NFVO, acting as the front-end with the 

Marketplace and orchestrating all the incoming requests towards the other 

components of the architecture. Further details relating to the NFVO and the 

associated incoming requests are available in subsection 3.3.2.1. To support the 
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NFVO operation procedures, a set of repositories is identified in order to store the 

description of the available VNFs and NSs (VNF Catalogue and NS Catalogue), the 

instantiated VNFs and NSs (NS & VNF Instances), as well as the available resources in 

the virtualised infrastructure (Infrastructure Resources Catalogue). Further details 

about the orchestrator repositories are provided in subsection 3.3.2.3. Finally, the 

NFVO also interacts with the other core element, the VNF Manager (VNFM), 

responsible for the VNF-specific lifecycle management procedures, as described in 

subsection 3.3.2.2. 

 

Figure 17: T-NOVA Orchestrator Reference Architecture 

3.3.2 Functional entities 

This subsection describes the functional entities of the Orchestrator architecture. 

3.3.2.1 Network Function Virtualisation Orchestrator (NFVO) 

The main function of the NFVO is to manage the virtualised NSs lifecycle and its 

procedures. Since the NSs are composed by VNFs, (PNFs, VLs and VNFFGs, the NFVO 

is able to decompose each NS into these constituents. Nevertheless, although the 

NFVO has the knowledge of the VNFs that compose the NS, it delegates their 

lifecycle management to another dedicated FE of the Orchestrator domain, 

designated by VNFM. 

A description of the main deployment templates must be taken into account when 

determining the best connectivity paths to deliver a service is provided: 

 a VNFFGD is a deployment template that describes a topology of the NS or a 

portion of the NS, by referencing VNFs and PNFs as well as VLs that used for 
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interconnection. In addition to the VLs, whose descriptor is described below, a 

VNFFG can reference other information elements in the NS such as PNFs and 

VNFs. A VNFFG also contains a Network Forwarding Path (NFP), i.e. an 

ordered list of Connection Points forming a chain of NFs, along with policies 

associated to the list, 

 a VLD is a deployment template which describes the resource requirements 

that are needed for establishing a link between VNFs, PNFs and endpoints of 

the NS, which could be met by choosing an option between various links that 

are available in the NFVI. However, the NFVO must first consult the VNFFG in 

order to determine the appropriate NFVI to be used based on functional (e.g., 

dual separate paths for resilience) and other needs (e.g., geography and 

regulatory requirements). 

In addition to the orchestration of the virtualised service level operations, which 

allows the abstraction of service specificities from the business/operational level – in 

this case the T-NOVA Marketplace – the NFVO also manages the virtualised 

infrastructure resource level operations as well as the configuration/allocation of 

transport connections when two or more distinct DCs are involved. Hence, it 

coordinates the resource reservation/allocation/removal to specific NSs and VNFs 

according to the availability of the virtualised infrastructures, also known as data 

centres. 

To address the two main functionalities above mentioned, the NFVO is architecturally 

split in two modules, namely the Network Services Orchestrator (NSO) and the 

Virtualised Resources Orchestrator (VRO), further described below. 

Network Service Orchestrator 

The NSO is one of the components of the NFVO with the responsibility for managing 

the NS lifecycle and its procedures. More precisely, the following tasks fall under the 

responsibility of the NSO: 

 NSs and VNFs on-boarding: management of Network Services deployment 

templates, also known as NS Descriptors and VNF Packages, as well as of the 

NSs instances topology (e.g., create, update, query, delete VNF Forwarding 

Graphs). On-boarding of a NS includes the registration in the NS catalogue 

therefore ensuring that all the templates (NSDs) are stored, see NS on-

boarding procedure detailed in subsection 5.2.1; 

 NS instantiation: trigger instantiation of NS and VNF instances, according to 

triggers and actions captured in the on-boarded NS and VNF deployment 

templates. In addition, management of the instantiation of VNFs, in 

coordination with VNFMs as well as validation of NFVI resource requests from 

VNFMs, as those may impact NSs, e.g. scaling process, see NS instantiation 

procedure detailed in subsection 5.2.2; 

 NS update: support NS configuration changes of various complexity such as 

changing inter-VNF connectivity or the constituent VNFs; 

 NS supervision: monitoring and measurement of the NS performance and 

correlation of the acquired metrics for each service instance. Data is obtained 

from the IVM layer (performance metrics related with the virtual network links 
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interconnecting the network functions) and from the VNFM (aggregated 

performance metrics related with the VNF, see NS supervision procedure 

detailed in subsection 5.2.3; 

 NS scaling: increase or decrease of the NS capacity according to per-instance 

and per-service auto-scaling policies. The NS scaling can imply either 

increasing/decreasing of a specific VNF capacity, create/terminate new/old 

VNF instances and/or increase/decrease the number of connectivity links 

between the network functions; 

 NS termination: release of a specific NS instance by removing the associated 

VNFs and associated connectivity links, as well as the virtualised infrastructure 

resources, (see NS termination procedure detailed in subsection 5.2.5). 

In addition to these lifecycle related procedures, the NSO also performs policy 

management and evaluation for the NS instances and VNF instances, e.g., policies 

related with scaling. 

Figure 18 provides an illustration about the NSO interactions within the T-NOVA 

Orchestrator and with the remaining T-NOVA external entities: 

 

Figure 18: NS Orchestrator (Internal & External) Interactions 

From the external perspective, it interacts with the Marketplace for operational and 

business management purposes as follows: 

 Exchange provisioning information (e.g., requests, modifications/updates, 

acknowledgements) about the NSs (through the T-Da-Or interface); 

 Provides the orchestrator with information on each NS instance SLA 

agreement. In turn he orchestrator sends SLA-related metrics to the 

Marketplace (through the T-Sl-Or interface); 

 Deliver to the Marketplace usage accounting information with respect to 

VNFs and NSs (through the T-Ac-Or interface); 
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 Provides the orchestrator with information about the NSs composition. The 

orchestrator delivers to the Marketplace information about the available VNFs 

(through the T-Br-Or interface). 

Internally, the NSO has the following communication points: 

 NS Catalogue: collects information about the NSs (NSD), including the set of 

constituent VNFs, interconnecting network links (VLD) and network topology 

information (VNFFGD); 

 VNF Catalogue: stores the VNFD during the on-boarding procedures; 

 NS and VNF Instances: stores information about the NS instances status; 

 Virtualised Resources Orchestrator (VRO): exchanges management actions 

related to virtualised resources and/or connections, either within the data 

centre scope (e.g. compute, storage and network) and/or on the transport 

network segment; 

 Virtual Network Function Manager (VNFM): exchange lifecycle 

management actions related with the VNFs. 

Virtualised Resources Orchestrator 

The Virtualised Resources Orchestrator (VRO) is the resource layer management 

Functional Entity of the NFVO main block. It is responsible for the following actions: 

 Coordinate  resource reservation/allocation/removal and establish the 

placement for each VM that composes the VNF (and the NS); 

 Interact with the WAN elements for connectivity management actions; 

 Validate NFVI resource requests from VNFMs, as those may impact the way 

the requested resources are allocated within one NFVI-PoP or across multiple 

NFVI-PoPs. Whether the resource related requests comes directly from the 

VNFM or from the NFVO is implementation dependent; 

 Manage the relationship between the VNF instances and the NFVI resources 

allocated to those VNF instances; 

 Collect usage information of the NFVI resources; 

 Collect performance information about the network links interconnecting the 

VNFs; 

 Collect performance about the virtualised infrastructure resources supporting 

NSs. 

The following virtualised resources are managed by the VRO: 

 Compute: virtual processing CPUs and virtual memory; 

 Storage: virtual storage; 

 Network: virtual links intra/interconnecting VNFs within the DCN. 

Figure 19 provides an illustration with further details about the VRO interactions 

within the T-NOVA Orchestrator and with the remaining T-NOVA external entities: 
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Figure 19: Virtualised Resources Orchestrator (Internal & External) Interactions 

From an external perspective, it interacts with the VIM and the TNM for the following 

purposes: 

 Virtualised Infrastructure Manager: to enforce resource 

reservation/allocations/removal and to collect monitoring information about 

the virtual links interconnections of the VNFs, through the T-Or-Vi interface; 

 Transport Network Manager: enforces resource/connectivity decisions 

allocations/removals and to collect monitoring information about the 

transport network elements, through the T-Or-Tm interface. 

Internally, the VRO interacts with the following blocks: 

 Network Services Orchestrator: exchanges resource 

reservation/allocation/removal management actions related with a specific 

NS, for all the constituent VNFs; 

 Infrastructure Resources catalogue: queries and stores information about 

the virtualised and non-virtualised infrastructure resources; 

 Virtual Network Function Manager: exchanges resource 

reservation/allocation/removal management actions, in the case the resource 

management is handled by the VNFM. 

3.3.2.2 Virtual Network Function Manager (VNFM) 

The VNFM is responsible for the lifecycle management of the VNF. Each VNF instance 

is assumed to have an associated VNFM. A VNFM may be assigned the management 

of a single VNF instance, or the management of multiple VNF instances of the same 

type or of different types. The Orchestrator uses the VNFD to create instances of the 

VNF it represents, and to manage the lifecycle of those instances. A VNFD has a one-

to-one correspondence with a VNF Package, and it fully describes the attributes and 

requirements necessary to realize such a VNF. NFVI resources are assigned to a VNF 

based on the requirements captured in the VNFD (containing resource allocation 
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criteria, among others), but also taking into consideration specific requirements 

accompanying the request for instantiation. 

The following management procedures are within the scope of the VNFM: 

 Instantiate: create a VNF on the virtualised infrastructure using the VNF on-

boarding descriptor, as well as the VNF feasibility checking procedure, see 

VNF instantiation procedure detailed in subsection 5.1.2; 

 Configure: configure the instantiated VNF with the required information to 

start the VNF. The request may already include some customer-specific 

attributes/parameters; 

 Monitor: collect and correlate monitoring information for each instance of 

the VNF. The collected information is obtained from the IVM layer (virtualised 

infrastructure performance information) and from the VNF (service specific 

performance information), see VNF monitoring procedure detailed in section 

5.1.3; 

 Scale: increase or decrease the VNF capacity by adding/removing VMs (out/in 

horizontal scaling) or adding/removing resources from the same VM 

(down/up vertical scaling), see VNF scale-out procedure detailed in subsection 

5.1.4; 

 Update: modify configuration parameters; 

 Upgrade: change software supporting the VNF; 

 Terminate: release infrastructure resources allocated for the VNFs, see VNF 

termination procedure detailed in subsection 5.1.5. 

Figure 20 provides an illustration with further details on the VNFM interactions within 

the T-NOVA Orchestrator and with the remaining T-NOVA external entities: 

 

Figure 20: VNF Manager (Internal & External) Interactions 

From the external perspective, it interacts with the VNF and with the VIM with the 

following purposes: 

 Virtual Network Function (VNF): configures VNF specific information and 

receives VNF related monitoring information (through the T-Ve-Vnfm 

interface); 
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 Virtual Infrastructure Management (VIM): collects monitoring information 

about the virtualised infrastructure resources allocated to the VNF (through 

the T-Vi-Vnfm interface). 

Internally, the VNFM interacts with the following components: 

 Network Services Orchestrator (NSO): receive VNF instantiation requests for 

a specific NS and provide VNF monitoring information; 

 VNF Catalogue: collects information about the VNFs internal composition 

(VNFD), including the VNF Components (VNFCs), software images (VMs) and 

management scripts; 

 Virtualised Resources Orchestrator (VRO): exchanges resource 

reservation/allocation/removal management actions, in cases where the 

management is handled by the VNFM. 

3.3.2.3 Repositories and Catalogues 

To support the T-NOVA Orchestrator lifecycle management operations, the following 

catalogues are defined: 

 NSs Catalogue (NS Catalogue); 

 VNFs Catalogue (VNF Catalogue); 

 NSs and VNFs Instances Repository; 

 Infrastructure Resources Repository. 

NS Catalogue 

Represents the repository of all the on-boarded NSs in order to support the NS 

lifecycle management: 

 NS Descriptor (NSD): contains the service description template, including 

SLAs, deployment flavours, references to the virtual links (VLDs) and the 

constituent VNFs (VNFFG); 

 Virtual Link Descriptor (VLD): contains the description of the virtual network 

links that compose the service (interconnecting the VNFs); 

 VNF Forwarding Graph Descriptor (VNFFGD): contains the NS constituent 

VNFs, as well as their deployment in terms of network connectivity. 

VNF Catalogue 

Represents the repository of all the on-boarded VNFs in order to support its lifecycle 

management: 

 VNF Descriptor (VNFD): contains the VNF description template, including its 

internal decomposition in VNFCs, deployment flavours and references to the 

VLDs; 

 Software images of the VMs located in the IVM layer. 
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NS & VNF Instances 

Represents the repository of all the instantiated NSs and VNFs, which can be 

created/updated/released during the lifecycle management operations. 

Infrastructure Resources 

Represents the repository of available, reserved and allocated NFVI-PoP resources, 

also including the ones related to the WAN segment. 

3.3.3 External Interfaces 

In this section the external interfaces of the Orchestrator are described. However it is 

important within the perspective of the T-NOVA architecture to understand the 

context in which the term interface is used as is its relationship to reference points a 

common architectural locus used within the networking domain  

In network terms a reference point is an abstract point in a model of network or 

protocol. This reference point essentially serves to partition functions or 

configurations and so assists in the description of a network model as well as serving 

as a point of interoperability between different parts of the network (65). In a 

networking context, an interface may or may not be associated with any given 

reference point. An interface typically represents a protocol level connection which 

may or may not be mapped to a reference point. 

This strict delimitation between the definition of reference points and interfaces in 

the context of NFV and SDN given the hybridisation of networking and IT 

technologies can be challenging, i.e. in the network domain, this framework is strictly 

defined, and it is therefore normal practice to retain the use of the term reference 

point, while in the IT domain, there is a more flexible demarcation between 

technologies leading to a degree of hybridisation. As a consequence in the IT domain 

the term interface is used in a more flexible manner to encompass reference points 

also. 

While strictly speaking the separation of the terms should be technically maintained 

the approach adopted in this deliverable is to utilise a broader and more flexible 

definition of interfaces and reference points given the expected one-to-one mapping 

of reference points and interfaces in the context of the proposed T-NOVA 

architecture. Additionally interfaces in the T-NOVA system may not necessarily be 

tied specifically to a protocol but rather act as point of information exchange through 

APIs. Hence within the context of this deliverable interfaces are envisioned to 

encompass both the architectural characteristics of interfaces and references points 

given fusion of the IT and networking domains. 

Having clarified the use of the term, the description of the Orchestrator’s external 

interfaces will start to be provided by means of a very short reference on security, 

which is a common area that affects all the interfaces. It will be followed by an 

introduction to the interface requirements that are presented in Annex A.2 in a 

tabular format. 
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Regarding the common issue, and considering the most generic scenarios in which 

the roles described in D2.1 (63) are played by distinct entities all the external 

interfaces being described in this section must support at least a minimum degree of 

security. The decision on the exact degree of security for each implemented interface 

will be taken later in the project’s timeline. 

3.3.3.1 Interface between the Orchestrator and the Network Function Store 

The interface between the Orchestrator and the Network Function Store (NF Store) 

serves two purposes: 

 For the NF Store, to notify the Orchestrator about new, updated and 

withdrawn VNFs; 

 For the Orchestrator, to retrieve from the NF Store and store in the VNF 

Catalogue the VNFD and VMs images that need to be instantiated to support 

that VNF. 

This “two-phase” interaction between the Orchestrator and the NF Store, instead of 

just one in which the NF Store could pass the Orchestrator the VNF Descriptor and 

VM images, allows for the optimisation of resources on both sides of the interface. 

On the NF Store side this is just a notification to the Orchestrator, and on the 

Orchestrator’s side, the download of the VM images is only carried out when the VNF 

is instantiated preventing unnecessary use of resources. Uploading of the VNFD to 

the VNF catalogue is executed at the start of the VNF on-boarding process. 

3.3.3.2 Interface between the Orchestrator and the Marketplace 

The interface between the Orchestrator and the Marketplace serves the following 

purposes: 

 Provide available VNFs: involves SP browsing and selection of VNFs, as well 

as composition of market services by the Marketplace, followed by a request 

to the Orchestrator; 

 Publish a new network service: related to the request for the storage of 

information related to a new service by the Marketplace, included in the 

provision of the NSD, see subsection 3.2. This process is also called NS on-

boarding by the Orchestrator FEs; 

 Request for a Network Service: after a Customer’s or a SP subscription of a 

service, a subsequent request from the Marketplace is generated, which 

includes in the NSD all the VNFs the NS to be deployed needs, as well as all 

the VMs those VNFs need in the VNFD, the available infrastructure and its 

current usage; 

 Change configuration of a deployed network service upon a request from 

the Marketplace; 

 Provide network service state transitions: notification provided by the 

Orchestrator to the Marketplace; 
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 Provide network service monitoring data: notification provided by the 

Orchestrator to the Marketplace; 

 Terminate a provisioned network service: upon a request from the 

Marketplace when there is an explicit solicitation. 

3.3.3.3 Interface between the Orchestrator and the VIM 

The interface between the Orchestrator and the VIM serves the following purposes: 

 Allocate/release/update resources: upon a request from the Orchestrator to 

(re)instantiate, update the configuration of, or release a resource (VM or 

connection within the same DC); 

 Reserve/release resources: upon an expected future need from the 

Orchestrator to instantiate or release a reserved resource (VM or connection 

in the same DC). This requirement makes sense in scenarios where allocating 

resources from scratch is complex or too time consuming for the purpose in 

mind. Reserved resources may have lower prices than effective allocated ones 

and become faster to allocate when time comes; 

 Add/update/delete SW image: whenever a new, update or removal of a VM 

image is needed in the process of allocating, updating or removing a new 

VNF/VNFC instance; 

 Retrieve infrastructure usage data to NSO: information provided by the 

VIM to the Orchestrator, NSO FE, so that optimal allocation of NS instances is 

possible and an adequate level of metrics can be reported to the Marketplace, 

if allowed by information included in the NSD; 

 Retrieve infrastructure usage data to VNFM: information provided by the 

VIM to the Orchestrator, VNFM FE, so that optimal allocation of VNF instances 

is possible and an adequate level of metrics can be reported, via NSO, to the 

Marketplace, if allowed by information included in the VNFD; 

 Retrieve infrastructure resources metadata to VRO: information provided 

by the VIM to the Orchestrator, VRO FE, so that optimal allocation of NS 

instances is possible, according to the characteristics of the supporting 

infrastructure (e.g., the availability of specialized components, such as 

Graphical Processing Units (GPUs) or Digital Signal Processors (DSPs), as well 

as the maximum number of vCPUs or Giga-bytes of RAM, which will influence 

the allocating algorithm for determining the most appropriate resources); 

 Manage VM’s state: information provided by the VIM to the Orchestrator, 

VNFM FE, so that atomic operations, such as redeployment/withdrawal of an 

entire VNF, on the allocated VMs are feasible (depending on the 

implementation approach, these operations can also be done by the IVM 

layer). 
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3.3.3.4 Interface between the Orchestrator and the Transport Network 

Management 

The interface between the Orchestrator and the Transport Network Management 

serves the following purposes: 

 Allocate/release/update transport connection: upon a request from the 

Orchestrator to (re)instantiate, update the configuration of or release a 

transport connection (between two distinct DCs); 

 Reserve/release transport connection: upon an expected future need from 

the Orchestrator to instantiate or release a transport connection (between two 

distinct DCs). This requirement makes sense in scenarios where allocating 

connections from scratch is complex or too time consuming. Reserved 

connections may have lower prices than effective allocated ones and become 

faster to allocate when time comes; 

 Retrieve transport connection usage data to NSO: information provided by 

the TNM to the Orchestrator, NSO FE, so that optimal allocation of transport 

connections between two or more distinct DCs is possible and an adequate 

level of metrics can be reported, together with VNF an NS level metrics, to the 

Marketplace; 

 Retrieve transport connection metadata: information provided by the TNM 

to the Orchestrator, VRO FE, such that the optimal allocation of transport 

connections between two or more distinct DCs is made possible, according to 

the characteristics of the supporting infrastructure e.g., maximum number of 

vLinks allowed, maximum bandwidth, etc.; 

 Manage transport connection state: information provided by the TNM to 

the Orchestrator, NSO FE, so that atomic operations, such as 

redeployment/withdrawal of an entire VNF within different DCs are feasible 

(depending on the implementation approach, these operations can also be 

executed by the IVM layer). 

3.3.3.5 Interface between the Orchestrator and the VNF 

The interface between the Orchestrator and the VNF serves the following purposes: 

 Instantiate/terminate VNF: sent by the VNFM as a request, whenever an 

instance of a NS of which the VNF is a component is to be launched or 

removed. Removal of a VNF instance can only be done if there is no NS 

instance using that VNF. 

 Retrieve VNF instance run-time information: sent by the VNFM, so that 

VNF SLA metrics can be checked and the SLA can be fulfilled; 

 Configure a VNF: sent by the VNFM, so that open configuration parameters 

can be fulfilled later or changed after the VNF instance is already running; 

 Manage VNF state: sent by the VNFM, so that the Orchestrator is able to 

start, stop, suspend already running VNF instances; 
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 Scale VNF: sent by the VNFM, so that VNF scaling is feasible. All the VNF 

scaling information is available in the VNFD. Virtualised resources are 

available through the VRO. 
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4. THE T-NOVA IVM LAYER 

4.1 INTRODUCTION 

T-NOVA’s Infrastructure Virtualisation and Management (IVM) layer provides the 

requisite hosting and execution environment for VNFs. The IVM incorporates a 

number of key concepts that influence the associated requirements and architecture 

for the layer. Firstly the IVM supports separation between control and data planes 

and network programmability. The T-NOVA architecture leverages SDN for designing, 

dimensioning and optimising control- and data-plane operations separately, allowing 

capabilities from the underlying hardware to be exposed independently. Secondly the 

IVM is based around the use of clusters of commodity computing nodes in cloud 

computing configurations to support instantiation of software components in the 

form of VMs for NFV support, offering resource isolation, optimisation and elasticity. 

This configuration should support automated deployment of VNFs from the T-NOVA 

marketplace and dynamically expansion/resizing of VMs as required by SLAs. Building 

on physical IT and network resource domains the IVM provides full abstraction of 

these resources to VNFs. Finally the IVM must expose the necessary external and 

internal interfaces to support appropriate integration. The external interfaces provide 

connectivity with the T-NOVA Orchestration layer in order to execute requests from 

the Orchestrator and secondly to provide information on the infrastructure and VNF 

being hosted in order for the Orchestrator to make effective management decisions. 

The internal interfaces provide connectivity between the internal domains of the IVM 

to ensure the requests for the creation, deployment, management and termination of 

VNF services and their host VMs can be executed appropriately among the 

constituent infrastructure and control components. 

For an architectural perspective the IVM is comprised of NFVI, VIM and TNM 

capabilities. The NFVI in turn is composed of Compute, Hypervisor and Network 

Domains. The VIM is comprised of compute, hypervisor and network control and 

management capabilities, while the TNM works as a single FE. All the various domains 

within the IVM implement northbound and southbound interfaces to provide 

management, control and monitoring of the composite infrastructure, both physical 

and virtualised. Secondly these interfaces provide the key integration capabilities 

within the overall T-NOVA system architecture. 

The following sections describe the key objectives and characteristics of the IVM and 

its constituent components, along with their requirements. These requirements where 

then utilised together with T-NOVA D2.1 (63) and D2.21 (4) to define the architecture 

of IVM in a manner that addressed these requirements and the overall goals of T-

NOVA. The architecture for T-NOVA is presented as an overall integrated architecture 

together with detailed descriptions of the architecture FEs and interfaces of the 

constituent domains. 
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4.2 OBJECTIVES AND CHARACTERISTICS OF THE T-NOVA 

IVM LAYER 

The T-NOVA IVM is considered to comprise of a mixture of physical and virtual nodes 

and will be used to develop, implement and showcase T-NOVA’s services. The IVM 

will be fully integrated with the T-NOVA Orchestrator to ensure that requirements for 

the deployment and lifecycle management of T-NOVA VNF services can be carried 

out in an appropriate and effective manner. The IVM should be sufficiently flexible to 

support a variety of use cases beyond those explicitly identified in T-NOVA (see D2.1 

(63)). As mentioned previously, infrastructure virtualisation plays a key role in 

achieving this vision in T-NOVA. Virtualisation and management of the virtualised 

resources extends beyond the compute and storage to include network infrastructure 

in order to fully exploit the capabilities of the T-NOVA architecture. Virtualisation of 

the DC network infrastructure allows decoupling of the control functions from the 

physical devices they control. In this regard the T-NOVA will implement an SDN 

control plane for designing, dimensioning and optimising the control- and data-

plane operations separately, allowing capabilities from the underlying hardware to be 

exposed independently. 

In summary the key objectives for the T-NOVA IVM are as follows: 

 Support separation of control and data plane and network programmability at 

least at critical locations within the network such as the network 

access/borders, 

 Utilisation of commodity computing nodes in cloud configurations to support 

the instantiation of software components in the form of VMs for NFV support, 

offering resource isolation, optimisation and elasticity, 

 Use of L2 Ethernet switched networks (subnets) to provide physical network 

connectivity between servers, 

 Each server supports virtualisation and hosts a number of VMs (virtual 

appliances) belonging to their respective vNets. Virtual switch instances or 

real physical SDN-capable switches handle network connectivity among the 

VMs either on the same server or among the servers co-located in the same 

DC, 

 Interconnection of L2 subnets inside and outside DC’s boundaries via a L3 

network (IP routers). This inter data centre connectivity is provisioned through 

appropriate WAN ingress and egress points. 

 Virtualisation of compute and network resources allows the T-NOVA system 

to dynamically expand/resize VMs. This accommodates for dynamic scaling of 

sudden spikes in the workload; the instantiation of network elements as VMs 

into clusters of nodes facilitates horizontal scaling (hosting of many VM 

instances into the same cluster) and vertical scaling (automatic re-sizing of 

VM instances according to function requirements and traffic load) (see T-

NOVA requirements/use cases – D2.1 (63)). 
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4.3 T-NOVA IVM LAYER REQUIREMENTS 

The requirements capture process focused on identifying the desired behaviours of 

the IVM. The requirements identified focus on the entities within the IVM, the 

functions that are performed to change states or object characteristics, monitoring of 

state and the key interactions with the T-NOVA Orchestration layer. None of these 

requirements specifies how the system will be implemented. Implementation details 

are left to the appropriate tasks in WP3/4 as the implementation-specific descriptions 

are not considered to be requirements. The goal of the requirements was to develop 

an understanding of what the IVM needs, how it interacts with Orchestration layer, its 

relationship to the overall T-NOVA architecture described in D2.21 (4). Additionally 

the use cases included in D2.1 (63) were also considered and cross-referenced with 

IVM requirements where appropriate. 

The initial phase of eliciting requirements included:  

 Reviewing available documentation including early and final drafts of (63) and 

(66), 

 Reviewing the high level T-NOVA architecture that was developed by Task 2.2 

to gather information on how the users and service providers will perform 

their tasks such as VNF deployment, scale out etc., and to better understand 

the key characteristics of the T-NOVA system that will be required to realise 

user goals including those at a system level. 

The adopted approach was generally in-line with the Institute of Electrical and 

Electronics Engineer (IEEE) guidelines for requirements specification. A similar process 

was used in Tasks 2.1 and 2.2. Requirements were primarily anchored to the existing 

T-NOVA use cases and the interactions with Orchestrator both in terms of the actions 

and requests that Orchestrator would expect the IVM to execute. Additionally the 

data/information that is required by the Orchestrator to successful deploy and 

manage VNF services were considered. Identified requirements were primarily 

functional in nature since they were related to the behaviour that the IVM is expected 

to exhibit under specific conditions. In addition ETSI’s NFV Virtualisation Framework 

requirements were also considered, in order to ensure approach scope and coverage 

for the requirements that have been specified. The following are the key categories of 

requirements that were considered: 

 Portability, 

 Performance, 

 Elasticity, 

 Resiliency, 

 Security, 

 Service Continuity, 

 Service Assurance, 

 Operations and Management, 

 Energy Efficiency. 

Using a system engineering approach the high level architecture for the IVM was 

previously described in (4). Each component of the overall system was specified in 
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terms of high-level functional block and the interactions between the functional 

blocks are specified as interfaces. This approach identified the following functional 

blocks: 

 Virtualised Infrastructure Management (VIM), 

 Transport Network Management (TNM), 

 Infrastructure Elements, consisting of Computing, Hypervisor and Networking. 

The requirements presented in the following section are related to these functional 

blocks and were developed using the previously described methodology. These 

requirements were used as a foundational input into the development of the overall 

IVM architecture and its constituent functional blocks, which is presented in 

subsection 4.4. 

A detailed specification of the requirements for each module within the scope of the 

T-NOVA IVM architecture can be found in Annex B. A total of 70 requirements were 

identified and documented relating to the VIM, NFVI (compute, hypervisor, DC 

network) and TNM. It should be noted that requirements that relate to basic 

expected behaviours of the various domains components have been excluded in 

order to focus on requirements that are specifically needed by the T-NOVA system. 

Analysis of these requirements has identified the following conclusions for each 

architectural module. 

4.3.1 Virtual Infrastructure Manager 

The VIM is required to manage both the IT (compute and hypervisor domains) and 

network resources by controlling the abstractions provided by the Hypervisor and 

Infrastructure network domains. It also implements mechanisms to efficiently utilise 

the available hardware resources in order to meet the SLAs of the VNFs and NSs. The 

VIM is also required to play in a key role in the VNF lifecycle management. 

Additionally, the VIM is required to collect infrastructure utilisation/performance data 

and to make this data available to the Orchestrator in order to generate 

usage/performance statistics. The specifics of how the metrics are provisioned and 

processed at both the VIM and Orchestrator layers can vary and will typically be 

implementation specific. The details of the T-NOVA implementation will be 

determined in WP3/4. To accomplish these goals the VIM needs the following 

capabilities: 

 The Network Control capability in the VIM requires SDN features to manage 

the infrastructure network domain within an NFVI-PoP; 

 Hardware abstraction in the Compute domain for efficient management of 

resources; However, the abstraction process should ensure that platform 

specific information relevant to the performance of VNFs is available for 

resource mapping decisions; 

 Virtual resource management in the Hypervisor domain to provide 

appropriate control and management of VMs; 

 Strong integration between these three sub-domains through appropriate 

interfaces; 
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 Integration with the Orchestrator via well-defined interfaces to provide 

infrastructure related data to the Orchestrator and to receive management 

and control requests from Orchestrator for execution by the VIM. 

4.3.2 Transport Network Management 

The Transport Network Management is expected to provide the connectivity to NSs 

allocated in more than one NFVI-PoP. Connectivity should take form of VLAN to 

WAN connections through ingress and egress points at each NFVI-PoP involved in 

the NS service. This connectivity has to be provided in a configurable manner (i.e. 

supports a high level of customisation). Moreover, to setup this connectivity, 

cooperation between the TNM and the NFVI Network domain is needed in order to 

allocate the traffic over the inter-DC and intra-DC networks in an appropriate 

manner. 

4.3.3 NFVI Compute 

The NFVI Compute domain should be able to provide an appropriated performance 

level for the VNFs that are been deployed in terms of performance and utilisation of 

the infrastructure resources. Moreover, the compute nodes and the hypervisor should 

work in an integrated and performant manner. The compute domain should collect 

metrics on the performance of the physical resources and make them available over a 

suitable interface to the Orchestrator. Finally, the T-NOVA Compute domain should 

have the capability, if required by a network service, to support heterogeneous 

compute resources, such as Graphical Processing Unit (GPUs), Field Programmable 

Gate Array (FPGAs), Multi-Integrated Cores (MICs) etc. 

4.3.4 NFVI Hypervisor 

The NFVI Hypervisor domain should be able to implement hardware resource 

abstraction, virtual resource lifecycle management mechanisms which are 

coordinated by the Orchestrator via the VIM, and to provide to the VIM monitoring 

information while having minimal impact on the VNF workload performance. 

Additional details on the collection, processing and utilisation of metrics in the T-

NOVA system can be found in subsection 5.3. 

4.3.5 NFVI DC Network 

The NFVI DC Network domain should implement an SDN approach to provide 

network virtualisation capabilities inside a NFVI-PoP (creation of multiple distinct 

domains over one single physical network using VLANs), network programmability 

through the separation between Control Plane (CP) and Data Plane (DP), and, at the 

same time, it should support transport tunnelling protocols of L2 packets over L3 

networks, to assist the TNM in setting up the communication between different NFVI-

PoPs. It should also be able to gather performance data and send them to the VIM 

Network Control module. 
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4.4 T-NOVA IVM Architecture 

As mentioned above, the T-NOVA IVM layer comprises of three key architectural 

components namely the NFVI, the VIM and the TNM. 

The high-level architecture, which has previously been described in D2.21 (4), was 

designed to align with the ETSI MANO architecture featuring corresponding 

components to the NFVI and the VIM. However, the addition of the TNM is a T-NOVA 

specific feature. 

The approach adopted in the design and elucidation of the IVM focused on the 

functional characteristics of the overall IVM architecture and its sub domains. Careful 

consideration was given to decoupling the functional characteristics from 

implementation-oriented designs. This allowed us to focus on what the IVM needs to 

do rather to avoid the inclusion of implementation-orientated functionality. A good 

example of where this approach generated challenges was with the VIM architecture 

where there was a tendency to gravitate towards technology solutions as a means to 

easily encapsulate functional needs. However careful consideration of the key inputs 

was important in fully decoupling functional needs from implementation details to 

ensure that T-NOVA IVM architecture remains technology-agnostic but at same time 

provides appropriate guidance and structure to the activities in WP3/4. 

The key inputs that were considered during the architecture design process are the 

following: 

 D2.1 (Use case and requirements) (63), 

 D2.21 (subsection 3.3.3) (4), 

 DGS NFV-INF 001 v0.3.8 - Infrastructure Overview (67), 

 DGS NFV-INF 003 v0.3.1 - Architecture of the Compute Domain (68), 

 DGS NFV-INF 004 v0.3.1 - Architecture of the Hypervisor domain (69), 

 DGS NFV-INF 005 v0.3.1 - Infrastructure network domain (5), 

 DGS NFV-INF 007 v0.3.1 - Interfaces and Abstractions (70), 

 DGS NFV-MAN 001 v0.6.3 - Management and orchestration (8), 

 DGS NFV-REL 001 v0.1.3 - Resiliency Requirements (71), 

 DGS NFV-SWA 01 v0.2.0 - VNF Architecture (7). 

The IVM architecture has been defined in accordance to a systems design process 

which was used to identify the components, modules, interfaces, and data necessary 

for the IVM in order to satisfy the requirements outlined in the previous subsection 

and those described in D2.1 (63) and D2.21 (4). Figure 21 shows the overall 

architecture of the VIM, as discussed so far. 

4.4.1 External Interfaces 

The key external interfaces for the IVM are outlined in Table 6. These interfaces 

primarily deal with the connection between the IVM and the T-NOVA Orchestrator; 
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however there is also an external interface between the TNM and the transport 

network. 

The interfaces between the Orchestrator and VIM support a number of key functions 

within T-NOVA. The functions supported by the interfaces can be categorised as 

either management or control. As shown in the IVM architecture in Figure 21, two 

specific interfaces have been identified, mapping to the interfaces identified in the 

ETSI MANO architecture. 

 

Figure 21: T-NOVA infrastructure virtualisation and management (IVM) high level 

architecture 

The first interface is the VNFM – VIM Interface (T-Vi-Vnfm) and is responsible for the 

exchange of infrastructure monitoring information either through explicit request by 

the Orchestrator or through periodic reporting initiated by the VIM. The types of data 

exchanged over this interface include detail information on the status, performance 

and utilisation of infrastructural resources (such CPU, storage, memory, etc.). Data will 

also encompass networking information relating to a specific VNF such as NIC level 

network traffic from the hosting VM or inter VM network traffic, if a VNF is deployed 

across more than one VM. 

Finally VNF performance data will also be exchanged over this interface. Collectively 

the data will be used by the VNF Manager within the T-NOVA Orchestrator to track 

VNF service performance by comparison with specific KPIs in order to ensure SLA 

compliance. 

The second interface identified is the NFV Orchestrator – VIM interface (T-Or-Vi). This 

interface is responsible for handling requests from the NFV Orchestrator with respect 
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to the full lifecycle of a NS. Typical examples of requests sent over this interface 

would include, for example, parts of the on-boarding, scaling and termination 

procedures of a NS. This interface will be used by the NFV Orchestrator to send 

resource related commands/information to the VIM such as resource 

reservation/allocation or configuration definitions of VMs (e.g. HEAT templates in an 

OpenStack Cloud environment or network requirements such as the specification of 

the interconnections between VNF instances, i.e. network topology). Specific types of 

monitoring information will also be exchanged over this interface such as data 

related to the network connections between NS instances either within a data centre 

or within intra data centre connections that are physically dispersed. This interface is 

also used by the VIM to report back to the NFV Orchestrator the outcome of all 

received requests. 

The Transport Network Manager provides management capabilities of network 

connectivity between NFVI-PoPs. The NFV Orchestrator – Transport Network 

Interface (T-Or-TN) interface support requests from the NFV Orchestrator to provide 

connectivity to either SDN Controlled or non SDN control transport networks (such as 

IP or MPLS based networks) typically for inter DCs (MAN or WAN). These networks 

are non-virtualised in nature. 

The TNM Interface – External networks (T-Ex-TN) is the explicit network connection 

to the transport network. The implementation of this interface will vary based on the 

protocol the network is using. More than one interface may also be implemented if 

connectivity to different types of transport networks is required. 

Table 6: External Interfaces of the T-NOVA IVM 

T-Nova 

Name 

T-NOVA 

Reference 

ETSI ISG NFV 

Framework 

Reference Point 

Reference 

Point Type 

Description and 

Comment 

Virtual 

Network 

Function 

Management–

VIM Interface  

T-Vi-Vnfm Vi-Vnfm 
Management 

Interface 

This interface is 

responsible for the 

exchange of 

infrastructure 

monitoring 

information either 

through explicit 

request by the 

Orchestrator or 

through periodic 

reporting initiated by 

the VIM. The types of 

data exchanged over 

this interface include 

status, performance 

and utilisation of 

infrastructural 

resources 



T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation, 

Management and Orchestration - Interim 

 

© T-NOVA Consortium 

 
86 

NFV 

Orchestrator–

VIM Interface 

T-Or-Vi Or-Vi 
Orchestration 

Interface 

This interface allows 

the NFV Orchestrator 

to request/reserve 

and configure 

resources to the VIM 

and for the VIM to 

report the 

characteristics, 

availability, and 

status of 

infrastructure 

resources. 

NFV 

Orchestrator–

Transport 

Network 

Interface 

T-Or-TN - 
Orchestration 

Interface 

This interfaces the 

TNM with the NFV 

Orchestrator and is 

used to manage the 

set-up, tear down 

and monitoring of 

connections in 

transport networks. 

Transport 

Network 

Interface–

External 

networks 

T-Ex-TN Ex-Nf 
Traffic 

Interface 

This interfaces the 

TNM with existing 

transport networks 

(SDN-enabled or 

non-SDN-enabled) 

and are used to 

implement requests 

received from the 

Orchestrator via the 

Or-TN interface. 

4.4.2 Internal IVM Interfaces 

The key internal interfaces of the IVM as outlined in Table 7. The interface for NFVI 

management including its functional entities is provisioned via the T-Nf-Vi interface. 

It is this interface, which will be utilised to establish trust and compliance of the 

underlying infrastructure specifically the Hypervisor domain via the T-Nf-Vi/H 

implementation of the interface, the compute domain via the T-Nf-Vi/C interface and 

the network domain via the T-Nf-Vi/N interface. A full description of these interfaces 

is presented in Table 7. A possible deployment configuration for the VIM could be 

provided running it within a hosted VM (it can be virtualised). For this specific 

configuration, the T-Nf-Vi management interface might be abstracted as a SWA-5 

interface (see Figure 3). However, even if this configuration is possible, it is not 

desirable, due to security concerns and FE responsibilities. There are also reliability 

concerns regarding virtualising the VIM on the same infrastructure that it is 

managing. In a scenario where the hypervisor domain of the NFVI requires a restart, 

the VIM will lose its ability to operate and continue to manage the NFVI therefore the 

VIM should run on separated hardware platforms. 
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One of the interfaces that are internal to the NFVI is the SWA-5 interface2, which is 

used for resources, such as a virtual NIC, a virtual disk drive, virtual CPU, etc. 

Examining Figure 21, this interface involves both the T-Vn-Nf/VN and T-Vn-Nf/VM. It 

is not intended for use as a management interface; hence a VNF should not use 

SWA-5 to manage the NFVI. This interface is primarily intended to logically fence off 

responsibilities, but is also intended for security considerations. In fact, reasonable 

steps must be taken to prevent unauthorised access, from within a VM, from 

attacking the underlying infrastructure and possibly shutting down the entire domain, 

including all other adjacent VMs. 

Table 7: Internal interfaces of the IVM 

T-Nova 

Name 

T-NOVA 

Referenc

e 

ETSI NFV 

Framework 

Reference 

Point 

INF 

Reference 

Point 

Reference 

Point Type 

Description and 

Comment 

VIM-

Network 

Interface 

T-Nf-Vi/N 

Nf-Vi 

[Nf-Vi]/N 

Management, 

Orchestration 

and 

Monitoring 

Interface 

This interface is 

used for the 

management of 

Infrastructure 

Network domain 

resources.  

VIM-

Hypervisor 

Interface 

T-Nf-Vi/H [Nf-Vi]/H 

Management, 

Orchestration 

and 

Monitoring 

Interface 

This interface is 

used for the 

management of 

the Hypervisor 

domain resources. 

VIM – 

Compute 

Interface 

T-Nf-Vi/C [Nf-Vi]/C 

Management 

and 

Orchestration 

Interface 

This interface is 

used for the 

management of 

Compute domain 

resources. 

Hypervisor

– Network 

Interface 

T-Vl-

Ha/Nr 
Vl-HA [Vl-Ha]/Nr 

Execution 

Environment 

This interface is 

used to carry 

execution 

information 

between the 

Hypervisor and the 

Infrastructure 

Network domains. 

Hypervisor

-Compute 

Interface 

T-Vl-

Ha/CSr 
VI-Ha [Vl-Ha]/CSr 

Execution 

Environment 

This interface is 

used to carry 

execution 

                                                 

2
 SWA-5 corresponds to VNF-NFVI container interfaces: This is a set of interfaces that exist 

between each VNF and the underlying NFVI thus SWA-5 describes the execution environment 

for a deployable instance of a VNF (7). 
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information 

between the 

Compute and the 

Hypervisor 

domain. 

Compute– 

Network 

Interface 

T- 

Ha/CSr-

Ha/Nr 

VI-Ha 
Ha/CSr-

Ha/Nr 

Traffic 

Interface 

This interface is 

used to carry 

execution 

information 

between the 

Compute and the 

Network domain. 

Virtual 

Machine–

VNFC 

Interface 

T-Vn-

Nf/VM 
Vn-Nf [Vn-Nf]/VM 

VNF 

Execution 

Environment 

This interface is 

used to carry 

execution 

environment 

information for 

each VNFC 

instance. 

 

Virtual 

Network–

Virtual 

Network 

Interface 

T-Vn-

Nf/VN 
 [Vn-Nf]/VN 

VNF 

Execution 

Environment 

This interface is 

used to carry 

execution 

environment 

information 

between VNFC 

instances. 

4.5 NFVI and NFVI-PoP 

The execution environment for VNFs is provided by the NFVI deployed in various 

NFVI-PoPs. The NFVI-PoP acts single geographic location i.e. a DC where a number of 

NFVI-nodes are located. A NFVI PoP is responsible for providing the infrastructural 

building blocks to host and execute VNF services deployed by the T-NOVA system in 

a particular location. The NFVI comprises of the IT resources in the form of the 

Compute and Hypervisor domains and network resources in the form of Network 

domain, as shown in Figure 21. The NFVI can utilise these domains in a manner that 

supports extension beyond a single NFVI-PoP to multiple NFVI-PoPs as required to 

support the execution of a given NS. 

The NFVI-PoP is expected to support the deployment of VNFs in a number of 

potential configurations. These deployments will range from a single VNF deployed 

at a single NFVI-PoP, to multiple VNFs from different VNF providers in a multi-tenant 

model at one NFVI-PoP. Additionally, the NFVI may need to support VNFs deployed 

at more than one NFVI-PoP to instantiate the required NS. Interconnectivity between 

these PoPs is provisioned and managed in the case of T-NOVA by the TNM module, 

which is similar in function to the WAN Controller in the ETSI MANO architecture (8) 

(see subsection 4.7). 
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The network access capacity required at a particular NFVI-PoP will depend on the 

network service workload type, the number and capacity of the VNFs instantiated on 

the NFVI. The management and orchestration of virtualised resources should be able 

to handle NFVI resources in a single NFVI-PoP as well as when distributed across 

multiple NFVI-PoPs. Management of the NFVI is provided by the VIM through 

domain interfaces (T-Nf-Vi) as shown in Figure 21. The VIM also provides the 

intermediate interfaces between the Orchestrator and the NFVI (T-Or-Vi and T-Vi-

VNFM). The NFVI will execute requests from the Orchestrator relating to the lifecycle 

management of VNFs such as deployment scale in/out, scale up/down and 

termination. 

The following sections describe the architecture and the respective internal 

components of the NFVI, namely the compute, hypervisor and network domains. The 

interfaces required to implement an overall functional architecture for the T-NOVA 

NFVI system are also described. 

4.5.1 IT Resources 

The T-NOVA IT Resources encompasses the compute and hypervisor domains of the 

NFVI. These domains have their origins in traditional enterprise IT environments and 

more recently in the deployment of cloud computing environments. In order to 

support the development of NFV architectural approaches in carrier grade 

environments, IT resources and capabilities have been embraced in these 

environments to support the deployment of VNFs. However the functionality, 

capabilities and how these IT resources are composed within virtualised network 

architectures need to be careful considered. The enterprise origins of these 

technologies often have inherent gaps in capability such as line-rate packet 

processing performance limitations. These gaps can influence architectural decisions 

and may require innovative solutions to address any identified gaps for VNF service 

deployment. The following sections discuss the compute and hypervisor domain 

architecture considerations and the proposed approach in the context of the T-NOVA 

system architecture. 

4.5.1.1 Compute Domain 

The Compute Domain is one of three domains constituting the NFVI and consists of 

servers, NICs, accelerators, storage, racks, and any associated physical components 

within the rack related to the NFVI, including the networking Top of Rack (ToR) 

switch. The Compute domain may be deployed as a number of physical nodes (e.g. 

Compute and Storage Nodes) interconnected by Network Nodes (devices) within an 

NFVI-PoP. 

Traditionally the compute environment within the telecoms domain has been 

heterogeneous based around a variety around microprocessor architectures such as 

MIPS, PowerPC, SPARC, etc. with tight coupling between the microprocessor and the 

software implementation. Many traditional telecommunication systems are built in 

C/C++ technology with high interdependence on the underlying processing 

infrastructure and a specific instruction set. 
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As the first generation of VNFs have appeared in the marketplace based around 

adaption of specific software to a version that can run on virtualised X86 

environments some performance difficulties have been encountered. While 

virtualisation decouples software and hardware from a deployment point of view, it 

does not do it from a development point of view. Selection of an appropriate cross 

compiler for the target platform (e.g. X86) may address some of the issues. However 

in order to achieve optimal performance, a proper redesign of the software may be 

required to ensure appropriate use of specific capabilities, like for example hyper 

threading in X86 processors. The specific application may also need to make use of 

software libraries to improve the performance of certain actions such as packet 

processing. 

The compute domain architecture should have the capability to support distributed 

virtual appliances that can be hosted across multiple compute platforms as required 

by specific SLAs of VNFs services. Moreover storage technologies and management 

solutions are included in the domain and show a large degree of variability in terms 

of different technologies; scalability and performance (see subsection 2.2). Depending 

on the workloads and use-cases the choice of storage technology is likely to be 

specific to certain workloads. 

Another important objective of the compute domain is to expose hardware statistics 

of the compute node with high temporal resolution. The VIM communicates directly 

to the compute domain and through the hypervisor to access all the hardware 

metrics, which can be static or dynamic in nature. 

Subsection 5.3 describes requirements for exposing hardware characteristics (i.e. 

metrics) for planning/provisioning and high temporal resolution 

monitoring/deployment of VNFs. Interfaces to pass metrics to the VIM are described 

in the NFVI domains and interfaces (NFV Infrastructure Architecture). 

Static metrics expose compute node characteristics which do not change or change 

slowly (e.g. once a day). These metrics ultimately act as a first order filter for 

selecting/provisioning a node for deploying a VNF. Static metrics are obtained from 

reading OS and ACPI tables. The Advanced Configuration and Power Interface (ACPI) 

specification provides an open standard for device configuration and power 

management by the operating system. Additional metrics may be stored in local 

structures provisioned by the vendor or administrator. For example compute node 

performance index, energy efficiency index, geographic location, specific features 

enabled/supported, security level, etc. 

An Orchestrator can identify a candidate platform based on static metrics, however 

actually instantiate a VNF additional dynamic metrics will be required, e.g. CPU 

utilisation, memory, I/O headroom currently available etc. These metrics could be 

provided on a per-query basis or the compute node could proactively update 

hypervisor domain at regular intervals. 

Heterogeneous Compute Architectures 

A VNF developed for a target compute architecture needs to be fully optimised and 

validated prior to rollout. This process will also need to be repeated on a per 
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compute architecture basis. While the initial focus has been on X86 compute 

architectures, recently there has been interest in the use of co-processors such GPUs 

or FPGAs to accelerate certain VNF workloads: some NFV workloads can experience 

performance benefits by having access to different processing solutions from a 

variety of silicon vendors including network processors and general-purpose co-

processors. The move towards more heterogeneous cloud computing environments 

is starting to gain attention, as standard X86 processors may have performance 

limitations for certain workloads tasks e.g. high speed packet processing. This has led 

DC equipment vendors to investigate the use of alternative compute architectures to 

enhance their offerings. In defining heterogeneous compute domain architectures for 

T-NOVA, we divided devices into two main categories: 

 Devices which can only operate in conjunction with a host CPU, like GPUs, 

multi-integrated cores (MIC) and Micron’s Automata processor; 

 Devices which can operate in a stand-alone fashion, like FPGAs and FPGA 

SoCs (although FPGAs and FPGA SoCs can also act as devices attached to a 

CPU-controlled system). 

For the first class of devices we can derive a compute node architecture, where the 

compute node is complemented by a co-processor, which can be any of the four 

technologies mentioned above (in the FPGA and FPGA SoC cases, they will, act as 

slave devices to the processor). The extent to which the accelerator resources 

themselves are virtualised is left to each specific implementation, though such a 

solution is known to improve the performance of the accelerator hardware. It must be 

noted that such a solution is only available for GPUs (e.g. nVidia’s GRID), but not for 

FPGAs or the automata processor. This general architecture leaves a lot of the 

implementation choices open. For example the interconnection of the CPU and the 

co-processor could be implemented either over PCIe or over a direct link like Quick 

Path Interconnect (QPI) or division of the memory between the CPU and the co-

processor. In any scenario, the system must be able to adhere to the requirements for 

the compute nodes as outlined down in Annex B. 

The second class of devices is based around an FPGA SoC, which is an FPGA that 

integrates one or more processor cores in the same silicon die. Devices like these are 

available from all major FPGA vendors. In this case, the processing system on the 

FPGA SoC runs a Hypervisor on which OS’ and applications are executed. To a large 

extend the same considerations as in the previous scenario apply, both in terms of 

interconnection of components and virtualisation of accelerator resources. The 

important difference here is the degree of integration, since the whole 

heterogeneous compute node resides within one physical device. 

From an external interface perspective the heterogeneous compute nodes do not 

differentiate themselves from the standard compute node. Thus, there is an interface 

to the hypervisor, an interface to the controller for the virtualised network 

infrastructure and finally an interface to the VIM. 

However, supporting heterogeneous devices in the compute domain will require 

appropriate changes to be made to several areas of the T-NOVA architecture. For 

instance, a VNF that is to be deployed to a heterogeneous compute node may need 
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to be specifically created for this compute architecture. Additionally, the deployment 

of the container of the associated VNFD needs to take into account different relevant 

factors (e.g. location of compute nodes with the appropriate resources). Finally, data 

collected in the VIM will need to reflect the resources available in the heterogeneous 

node and their occupancy. This trade-off between deployment flexibility and 

performance will probably need to be assessed on a case by case basis. 

Key Components of the Compute Domain 

The main components of the Compute domain’s architecture are: 

 CPU and Accelerator: A general-purpose compute architecture is considered 

based on commercial x86 server clusters. Additionally co-processors 

cards/FPGAs are also considered for application specific workloads or 

functions such as packet processing. As outlined in subsection 2.2 the CPU 

nodes will incorporate technologies to support virtualisation of the actual CPU 

such as VT-x. Connections to I/O devices will use technologies such as VT-d. 

Specific co-processors include acceleration chip for classification, Crypto, 

DPI/Regular Expression, Compression/Decompression, Buffer management, 

Queue management, Work scheduler, Timer management, Traffic 

management, address translation); 

 Network Interfaces: The network interface could either be a NIC which 

connects to the processor via PCIe or the network interface capability may be 

resident on-board the server. Provisioning of virtualised network connectivity 

and acceleration will use technologies such as VT-c.  

 Storage: Storage encompasses large-scale storage and non-volatile storage, 

such as hard disks and solid-state disk (SSD) which can be with locally 

attached or networked in configurations such as SAN. For some purposes, it is 

necessary to have visibility of the different storage hierarchy level (Cache 

Storage, Primary Storage, Secondary Storage, Cold Storage or Archived 

Storage) each one characterised by specific levels of latency, costs, security, 

resiliency and feature support. However, for many applications, the different 

forms of storage can be abstracted, especially when one form of storage is 

used to cache another form of storage. These caches can also be automated 

to form a tiering function for the storage infrastructure. 

Collectively these technologies enable the hypervisor to abstract the physical 

resources into virtual resources which can be assembled into VMs for hosting VNFs. It 

should be noted that a single Compute Platform can support multiple VNFs. 
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Figure 22: Compute Domain High Level Architecture 

Compute Domain Interfaces 

The compute domain presents three external interfaces: 

 The T-Nf-Vi/C - used by the VIM to manage the compute and storage 

portion of the NFVI. It is the reference point between the management and 

orchestration agents in compute domain and the management and 

orchestration functions in the virtual infrastructure management (VIM); 

 The T-[Vi-Ha]/CSr interface is the interface between the compute domain 

and the hypervisor domain. It is primarily used by the hypervisor/OS to gain 

insight into the available physical resources of the compute domain; 

 The T-HA/CSr-Ha/Nr interface is used to carry execution information 

between the Compute and the Network domain. 

Orchestration and management of the NFVI is strictly implemented via the T-Nf-Vi 

interfaces. The implementation of the interface must match the requirements 

outlined in Annex B in addition to having the general characteristics of being 

dedicated and secure. This interface is utilised to establish trust and compliance 

between the VIM and the underlying compute infrastructure. The interface is exposed 

by management agents of the compute node and allows both control and 

monitoring of the compute domain. With regard to monitoring, agents are installed 

both at the host OS (to measure physical resources) as well as the guest OSs (to 

measure virtualised resources associated with a specific VNFC). The latter metrics are 

of particular interest to T-NOVA operations, since they provide an indication of the 

resources consumed by a VNFC instance and are directly used for service monitoring. 
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Application performance such as SLA compliance depends on a variety metrics such 

as resource and system level metrics. The ability to measure application performance 

and consumption of resources plays a critical role in operational activities such as 

customer billing. Furthermore, statistical processing of VNFC metrics will be exploited 

to indicate a particular malfunction. Metrics to be collected at both physical compute 

node and VM include CPU utilisation, memory utilisation, network interface 

utilisation, processed traffic bandwidth, number of processes, etc. 

4.5.1.2 Hypervisor Domain 

The hypervisor domain is the part of the T-NOVA architecture that provides the 

virtualised compute environment to VNFs. Since the hypervisor domain embraces 

different types of hosts, with different Guest OSs and/or hypervisors, it is important 

to manage interoperability issues appropriately. Issues relating to the virtualisation of 

VNFs on technologies from different vendors need to be carefully considered. 

The primary goal of the hypervisor domain is therefore to manage the heterogeneity 

of technologies from different vendors, thus providing an interoperable cloud 

environment to the VNFs. In that sense, the hypervisor domain provides an 

abstraction layer between the VIM (which controls, monitors and administrates the 

cloud) and the VNFs resources. The high level architecture of the hypervisor domain 

is shown in Figure 23. 

Looking at a single host, the hypervisor module provides virtual resources by 

emulating different components, like CPUs, NICs, memory and storage. This 

emulation can be extended to include complete translation of CPU instructions sets; 

so that the VM believes it is running on a completely different hardware architecture 

with respect to the one it is actually running on. The environment provided by the 

hypervisor is functionally equivalent to the original machine environment. This 

emulation is carried out in cooperation with the Compute domain. The hypervisor 

module manages slicing and allocation of the local hardware resources to the hosted 

VMs. 

It also provides the NICs to the VMs and connects them to a virtual switch in order to 

support both internal and external VM communication. A suitable memory access 

driver is integrated into the virtual switch that interconnects VMs with each other. 

The virtual switches (vSwitches) are also managed by the hypervisor, which can 

instantiate and configure one or more vSwitches for each host. They are logical 

switching fabrics reproduced in software. 

The integration of vSwitches and hypervisors is an area of specific focus due to its 

significant influence on the performance and on the reliability of VMs, especially in 

the case of VNFs. The various aspects and issues related to the integration of 

vSwitches with hypervisors are discussed in subsection 2.2. 
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Figure 23: Hypervisor domain architecture 

The Control, Administration and Monitoring module is essentially responsible for the 

control functionality for all the hosts within the cloud environment, abstracting the 

whole cloud. The main goal of this module is to provide a common and stable layer 

that will be used by the VIM to monitor, control and administrate the VNFs over the 

T-NOVA cloud. Moreover, as previously described it provides a unified the VIM and is 

used to control the lifecycle of the VNFs. This supports various operations on the VMs 

(or VNFs) such as provisioning, creation, modification of state, monitoring, migration 

and termination. 

Since different hypervisors provide different interfaces, the Control, Administration 

and Monitoring (CAM) module needs to support heterogeneous hypervisors, 

managing virtual resources on different vendors’ hypervisor at the same time. This 

particular task is accomplished by the hypervisor manager. 

4.5.2 Infrastructure Network Domain 

The T-NOVA network infrastructure comprehends the networking domain of the 

NFVI, i.e. the different virtualised network resources populating the NFVI as shown in 

Figure 24. The Network domain within the NFVI considers virtual resources 

composing virtual networks as the functional entity. Those virtual networking 

resources are devoted to provide connectivity to the different virtualised compute 

resources, which has been presented in previous section. 

The T-NOVA architecture, and thus the network domain controlled by the VIM, 

leverages SDN for optimising network operations. Both the Control and Data Planes 
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are separated. The network domain builds a full abstraction of the actual resources 

included in the physical substrate and then creates vLinks between VMs (composing 

vNets), which are provisioned in order to satisfy the requirements of the different 

VNFs. 

The main objectives of the network (aforementioned) resources are to provide 

connectivity between VMs which can run on the same server, on different servers 

within the same DC, or outside the same DC boundaries. (In the latter case, a co-

operation with the TNM module is required). Within the T-NOVA IVM, this is directly 

translated into the creation of virtual networks that interconnect a set of compute 

resources which are providing the execution substrate to VNFs. 

Virtual networks must be dynamically programmed in order to ensure network 

slicing, isolation, and ultimately connectivity in the T-NOVA multi-tenant scenario. 

Each vNet is dedicated to a specific VNF service, and provides connectivity between 

the different hosts serving the VNF service. Elasticity of the vNet is strictly required in 

order to guarantee that the corresponding VNF services can be properly scaled-up or 

–down. A virtualised control plane (SDN-like) will be responsible for controlling each 

one of these virtual networks (refer to subsection 4.6.2). 

Basically, the network domain performs abstraction of the physical network devices 

themselves and then creates a set of virtual slices in an on-demand fashion. The 

architecture basically contains the southbound components, with the different 

resource agents and the abstracted models, with the upper part of the network 

domain contains the basic virtualisation capabilities, responsible for creating and 

composing the virtual networks. 

The network domain contains two basic interfaces: (i) one to the VNF (T-Vn-Nf/VN), 

and (ii) the other to the basic VIM controller (T-Nf-Vi/N). A full description of the 

interfaces can be found in Table 7. 

 

Figure 24: High level architecture of the Infrastructure Network 
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4.6 Virtualised Infrastructure Management 

Within the T-NOVA IVM architecture the VIM is the functional entity that is 

responsible for controlling and managing the NFVI compute, storage and network 

resources within the NFVI. The VIM general is expected to operate in one operator’s 

infrastructure domain (e.g., NFVI-PoP). However as many operators now have data 

centres distributed on a global basis, scenarios will arise where the VIM may operate 

in more than one NFVI-PoP to support either the architecture requirements for VNF 

services and/or operator business needs. Alternatively multiple VIMs may operate 

across operator data centres providing multi NFVI-PoPs that can operate 

independently or cooperatively as required under the control of an Orchestrator. 

While a VIM, in general, can potentially offer specialisation in handling certain NFVI 

resources, in the specific context of the T-NOVA system the VIM will handle multiple 

resources types as shown in Figure 25. The VIM acts as the interface between the T-

NOVA Orchestrator and the available IT-Infrastructure abstracted by the NFVI. The 

control components are at the heart of the VIM, encompassing the following 

elements: 

 The algorithms and logic for control, monitoring and configuration of their 

related domain; 

 An interface or API server to offer the implemented logic and collected 

information’s in an abstracted way to other components; 

 An interface to control and access the virtualised infrastructure. 

The interfaces of the API servers from each control component in the VIM are 

furthermore aggregated in the Orchestrator Agent and the VNF Manager Agent to 

deliver a unified interface to the upper layers of the T-NOVA components via the T-

Vi-Vnfm and T-Or-Vi interfaces. This architecture allows interaction with the upper 

layers with a higher level of abstraction giving the T-NOVA Orchestrator the layers 

with a higher level of abstraction giving the T-NOVA orchestrator the flexibility, to 

configure a particular part of the infrastructure or to collect infrastructure related 

data. The VIM also exposes southbound interfaces (as shown in Figure 25Figure 26) 

to the infrastructure resources (Hypervisor/Compute/Network) of the NFVI which 

enable control and management of these resources. A summary of the key north 

bound VIM interfaces can be found in Table 7. 
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Figure 25: T-NOVA VIM high level architecture 

The following are the key set functions identified that must performed by T-NOVA 

VIM based on general requirements identified by ETSI for a VIM within the MANO 

architecture (8). 

 Resource catalogue management, 

 Orchestrating the allocation/upgrade/release/reclamation of NFVI resources, 

and managing the association of the virtualised resources to the physical 

compute, storage, networking resources, 

 Supporting the management of VNF Forwarding Graphs (create, query, 

update, delete), e.g., by creating and maintaining Virtual Links, virtual 

networks, sub-nets, and ports, 

 Management of the NFVI capacity/inventory of virtualised hardware resources 

(compute, storage, networking) and software resources (e.g., hypervisors), 

 Management of VM software images (add, delete, update, query, copy) as 

requested by other T-NOVA functional blocks (e.g., NFVO), 

 Collection and forwarding of performance measurements and faults/events 

information relative to virtualised resources via the northbound interface to 

the Orchestrator (T-Or-Vi), 

 Management of catalogues of virtualised resources that can be consumed 

from the NFVI. The elements in the catalogue may be in the form of 

virtualised resource configurations (virtual CPU configurations, types of 

network connectivity (e.g., L2, L3), etc.), and/or templates (e.g., a virtual 

machine with 2 virtual CPUs and 2 GB of virtual memory). 

The high level architecture for the T-NOVA VIM architecture reflects these key 

functions. 
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4.6.1 IT Resource Management and Control 

In the T-NOVA system we distinguish between IT and visualised network resources 

Also from a management and control perspectives this categorisation is clearly visible 

in the architectural design of the VIM. In fact, on the one hand, the VIM provides to 

the Orchestration layer a unified access point to all infrastructural resources at an 

abstracted level, but, on the other hand, internally the control modules are explicitly 

split into Compute and Hypervisor Control managing the IT resources, whereas the 

Network Control module manages the network resources. This architectural choice 

allows the T-NOVA system to manage them according to different requirements and 

needs (in terms of performance, time constraints, and so forth) The following 

subsections discuss the respective management and control needs of the hypervisor 

and compute resources within the VIM and their relationship to the NFVI. 

4.6.1.1 Hypervisor Management 

The hypervisor control function is responsible for providing high level control and 

configuration capability that is independent of the technology implementation within 

the hypervisor domain. The interface to the hypervisor domain (T-Nf-Vi/H) provides 

the necessary level of abstraction to the specifics of the underlying hypervisor. The 

hypervisor control component provides the basic commands like start, stop, reboot 

etc. and offers these commands through an API server to the VIM. Specific 

commands related to a particular hypervisor implementation may also be supported 

on case by case basis through the same API server allowing finer performance tuning. 

Additionally the hypervisor controller can implement a query API that can be used to 

provide detailed information such as configuration details, version numbers etc. 

The network configuration of a newly created VM is usually configured by a script 

that runs at boot-time or can be done manually after the VM has booted. The 

hypervisor control component will offer the capability to implement a network 

configuration during VM instantiation thus enabling a higher degree of automation 

which is important for service provider operations. The hypervisor controller is able to 

push onto the VM, provided the hypervisor supports the action, the desired network 

configuration before the first boot of the OS. 

The reliability capabilities inside the hypervisor controller have an important role as 

custom configurations can be requested by the T-NOVA Orchestrator. Their primary 

role is to prevent the user of the API from placing the hypervisor in an inconsistent or 

error state leaving it unable to manage or respond to the VMs under its control. The 

module may also play a role in managing issues such as misconfiguration, 

compromised commands or hypervisor options that do not work well with the 

allocated hardware. 

4.6.1.2 Computing Resources Management 

A key functionality of the compute domain management will be the collection and 

processing of the monitoring metrics collected by both the physical compute nodes 

as well as the VMs (VNFCs). A dedicated monitoring manager is envisaged;, to which 

monitoring agents will connect to communicate compute domain resource metrics. 
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At the monitoring manager, these metrics will undergo statistical processing in order 

to extract additional information such as fluctuation, distribution and correlation. This 

processing will provide useful information about the behaviour of each VNF 

component and will contribute towards the early detection of possible VNFC 

malfunctions. This will be the case e.g. if some measurements fall outside the normal 

VNF load curve (e.g. if CPU utilisation rises abnormally even though processed 

network traffic volume does not). 

The placement of a VM on a compute resource is a critical task and the compute 

controller carries out this function using a placement scheduler. This scheduler will, if 

no further options are specified, make a decision based on the requirements of the 

infrastructure provider and place the VM in an automated fashion. To influence this 

decision making process, the scheduler will have a filter API that can be used via the 

Orchestrator agent and thus by the Orchestrator. The filter may have of details 

related to the desired SLA or specific hardware and software requirements. The main 

filter categories that influence the decision process by the scheduler are: 

 Specific hardware requirements like CPU speed or type of disc, 

 Specific software requirements like the host OS or the hypervisor, 

 Current load and performance metrics of the compute node such as average 

CPU utilisation rate etc., 

 Financial considerations such as newest hardware or most energy efficient 

hardware. 

A further core task of the compute controller is to provide specific management 

capabilities of the VMs for the Orchestrator especially where the operations overlap 

with hypervisor and network controller actions. Such tasks include: 

 Creation and deletion of a VM, 

 Rebuilding, suspend and pause a VM, 

 Migrating a VM from one compute node to another compute node, 

 Resizing a VM. 

Creation of a VM requires close interaction with the base image repository that 

contains the basic unmodified OS images. In many cloud computing platforms, these 

base images are known as flavours. 

A CLI capability is generally required within the compute controller in order to enable 

infrastructure administrators to carry out routine maintenance and administration 

tasks. For example, the administrators may need to migrate VMs on a physical 

compute node to another one as part of an infrastructure upgrade activity. Other 

potential action may include interaction with the scheduler and filters in order to 

modify the configuration of a VM or set of VMs to maintain an associated SLA for a 

VNF service running on the VMs. 
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4.6.2 Infrastructure Network Resources Management and 

Monitoring 

The Network Control functional block within the VIM is responsible for configuring 

and managing the SDN-compatible network elements to provide an abstracted 

platform for running SDN applications (i.e. network virtualisation, load balancing, 

access control etc.). 

In order to meet specific VNF services’ requirements, the network elements, physical 

and virtual, need to be properly programmed by the Network Control function to 

ensure appropriate network slicing, isolation and connectivity in a multi-tenant 

environment. In this way, the network will be properly partitioned and shared among 

several vNets, each dedicated to a specific VNF service. In the T-NOVA architecture 

there is an explicit distinction between virtual and physical network control domains: 

the virtual network control domain is managed by the VIM, whereas the physical 

network control domain is managed by the TNM entity (discussed in next section). 

The virtualisation of the Network Control is intended to address scalability and 

centralisation issues affecting the SDN controller in large network infrastructures. The 

proposed approach is to virtualise each instance of CP, enabling the distribution of 

the overall workload to multiple VM. In this regard, the SDN Control Plane can offer 

elasticity, auto-scaling and computational load balancing by exploiting cloud-

computing capabilities. 

In order to guarantee an efficient CP virtualisation, a SDN Control Plane Coordinator 

is expected to manage and monitor multiple CP instances. Moreover, it maintains a 

global consistent view of the network by means of a Distributed Cache among each 

running CP instance. 

 

Figure 26: VIM Network Control Architecture 

The Network Control component interfaces internally with the VIM Hypervisor and 

Compute components and externally with the Orchestrator layer, by accepting 

requests to deploy vNets based on certain topology and QoS requirements. 
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4.7 Transport Network Management 

The ETSI specifications indicate that the NFVI is the totality of the NFVI-PoPs along 

with the transport network that interconnects them. In T-NOVA architecture, there is 

an explicit separation between those two domains and two different network 

domains have been identified: the former involves the SDN based network which is 

internal to an NFVI-PoP, whereas the latter involves the transport networks that 

interconnect NFVI-PoPs. 

The TNM is the module of the IVM architecture whose main function is to manage 

the transport network, composed by PNFs, providing also the connectivity between 

different NFVI-PoPs, relying on existing WAN networks. 

Those PNFs can be classified in two different categories:  

 SDN-enabled network elements - physical devices that implement an SDN 

approach, 

 Legacy network element - physical devices which do not support any SDN 

programmability feature. 

The NFVO interfaces to the TNM through the T-Or-TN reference point (see Annex B, 

Table 28) supporting requests relating to the creation and management of virtual 

networks over different NFVI-PoPs: therefore, in order for the Orchestrator to request 

a virtual network connection between VNFs running in different DCs interaction with 

both virtual network resources (through the VIM) and physical networks among 

NFVI-PoPs (through the TNM) is required. 

The TNM is invoked by the Orchestrator to setup the interconnection among 

Network Controllers (NCs) belonging to different NFVI-PoPs. In fact, within a VIM, 

potentially, multiple NCs are encompassed (e.g., if different virtual network 

partitioning techniques are used within the domain); in this case, the VIM is 

responsible for requesting virtual networks from each underlying NC and setting-up 

the interworking functionality between them. Thus, at the lowest level, network 

controllers have visibility to L2 network elements within the NFVI-PoP whereas, at a 

higher level, the VIM provides connectivity services to the Orchestrator in a suitable 

manner using the underlying resources. 

The TNM is responsible for a number of key aspects related to connectivity services. 

These include the following: 

 Management and control of existing PNFs; 

 Monitoring of WAN resources and virtual links in order to provide the 

Orchestrator with useful statistics (such as jitter, RTT, delay, bandwidth, etc.) to 

make decisions about allocation of network resources; 

 Management of virtual/physical links between NFVI-PoPs according to NFVO 

provisioning via configuration of: 

o SDN-enabled network elements, that enable network slicing 

techniques, 
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o Legacy network elements, relying on tunnelling protocols (e.g., VXLAN 

(44), NVGRE (45), STT (46)) in case of L3 PNFs or on native 

trunking/aggregation protocols in case of L2 PNFs (e.g. VLAN, Q-in-Q, 

etc.), 

 Interfacing to the NFVO in order to accept provisioning requests and to 

submit monitoring information. 

In the following sections the management and monitoring of network resources are 

discussed for both SDN-enabled and legacy network devices. 

It is worth noting that the T-NOVA scope does not include elaboration on 

implementation of a full solution for legacy technologies. However, existing 

management solutions will be investigated in order to develop an understanding of 

how to support interfacing to the NFVO in order to achieve the provisioning of the 

required functions (i.e. configuration, tunnel establishment, QoS provision, failover 

support etc). 

4.7.1 Network Resources Management and Monitoring 

The TNM plays a very important role within the IVM by providing the NFVO with an 

abstracted view of the network topology and resources, (i.e. link capacities, latency, 

etc.), for available WAN networks. It is common for large domains to be segmented 

into different administration domains in order to increase the efficiency of both 

management and monitoring. In this respect, T-NOVA expects that two types of 

transport network domains will be supported: (i) the SDN Domain which comprises 

SDN network elements (usually L2 devices) and (ii) the Legacy Domain which 

comprises L2/L3 network elements that do not support programmability, but support 

traffic engineering technologies (e.g. MPLS/IP). 

4.7.1.1 SDN-enabled Network Elements 

Today’s WANs are becoming more complex and the introduction of SDN aligned 

approaches holds great potential for managing and monitoring network devices and 

the traffic which flows over them. The benefits are mainly related to automated 

network provisioning and to the flexibility in link deployment between different data 

centres. 

From a T-NOVA perspective, the TNM has responsibility for controlling and 

monitoring the physical network devices which are SDN-enabled, with the purpose of 

providing WAN connectivity between different NFVI-PoPs while considering both 

SLAs required by VNFs and efficient management of cloud infrastructure resources. 

In this context, the interaction with per-existent SDN will be needed to manage and 

monitor network resources to get required flexibility and customisation capabilities: 

TNM and VIM Network Control modules will need to be coordinated both by the 

Orchestrator in an appropriate manner, in order to setup VLANs among different 

virtual and physical SDN-enabled devices. 

Although for the intra-DC networking the deployment of SDN technologies is 

becoming more common place, the adoption of SDN at the transport level and 
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especially at Layer 0 to 1, is still very much in its infancy (72), (73). When considering 

the transport layers we encompass technologies at layer 0 (DWDM, photonics) and 

layer 1 (Sonet/SDH and OTN). A key reason for the delay in SDN adoption in the 

transport network is the on-going transition from the analog to digital domain. The 

mechanisms for dealing with analog attributes in optical networks are vendor 

specific, and it is not possible for a generic controller to deal with the current myriad 

of vendor specific implementations. Nor is it possible for network operators to 

remove all of their transport equipment from their networks and replace it with a 

standardised optical hardware based around open standards. However, at higher 

layers (i.e. WAN) the adoption path is potentially more expeditious. Companies like 

Google and the Carrier Ethernet (MEF) and cloud business units of network operators 

have already adopted SDN solutions for their WANs (74).  

For the purpose of the T-NOVA proof-of-concept demonstration the TNM 

development of SDN compatible devices, is out of scope as it is not part of the 

objectives of the project which are mostly focusing on the NFVI-PoP network 

management and control. However, at an architectural level it is thoroughly 

supported to ensure appropriate future proofing. 

4.7.1.2 Legacy Network Elements 

Managing and monitoring legacy network domains is a well understood and mature 

capability. A variety of standardised and proprietary frameworks have been proposed 

and implemented varying from commercial to open source solutions. 

As outlined in subsection 2.2.4.2 the standard method for allowing network overlays 

over legacy network domain is the exploitation of L2 to L3 tunnelling mechanisms. 

Those mechanisms introduce the use of tunnelling protocols that allow the 

management aspects of each tunnel on an end-to-end basis. The most interesting 

tunnelling protocols, from a T-NOVA architecture perspective, (as discussed in 

subsection 2.2.4.2) are VxLAN, NVGRE and STT. In short these protocols allow the 

interconnection of NFVI-PoPs over L3 legacy network by encapsulating the NFVI 

network traffic (actually DC traffic) end-to-end. They require the setup of an end-

point for each connected DC, which is responsible for encapsulation and 

decapsulation of packets. 

At a WAN level the architecture design of T-NOVA supports any type of legacy WAN 

technology (i.e. MPLS, Optical, Carrier Ethernet etc.) or SDN compatible, provided that 

the appropriate interfaces are developed. In this context, and for the sake of 

demonstrating the UC as discussed in D2.1, T-NOVA will exploit an IP/MPLS transport 

network and provide a simple implementation of TNM in order to support 

provisioning of vNETs in an end-to-end manner. 

From a monitoring perspective, there are a number of frameworks ranging from 

passive to active and hybrid that allow the monitoring of legacy networks (75), (76). 

T-NOVA will employ such mechanisms in order to monitor adequately the status of 

the network and more importantly the status and resource usage of the established 

tunnels. Monitoring of the transport network resources will also be part of the 

considered TNM functionalities that will be implemented. Moreover, the monitoring 
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information will be conveyed to the NFVO as an input in the mapping and path 

computation mechanism. Historical monitoring data collection will also be collected 

to facilitate tracking of SLA breaches. 

.  
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5 T-NOVA VNFS AND NSS PROCEDURES 

This section illustrates the set of most common procedures associated with the 

deployment and management of VNFs (e.g. on-boarding, instantiation, monitoring, 

scaling, etc.) to illustrate the interactions between the T-NOVA Orchestrator and IVM 

architecture FEs that have been described in Sections 3 and 4. The flow diagrams 

presented in this section serve as a means to validate the architectures for the T-

NOVA Orchestrator and IVM layers and their constituent architectural components. In 

addition, the flow diagrams also illustrate the interactions at the FE level and validate 

the purpose and capabilities of the interfaces that have been identified in subsections 

3 and 4. As stated above, the sequence diagrams are intended to illustrate specifically 

the interaction of the entities of the Orchestration and the IVM layers, however some 

of the details of the internal actions of each module are not illustrated as these are 

implementation specific and depend on the technologies utilised. 

While a conceptual exercise, the description and illustration of the key VNF 

deployment and management workflows provide a means to stress tests regarding 

the taken architectural decisions and capture necessary refinements prior to 

implementation related activities in WP3/4. Subsection 5.1 focuses on the VNF 

procedures, whereas subsection 5.2 is centred on the NS procedures. 

5.1 VNF related procedures 

To describe the VNF procedures, the following assumptions are made: 

 The VNF is composed by one or more VNFC3s; 

 Each VNFC has a dedicated VM; 

 VNFCs are interconnected through Virtual Network Links; 

 The VNF, as well as the constituent VNFCs, is instantiated within a single data 

centre, which implies that no scenarios involving the TNM are applicable. 

The VNF details (e.g. deployment rules, scaling policies, and performance metrics) are 

described in the VNF Descriptor. 

5.1.1 On-boarding 

VNF on-boarding (Figure 27) refers to the process of making the T-NOVA 

Orchestrator aware that a new VNF is available on the NF Store. 

                                                 

3
 A single VNF which is hosted by a single VM is called a Virtual Network Function Component 

(VNFC) 
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Figure 27: VNF On-boarding Procedure 

Steps: 

1. A new VNF is uploaded to the NF Store. As a result, the NF Store notifies the 

NFVO that a new VNF is available. 

2. The NFVO requests the metadata (VNF Descriptor) of the new VNF from the 

NF Store. 

3. The VNF Descriptor is provided to the NFVO. 

4. The NFVO processes the VNFD to check if the mandatory elements are 

provided. 

5. The NFVO uploads the VNFD to the VNF Catalogue. 

5.1.2 Instantiation 

VNF instantiation (Figure 28 and Figure 29) refers to the process of creating and 

provisioning a VNF instance. Figure 28 refers to the instantiation process from the 

perspective of the Orchestration Layer, whereas Figure 29 shows the instantiation 

process from the IVM layer point of view. 



T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation, 

Management and Orchestration - Interim 

 

© T-NOVA Consortium 

 
108 

 

Figure 28: VNF Instantiation Procedure (Orchestrator’s View) 

Steps VNF Instantiation – Orchestrator’s View: 

1. NFVO calls the VNFM to instantiate the VNF, with the instantiation data. 

 Optionally, and before the instantiation request from the NFVO to the 

VNFM, a feasibility check could be made to ensure the required 

resources for the VNF are available (and reserved) at the virtual 

infrastructure (interacting with the VIM) layer. 

2. The VNFM validates the request and processes it. This might include 

modifying/complementing the input instantiation data with VNFD data and 

VNF lifecycle specific constraints. 

3. The VNFM then calls the NFVO for resource allocation. 
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4. The NFVO retrieves VNF image(s) from the NF Store. 

5. NF Store delivers the VNF image(s) to the NFVO. 

6. The NFVO executes any required pre-allocation processing work. 

 VNF location selection: The selection of where to locate a VNF 

instance could be based on the request, available resources, the nature 

of the VNF, the Network Service(s) in which the VNF instance is 

participating in as well as defined policies. 

 Resource pool selection: The resource pool to be used needs to be 

selected. Note that this is not the same as the VNF location. Multiple 

resource pools could exist in the same location or some VNFCs that 

are part of a VNF instance may need to be located remotely from the 

rest. 

 Dependency checking: Availability of all the required external 

dependencies from the required location need to be checked. If the 

VNF instance has any QoS requirements, it also needs to be verified if 

they can be met in the selected location. Note that the QoS 

requirements could be on compute or network resources, or on 

external services on which the VNF instance is dependent. 

7. The NFVO requests the allocation of resources from the VIM (compute, 

storage and network) needed for the VNF instance (and delivers the VNF 

image(s)). 

8. The VIM instantiates the required compute and storage resources from the 

infrastructure, for further details see VNF Instantiation Procedure – IVM View. 

9. The VIM instantiates the internal connectivity network – a VNF may require 

dedicated virtual networks to interconnect it’s VNFCs (networks that are only 

used internally to the VNF instance), for further details see VNF Instantiation 

Procedure – IVM’s View. 

10. The VIM interconnects the instantiated internal connectivity network with the 

VNFCs, for further details see VNF Instantiation Procedure – IVM View. 

11. Acknowledgement of completion of resource allocation back to NFVO. 

12. The NFVO acknowledges the completion of the resource allocation back to 

VNFM, returning appropriate configuration information. 

13. After the VNF is instantiated, the VNFM configures the VNF with any VNF 

specific lifecycle parameters (deployment parameters). 

14. The VNF sends an acknowledgement to the VNFM that the configuration 

process is completed. 

15. The VNFM notifies the EM (if present) of the new VNF, step outside the scope 

of T-NOVA. 

16. The EM acknowledges the VNFM, step outside the scope of T-NOVA. 
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17. The EM configures the VNF with application-level parameters and 

acknowledges the VNFM, step outside the scope of T-NOVA. 

18. The VNFM acknowledges the completion of the VNF instantiation back to the 

NFVO. 

The diagram corresponding to steps 8-10 is indicated below. 

 

Figure 29: VNF Instantiation Procedure (IVM’s View) 

The specifics details of steps 8-10 are as follows: 

8.1.  The VIM Orchestrator Agent submits a request to the VIM Compute 

Control module to create new VMs, according to the VNF requirements. 

8.2. The VIM Compute Control module: 

 Processes the request; 

 Analyses the required configuration; 

 Selects one or more suitable compute nodes to host the VMs; 
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 Sends request to allocate VMs to the selected nodes. 

8.3. The selected NFVI Compute node(s) allocates the VMs. 

8.4. The NFVI Compute nodes send back an acknowledgment to the VIM 

Compute Control module when they successfully boot. 

8.5. The VIM Compute Control module sends back an acknowledgment to the 

VIM Orchestrator Agent. 

9.1. The VIM Orchestrator Agent submits a request to the VIM Network Control 

module for the allocation of Network Resources. 

9.2. The VIM Network Control module: 

 Processes the request; 

 Analyses the required configuration; 

 Sends a request for allocation of virtual network resources on the NFVI 

Network. 

9.3. The NFVI Network: 

 Allocates the resources; 

 Sets up the virtual networks, by configuring the required 

interconnectivity between virtual switches. 

9.4. The NFVI Network sends back an acknowledgment to the VIM Network 

Control module. 

9.5. The VIM Network Control module sends back an acknowledgment to the 

VIM Orchestrator Agent. 

10.1. The VIM Orchestrator Agent submits a request to the VIM Hypervisor 

Control module to attach the new VMs to the required virtual networks. 

10.2. The VIM Hypervisor Control module sends the request to the hypervisors 

controlling the new VM hosting nodes. 

10.3. The hypervisors of those nodes: 

 Configure the vSwitches in order to manage the VLANs connectivity 

necessary to support the VNF requirements; 

 Setup the interconnections among VMs and vSwitches. 

10.4. The hypervisors send back acknowledgments to the VIM Hypervisor 

Control module. 

10.5. The VIM Hypervisor Control module sends back an acknowledgment to the 

VIM Orchestrator Agent. 

5.1.3 Supervision 

VNF supervision from the Orchestrator’s layer point of view (Figure 30) refers to the 

process of monitoring of the VNF, including the infrastructure specific parameters 
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collected and reported by the IVM, as well as the VNF application/service-specific 

parameters. 

VNF supervision from the IVM’s layer point of view (Figure 31) refers to the process of 

monitoring of the VIM, including the VM performance metrics, the VL performance 

metrics, and the physical machines performance metrics. 

As far as the supervision procedure from the Orchestrator’s layer point of view is 

concerned, the sequence is as follows: 

 

Figure 30: VNF Supervision Procedure (Orchestrator’s View) 

Steps (VNF Supervision – Orchestrator’s View): 

1. VNF collects performance metrics related with the VNF application/service. 

2. VNF notifies the VNFM with the VNF application specific metrics: 

 As a result, the VNFM may decide to scale the VNF and/or provide 

aggregated monitoring information towards the NFVO. 

3. VIM collects performance metrics related with the infrastructure allocated for 

the VNF, for further details see VNF Supervision Procedure – IVM View. 

4. VIM notifies the VNFM with the VNF infrastructure related performance 

metrics. 



T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation, 

Management and Orchestration - Interim 

 

© T-NOVA Consortium 

 
113 

As a result, the VNFM may decide to scale the VNF and/or provide aggregated 

monitoring information towards the NFVO. As far as the supervision procedure from 

the IVM’s layer point of view is concerned, the sequence is as follows: 

 

Figure 31: VNF Supervision Procedure (IVM’s View) 

Steps (VNF Supervision – IVM’s View): 

5.1. The NFVI Hypervisors: 

 Collect VM performance metrics data; 

 Send the data to the VIM Hypervisor Control module. 

5.2. The VIM Hypervisor Control module sends the data to the VIM VNF Manager 

Agent. 

5.3. The NFVI Network devices: 

 Collect performance metrics data from virtual network links (VLs); 

 Send the data to the VIM Network Control module. 

5.4. The VIM Network Control module sends the collected data to the VIM VNF 

Manager Agent. 

5.5. The NFVI Compute nodes: 

 Collect the physical performance metrics data; 

 Send the data to the VIM Compute Control module. 

5.6. The VIM Compute Control module sends the data to the VIM VNF Manager 

Agent. 
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5.1.4 Scale-out 

VNF scale-out refers to the process of creating a new VM to increase the VNF 

capacity with additional compute, storage, memory and network resources. 

The scaling policies that indicate which/how/when VMs/VNFCs should be scaled are 

identified in the ”VNF Deployment Flavour” attribute, which makes part of the VNF 

Descriptor (VNFD). 

Figure 32 illustrates this case for a scaling-out: VNFC A is instantiated and a new VL is 

created to connect this new instance to the existing VNFC B instance. VNF scaling is 

further detailed on another deliverable of this project, D2.41 (62). 

 

Figure 32: Scaling out a VNF 

Figure 33 illustrates the VNF scale-out process where it is the VNFM that decides to 

scale the VNF, after receiving VNF application/service specific metrics from the VNF 

and VNF infrastructure related metrics from the VIM: 
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Figure 33: VNF Scale-out Procedure 

Steps: 
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1. The VNFM collects performance metrics related with the VNF 

application/service (from the VNF) and with the infrastructure resources (from 

the VIM), for further information about the performance metrics collection, 

check the “VNF Supervision Procedure”. 

2. Based on the retrieved performance metrics and on the auto-scaling policies 

(included in the VNFD), the VNFM detects the need to scale. 

3. The VNFM decides that the best option is to scale-out the VNF. 

4. The VNFM requests the NFVO to scale-out the VNF by indicating the required 

resources for the new VM – matching a specific “VNF deployment flavour” 

from the VNFD stored in the VNF Catalogue. 

 NFVO may perform a VNF feasibility check where a resource reservation is 

made in the VIM (further information on the VNF Instantiation Procedure- 

Orchestrator’s View). 

5. The NFVO executes any required pre-allocation processing work, e.g. VNF 

location selection, Resource pool selection, Dependency checking, for further 

details see VNF Instantiation Procedure – Orchestrator’s View. 

6. The NFVO requests allocation of resources from the VIM (compute, storage 

and network) needed for the VNF instance (and delivers the VM image(s)). 

7. The VIM instantiates the required compute and storage resources from the 

infrastructure (according to the new “VNF Deployment Flavour” attribute), for 

further details see VNF Instantiation Procedure – IVM’s View. 

8. The VIM instantiates the internal connectivity network – a VNF may require 

dedicated virtual networks links (VLs) to interconnect its VNFCs (networks that 

are only used as internal to the VNF instance), for further details see VNF 

Instantiation Procedure – IVM’s View. 

9. Thereafter the VIM interconnects the instantiated internal connectivity 

network with the VNFCs (according to the “VNF Lifecycle Script & VLD” 

attribute), for further details see VNF Instantiation Procedure – IVM’s View. 

10. Acknowledgement of completion of resource allocation is sent back to NFVO. 

11. NFVO acknowledges the completion of the scale-out/resource allocation back 

to VNFM, returning appropriate configuration information. 

 Thereafter the VNFM proceeds with the VNF configuration procedures, 

as described in the “VNF Instantiation Procedure - Orchestrator’s 

View”. 

5.1.5 Termination 

VNF termination Figure 34 and Figure 35 refer to the process of releasing a VNF 

instance, including the network and VM resources allocated to it. Figure 34 refers to 

the termination process from the perspective of the Orchestrator’s layer, whereas 

Figure 35 shows the termination process from the IVM internal point of view. 
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Figure 34: VNF Termination Procedure – Orchestrator’s View 

Steps (VNF Termination Orchestrator’s View): 

1. The NFVO calls the VNFM to terminate the VNF service. The VNF termination 

procedure can be triggered, for example, by the following actions: 

 Termination of the NS in which the VNF is instantiated; 

 Scale-in of the NS, requesting a specific VNF instance to be 

terminated; 

 Explicit request from the SP or the FP to remove the VNF. 

2. The VNFM gracefully shuts down the VNF, i.e. without interrupting the NS 

that is being delivered, if necessary in coordination with other management 

entities. The VNF image(s) will be maintained on the NF Store (in order to be 

instantiated again in the future). The VNF catalogue is not affected by the VNF 

termination. 

3. The VNFM acknowledges the completion of the VNF termination back to the 

NFVO. 

4. The NFVO requests deletion of the VNF resources by the VIM. 

5. Virtual network links (VLs) interconnecting the VMs are released, for further 

details see VNF Instantiation Procedure – IVM’s View. 
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6. VMs resources (compute, storage and memory) used by the VNF are released, 

for further details see VNF Instantiation Procedure – IVM’s View. 

7. An acknowledgement is sent indicating the success or failure of resource 

release back to NFVO. 

 The NFVO updates the infrastructure resources repository. 

 

Figure 35: VNF Termination Procedure – IVM’s View 

Steps (VNF Termination – IVM’s View): 

5.1. The VIM Orchestrator Agent submits a request to the VIM Hypervisor 

Controller for detaching VM(s) from the virtual network; 

5.2. The VIM Hypervisor Control module forwards the request to the NFVI 

Hypervisors involved; 

5.3. The NFVI Hypervisors detach VM(s) from the network; 

5.4. The NFVI Hypervisors send back an Acknowledgement to the VIM Hypervisor 

Control; 

5.5. The VIM Hypervisor Control sends back an Acknowledgement to the VIM 

Orchestrator Agent; 

6.1. The VIM Orchestrator Agent submits a request to the VIM Network Controller 

for releasing virtual network resources; 

6.2. The VIM Network Control module forwards the request to the NFVI Network 

domain; 
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6.3. The NFVI Network Infrastructure releases the network resources and sends 

back an Ack; 

6.4. The VIM Network Control sends back an Ack to the VIM Orchestrator Agent; 

6.5. The VIM Orchestrator Agent submits a request to the VIM Compute 

Controller for releasing virtual compute resources; 

6.6. The VIM Compute Control module forwards the request to the involved NFVI 

Compute nodes; 

6.7. The NFVI Compute nodes releases the compute resources and sends back 

an Ack; 

6.8. The VIM Compute Control sends back an Ack to the VIM Orchestrator Agent. 

5.2 NS related procedures 

To describe the NS procedures, the following assumptions are made: 

 The NS is composed by one or more VNFs (in the following procedures, two 

VNFs – VNF1 and VNF2 – compose the NS); 

 VNFs composing the NS are interconnected through Virtual Network Links (if 

VNFs run on the same DC) or through Non-virtual/legacy Network Links (if 

VNFs run on different DCs) (in the following procedures, VNF1 runs on DC1 

and VNF2 runs on DC2); 

 The NS constituent VNFs can be implemented in a single DC or spread across 

several DCs; 

 Besides VNFs, PNFs can also be part of the NS (in the following procedures, 

PNF1 is interconnected with VNF1). 

The NS details (e.g. deployment rules, scaling policies, performance metrics, etc) are 

described in the NSD, e.g. VNF Forwarding Graph for detailing the VNFs 

interconnections. 

5.2.1 On-boarding 

NS on-boarding (Figure 36) refers to the process of submitting a NSD to the NFV 

Orchestrator in order to be included in the catalogue. 

 

Figure 36: NS On-boarding Procedure 

Steps: 
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1. The Marketplace submits the NSD to the NFVO for on-boarding the NS. 

2. NFVO processes the NSD to check if the mandatory elements are provided. 

3. NFVO notifies the catalogue for insertion of the NSD. 

4. NFVO acknowledges the NS on-boarding. 

5.2.2 Instantiation 

NS instantiation refers to the instantiation of a new NS, i.e. Figure 37 from the 

Orchestrator’s view, and Figure 38 from the IVM’s view. 

As stated above, the next sequence diagram depicts a situation where VNFs 

composing the NS run on different DCs and are interconnected through Non-

virtual/legacy Network Links. 

 

Figure 37: NS Instantiation Procedure (Orchestrator’s View) 

Steps (Orchestrator View): 

1. The NFVO receives a request to instantiate a new NS. 

2. The NFVO validates the request, both validity of request (including validating 

that the sender is authorised to issue this request) and confirming the 

parameters passed are technically correct. 
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3. The Orchestrator checks the NS composition (e.g. VNFFG) in the NS 

catalogue: 

 Thereafter, a feasibility check procedure may optionally be carried out 

for each VNF that is part of the NS, in this case VNF1 and VNF2 For 

further details about the “VNF Feasibility Check”, please see the “VNF 

Instantiation Procedure”; 

 The NFVO triggers the instantiation of the VNFs (VNF1 and VNF2). For 

further details about the “VNF Instantiation”, please check the “VNF 

Instantiation Procedure”. 

4. The NFVO executes any required pre-allocation processing work, e.g. VNF 

location selection, Resource pool selection, Dependency checking. For further 

details see VNF Instantiation Procedure – Orchestrator’s View. 

5. The NFVO requests the TNM to setup the WAN resources required for 

interconnecting the VNFs across the DCs (resource phase establishment). 

6. The TNM configures the WAN resources between DC1 and DC2. 

7. The TNM sends an acknowledgment to the NFVO reporting that the WAN has 

been configured as requested. 

8. The NFVO sends a request to the VIM to interconnect the WAN ingress and 

egress routers to the DC VLANs (connectivity phase establishment). 

9. The VIM interconnects the configured WAN resources with VNF1 and VNF2 in 

DC1 and DC2, respectively. 

10. The VIM acknowledges completion of the WAN / VLANs configuration: 

 If necessary, NFVO requests Network Manager to connect VNF 

external interfaces to PNFs interfaces: 

1. The Network Manager can be an OSS, an NMS or an EM; 

2. Connection to PNFs is assumed to be done by the NFVO. 

11. The NFVO acknowledges completion of the NS instantiation. 
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Figure 38: NS Instantiation Procedure (IVM’ View) 

Steps (IVM View): 

6.1. The TNM Orchestrator Agent sends the request to the TNM Network Control 

to configure the WAN end points. 

6.2. The TNM Network Control configures the endpoints. 

6.3. The TNM Network Control sends an acknowledgement indicating success or 

failure of the configuration setup to the TNM Orchestrator Agent. 

9.1. When the acknowledgement of a successful WAN configuration is received 

the NFVO sends a request to the VIM Orchestrator Agent to connect a VLAN 

to WAN endpoints. The VIM Orchestrator Agent sends the request to connect 

a VLAN to WAN endpoints to the VIM Network Controller. 

9.2. The VIM Network Controller sends the request to connect a VLAN to WAN 

endpoints to the NFVI Network. 

9.3. The NFVI Network connects the VLAN to the WAN endpoints. 

9.4. The NFVI endpoint sends an acknowledgement of a successful or failed 

connection configuration to the VIM Network Controller. 

9.5. The VIM Network Controller sends an acknowledgement of a successful or 

failed connection to the VIM Orchestration Agent. 
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5.2.3 Supervision 

NS supervision (Figure 39) refers to the monitoring of the NS performance metrics, 

including: 

 VNF infrastructure and service specific information; 

 Network links interconnecting the VNF (across multiple DCs). 

Again, as stated above, the next sequence diagram depicts a situation where VNFs 

composing the NS run on different DCs and are interconnected through Non-

virtual/legacy Network Links. 

 

Figure 39: NS Supervision Procedure 

Steps: 
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1. The VNFM sends performance metrics related to a VNF to the NFVO. This 

includes both metrics from the infrastructure supporting the VNF (VMs, 

Virtual Links) – obtained directly from the VIM - as well as 

application/service-specific metrics from the VNF - obtained directly from 

the VNF or from the EM). For further details about the VNF performance 

metrics retrieval, please check the “VNF Supervision Procedure”, where the 

option to forward aggregated information to NFVO has been taken by the 

VNFM. 

2. The TNMNetCtrl fetches and delivers the WAN segment metrics to the 

TNMOrchAg. 

3. The TNMOrchAg provides the WAN segment performance metrics to the 

NFVO. 

4. The VIM delivers VM-related metrics to the NFVO: 

 Based on the metrics received (VNFM, VIM and TNM) and on the 

defined scaling policies included in the NSD, the NFVO may decide to 

trigger a scaling procedure. Furthermore, if configured, the NFVO will 

also deliver aggregated NS-related performance metrics to the 

Marketplace. 

5.2.4 Scale-out 

NS scale-out refers to the process of increasing the capacity of the service in order to 

accomplish a SLA that is changing to a new NS deployment flavour, or to maintain an 

existing SLA. 

The scale-out policies are triggered based on the following information: 

 NS issues (retrieved from VNFM); 

 VNF issues (retrieved from VNFM); 

 WAN segment, i.e. connecting VNFs issues, retrieved from TNM. 

Figure 40 illustrates NS scaling case, where a second instance of VNF B is created and 

the existing VNF A instance is reconfigured so that it becomes able to communicate 

with the two VNF B instances. 
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Figure 40: Scaling-out a NS 

Figure 41 refers to a situation where, according to the metrics received, the required 

performance of the SLA cannot be achieved. As such the NFVO decides to scale-out 

to a new deployment flavour, taking also into account the auto-scaling policies 

included in the NSD. This implies: 

 Scale-out a specific VNF to a new deployment flavour (included in this 

workflow); 

 Creation of a new VNF instance (included in this workflow); 

 Changing the VNF location to another DC (not included in this workflow); 

 Increasing the WAN segment network link capacity (included in this 

workflow). 
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Figure 41: NS Scale-out 

Steps: 

1. The NFVO collects and checks monitoring information from the VNF, VIM and 

the WAN. 



T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation, 

Management and Orchestration - Interim 

 

© T-NOVA Consortium 

 
127 

2. Based on the retrieved performance metrics and on the auto-scaling policies 

defined on the NSD, the NFVO detects the need to scale-out the NS. 

3. The NFVO decides to change to another NS deployment flavour, which 

comprises the VNF1 scale-out, a new instantiation of VNF2#2 and an increase 

on the WAN link capacity: 

 The other procedures (VNF scale-out, VNF instantiation and WAN 

interconnection) have already been described in the previous 

workflows. 

5.2.5 Termination 

NS termination (Figure 42) refers to the process of releasing the NS instance, 

including the constituent VNFs (VNF1, VNF2#1 - instance 1 of VNF2 and VNF2#2 – 

instance 2 of VNF2), as well as the WAN segment. 

 

 

Figure 42: NS Termination Procedure 

5.3 NS, VNF and Infrastructure Monitoring 

Proper NS/VNF as well as infrastructure monitoring is crucial for the implementation 

of many of the use cases foreseen for the T-NOVA system, see D2.1 (63). Especially 

UC2 (Provision NFV services), UC3 (Reconfigure/Rescale NFV services) and UC5 (Bill 

NFV services) use the monitoring metrics, which are collected during UC4 
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(Monitoring). Specifically, the latter presents an overview of the T-NOVA monitoring 

procedures, focusing on both: 

1. VNF and Service Monitoring - related to the status and resources of the 

provisioned services, as well as, 

2. Infrastructure Monitoring - related to the status and resources of the physical 

infrastructure. 

Monitoring metrics are mostly collected at the various domains of the Infrastructure 

layer and communicated to the upper layers. Figure 43 depicts a high-level view of 

the flow of the monitoring information across the T-NOVA system. 

 

Figure 43: Communication of monitoring information across the T-NOVA system 

The first step is the collection of both Infrastructure and NS/VNF monitoring metrics 

from different domains within the T-NOVA Infrastructure layer. These metrics are 

typically offered by a dedicated monitoring agent at each physical or virtual 

infrastructure element. In addition, some compute node and VNF/VM metrics can be 
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collected directly via the hypervisor, which also provides host and guest machine 

resource information. 

Table 8 presents an indicative list of monitoring metrics to be collected at each 

infrastructure domain. It must be noted that this list is tentative and is expected to be 

modified/updated throughout the project course, as the specific metrics which will be 

actually needed for each step of the T-NOVA service lifecycle, will be precisely 

defined. 

Table 8: Monitoring metrics per infrastructure domain 

Domain VNF App/Service Metrics Infrastructure Metrics 

VNF (VM, guest machine) CPU utilisation 

CPU time used 

No. of vCPUs 

RAM allocated 

Disk read/write bitrate 

Network interface in/out 

bitrate 

No. of processes 

- 

Compute (per compute node, host 

machine of the DC domain) - 

CPU utilisation 

RAM allocated 

Disk read/write bitrate 

Network interface in/out bitrate 

Storage (object or volume storage 

of the DC domain) 

Read/write bitrate 

Volume usage (volume 

storage) 

No. of objects (object 

storage) 

Total objects size (object 

storage) 

Total Read/write bitrate 

Total Volume usage (volume 

storage) 

Total no. of objects (object 

storage) 

Total objects size (object 

storage) 

Infrastructure Network (per 

network element of the DC 

domain) 

Per-flow packets cumulative 

and per second 

Per-flow bytes packets 

cumulative and per second 

Flow duration 

Per-port packets cumulative and 

per second 

Per-port bytes packets 

cumulative and per second 

Per-port receive drops 

Per-port transmit drops 

Per-port link state and speed 

CPU utilisation 

Transport Network (per network 

element) 

Per-flow packets cumulative 

and per second 

Per-flow bytes packets 

cumulative and per second 

Flow duration 

Per-port packets cumulative and 

per second 

Per-port bytes packets 

cumulative and per second 

Per-port receive drops 

Per-port transmit drops 

Per-port link state and speed 

CPU utilisation 

Infrastructure metrics, as well as events/alerts are aggregated by the VIM and the 

TNM and communicated to the Orchestrator FEs, NFVO and VNFM, which are in 

charge of associating each group of metrics to specific VNFs and Network Service. 

Those parameters are then compared against the NS and VNF templates composed 

by a. o. the NSD and the VNFD, which denote the expected NS and VNF behaviour. If 

any mismatch is detected, appropriate actions are selected and executed, e.g. scaling. 
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This procedure needs to be carried out at the Orchestrator level, since only the latter 

has the entire view of the end-to-end service as well as the resources allocated to it. 

In this context, and in addition to the double check (NS and VNF) mentioned above, 

the monitoring processed at the Orchestrator, as part of the NFVO and VNFM, 

performs the following operations: 

 Aggregate infrastructure-related metrics and update the Infrastructure 

Resources records, 

 Associates metrics (e.g. VM and flow metrics) to specific services, produce an 

integrated picture of the deployed service and updates the NS/VNF instances 

records, 

 Checks monitored parameters against the NS and VNF templates, composed 

by the NSD and the VNFD, which denote the expected NS and VNF behaviour. 

If any mismatch is detected, appropriate actions are selected and executed, 

e.g. scaling, 

 Communicate service metrics to the Marketplace via the Orchestrator 

northbound interface. 

At the Marketplace level, service metrics are exploited for accounting (especially in 

pay-as-you-go billing models) as well as SLA Management, in order to compare the 

status of the service against the contracted one. They are also presented via the 

Dashboard to the Customer, so that he/she can have a consolidated overall view of 

the status of the service and the resources consumed. 
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6 GAP ANALYSIS 

Considering both existing industry oriented initiatives and currently available 

technologies that are being used commercially (or are in a development stage) a 

focused gap analysis was carried out to determine what steps need to be taken in 

order to move NFV/SDN from its current state to a position that can fully realise the 

needs of key areas that need to be addressed during the project activities. In the 

following, key results of this gap analysis are described, for all the various domains 

relating to the T-NOVA Orchestrator and T-NOVA IVM architectures. Where possible 

the gaps have been aligned with T-NOVA tasks where these could be either 

elucidated or progressed towards addressing the gap could be made. 

6.1 Compute 

The Compute domain of the T-NOVA architecture provides basic building blocks for 

VNFs execution. Gap analysis for this domain identified two key areas that need to be 

addressed during the project activities: 

Table 9: Gap analysis in the compute domain 

Gap Description T-Nova 

Task Alignment 

Virtualisation 

infrastructure for 

telecommunication 

workloads 

Features requested by workloads need to 

be investigated in greater detail and 

special purpose processors (or co-

processors) have to be integrated in 

compute domain infrastructures. 

Those enhanced features have also to be 

exposed to the upper layer of the 

architecture, in order to make them 

available from an orchestration 

perspective 

Task 3.2 

Task 4.1 

Interoperability between 

different hardware 

architectures 

Compute architecture heterogeneity 

needs to be improved in current compute 

domain infrastructure to provide a greater 

diversity of options for certain NFV 

workload types. 

Support for heterogeneity should not only 

apply in terms of multi-vendor 

technologies, but also in terms of different 

hardware architectures required by 

different VNFs. 

Task 4.1 



T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation, 

Management and Orchestration - Interim 

 

© T-NOVA Consortium 

 
132 

6.2 Hypervisor 

The Hypervisor domain is responsible for abstracting VNFs from the underlying 

physical resources. The main gap issues that have to be addressed by T-NOVA 

system for this domain are: 

Table 10: Gap analysis in the Hypervisor domain 

Gap Description T-Nova Task 

Alignment 

Integration of vSwitches 

with hypervisors and vNICs 

The hypervisors are responsible for the 

integration between vSwitches and vNICs. 

However this integration currently needs 

further performance improvements. In 

order for the T-NOVA platform to provide 

the required level of performance, it is 

necessary to address these performance 

features. 

Task 4.1 

Portability of Virtual 

Resources across different 

platforms 

In order to support the live migration of 

VNFs, all the vSwitch solutions need to be 

described using the same syntax, 

providing to the T-NOVA system a 

common interface to allow portability on 

different platforms and support live 

migration by the hypervisor. 

Task 3.2 

Processor Pinning 

Some VNF vendors use a dedicated CPU 

placement policy, which strictly ‘pins’ the 

vCPUs to a set of host physical CPUs. 

This is normally done to maximise 

performance such L3 cache hit rates. 

However this can make migration `by the 

hypervisor challenging in order to 

guarantee that same pinning allocation of 

vCPUs to physical cores on the 

destination system. 

Task 4.1 

6.3 SDN Controllers 

The SDN Controller domain is responsible for the control of the SDN-enabled 

network elements regarding the deployment and the management of the vNets. The 

main issues related to the virtualisation of the SDN Control Plane (CP) are: 

Table 11: Gap analysis regarding SDN Controllers 

Gap Description T-Nova Task 

Alignment 

Distribution of CP Standardisation activities are required to Task 3.3 
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workloads mitigate various scalability and availability 

issues due to SDN Control plane 

centralization, where a distribution 

approach would have also to be 

considered. 

Task 4.2 

Bottleneck Avoidance 

Standardisation activities are required to 

address large-scale, high load 

deployment scenarios to avoid 

bottlenecks where a distribution 

approach would necessitate consideration 

Task 3.3 

Task 4.2 

Interoperability of different 

controllers 

Currently a uniform interface for all the 

SDN controllers does not exist, which 

increases both the complexity of 

development process. Work is required in 

the abstraction of north bound interfaces 

to support application developers. 

Task 4.3 

6.4 Cloud Controllers 

The Cloud Controller represents the central management system for cloud 

deployments. Ranging from basic to more advanced, the T-NOVA project will 

investigate  gaps in the current solutions within this domain, which fall short with 

respect to the following aspects: 

Table 12: Gap analysis regarding Cloud Controllers  

Gap Description T-NOVA Task 

Alignment 

Interoperability between 

different Cloud Computing 

Platforms 

From a T-NOVA Orchestrator perspective, 

a unified southbound interface is needed, 

in order to make the API of different IaaS 

providers accessible and to enable 

communications with different Cloud 

Computing Platforms. Even if most cloud 

platforms have widely adopted open 

standards, there are still inconsistencies 

with respect to the different versions and 

APIs, inconsistencies that need to be 

concealed under a single interface. 

Task 3.1 

Resource Allocation and 

Configuration 

From a T-NOVA VNF perspective, cloud 

controllers need to support the allocation 

and configuration of network resources 

and allow enhanced resource 

management. 

Existing cloud management solutions 

need to be extended to provide an 

interface that would allow, for instance, 

enhanced configuration of network 

Task 3.2 

Task 3.3 

Task 3.4 
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parameters. 

Providing infrastructure 

utilisation data 

Monitoring and collecting information 

with respect to the current load and 

availability of resources is a crucial 

capability for T-NOVA system, as it will be 

a cloud management framework that 

needs to perform in real-time and 

support very high volume traffic. 

Although cloud platforms already offer 

monitoring capabilities, the challenge 

with respect to T-NOVA is to collect the 

information that is relevant for VNFs and 

how to represent it such that the 

Orchestration layer can best utilise it. 

Task 3.2 

Task 3.4 

Task 4.1  

 

Platform Awareness 

Cloud environments need to become 

more aware of the features and 

capabilities of their constituent resources 

and to expose these enhanced platform 

features to the Orchestration layer to 

improve the placement decisions of 

workloads such as VNFs. 

A common data model to describe 

resources is needed, which could be used 

to identify specific features like DPDK 

enablement or SR-IOV capable devices. 

Task 3.2 

Task 4.1 

6.5 Network Virtualisation 

Network virtualisation introduces several gaps and open issues that need to be 

addressed by the T-NOVA project: 

Table 13: Gap analysis regarding Network Virtualisation 

Gap Description T-NOVA Task 

Alignment 

Network resource isolation 

VNs are by definition based on shared 

resources and this brings up the 

isolation problem, especially when the 

number of VNs sharing the same 

infrastructure is very high. 

On the other hand, the strictness of 

isolation varies according to the 

specific use case. In a Network as-a-

Service scenario isolation it will 

obviously be a fundamental 

requirement. 

Isolation is required between the VNs 

Task 4.2 
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running separate Telco services. Within 

the T-NOVA platform, a VN might 

require complete isolation while 

another one might share its resources 

when it is idle, depending on the 

business model and the type of the 

specific service. 

Multiple DC 

interconnection 

Limitations of supporting distributed 

cloud service provisioning and the 

requirement for VNs to span multiple 

computing farms; seamless networking 

handover technologies are still 

immature or inefficient; potentially 

complicating service delivery processes 

or business models. 

T-NOVA platform needs to manage this 

complexity, since one of its mainly 

features is to support service 

deployment over different DCs. 

Task 4.2  

Task 4.5 

Reliability of a virtual 

network (VN) 

Reliability is ultimately determined by 

the dependability of the underlying 

infrastructure. Virtualisation introduces 

an additional level of complexity and 

represents a potential extra source of 

failure. 

VNs must be reliable, at least as reliable 

as a physical network counterpart. 

Today most of the available products 

with network virtualisation capabilities 

are mainly targeted at the high-end 

segment of the market. 

On the other hand, very promising, 

flexible and adaptable technologies 

such as OpenFlow are perceived as 

research tools and have not yet 

reached a point of maturity to enable 

large-scale deployment. 

Task 4.2 

Task 4.5 

 

 

Interoperability between 

different heterogeneous 

domains 

Standardisation activities are required, 

especially with interconnection of non-

contiguous network domains. 

Interoperability is a crucial requirement 

to enable widespread deployment of 

network virtualisation. Standardisation 

will be required to enable 

interoperability between VNs, as well as 

interoperability between virtualised and 

non-virtualised networks. 

Task 4.5 
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Scalability and dynamic 

resource allocation 

Dealing with the increasing number of 

services as well as subscribers for each 

service would be challenging. The 

importance of scalability as a network 

virtualisation requirement is particularly 

relevant when the number of VNs is 

expected to grow. New solutions are 

required to help the T-NOVA system to 

scale with respect to the network size 

(for instance reducing the size of 

OpenFlow tables). 

Task 4.1 

6.6 NFV Orchestrator 

The NFV orchestrator is responsible for the NSs & VNFs lifecycle management. 

Several open issues are still to be addressed: 

Table 14: Gap analysis regarding Orchestration 

Gap Description T-NOVA Task 

Alignment 

VNFs Placement 

Standardisation bodies should 

address the definition and 

implementation of algorithms for 

optimal infrastructure allocation 

according to the virtualised service 

characteristics and SLA agreements. 

Task 3.3 

Interoperability between 

heterogeneous virtualized 

domains 

Standardisation activities are 

required in order to deliver end-to-

end services that have virtualised 

components distributed across 

multiple domains, owned and 

operated by different virtual service 

and/or infrastructure providers. 

Task 3.1 

Virtual and Physical 

Network Functions 

Orchestration 

Enhancements are required in 

standardisation bodies, such as ETSI 

MANO, to address data centre WAN 

links interconnectivity configuration 

and orchestration issues. 

Task 3.2 

Task 3.4 
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7 CONCLUSIONS 

Virtualisation is a foundational technology for the T-NOVA system in particular for 

the infrastructure virtualisation and management layer. Originating in the compute 

domain, use of this approach now finds application in a variety of domains including 

storage and networking. The approach is based on abstracting physical resources 

into a form that hides its physical characteristics from either users or applications. It 

brings a variety of benefits including better utilisation of resources, greater flexibility, 

improved scalability, etc. Virtualisation encompasses a number of technology 

approaches, at both a hardware and software level. In subsection 2.2 we reviewed the 

key virtualisation methods including hypervisors, storage virtualisation, 

microprocessor and I/O support for virtualisation, hardware and software network 

virtualisation and accelerators. These technologies are utilised in a variety of both 

commercial and open sources platforms a number of which will be utilised in the 

development of the T-NOVA system. Key among these technologies are Cloud OSs, 

such as OpenStack, for the provisioning and management of virtualised compute 

resources that host the VNF services. We have also reviewed SDN Controllers, such as 

OpenDayLight, which provision and manage the VLANs providing connectivity 

between the nodes hosting VNF services and also connecting the VLANs to WANs for 

inter-DC connectivity, if required by the VNF service architecture. 

In the course of reviewing the various virtualisation technologies and considering 

them in both the context of the telecoms service providers and the potential needs of 

the T-NOVA system a variety of gaps in the capabilities of the currently available 

technologies were identified; see Table 9 to Table 14. While the use of virtualisation 

technologies in the IT domain is well established, adoption of this approach in carrier 

grade environments to support NFV and SDN proliferation brings a unique set of 

challenges that do not exist in enterprise IT environment. A variety of further 

developments will be required to address specific issues in the currently available 

compute, hypervisor, SDN Controller, Cloud OSs, network virtualisation and 

orchestration related technologies. Where appropriate, we have mapped T-NOVA 

tasks whose activities will be related to these technologies challenges or limitations. It 

is expected that we will further refine these gaps to specific issues identified in 

implementation of the T-NOVA system, and highlight progress that has been made in 

further elucidating the characteristics of these problems, as well as the work that T-

NOVA has carried out in order to contribute towards a solution. 

From an architectural point of view, the T-NOVA Orchestrator is composed by two 

main building blocks: the NFVO and the VNFM. 

The NFVO has two main responsibilities, which are accomplished by its two FEs 

designated by NSO and VRO in the T-NOVA terminology. The NSO orchestrates the 

subset of NFVO functions that are responsible for the lifecycle management of 

Network Services, while the VRO performs the orchestration/management of the 

virtualized infrastructure resources distributed across multiple DCs. In particular, it 

performs the mapping of the incoming NS requests to the virtualized infrastructure 

resources, as well as the coordination of the resources allocation and placement for 
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each VM that composes the VNF (and the NS). The VRO does this by interacting with 

a local virtualized entity, designated by VIM, as well as with the entity that interacts 

with the WAN elements for connectivity management purposes, a single specialized 

VIM designated by TNM. 

Since the NSs are composed by VNFs and PNFs, the NFVO is able to decompose each 

NS into the constituent VNFs and PNFs. Nevertheless, although the NFVO has the 

knowledge of the VNFs that compose the NS, it delegates their lifecycle management 

to a dedicated FE designated by VNFM. 

In Section 3, the architecture for T-NOVA Orchestrator has been derived, taking into 

account the working Stage 1/Stage 2 methodology, which departed from the 

elaboration of a list of Orchestrator requirements identified after a research study 

involving several sources, e.g. use cases defined in D2.1 (66), ETSI ISG NFV 

requirements (67), ITU-T requirement for NV (10), as well as excerpts of relevant parts 

of the ETSI ISG MANO WG architecture and associated FEs (8). After that Stage 1 step, 

(see subsection 3.2), a Stage 2 methodology has taken place with the derivation of 

the Stage 2 reference architecture and its Functional Entities, see subsection 3.3. 

However, the work carried out till the moment has only produced abstracted outputs.  

Stage 3 work will follow in WP3/4 where specific implementation solutions are 

expected. 

The T-NOVA IVM is responsible for providing the hosting and execution environment 

for VNF services in the form of virtualised resources that are abstracted from the 

physical resources in compute and infrastructure network domains. A system 

engineering approach was adopted to define the key functional blocks in the IVM 

and their interfaces. In addition the key objectives for the IVM were defined. Use of 

this information and previous T-NOVA deliverables contributed to a requirement 

capture process that focused on identifying the desired behaviours for the IVM. 

Requirements where identified for each of the functional entities within the IVM 

namely the VIM, TNM, NFV Infrastructure (compute, hypervisor, and infrastructure 

network). These requirements where then used in the design of the IVM. 

From an architectural perspective the T-NOVA IVM includes the key functional blocks 

NFVI, VIM and TNM, which are defined and discussed in Section 4. These functional 

blocks are comprised of various domains that have specific technology capabilities 

required for the delivery and management of virtualised resources. For example the 

NFVI is comprised of the Compute, Hypervisor and Network domains. A number of 

specific interfaces provide both the internal and external connectivity that integrates 

the various technology components into a functional IVM. From a T-NOVA system 

perspective the key external interfaces of the IVM are those to the T-NOVA 

Orchestrator, which are implemented in the VIM. These interfaces enable the T-NOVA 

Orchestrator to send requests to the VIM to create and connect VMs in order to 

support the deployment of VNF service and to manage the virtual resources allocated 

to the VNFs in order to accomplish to SLAs. Additionally, these interfaces allow the 

IVM to send infrastructure metrics related to the utilisation and performance to the T-

NOVA Orchestrator in order that this entity can perform placement decisions and 

management of existing deployed services. Another important interface is the one 
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provided by the TNM to the Orchestrator in order for it to manage the network 

resources related to external networks i.e. WAN transport between DCs. 

In Section 4 the overall integrated architecture of the IVM was presented together 

with the architecture of the various domains that comprise the IVM with their 

respective internal and external interfaces. 

Collectively, these reference architectures and FEs instantiate the requirements that 

were identified for the T-NOVA Orchestrator and for the T-NOVA IVM together with 

its goals and objectives. The reference architectures were interrogated and validated 

at functional level through the development of NS and VNF workflow diagrams as 

illustrated in Section 5, which described the key actions and interactions taken within 

the T-NOVA system during standard operational activities related to the deployment 

and management of NS and VNF services. 
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ANNEX A - ORCHESTRATOR REQUIREMENTS 

The present annex contains a set of tables, which include the requirements identified 

in Subsection 3, i.e. Orchestrator internal requirements and Interface requirements. 

Each requirement has associated a set of attributes related to its identification (Req. 

ID and Req. Name), to its text support (Alignment) and to its description 

(Requirement Description and complementary Comments). 
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A.1 Internal requirements 

A.1.1 NFVO Requirements 

A.1.1.1 NS Lifecycle requirements 

Table 15: Orchestrator Requirements – NFVO- NS Lifecycle 

Req. ID Alignment Req. Name Requirement Description Comments 

NFVO.1 ETSI 

MANO 

§C.2.1 

On-boarding NS The NFVO SHALL be able to accept new or updated NSs to 

be on-boarded, upon request. 

The NS lifecycle is initiated by a VNF on-boarding process request, 

e.g. by Customer or by SP, and includes providing the NS 

Descriptor (NSD) to the NFVO and storing in the NS Catalogue. 

The NSD, which must be validated, includes the NS deployment 

flavours, as well as references to the VNF Forwarding Graph 

(VNFFG) and to the Virtual Link Descriptor (VLD). 

NFVO.2 ETSI 

MANO 

§C.3 

NS Instantiation 

request 

The NFVO SHALL be able to instantiate an already on-

boarded NS, upon request. 

In order to start a T-NOVA service, an instantiation process must 

be deployed, where the external request may be performed by a 

Customer, a SP, or even by an OSS (through the Marketplace). 

During the instantiation process, the NFVO validates the request, 

e.g. by authorizing the requester, by validating technical contents 

and policy conformance. 

NFVO.3 T-NOVA Extraction of NS 

information 

The NFVO SHALL be able to decompose the incoming NS 

instantiation request into the set of required information to 

proceed with the instantiation procedure. 

After receiving the NS instantiation request, the NFVO decomposes 

the received information about the NS (deployment flavours, 

VNFFG, VLDs, etc.). 

NFVO.4 T-NOVA Configure NS The NFVO SHALL be able to configure or update the 

configuration of an instantiated NS, upon request. 

T-NOVA NSs must be configured upon external request e.g. 

Customer or SP. 

As a NS is the result of the composition of atomic VNF instances, 

the configuration of a NS implies the configuration of the entire 

set of VNFs. 

NFVO.5 UC1 NS Termination The NFVO SHALL be able to decompose a NS when the SLA 

terminates,  when a NS is terminated by internal triggers,, or 

when a NS is terminated upon request, e.g. by Customer, by 

SP. 

The duration of the NS will be specified in the SLA. 

Alternatively the SLA or the NS can be terminated on-demand, e.g. 

by the Customer or by the SP. 

When the NS is no longer needed the system should decompose 

the NS and cancel the SLA. 

The NS remains on-boarded in order that other customers can use 
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it. 

NFVO.6 ETSI 

MANO 

§C.4.1 

Scale-out NS The NFVO SHALL be able to scale out the NS, either upon 

request or automatically. 

Automatic scaling out depends on an algorithm and alternative 

architecture or deployment flavours provided by the SP when 

composing the NS. 

Scaling out a NS might imply increasing the VMs supporting its 

VNF(s). 

NFVO.7 ETSI 

MANO 

§C.4.2 

Scale-in NS The NFVO SHALL be able to scale in the NS, either upon 

request or automatically. 

Automatic scaling implies the use of an algorithm and alternative 

architecture or deployment flavours provided by the SP when 

composing the NS. 

Scaling in a NS might imply decreasing the VMs supporting its 

VNF(s). 

A.1.1.2 VNF Lifecycle requirements 

Table 16: Orchestrator Requirements – NFVO- VNF Lifecycle 

Req. ID Alignment Req. Name Requirement Description Comments 

NFVO.8 §B.2.1 On-boarding 

VNF Package 

Request 

The NFVO SHALL receive new VNF packages from the NF 

Store and store them in the VNF Catalogue. 

VNF package includes the VNF Description (VNFD) and the VNF 

software image(s). 

NFVO.9 ETSI 

MANO 

§B.3.1.2 

VNF 

Instantiation 

Request by the 

NVFO 

The NFVO SHALL be able to instantiate a VNF, upon request. When a request to instantiate a VNF is received, the NFVO 

validates the request. 

Optionally, the NFVO runs a feasibility check to reserve resources 

before performing the actual allocation to the VIM. 

The NFVO acknowledges the completion of the VNF instantiation 

after configuring the VNF through the VNFM. 

NFVO.10 UC2 

UC3 

VNF 

Configuration 

Request by the 

NFVO 

The NFVO SHALL be able to request the VNFM to configure 

an instantiated VNF. 

T-NOVA VNFs must be configured upon external request, e.g. 

Customer or SP, or automatically upon the completion of an 

instantiation process. 

It includes the notification of the successful configuration. 

NFVO.11 ETSI 

MANO 

§B.3.1.1 

Check VNF 

instantiation 

feasibility by the 

NFVO 

The NFVO SHALL be able to accept and process a check 

feasibility request regarding a VNF instantiation. 

NFV Orchestrator receives a request to check feasibility of VNF 

instantiation/scaling. 

This request may come from an OSS, from commissioning of a new 

VNF or VNF scaling, or as part of an order for a Network Service 

instantiation/scaling. 



T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation, 

Management and Orchestration - Interim 

 

© T-NOVA Consortium 

 

143 

The Check Feasibility runs a feasibility check of the VNF 

instantiation or scaling request and reserves resources before 

doing the actual instantiation/scaling. 

NFVO.12 ETSI 

MANO 

§C.3 

Check of VNFs 

of a NS by the 

NFVO 

The NFVO SHALL be able to request the VNFM for checking 

the VNFs associated with a NS, according to the NS 

descriptor. 

For each VNF instance indicated in the NS descriptor, the NFVO 

checks with the VNFM if an instance matching the requirements 

exists already. 

The procedure includes re-instantiation of mal-functioning VNFs. 

The procedure does not include any resource reservation. 

NFVO.13 UC3.2 VNFM Request – 

VNF Scale Out 

The NFVO SHALL recognise and act upon a VNFM request 

to scale-out an existing VNF by creating new VMs and 

deploying VNFs onto the new VMs. 

The T-NOVA system must provide the ability for additional VMs 

requests in order to meet business needs. 

NFVO.14 UC3.2 VNFM Request – 

VNF Scale In 

The NFVO SHALL recognise and act upon a VNFM request 

to scale-in an existing VNF by releasing VMs used by 

instances of the VNF. 

T-NOVA system must provide the ability for a reduction of VMs or 

to completely remove a VNF as required by their changing 

business needs. 

NFVO.15 UC3.1 VNFM Request – 

VNF Scale Up 

The NFVO SHALL recognize and act upon a VNFM request 

to scale-up an existing VNF by increasing specified amounts 

of VM resources from VMs used by instances of the VNF. 

The T-NOVA system must provide the ability for increasing in a 

VNF in order to meet business needs. 

NFVO.16 UC3.1 VNFM Request – 

VNF Scale Down 

The NFVO SHALL recognize and act upon a VNFM request 

to scale-down an existing VNF by decreasing specified 

amount of allocated  resources from VMs, such as memory 

and storage., used by instances of the VNF. 

The T-NOVA system must provide the ability for decreasing 

resources in a VNF in order to meet business needs. 

A.1.1.3 Resource Handling Requirements 

Table 17: Orchestrator Requirements – NFVO- Resource Handling 

Req. ID Alignment Req. Name Requirement Description Comments 

NFVO.17 ETSI 

MANO 

§C.3 

Mapping of 

resources 

The NFVO SHALL be able to optimally map the VNFs that 

are part of a NS to the existing infrastructure, according to 

an agreed NS SLA. 

Based upon the current infrastructure status, the requested VNF 

and SLA, the NFVO must be able to find the resources it should 

allocate in terms of VMs and connections. 

NFVO.18  IT resources 

instantiation 

The NFVO SHALL be able to request the VIM for the 

instantiation of the VMs that compose each VNF of the NS. 

During the NS instantiation/scaling procedures, after deciding on 

the best location for the VMs, the NFVO requests the VIM to 

allocate the required virtualised IT resources (a.k.a. VMs). 

NFVO.19 ETSI 

MANO 

§5.4.1, 

Management of 

VM images 

The NFVO SHALL be able to manage VM images related to 

the VMs supporting a given VNF. 

The NFVO is the FE in charge of handling VM and VM resources in 

the T-NOVA system. 

As such, it must be able to manage VM images, e.g. by providing 
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§5.4.3 VIM with VM images for VNF on-boarding or updating, or by 

removing images for VNF removal. 

NFVO.20 UC3.1 Resources 

Inventory 

Tracking 

The NFVO SHALL update its inventory of allocated/available 

resources when resources are allocated/released. 

The T-NOVA System must maintain the Infrastructure Catalogue 

and accurately track resource consumption and the details of the 

services consuming those resources. 

A.1.1.4 Monitoring Process requirements 

Table 18: Orchestrator Requirements – NFVO- Monitoring Process 

Req. ID Alignment Req. Name Requirement Description Comments 

NFVO.21 UC2, 

UC3, 

UC4 

NS-specific 

resource 

monitoring by 

the NFVO 

The NFVO SHALL be able to monitor NS-related resources 

on a real time basis. 

NS-specific monitoring is related with the monitoring of the virtual 

network links that interconnect the VNFs (retrieved from the VIM), 

as well as monitoring of VNF-specific details that can be used to 

assure that the NS is fulfilling the established SLA with the 

customer. 

NFVO.22 UC4 Monitoring 

metrics 

consolidation by 

the NFVO 

The NFVO SHALL be able to aggregate and consolidate all 

monitoring metrics associated with a service. 

A consolidated operational picture of the service via the dashboard 

is considered a mandatory customer requirement. 

The gathered metrics should be presented to the Customer, to the 

SP, or to the FP, with an integrated status of the provisioned 

service. 

A.1.1.5 Connectivity Handling requirements 

Table 19: Orchestrator Requirements – NFVO- Connectivity Handling 

Req. ID Alignment Req. Name Requirement Description Comments 

NFVO.23 UC1, 

UC2, 

UC3 

NS Composition The NFVO SHALL be able to compose a NS from atomic VNF 

instances and define the Forwarding Graph based on the 

logical topology to interconnect the several components. 

The creation of a NS from the combination of atomic/simple VNF 

is important in order to simplify the process provision of NS to the 

customers and avoid complex path calculations. 

NFVO.24  IT Network 

connectivity 

instantiation 

The NFVO SHALL be able to request the VIM for 

instantiation and inter-connection of required VMs in the IT 

compute domain. 

During the NS instantiation/scaling procedures, after installing the 

VMs for the VNF/NS, the NFVO requests the VIM to allocate the 

required virtual IT network resources (a.k.a. IT virtual network 

links). 



T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation, 

Management and Orchestration - Interim 

 

© T-NOVA Consortium 

 

145 

NFVO.25 ETSI 

MANO 

§C.3 

Virtual Network 

connectivity 

instantiation 

The NFVO SHALL be able to request the VIM for the 

instantiation and inter-connection of every needed VM in the 

IT network domain. 

During the NS instantiation/scaling procedures, after installing the 

VMs for the VNF/NS, the NFVO requests the VIM to allocate the 

required virtual network resources (a.k.a. virtual network links). 

NFVO.26  Legacy Network 

connectivity 

instantiation 

The NFVO SHALL be able to request the TNM for 

instantiation and inter-connection of nodes in the 

infrastructure network. 

During the NS instantiation/scaling procedures, after installing the 

VMs for the VNF/NS, the NFVO requests the TNM to allocate the 

required legacy network resources. 

NFVO.27 ETSI 

MANO 

§C.3.6 

IT network 

connectivity 

deletion 

The NFVO SHALL be able to request the VIM the deletion of 

IT network connectivity for a given NS instance and the 

removal of the infrastructure allocated for a given VNF. 

The T-NOVA system should able to ask the deletion of IT network 

connectivity. 

This requirement includes notification of the VNFM of the 

removed VNF. VNFs having instances participating in NS instances 

cannot be removed until the NS instance stops and is requested to 

be removed. Also used in re-instantiating VNF infrastructure (e.g., 

for performance or mal-function reasons). 

NFVO.28 ETSI 

MANO 

§C.3.6 

Virtual Network 

connectivity 

deletion 

The NFVO SHALL be able to request the VIM to delete of 

virtual network connectivity for a given NS instance and to 

remove the infrastructure allocated for a given VNF. 

The T-NOVA system should able to ask for the deletion of virtual 

network connectivity. 

This requirement includes notification of the VNFM of the 

removed VNF. VNFs having instances participating in NS instances 

cannot be removed until the NS instance stops and is requested to 

be removed. Also used in re-instantiating VNF infrastructure (e.g., 

for performance or mal-function reasons). 

NFVO.29 ETSI 

MANO 

§C.3.6 

Legacy network 

connectivity 

deletion 

The NFVO SHALL be able to request the TNM to delete 

legacy network connectivity for a given NS instance and to 

remove of the infrastructure allocated for a given VNF. 

The T-NOVA system should able to ask TNM for the deletion of 

legacy network connectivity. 

A.1.1.6 Policy Management requirements 

Table 20: Orchestrator Requirements – NFVO- Policy Management 

Req. ID Alignment Req. Name Requirement Description Comments 

NFVO.30 UC4 

ETSI 

MANO 

§4.5.2, 

§5.4.1 

Policy 

enforcement 

The NFVO SHALL provide the means for setting/changing 

policies associated with an existing VNF. 

The T-NOVA system must provide the ability for customers and 

SPs to change how their VNFs behave to meet evolving business 

needs, e.g. by applying new packet handling rules. 
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A.1.1.7 Marketplace-specific interactions requirements 

Table 21: Orchestrator Requirements – NFVO- Marketplace specific 

Req. ID Alignment Req. Name Requirement Description Comments 

NFVO.31 T-NOVA Publish NS 

instantiation 

The NFVO SHALL be able to notify that the requested (new, 

updated) NS instantiation is ready to be used. 

T-NOVA system must notify relevant external entities upon 

successful instantiation of every VNF and connections between 

them. 

If the external entity is the Marketplace, it may use this notification 

for Accounting/Billing purposes. 

NFVO.32 T-NOVA Publish NS 

metrics 

The NFVO SHALL be able to publish the NS metrics, if 

allowed by SLA. 

The T-NOVA system must provide to external entities NS metrics in 

order to enable service control. 

NFVO.33 UC1.1 NFV mapping of 

SLA data 

The NFVO SHALL map the SLA related data to NFV 

attributes. 

Results of selection offerings materialized in SLAs need to be 

translated into NFV attributes in order to be processed by the T-

NOVA system, according to the contents of the VNF descriptor 

where the amount of needed resources is indicated. 

NFVO.34 T-NOVA SLA 

enforcement 

request 

The NFVO SHALL be able to take the required actions (e.g. 

scale out, new instantiation) upon request to enforce a SLA. 

It is assumed that the SLA provides all the information about 

metrics and thresholds to be compared with, together with the NS 

descriptor providing alternative architectures or deployment 

flavours, e.g. scaling in when metrics show under-used resources 

should be automatic. 

NFVO.35 UC4, 

UC5 

NS usage 

accounting and 

billing 

The NFVO SHALL store all the information about resources 

usage per service, and SHALL provide it to external entities 

to bill on a pay-per-use mode. 

Pay-as-you-go may be considered attractive for some Customers, 

as an option, as opposed to flat-rate. 

The NFVO should notify relevant FEs in order that the T-NOVA 

system becomes able to deploy this type of billing/charging. 
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A.1.2 VNFM Requirements 

A.1.2.1 VNF Lifecycle requirements 

Table 22: Orchestrator Requirements – VNFM- VNF Lifecycle 

Req. ID Alignment Req. Name Requirement Description Comments 

VNFM.1 ETSI 

MANO 

§B.3.1.2 

VNF 

Instantiation 

Request by the 

VNFM 

The VNFM SHALL be able to accept a request from the 

NFVO to instantiate a VNF. 

After receiving a VNF instantiation request from the NFVO, the 

VNFM will start coordinating the VNF instantiation procedure. 

Nevertheless, the virtualized resources allocation is under the 

scope of the NFVO and therefore the VNFM will have to request 

the later to allocate the required resources for the VNF. 

VNFM.2 UC2 

UC3 

VNF 

Configuration 

Request by the 

VNFM 

The VNFM SHALL be able to accept a NFVO request to 

configure an instantiated VNF. 

T-NOVA VNFs must be configured upon external request or 

following an external instantiation request. 

It includes the notification of the successful configuration. 

VNFM.3 ETSI 

MANO 

§B.3.1.1 

Check VNF 

instantiation 

feasibility by the 

VNFM 

The VNFM SHALL be able to accept requests coming from 

the NFVO and process a check feasibility procedure 

regarding a VNF instantiation. 

The VNFM receives a request to check feasibility of a VNF 

instantiation/scaling and processes the VNF descriptor after 

validating the request. 

VNFM.4 ETSI 

MANO 

§C.3 

Check of VNFs 

part of a NS by 

the VNFM 

The VNFM SHALL be able to accept a request from the 

NFVO to check the VNFs associated with a NS, according to 

the NS descriptor. 

For each VNF instance indicated in the NS descriptor, the VNFM 

checks if a VNF instance matching the requirements already exists. 

Includes re-instantiation request of mal-functioning VNFs.. 

VNFM.5 UC2 VNF lifecycle 

automation by 

the VNFM 

The VNFM SHALL be able to automate the instantiation of 

VNFs and associated VM resources by triggering scaling 

procedures. 

Automation of VNF lifecycle is an essential characteristic of the T-

NOVA system. 

Triggering of scaling procedures is based on the monitoring 

process maintained over VNFs, as well as on policy management 

and other internal algorithm criteria. 

VNFM.6 UC3.2 Auto VNF Scale 

Out 

The VNFM SHALL provide the means to automatically scale-

Out a VNF. 

T-NOVA system needs to automatically scale-out a VNF to meet 

SLAs in an efficient and timely manner. 

VNFM.7 UC3.2, 

UC4 

Auto VNF Scale 

In 

The VNFM SHALL provide the means to automatically scale-

In an existing VNF. 

T-NOVA system needs to automatically scale-in a VNF to meet 

SLAs in an efficient and timely manner. 

VNFM.8 UC3.1 Auto VNF Scale 

Up 

The VNFM SHALL provide the means to automatically scale- 

Up an existing VNF. 

This procedure ensures that resources are consumed in an efficient 

manner and SLA specified targets on resource consumption are 

met. 
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VNFM.9 UC3.1 Auto VNF Scale 

Down 

The VNFM SHALL provide the means to automatically scale-

Down a VNF. 

This procedure ensures that resources are consumed in an efficient 

manner and SLA specified targets on resource consumption are 

met. 

A.1.2.2 Monitoring Process requirements 

Table 23: Orchestrator requirements – VNFM- Monitoring Process 

Req. ID Alignment Req. Name Requirement Description Comments 

VNFM.10 UC2, 

UC3, 

UC4 

VNF-specific 

resource 

monitoring by 

the VNFM 

The VNFM SHALL be able to monitor VNF-related resources 

on a real time basis. 

VNF-specific monitoring is related with the monitoring of 

information retrieved from the VIM, related to the virtualized 

infrastructure resources allocated to the VNF (i.e. 

compute/storage/memory of the VMs and virtual network links 

that interconnect the VMs), as well as monitoring of VNF-specific 

metrics that can be used to assure that the VNF is behaving as it 

should. 

VNFM.11 UC4 Monitoring 

metrics 

consolidation by 

the VNFM 

The VNFM SHALL be able to aggregate and consolidate all 

monitoring VNF metrics associated with a service. 

A consolidated operational picture of the service via the dashboard 

is considered a mandatory customer requirement. 

The collected metrics should be presented by the VNFM to the 

NVFO, and from this FE to the dashboard with an integrated status 

of the provisioned service. 
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A.2 Interface requirements 

A.2.1 Interface with VIM 

The requirements identified for the Interface with the VIM module are as follows: 

Table 24: Requirements between the Orchestrator and VIM  

Req. id Alignment Domain(s) Requirement 

Name 

Requirement Description Justification of Requirement 

Or-Vi.01  
Orchestrator, 

VIM 

Reserve / release 

resources 

The Orchestrator SHALL use this interface 

to request the VIM to reserve or release 

the entire required infrastructure needed 

for a given VNF 

Care must be taken in order not to have resources 

allocated for long periods of time, thus impacting on the 

optimisation of resource usage. 

Or-Vi.02 

T_NOVA_03, 

T_NOVA_21, 

T_NOVA_22, 

T_NOVA_26, 

T_NOVA_31, 

T_NOVA_33, 

T_NOVA_34, 

T_NOVA_36, 

T_NOVA_37, 

T_NOVA_38, 

T_NOVA_39, 

T_NOVA_40, 

T_NOVA_42, 

T_NOVA_43, 

T_NOVA_44, 

T_NOVA_45, 

T_NOVA_58 
4 

Orchestrator, 

VIM 

Allocate / release / 

update resources 

The Orchestrator SHALL use this interface 

to request the VIM to allocate, update or 

release the required infrastructure needed 

for a given VNF 

It is assumed that configuration information is a resource 

update. Resource update might imply stop and re-start, 

with a migration in between. 

                                                 

4
 Refers to T-NOVA requirements described in deliverable D2.1 (63) 
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Or-Vi.03  Orchestrator, 

VIM 

Add / update / 

delete 

SW image 

The Orchestrator SHALL use this interface 

to add, update or delete a SW image 

(usually for a VNF Component) 

Performance will probably demand having these images 

ready to be deployed on the Orchestrator’s side 

Or-Vi.04 
UC4, 

T_NOVA_46 
Orchestrator, 

VIM 

Retrieve 

infrastructure 

usage data 

The Orchestrator SHALL use this interface 

to collect infrastructure utilisation data 

(network, compute and storage) from the 

VIM 

Some of this data is used to determine the performance 

of the infrastructure (including failure notifications) and 

to inform decisions on where to provision newly 

requested services or to where to migrate an already 

provisioned NS that is predicted to break its SLA. This 

interface will very likely have to support very high 

volume traffic. 

Or-Vi.05 
UC4, 

T_NOVA_20 
Orchestrator, 

VIM 

Retrieve 

infrastructure 

resources 

metadata 

The Orchestrator SHALL use this interface 

to request infrastructure's metadata from 

the VIM 

Due to high performance needs, this metadata will most 

probably have to be cached on the Orchestrator’s side 

Or-Vi.06 

T_NOVA_24, 

T_NOVA_25, 

T_NOVA_35, 

T_NOVA_27 

Orchestrator, 

VIM 

Manage 

VM’s 

state 

The Orchestrator SHALL use this interface 

to request the VIM to manage the VMs 

allocated to a given VNF. 

We can assume a finite and small number of possible VM 

states, e.g., ‘Being configured’, ‘Not running’, ‘Running’, 

‘Being re-scaled’, ‘Being stopped’. It is assumed that 

when in a ‘Running’ state the VM is ready to be (re-) 

configured. 

Or-Vi.07 T_NOVA_02 Orchestrator, 

VIM 
Secure interfaces 

The interfaces between the Orchestrator 

and the VIM SHALL be secure, in order to 

avoid eavesdropping (and other security 

threats) 

We should keep in mind that encrypting all the 

communication between these two entities will probably 

make a performing solution too costly 
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A.2.2 Interface with VNF 

The requirements identified for the Interface with the VNF module are as follows: 

Table 25: Requirements between the Orchestrator and VNF  

Req. id Alignment Domain(s) Requirement 

Name 

Requirement Description Justification of Requirement 

Vnfm-

Vnf.01 
T_NOVA_02 VNFM, VNF Secure interfaces 

All the interfaces between the VNFM and 

the VNF SHALL be secure, in order to avoid 

eavesdropping (and other security threats) 

Required to avoid eavesdropping the connection 

between the VNFM and each VNF. We should keep in 

mind that encrypting all the communication between 

these two entities will probably make a high 

performance solution too costly 

Vnfm-

Vnf.02 
 VNFM, VNF 

Instantiate/termin

ate VNF 

The VNFM SHALL use this interface to 

instantiate a new VNF or terminate one that 

has already been instantiated 

Required to create/remove VNFs during the VNF lifecycle 

Vnfm-

Vnf.03 

T_NOVA_46, 

T_NOVA_48 
VNFM, VNF 

Retrieve VNF 

instance run-time 

information 

The VNFM SHALL use this interface to 

retrieve the VNF instance run-time 

information (including performance metrics) 

VNF instance run-time information is crucial both for 

automating VNF scaling and for showing Network 

Services’ metrics in the Marketplace’s Dashboard 

Vnfm-

Vnf.04 

T_NOVA_23 

T_NOVA_33 
VNFM, VNF Configure a VNF 

The VNFM SHALL use this interface to (re-

)configure a VNF instance 

In the general case, the Customer should be able to (re-

)configure a VNF (instance). Includes scaling. 

Vnfm-

Vnf.05 

T_NOVA_24, 

T_NOVA_35, 

T_NOVA_58 

VNFM, VNF Manage VNF state 

The VNFM SHALL use this interface to 

collect/request from the NFS the 

state/change of a given VNF (e.g. start, stop, 

etc.) 

This interface includes collecting the state of the VNF (as 

well as changing it). The VNF instance should include a 

state like ‘Ready to be used’ when it is registered in the 

repository. 

Vnfm-

Vnf.06 

T_NOVA_36, 

T_NOVA_37, 

T_NOVA_38, 

T_NOVA_39, 

T_NOVA_42, 

T_NOVA_43, 

T_NOVA_44, 

T_NOVA_45 

VNFM, VNF Scale VNF 

The VNFM SHALL use this interface to 

request the appropriate scaling 

(in/out/up/down) metadata to the VNF 

VNF scaling depends on the (mostly architectural) 

options the FP provided when registering the VNF. The 

VNF scaling metadata is then used by the NFVO to 

request the VIM to allocate the required infrastructure  
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A.2.3 Interface with Marketplace 

The requirements identified for the Interface with the Marketplace are as follows: 

Table 26: Requirements between the Orchestrator and the Marketplace 

Req. id Alignment Domain Requirement 

Name 

Requirement Description Justification of Requirement 

NFVO-

MKT.01 

UC1, 

T_NOVA_10, 

T_NOVA_15 

Orchestrator, 

Marketplace 

Provide 

available VNFs 

The Marketplace SHALL use this interface 

with the Orchestrator to provide the Service 

Provider with a list of the VNFs, so that it can 

select and parameterise them, or use them in 

the composition of a new network service. 

It is assumed that this VNF metadata includes a 

URL/repository name from which to fetch the actual VNF 

software and install it on the previously allocated 

infrastructure (see NFVO.10 below). Note that, although 

this information will most certainly have to be cached on 

the Orchestrator’s side for performance reasons, the 

available VNFs will be dynamic, so updates to this 

cached information will be rather frequent. 

NFVO-

MKT.02 

UC2, 

T_NOVA_04, 

T_NOVA_08, 

T_NOVA_20 

Orchestrator, 

Marketplace 

Provision a 

new network 

service 

The Marketplace SHALL use this interface to 

inform the Orchestrator to provision the 

network service, after the Customer has 

selected and parameterised the network 

service. The Orchestrator SHALL read the SLA 

and the date/time to start the new network 

service. Each NS can be composed of one or 

more VNFs. 

The date/time of start/end the service are part of the 

SLA. 

NFVO-

MKT.03 

UC3, 

T_NOVA_31, 

T_NOVA_32, 

T_NOVA_33, 

T_NOVA_36, 

T_NOVA_42, 

T_NOVA_44 

Orchestrator, 

Marketplace 

Change 

configuration 

of a deployed 

network 

service 

The Marketplace SHALL use this interface to 

change the configuration of an already 

provisioned network service on the 

Orchestrator. 

It is assumed that information about scaling 

(up/down/in/out) is included in the SLA (or at least 

reasonable values can be inferred). 

NFVO-

MKT.04 

UC5, 

T_NOVA_28, 

T_NOVA_29, 

T_NOVA_34, 

Orchestrator, 

Marketplace 

Provide 

network 

service state 

transitions 

The Marketplace SHALL use this interface to 

determine the state transitions of a given 

network service, e.g. to facilitate starting and 

stopping billing for the service. 

It is assumed that each NS has a pre-defined state-

diagram, like ‘Ready to run’, ‘Running’, ‘Stopped’, etc., 

that is also known to the Marketplace. 
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T_NOVA_41, 

T_NOVA_48, 

T_NOVA_56, 

T_NOVA_57 

NFVO-

MKT.05 

UC4, 

T_NOVA_28, 

T_NOVA_29, 

T_NOVA_30, 

T_NOVA_46, 

T_NOVA_52 

Orchestrator, 

Marketplace 

Provide 

network 

service 

monitoring 

data 

The Marketplace SHALL use this interface to 

show the Customer how the subscribed 

network service is behaving, how it compares 

to the agreed SLA and bill the service usage. 

This interface will very likely have to support very high 

volume traffic. 

NFVO-

MKT.11 

UC6, 

T_NOVA_03, 

T_NOVA_58 

Orchestrator, 

Marketplace 

Terminate a 

provisioned 

NS 

The Marketplace SHALL use this interface to 

request the Orchestrator to terminate 

provisioned NSs 

It is assumed that the impact on the dependent modules 

like billing, are taken care by the Marketplace (see 

NFVO.04). SLA Management is part of the Marketplace. 

Either after a customer’s request or by the pre-defined 

ending date had been attained, the SLA Management 

notifies the Orchestrator of the end of the SLA. 

NFVO-

MKT.12 
T_NOVA_02 Orchestrator, 

Marketplace 

Secure 

communicatio

n 

Interfaces between the Marketplace and the 

Orchestrator SHOULD be secured. 

Encryption should be used, in order to prevent 

eavesdropping. Even between the Marketplace and the 

Orchestrator, since the Marketplace is really a set of 

distributed apps. 
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ANNEX B - VIRTUALISED INFRASTRUCTURE MANAGEMENT REQUIREMENTS 

B.1 Virtual Infrastructure Management Requirements 

Table 27: IVM Requirements - VIM 

Req. id T-NOVA Use 

Case 

Alignment 

Domain Requirement Name Requirement Description Justification of Requirement 

VIM.1 UC1, UC2.1 VIM  Ability to handle  

heterogeneous  physical 

resources 

The T-NOVA VIM SHALL have the ability to 

handle and control both IT and network 

physical infrastructure resources. 

Basic functional requirement of the VIM. 

VIM.2 UC1, UC2.1 VIM Ability to provision 

virtual instances of the 

infrastructure resources 

The T-NOVA VIM SHALL be able to create 

virtual resource instances from physical 

infrastructure resources upon request 

Required to support VIM integration with 

the T-NOVA Orchestrator. 

VIM.3 UC3/3.1/3.2 VIM API Exposure The T-NOVA VIM SHALL provide a set of API’s 

to support integration with its control 

functions with the T-NOVA Orchestration layer. 

Required to support VIM integration with 

the T-NOVA Orchestrator 

VIM.4 UC2.1 VIM Resource abstraction The T-NOVA IVM system SHALL provide 

resource abstraction at the VIM level for 

representation of physical resources.  

Required to support VIM integration with 

the T-NOVA Orchestrator. 

VIM.5 UC1.1 UC1.3 

UC2.1 UC4 

VIM  Ability to support 

different service levels 

The VIM network controller SHOULD provide 

the ability to request different service levels 

with measurable reliability and availability 

metrics.  

Required to supported SLA’s agreement 

when purchasing a VNF service in the T-

NOVA Marketplace 

VIM.6 UC3.1, UC3.2 VIM  Live VM and link 

migration 

The VIM network controller SHOULD support 

live VM migration within a data centre and 

between data centres including migration of 

virtual links without traffic disruption 

This capability is required for a number of 

operational reasons  such as service 

optimisation, SLA management, service 

resilience etc. 
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VIM.7 UC1 VIM Translation of references 

between logical and 

physical resource 

identifiers 

The VIM network controller SHOULD be able 

to assign IDs to virtual components (e.g., NFs, 

virtual links) and provide the translation of 

references between logical and physical 

resource identifiers. 

Need to track the use of physical network 

resources. 

VIM.8 UC2 

UC3 

VIM  Isolated virtual networks 

sharing the same 

physical infrastructure 

The VIM network controller SHALL guarantee 

isolation among the different virtual network 

resources created to provision the requested 

services through the marketplace.  

T-NOVA system will be providing services 

for different customers through the 

composition and deployment of VNFs. 

Those services will share the same 

physical network infrastructure, at the 

same time they belong to different 

customers. Thus, isolation at the physical 

level must be guaranteed for each 

customer.  

VIM.9 UC3.1, UC3.2, 

UC3.3 UC4 

VIM Control and Monitoring  The VIM network controller SHALL be able to 

visualise the real-time status and the history 

reports related to the performance and 

resource utilisation of both the physical 

network infrastructure and multiple instances 

of virtual networks running over it.  

T-NOVA must be able to visualise the 

real-time status and the history reports 

related to the performance and the 

resource utilisation of both the physical 

infrastructure and the multiple instances 

of virtual networks running over it. 

VIM.10 UC3 VIM Scalability The VIM network controller SHOULD scale in 

accordance to the number of virtual resource 

instances and physical network domains  

The T-NOVA system should be able to 

manage a large network infrastructure. 

VIM.11 UC1 VIM Network service and 

resource discovery 

The VIM network controller SHOULD provide 

mechanisms to discover physical network 

resources. 

The Orchestrator must be aware of the 

available physical network resources. 

VIM.12 UC1.1  

UC2.1  

UC3.1  

UC3.2  

UC3.3  

UC4 

VIM  Specification of 

performance parameters 

The VIM network controller SHOULD allow the 

infrastructure connectivity services to specify 

the following performance related parameters: 

 Maximum overhead (bits required 

for the network virtualisation 

technique, per packet or percentage 

of traffic) 

 Maximum delay 

 Maximum delay variation 

T-NOVA system should support a high 

level of customisation for the network 

service. 
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 Throughput (CIR, CIR+EIR and 

packets per second) 

 Maximum packet loss allowable 

VIM.13  VIM Flow entry generation  The VIM network controller SHOULD be able 

to generate and install the required flow 

entries to the OF switches for packet 

forwarding and NF policy enforcement (i.e., 

ensuring that traffic will traverse a set of NFs in 

the correct order). 

Required to support the Network Service 

definition. 

VIM.14  VIM Path computation The VIM Network Controller MAY be able to 

compute paths that satisfy given bandwidth 

requirements (within and between DCs). Path 

redundancy in DCs should be exploited. 

The Patch Computation functionality is 

required when the overall end-to-end 

virtual network topology is constructed 

over the actual infrastructure. The critical 

part is the calculation of cost for the 

transport network in order to guarantee 

certain QoS attributes for the transport 

links. However in T-NOVA the transport 

network and its management will be 

addressed at demonstration level with a 

set of basic functionalities. In this context 

PCE implementation will follow a similar 

simple approach.  

VIM.15  VIM Virtual address space 

allocation 

The VIM network controller SHOULD be able 

to allocate virtual address space for NF graphs 

(virtual addresses of NFs belonging to different 

graphs could overlap). 

Required to support isolation among 

different virtual network domains. 

VIM.16 UC4 VIM QoS support The VIM network controller SHALL provide 

mechanisms to support QoS control over the 

network infrastructure. 

Required to support the specific 

performance needed by a network service. 

VIM.17  VIM SDN Controller 

performance 

The VIM network controller SHOULD minimise 

the flow setup time maximising the number of 

flows per second that it can setup. 

Required to provide a responsive 

configuration of the underlying 

infrastructure. 

VIM.18  VIM VIM Network Controller 

Robustness 

The VIM network controller SHALL be able 

deal with control plane failures (e.g., via 

Required for resiliency in the T-NOVA 

system. 
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redundancy) in a robust manner. 

VIM.19  VIM  Hypervisor Abstraction 

and API 

The VIM Hypervisor Controller SHALL abstract 

a basic subset of hypervisor commands in a 

unified interface and in a Plug-In fashion. This 

includes commands like start, stop, reboot etc. 

Different Hypervisors have various 

advantages such as full hardware 

emulation or paravirtualization. In order to 

get the best functionality and the best 

performance for a VM, different 

Hypervisors must be supported. 

VIM.20  VIM  Query API and 

Monitoring 

The VIM Hypervisor Controller SHALL have a 

Query API that allows other T-NOVA 

components to retrieve metrics, configuration 

and used hypervisor technology per compute 

node. 

The orchestrator must be able to make 

the best decision regarding performance, 

functionality and a SLA for the creation of 

VMs. The orchestrator requires 

information from the hypervisor and the 

compute infrastructure under its control 

to make placement and management 

decisions.  

VIM.21  VIM  VM Placement Filters The VIM Compute Controller SHALL offer a set 

of filters that are appropriate to VNF 

deployments to achieve a more granular 

placement strategy with a scheduler.  

Some requirements set by the 

orchestrator do need a more specific 

placement of the VM. E.g. a CPU core filter 

can be applied to the scheduler so that 

the VM is only placed on a compute node, 

if more than 3 CPU cores are available. 

VIM.22  VIM  Base-Image Repository 

integration 

The VIM Compute Controller SHALL have an 

integration-module to interact directly with the 

non-configured VM images that need to be 

deployed. 

The compute controller must have access 

to the repository with the basic VM 

images. Those base images will be 

deployed in the desired flavour by the 

orchestrator regarding configuration, disk 

space, CPU and memory. 

VIM.23 UC2 VIM  Hardware Information 

Collection 

The VIM Compute Controller SHALL be able to 

receive physical hardware information and 

provide this information via an API to the 

orchestrator. 

In order to operate efficient high level NF 

like deep packet inspection, specific 

capabilities need to available on the CPU 

or in the form of co-processor cards.. This 

module can retrieve such information 

automatically and provide it to the 

orchestrator for intelligent decisions. 
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VIM.24 UC4 VIM Virtualised Infrastructure 

Metrics 

The VIM SHALL collected performance and 

utilisation metrics from the virtualised 

resources in the NFVI and report this data in 

raw or processed formats via a northbound 

interface to the Orchestrator. 

The Orchestrator needs data to make 

scaling decisions on VNF service based on 

SLA criteria.  

B.2 Transport Network Management Requirements 

Table 28: IVM Requirements - TNM 

Req. id T-NOVA Use 

Case 

Alignment 

Domain Requirement Name Requirement Description Justification of Requirement 

TN.1  Transport Network 

Management 

Legacy (non-SDN) 

Network Management  

The IVM SHOULD be extensible in order to 

support interaction with WAN network devices 

via a Network Infrastructure Manager. 

It is assumed that any legacy network 

technology used for the realisation of 

transport network links interconnecting 

NFVI-PoPs is managed through this 

Network Management system. The 

implementation is out T-NOVA scope. 

TN.2 UC1.1, UC2.1, 

UC3.1, UC3.2, 

UC3.3, UC4 

Transport Network 

Management 

Specification of 

performance parameters 

The network SHOULD allow the provisioning 

of network services according to the following 

performance related parameters: 

 Maximum overhead (bits required 

for the network virtualisation 

technique, per packet or percentage 

of traffic) 

 Maximum delay 

 Maximum delay variation (jitter) 

 Throughput (CIR, CIR+EIR and 

packets per second) 

 Maximum packet loss allowed 

 QoS level 

 Failover/Resiliency 

Some or all of these parameters will be 

taken into account when configuring and 

provisioning transport network links.  



T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation, 

Management and Orchestration - Interim 

 

© T-NOVA Consortium 

 

159 

TN.3 UC1.1, UC1.3, 

UC2.1, UC4 

Transport Network 

Management 

Ability to support 

different service levels 

The TNM SHOULD provide the ability to 

request different service levels with 

measurable reliability and availability metrics, 

(e.g. percentage of time the network is 

available) from the Transport Network. 

To support SLA’s availability in the T-

NOVA marketplace. 

TN.4 UC2 Transport Network 

Management 

Path computation The TNM SHOULD be able to compute paths 

that satisfy given bandwidth requirements (i.e. 

between DCs). Path redundancy in DCs should 

be exploited. 

Given a demand for a NS transport links 

inter- connecting NFVI-PoPs need to be 

configured and provisioned. The actual 

path in the network that needs to be 

installed and provisioned should be 

calculated in order to ensure the service 

parameters (see T2) and service levels 

(see T3).  It is expected that path 

computation algorithms will be re-used.   

TN.5 UC2 Transport Network 

Management 

Tunnels setup The TNM SHALL cooperate with the NFVI-PoP 

Network domain to configured VLAN tunnels 

between different NFVI-PoP’s hosted at 

different Data Centres. 

This functionality is required to set-up the 

necessary tunnels between different 

NFVI-PoPs through external legacy 

networks as required by VNF service 

architecture, SLA’s and service provider 

business needs. 

B.3 NFV Infrastructure Requirements 

B.3.1 Computing 

Table 29: IVM requirements - Computing 

Req. id T-NOVA 

Use Case 

Alignment 

Domain Requirement Name Requirement Description Justification of Requirement 

C.1 UC2 Compute Nested/Extended Hardware page virtualisation SHALL be utilised 

to improve performance.  

Performance benefits from hardware 

page virtualisation are tied to the 

prevalence of VM exit transitions. CPU 
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should have large TLBs  

C.2 UC2, UC3 Compute Central Storage A central storage subsystem (SAN) SHALL be 

available in order to enable advanced 

functionalities like VM migration and server 

clustering 

Required to support use cases 3/3.1/3.2. 

Also required for system resilience. 

C.3 UC4 Compute No SPOF All hardware components SHALL be deployed 

with proper redundancy mechanisms (e.g. 

redundant SAN switches and network 

switches) in order to avoid single points of 

failure 

Required to support use cases 3/3.1/3.2. 

Also required for system resilience. 

C.4 UC4.1 Compute Performance All hardware components SHALL satisfy 

specific performance parameters (e.g. IOPS 

and R/W operation ratio in case of storage 

resources) in order to provide required 

performance levels 

Required to guarantee proper SLAs 

C.5 UC2 Compute Hypervisor compatibility Servers and storage SHOULD be compatible 

with the chosen hypervisor(s) 

Required to ensure basic system 

functionality and reliability.  

C.6 UC2, UC3 Compute Central Storage - 

efficiency 

Central storage SHALL support functionalities 

like Automatic Storage Tiering (AST), thin 

provisioning and deduplication, in order to 

reduce costs, improve efficiency and 

performance 

Required to support SLA’s associated 

with VNF services. 

C.7 UC4 Compute Compute Domain 

Metrics 

The compute domain SHALL provide metrics 

and statistics relating to the capacity, capability 

and utilisation of hardware resources:  

• CPU cores 

• Memory  

• IO (including accelerators)  

• Storage subsystem 

These metric shall include both static and 

dynamic metrics 

This information is required at the 

Orchestration layer to make decisions 

about the placement of new VNF, 

services, to manage existing services to 

ensure SLA compliance and to ensure 

reliable of the system. 
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C.8 UC3 Compute Power Management The compute domain SHALL provide power 

management functions that enable the VIM to 

remotely control the power state of the 

domain 

This capability maybe required to meet 

SLA requirements on energy utilisation, 

service costs or time of day service 

settings 

{Non-functional requirement} 

C.9 UC2, UC3 Compute Hardware Accelerators The compute domain SHALL support 

discovery and reservation of hardware (HW) 

/functional accelerators 

Certain VNF functions may require or 

experience performance benefits from 

the availability of co-processor cards 

such as FPGA’s, MIC (e.g. XEON PHI) or 

GPU’s (e.g. Nvida). The Orchestrator 

should be aware of these capabilities to 

ensure correct placement decisions. 

C.10 UC2, UC3 Compute Hardware Accelerators All HW accelerators SHOULD be able to 

expose their resources to the VIM Controllers. 

The Orchestrator should be aware of 

accelerator capabilities available within 

an NFVI-PoP for placement of VNF’s that 

can utilise these capabilities to improve 

their performance. 

C.11 UC2, UC3 Compute Hardware Accelerators HW accelerator resources MAY be virtualisable 

themselves and this feature SHALL be made 

available to the host processor. 

Typically accelerator HW is not 

virtualisable with the exception of GPUs. 

Virtualising the accelerator can provide 

performance improvement and 

guarantees and could be exposed and 

used by the T-NOVA system. 

C.12 UC4 Compute Hardware Accelerators HW accelerators SHALL provide performance 

metrics to the VIM. 

Necessary to measure performance, 

guarantee SLAs and determine limits for 

scaling up and down the service if 

necessary. 

C.13  VIM Traffic classification The VIM Network Controller SHOULD be able 

to classify packets among VMs (where NFs are 

hosted). Packet classification offloading to the 

NIC is desirable (e.g., Intel VMDq) 

This is required to ensure appropriate 

performance of VNF’s running on VM’s 
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B.3.2 Hypervisor 

Table 30: IVM Requirements - Hypervisor 

Req. id T-NOVA 

Use Case 

Alignment 

Domain Requirement Name Requirement Description Justification of Requirement 

H.1 UC3  

UC4 

Hypervisor Compute Domain 

Metrics 

The Hypervisor SHALL gather all relevant 

metrics and resource status information 

required by the Orchestrator from the 

compute domain and will provide the data to 

the VIM via a VIM-Hypervisor interface 

The Orchestrator requires the 

information from the compute domain 

to make decisions regard the placement 

of new VNF services to adjusting existing 

services to maintain SLA’s 

H.2 UC3,  

UC4 

Hypervisor Network Domain Metrics The hypervisor SHALL gather all relevant 

metrics (e.g. bandwidth requirements) from 

the infrastructure networking domain and 

provide data to the VIM via a VIM-Hypervisor 

interface 

The Orchestrator requires the 

information from the next work domain 

to make decisions regard the placement 

of new VNF services to adjusting existing 

services to maintain SLA’s 

H.3 UC3 Hypervisor VM Portability The T-NOVA hypervisor SHALL be able to 

unbind the VM from the hardware in order to 

allow the VM to be migrated to a different 

physical resource. 

Required to ensure that VNF are fully 

portable in the T-NOVA systems for 

support various conditions such as 

scaling, resilience, maintenance etc. 

H.4 UC3 Hypervisor VM Migration -

Notification 

The T-NOVA hypervisor SHALL support 

instructions to provision, migrate, rescale, 

delete etc. a VM received via a Hypervisor-VIM 

interface  

Fundamental requirement for the T-

NOVA system to function 

H.5 UC3 Hypervisor Predictive VM Migration 

Performance 

The hypervisor SHALL provide metrics to allow 

the VIM and Orchestrator to make predictions 

as to the impact of migration. 

This capability is required to ensure that 

any infrastructure management actions 

such as consolidation will not impact on 

VNF service performance 

H.6 UC2 Hypervisor Performance Impact The hypervisor SHALL have minimal impact on 

VNF workload performance 

Require to ensure that the performance 

of the hosted VNF is not impacted. 



T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation, 

Management and Orchestration - Interim 

 

© T-NOVA Consortium 

 

163 

H.7 UC2  

UC3 

Hypervisor Platform Features 

Awareness/Exposure 

The hypervisor SHALL be able to discover the 

existence of features and functionality 

provided by resources such as the compute, 

accelerators, storage and networking and to 

expose these features to the Orchestrator via 

the VIM.  

Enhanced platform awareness by the 

Hypervisor and making this information 

available to the Orchestrator will allow 

the Orchestrator to make more 

intelligent placement decisions during 

the deployment of VNF services. 

H.8 UC3.  Hypervisor VM Reconfigure 

/Rescale 

The hypervisor SHALL have the ability to scale 

a VM up and down: to add / remove compute 

and memory dynamically  

Prerequisite to meet the requirements 

described in UC3/3.1/3.2 

H.9 UC2  Hypervisor VM Low Power State The hypervisor SHALL have the ability to put 

resources into a lower power state based on 

utilization/SLA requirements to expose a lower 

power state to the Orchestrator. 

This capability maybe required to meet 

SLA requirements on energy utilisation, 

service costs or time of day service 

settings  

H.10 UC2  

UC6 

Hypervisor Request Results 

Information 

The hypervisor SHALL make available to the 

VIM the results of requests completion 

Required so the VIM and Orchestrator 

can maintain a consistent view of the 

infrastructure resources. 

H.11 UC2,  

UC4 

Hypervisor Performance – Resource 

overcommit 

The hypervisor SHALL be able to provide 

mechanisms to control resource overcommit 

policies 

Required to improve performances and 

guarantee proper SLAs 

H.12 UC4 Hypervisor Alarm/Error Publishing The hypervisor SHALL publish alarm or error 

events to the Orchestrator via the VIM 

The Orchestrator requires this 

information in order for it react 

appropriately 

H.13 UC2  

UC3 

Hypervisor Security The hypervisor SHALL be able to guarantee 

resource (instruction, memory, device access, 

network, storage) isolation in order to 

guarantee performance 

Necessary to ensure that VNF services 

do interfere with each other and impact 

performance or reliability 

H.14 UC2  

UC3 

Hypervisor Network The hypervisor SHALL be able to control 

network resources within the VM host and 

provide basic inter-VM traffic switching. 

This is required to allow proper VNF 

graph creation for VNFs that are 

instantiated within the same VM Host.  

B.3.3 Networking 

Table 31: IVM Requirements - Networking 
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Req. id Alignment Domain Requirement Name Requirement Description Justification of Requirement 

N.1 UC1-UC6 Networking Switching 
Networking devices of the T-NOVA NFVI PoP 

SHOULD support L2 and L3 connectivity  
Mandatory requirement 

N.2 UC1-UC6 Networking Virtualization 

Networking devices of the T-NOVA IVM 

SHOULD have the ability to be virtualised to 

allow the VNFs deployment. 

Required to support scalability within the 

T-NOVA system. 

N.3 UC1-UC6 Networking 

QoS configuration and 

performance 

configuration 

Networking devices of the T-NOVA NFVI PoP 

ΜΑΥ allow the configuration of specific quality 

of service parameters such as overhead, 

throughput, service differentiation and packet 

loss. 

Required to ensure QoS configurability 

for the NSs.  

N.4 UC1-UC6 Networking 
Transport technologies 

support 

Networking devices of T-NOVA NFVI PoP MAY 

support transport technologies (e.g. MPLS, 

Metro Ethernet, etc.) for the support of traffic 

trunks between NFVI-PoPs 

Required for inter-NVFI-PoP connectivity 

N.5 UC1-UC6 Networking Tunnelling 

Networking devices of the T-NOVA NFVI PoP 

ΜΑΥ support the creation of multiple distinct 

broadcast domains (VLANs) through one or 

more tunnelling protocols (e.g. STT, NVGRE, 

VxLAN) to allow the creation of virtual L2 

networks interconnected within L3 networks 

(L2 over L3). 

This is a requirement for the deployment 

of VNF’s across different NFVI-PoPs 

N.6 UC1-UC6 Networking Usage monitoring 

Networking devices of the T-NOVA NFVI PoP 

SHOULD provide monitoring mechanisms of 

their usage through commonly used APIs. 

Required for trouble-shooting, 

events/alarms detection, and live 

optimisation 

N.7 UC1-UC6 Networking Configuration 

Networking devices of the T-NOVA NFVI PoP 

SHOULD allow configuration through 

common technologies and protocols such as 

NETCONF and SNMP. 

Required for (remote) uniform 

configuration access.  

N.8 UC1-UC6 Networking SDN 

Physical and Virtual Networking devices 

performing L2 switching of the T-NOVA NFVI-

PoP SHOULD be SDN enabled. 

Required to allow the use of SDN in 

order to dynamically configure the 

network at runtime. 
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N.9 UC1-UC6 Networking Open Flow  

All L2 networking devices of the T-NOVA 

NFVI-PoP SHOULD support the OpenFlow 

protocol.  

Required to allow the use of SDN in 

order to dynamically configure the 

network at runtime. 

N.10 UC1-UC6 Networking SDN Management 

All L2 networking devices of the T-NOVA NFVI 

PoP SHOULD be managed by an SDN 

controller located in the VIM. 

Required to ensure the network 

infrastructure properly works. 

N.11 UC1-UC6 Networking Network slicing 

Networking devices of the T-NOVA NFVI PoP 

SHOULD allow programmability of their 

forwarding tables through the Open Flow 

protocol. Each flow SHOULD be handled and 

configured separately to enable network 

slicing. 

VIM should be able to create network 

slices composed with different 

networking devices, which are then 

configured independently. 

N.12 UC1-UC6 Networking Scalability 

The infrastructure network of the T-NOVA 
NFVI PoP SHOULD be able to support a large 

number of connected servers, which in turn, 

SHOULD be able to support a large number of 

concurrent VMs. 

Required to support scalability and 

multi-tenancy. 

N.13 UC1-UC6 Networking Address uniqueness 

The virtual networks of the T-NOVA NFVI PoP 

MUST ensure address uniqueness within a 

given virtual network. 

Required to uniquely identify the VM’s 

attached to a VLAN. 

N.14 UC1-UC6 Networking 
Address space and 

traffic isolation 

For L2 services, the infrastructure network of 

the T-NOVA NFVI PoP MUST provide traffic 

and address space isolation between virtual 

networks.  

For L3 services, the infrastructure network of 

the T-NOVA NFVI PoP MUST provide traffic 

isolation between virtual networks. If address 

isolation is also required it can be achieved 

using various techniques: 

 An encapsulation method to provide 

overlay networks (L2 or L3 service). 

 The use of forwarding table partitioning 

mechanisms (L2 service). 

 By applying policy control within the 

Required to ensure the correct function 

of multi-tenancy in the T-NOVA system. 
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infrastructure network (L3 service). 
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ANNEX C - TERMINOLOGY 

This annex contains general terms used throughout the deliverable in association 

with all main T-NOVA architectural entities. 

The terms marked with an asterisk (*) have been aligned with ETSI NFV ISG 

terminology (77). 

C.1 General Terms 

Table 32: General terms 

Name  Description 

Virtualised Network 

Function (VNF)* 

A virtualised (pure software-based) version of a network 

function. 

Virtualised Network 

Function Component 

(VNFC)* 

An independently manageable and virtualised component 

(e.g. a separate VM) of the VNF. 

T-NOVA Network 

Service (NS) 

A network connectivity service enriched with in-network 

VNFs, as provided by the T-NOVA architecture. 

NFV Infrastructure 

(NFVI)* 

The totality of all hardware and software components 

which build up the environment in which VNFs are 

deployed. 

C.2 Orchestration Domain 

Table 33: Orchestration Domain terminology 

Name Description 

Orchestrator* 

The highest-level infrastructure management entity 

which orchestrates network and IT management entities 

in order to compose and provision an end-to-end T-

NOVA service. 

Resources Orchestrator* 

The Orchestrator functional entity which interacts with 

the infrastructure management plane in order to 

manage and monitor the IT and Network resources 

assigned to a T-NOVA service. 

NS Orchestrator* 

The Orchestrator functional entity in charge of the NS 

lifecycle management (i.e. on-boarding, instantiation, 

scaling, update, termination) which coordinates all other 

entities in order to establish and manage a T-NOVA 
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service. 

VNF Manager* 

The Orchestrator functional entity in charge of VNF 

lifecycle management (i.e. installation, instantiation, 

allocation and relocation of resources, scaling, 

termination). 

NS Catalogue* 
The Orchestrator entity which provides a repository of 

all the descriptors related to available T-NOVA services 

VNF Catalogue* 
The Orchestrator entity which provides a repository with 

the descriptors of all available VNF Packages. 

NS & VNF Instances 

Record* 

The Orchestrator entity which provides a repository with 

information on all established T-NOVA services in terms 

of VNF instances (i.e. VNF records) and NS instances (i.e. 

NS records). 

NF Store 
The T-NOVA repository holding the images and the 

metadata of all available VNFs/VNFCs. 

C.3 IVM Domain 

Table 34: IVM Domain terminology 

Name Description 

Virtualised 

Infrastructure 

Management (VIM)* 

The management entity which manages the virtualised 

(intra-NFVI-PoP) infrastructure based on instructions 

received from the Orchestrator. 

Transport Network 

Management (TNM) 
The management entity which manages the transport 

network for interconnecting service endpoints and NFVI-

PoPs, e.g. geographically dispersed DCs. 

VNF Manager Agent* The VIM functional entity which interfaces with the 

Orchestrator to expose VNF management capabilities 

Orchestrator Agent* The VIM/TNM functional entity which interfaces with the 

Orchestrator to expose resource management 

capabilities. 

Hypervisor Controller* The VIM functional entity which controls the VIM 

Hypervisors for VM instantiation and management. 

Compute Controller* The VIM functional entity which manages both physical 

resources and virtualised compute nodes. 

Network Controller @ 

VIM* 

The VIM functional entity which instantiates and 

manages the virtual networks within the NFVI-PoP, as 

well as traffic steering. 

Network Controller @ The TNM functional entity which instantiates and 

manages the virtual networks within transport network, 
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TNM as well as traffic steering. 
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APPENDIX I – ETSI ISG NFV FRAMEWORK 

This appendix is the repository for the results of a research study carried out on the 

ETSI ISG NFV framework. 

I.1 ETSI ISG NFV Overview 

The IT and Networks industries have been combining their complementary expertise 

and resources in a joint collaborative effort to reach broad agreement on 

standardised approaches and common architectures, which address identified 

technical challenges, are interoperable and have economies of scale. 

As a result, a network operator supported Industry Specification Group (ISG) with 

open membership was setup in the last quarter of 2012 under the umbrella of ETSI to 

work through the technical challenges of NFV. 

However, it should be noted that ETSI ISG NFV is not a Standards Development 

Organisation (SDO) but a body that produces guideline documents. The ETSI ISG NFV 

delivers its findings in the form of Group Specifications and not in the form of 

European Norms (EN) or Technical Standards (TS). The outputs are openly published 

and shared with relevant standards bodies, industry Fora and Consortia, to encourage 

a wider collaborative effort. If misalignments are detected, the ETSI ISG NFV will 

collaborate with other SDOs in order to meet the requirements. 

The ISG NFV also provides an environment for the industry to collaborate on Proof-

of-Concept (PoC) platforms to demonstrate solutions, which address the technical 

challenges for NFV implementation and to encourage growth of an open ecosystem. 

In the following sections, the NFV concept will be introduced, as well as the manner 

in which it has been handled by the ISG NFV and by the ISG NFV WGs. In addition, a 

status of the work will also be provided. 

It is recognised that the ETSI ISG NFV Phase 1 won’t cover all the aspects of the NFV 

domain and, as such, a Phase 2 is being prepared. As its scheduled timeline, with a 

start in January 2015, will have potential to influence the deployment of T-NOVA; a 

brief description of their activities is presented. 

I.2 High-level NFV framework and reference architecture 

The NFV concept envisages the implementation of NFs as software-only entities that 

run over the NFV Infrastructure (NFVI). Figure 44, published in October 2013 by the 

ETSI ISG NFV in its document on global architecture, illustrates the high-level NFV 

framework, where three main working domains can be identified: 

• Virtualised Network Function (VNF), as the software implementation of a 

network function which is capable of running over the NFVI, 

• NFV Infrastructure (NFVI), which includes the diversity of physical resources and 

how these can be virtualised. NFVI supports the execution of the VNFs, 
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• NFV Management and Orchestration (NFV MANO), which covers the 

orchestration and lifecycle management of physical and/or software resources 

that support the infrastructure virtualisation, and the lifecycle management of 

VNFs. NFV MANO focuses on all virtualisation-specific management tasks 

necessary in the NFV framework. 

 

Figure 44: High-level NFV framework 

(Source: GS NFV 002 v1.1.1 - NFV - Architectural Framework (66)) 

The NFV architectural framework handles the expected changes that will probably 

occur in an operator’s network due to the network function virtualisation process. 

Figure 45 shows this global architecture, depicting the functional blocks and 

reference points in the NFV framework: 

 

Figure 45: NFV reference architectural framework 

(Source: GS NFV 002 v1.1.1- NFV - Architectural Framework (66)) 

The architectural framework shown in Figure 45 focuses on the functionalities that are 

necessary for the virtualisation and the consequent operation of an operator’s 
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network. It does not specify which network functions should be virtualised as that is 

solely a decision of the owner of the network. 

I.3 Relevant Working Groups and Expert Groups 

As stated above, looking at the high-level NFV framework and at the global NFV 

architecture, three main domains can be identified:  

 NFVI, 

 VNFs,  

 NFV MANO. 

This domain partition is the basis of the WGs5 currently operating in ETSI ISG NFV: 

INF, SWA and MANO. 

I.3.1 WG INF (Infrastructure Architecture) 

This WG is responsible for the NFVI. They have identified three sub-domains within 

the NFVI, which are as follows: 

• Hypervisor Sub-domain, which operates at a virtual level, encompassing the 

computing and storage slices, 

• Compute Sub-domain, which operates at the lowest level, also in the 

computing and storage slices,  

• Network Sub-domain, which operates both at virtual level and at hardware 

level, of the network slice. 

The global architecture of the NFVI domain, shown in Figure 46 details the specific 

infrastructure-related Functional Entities. All the three sub-domains can be 

decomposed into smaller functional blocks, both at the virtual and hardware levels. In 

addition, the VIM, part of the MANO domain, is also shown in Figure 46 as it 

manages this specific infrastructure level from the architecture level, or functional 

level perspective. 

                                                 

5
 WGs work at an architecture or functional level, not at an implementation or physical level. 



T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation, 

Management and Orchestration - Interim 

 

© T-NOVA Consortium 

 
173 

 

Figure 46: High Level Overview of the NFVI Domains and Interfaces 

(Source: DGS NFV INF 005 v0.3.0 (2014-05) (5)) 

I.3.2 WG SWA (Software Architecture) 

As described in the Terms of Reference (ToR) of the NFV SWA WG in the ETSI portal 

(http://portal.etsi.org/TBSiteMap/NFV/NFVWGsEGsToR.aspx) (6), the main 

responsibilities of this group are to: 

• Define a reference software architecture for network functions to be deployed, 

provisioned, run and managed on a virtualised infrastructure, 

• Describe the functionalities specific to VNFs, i.e. functional behaviour, deployment 

model, and characteristics such as security and performance, 

• Identify/define the reference points/interfaces with other NFV WG building 

blocks, typically MANO and INF, and preserve reference points/interfaces to 

legacy OSS and BSS, 

• Collect and define requirements for this reference SWA architecture from relevant 

stakeholders, i.e. provided by MANO, INF and legacy OSS/BSS, 

• Validate this reference functional software architecture with concrete use cases, 

• Identify gaps, where existing standards/specifications do not fulfil the 

requirements of the reference architecture. 

With respect to the architecture, and taking into account that the WG is devoted to 

the domain that handles the VNFs and their manager, i.e. the VNF lifecycle, the 

detailed architecture is depicted in Figure 47. 

http://portal.etsi.org/TBSiteMap/NFV/NFVWGsEGsToR.aspx
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Figure 47: SWA Architectural Framework and interfaces types 

(Source: DGS NFV SWA 001 v0.2.0 (2014-05) (7)) 

I.3.3 WG MANO (Management and Orchestration Architecture) 

The ToRs indicated in the ETSI portal for this WG are to: 

• Develop ETSI deliverables on issues related to the deployment, instantiation, 

configuration and management framework of network services based on NFV 

infrastructure, focused on: 

– abstraction models and APIs, 

– provisioning and configuration, 

– operational management, 

– interworking with existing OSS/BSS, 

• Provide requirements for orchestration and management, 

• Identify gaps in current standards and best practices. 

The current working architecture conceived by the NFV MANO WG is shown in Figure 

48. 
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Figure 48: NFV MANO reference architectural framework 

(Source: DGS NFV MAN 001 v0.6.3 (2014-09) (8)) 

I.4 ETSI ISG NFV impact in WP2 of T-NOVA 

The overall set of standards in the current approval process appear to be aligned with 

T-NOVA, due to the fact that they have been carefully considered in the development 

of both the overall T-NOVA architecture and the architectural components to ensure 

appropriate alignment to the ETSI NFV reference architecture. 

In this context, the scope of the three main WGs, INF, SWA and MANO, are aligned 

with the various architecture related tasks in WP2: 

• T2.3 orchestrator requirements and architecture clearly point to the NFVO 

Functional Entities currently being worked in ETSI NFV MANO WG, 

• T2.4 infrastructure key requirements and architecture clearly point to the NFVI 

and Functional Entities currently being worked on in the ETSI NFV INF WG, 

• T2.5 virtual network functions requirements and architecture clearly point to the 

VNF Functional Entities currently being worked on in the ETSI NFV SWA WGs. 

Figure 49 illustrates the mapping between ETSI ISG NFV Functional Entities and the 

Work Packages / Tasks of the T-NOVA system as described above. 
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Figure 49: T-NOVA mapping into ETSI MANO 

(Source: T-NOVA T2.3 Kick-Off Call 2014/04/24 (3)) 

I.5 Status of work 

The current section outlines the status of the work that has been carried out in the 

ETSI ISG with respect to the new paradigm of NFV. In this context, the following will 

be provided: 

 an overview on what has been achieved to date, 

 the status of the release 1 set of documents under the responsibility of each 

WG, and 

 the current roadmap of publications up to the end of the year. 

In addition, several activities carried out under the scope of NFV Phase 2 will be 

indicated. The current scheduled timeline includes a January 2015 start, and therefore 

has the potential to influence the deployment of T-NOVA. 

I.5.1 What has been achieved to date 

From the beginning of 2013, the ETSI ISG NFV WGs have been constituted and have 

started their work in accordance with their Terms of Reference (ToRs), i.e. 

responsibilities and activities. Therefore, several documents have been initiated 

related with their currently on-going work. 

Figure 50 illustrates the roadmap of activities of the ISG NFV from the start of 2013 

up to the middle of 2014. 
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Figure 50: Timeline for ISG Work Program from beginning of 2013 to mid-2014 

(Source: ETSI ISG NFV 2nd White Paper, October 15-17, 2013 at the “SDN and OpenFlow 

World Congress”, Frankfurt-Germany (78)) 

Also in October 2013, a first set of parallel high level documents have been published 

by ETSI to inform the on-going work and to provide guidelines to the industry in a 

number of different areas: 

• NFV Use Cases document describing initial fields of application, 

• NFV Requirements document describing the high level business and technical 

requirements for an NFV framework including service models, 

• NFV Architectural Framework document describing the high-level functional 

architecture and design philosophy for virtualised network functions and the 

underlying virtualisation infrastructure. By delineating the different constituents 

and outlining the reference points between them, it paves the way for fully 

interoperable multi-party NFV solutions, 

• NFV Terminology document is a common repository for terms used within the 

NFV ISG documents, 

• NFV Proof of Concept Framework document, which appears as a consequence 

of the launch of a global call for multi-party NFV Proof of Concepts (PoC) to 

validate NFV approaches and to encourage progress towards interoperability and 

development of an open ecosystem. 

I.5.2 WG focus 

Table 35 shows the status of the documents under the responsibility of each WG. In 

addition the table has links to related documents located in the ETSI servers. 

Table 35: Overall GS documents status (as of June 18
th

) 

(Source: WG SWA internal) 
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I.5.3 Publication of documents for ETSI ISG NFV Release 1 

The activities of the ETSI ISG NFV will to continue until the end of the year, when its 

mandate is expected to terminate. The agreed timeline for the outputs from this 

group are shown in Figure 51: 

 

Figure 51: Timeline for ISG Work Program during 2014 and beginning of 2015 

(Sources: 

NFV(14)000034r1_NFV_Drafts_maintenance_process_and_release_plan_proposal invoked 

by NFV(14)000028_NFV5 Plenary draft Minutes) (6) 

Table 36 presents the expected timeline and outputs for the ETSI ISG NFV: 

Table 36: Expected timeline and outputs for the ETSI ISG NFV 

Due Date Expected Output 

mid of June 2014 Progress all NFV WG documents 

(INF+SWA+MANO+PER+etc) and approval, 

Date Target is Final Draft ASAP 
GS SWA May 28th Final Draft: http://docbox.etsi.org/ISG/NFV/SWA/70-DRAFT/SWA001/NFV-SWA001v020.zip

GS MANO May 23rd Stable draft: http://docbox.etsi.org/ISG/NFV/MAN/70-DRAFT/MAN1/NFV-MAN001v050.zip

GS REL June 12th Stable Draft: http://docbox.etsi.org/ISG/NFV/REL/70-DRAFT/REL1/NFV-REL001v013.docx

GS SEC #1 June 6th Stable Draft : http://docbox.etsi.org/ISG/NFV/SEC/70-DRAFT/SEC001/NFV-SEC001v013.zip

GS SEC #2 April 29th Early Draft: http://docbox.etsi.org/ISG/NFV/SEC/70-DRAFT/SEC2/NFV-SEC002v003.docx

GS SEC #3 Nov 25th Early Draft: http://docbox.etsi.org/ISG/NFV/SEC/70-DRAFT/SEC3/NFV-SEC003v007.docx

GS PER April 25 Final Draft: http://docbox.etsi.org/ISG/NFV/PER/70-DRAFT/PER001/NFV-PER001v009.zip

GS INF #1 Final Draft Final Draft: http://docbox.etsi.org/ISG/NFV/INF/70-DRAFT/INF1/NFV-INF001v038.doc

GS INF #2 Final Draft Final Draft: http://docbox.etsi.org/ISG/NFV/INF/70-DRAFT/INF2/NFV-INF002v032.docx

GS INF #3 May 29th Final Draft: http://docbox.etsi.org/ISG/NFV/INF/70-DRAFT/INF3/NFV-INF003v031.docx

GS INF #4 May 27th Final Draft: http://docbox.etsi.org/ISG/NFV/INF/70-DRAFT/INF4/NFV-INF004v031.doc

GS INF #5 May 30th Final Draft: http://docbox.etsi.org/ISG/NFV/INF/70-DRAFT/INF5/NFV-INF005v031.docx

GS INF #6 N/A

GS INF #7 May 25th Final Draft: http://docbox.etsi.org/ISG/NFV/INF/70-DRAFT/INF7/NFV-INF007v031.zip

GS INF #8 N/A => 2/3/4 Stable Draft: http://docbox.etsi.org/ISG/NFV/INF/70-DRAFT/INF8/NFV-INF008v012.doc

GS INF #9 N/A

GS INF #10 June 12th Stable Draft: http://docbox.etsi.org/ISG/NFV/INF/70-DRAFT/INF010/NFV-INF010v009.docx
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Freeze release and begin release maintenance, envisaging 

consistency update6  

Mid November 2014 End release maintenance followed by beginning of release 

approval. 

end of December 30 days of release approval by ETSI ISG NFV 

end of January 2015 Release 1 NFV documents publication. 

I.5.4 Phase 2 preparation 

The mandate of the ETSI ISG NFV runs for two years until the end of 2014. 

It is widely recognised that the ETSI ISG NFV Phase 1 documents won’t cover the NFV 

domain in its entirety, i.e. there are business and technical issues that will be left for 

further study in Phase 2, which is scheduled to begin in January 2015, by NFV#9. This 

is the key reason why a set of activities has been in preparation since February-March 

of 2014, in order to ensure a successful end to Phase 1 followed by a smooth 

transition to a sustained Phase 2 with well-defined objectives and a clear schedule. 

In the remaining part of this subsection, a selected number of those activities that are 

taking place will be briefly outlined bearing in mind that discussions are still ongoing 

and no definitive results have been obtained at the moment. 

I.5.4.1 Global objectives 

In this context, it is worth to be considered what the Chairman has pointed out as 

global objectives in his presentation during the last Okinawa closing plenary meeting 

(6): 

“There is room for quite a lot of issues, technical and non-technical, to be considered, 

e.g.: 

• To foster interoperable implementations, 

• To facilitate development of an open ecosystem, 

• To provide guidance to open source and open innovation efforts, 

• To drive towards commonly defined operating environment that can support a 

variety of VNFs, 

• To provide direction for NFV outbound messaging, 

• To develop documents that provides requirements to relevant SDOs.” 

I.5.4.2 Governance model 

In this Phase 2 preparation, the governance model that will lead to a new structure is 

under discussion. When compared to the structure adopted in Phase 1, one of the 

main drivers is the replacement of a vertical-based structure by another one that 

                                                 

6
 The Release Maintenance concept has been introduced in order to guarantee harmonisation 

between overall documents. In this phase, drafts are WG approved, i.e. technical content is 

ready for publication, only corrections and inter WG alignments are allowed 
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might be considered as horizontal, with a NFV Steering Board (NSB), and still a 

Network Operator Council (NOC) and a Technical Steering Committee (TSC), on the 

top, but with slightly different responsibilities. The innovation relies on the intention 

to close the WGs and EGs, replacing them by ad hoc groups with a very limited scope 

and timeframe, i.e. the group is disbanded upon completion of the work by the 

agreed deadline. 

However, this position is not consensual as there are other people that consider that 

a lot of outstanding issues remain to be addressed in the WGs and, as such, the 

preference is to retain the current working groups. 

The outcome will probably merge the two approaches. 

I.5.4.3 Documents maintenance 

It is expected that the documents that the ISG NFV will publish by the end of this year 

will require a maintenance process due to errors and inconsistencies that will only be 

discovered when people start using them extensively. 

In addition, as stated in a draft document recently circulated, some operators expect 

that the ETSI NFV’s new work items will lead to two types of deliverables, equivalent 

in contents to ETSI Technical Specifications (TSs) and to ETSI Technical Reports (TRs). 

This does not preclude both types of documents to be published as ETSI Group 

Specifications. 

However, once again, the issue is not consensual and it is still being discussed in the 

mailing list and in the Phase 2 wiki. 

I.5.4.4 Issues related to NFV evolution 

The evolution of NFV must also be considered. In the future, new requirements will 

emerge as NFV matures and will likely justify new releases/phases of NFV 

specification work. In addition, the activity carried out in this area will be close to the 

work performed in the new Open Platform for NFV (OPN), as detailed bellow. 

As an example, the importance of focusing on interoperability, in order to guarantee 

an e2e architecture framework, may be one of most inevitable issues, one of those 

that can’t be avoided. This has to be addressed by the specification of some 

interfaces that were left as almost void in Phase 1. 

Another example of a recognised (technical) issue, but with less priority, is the 

interworking with legacy OSS/BSS and a plan for migration. 

Finally, some new documents may be necessary to cover areas that in the initial 

phase were thought to be out of scope. 

I.5.4.5 3rd White Paper 

The elaboration of a 3rd White Paper by NOC was agreed in order to position the 

published release 1 documents and to describe the operators’ vision for the next 

steps (i.e. role and governance of ISG NFV Phase 2, maintaining influence on the 

wider industry). It will not contain any proprietary information and the objective will 
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be to secure the widest possible support of network operators. The agreed timescale 

is October 2014, in time for Layer123 conference in Dusseldorf. 

I.5.4.6 Open Platform NFV 

Mission and Goals, Scope and Objectives 

According to a contribution presented at the NFV#6 closing plenary, 13-16 May 

Okinawa, Japan, the mission of this envisaged new forum is to drive NFV’s evolution 

through the creation of a new an Open Platform for NFV (OPN), which the carrier and 

vendor community will benefit from, i.e.: 

• To create an integrated and tested open (SW, HW) platform to address the 

industry’s needs, 

• To create an environment for continuous system level validation and 

integration, 

• To contribute changes to and influence upstream open source projects 

leveraged in the platform, 

• To build new open source components within the project where needed, 

• To use the open implementations to drive an open standard and open 

ecosystem for NFV solutions. 

The scope of the work will be based on the ETSI MANO and NFVI architectures. As far 

as the objectives are concerned, the following have been indicated: 

• To provide an environment for realisation and implementation of the ETSI ISG 

NFV architecture and requirements, 

• To create an open platform which supports NFV and is carrier grade (meets 

performance, scale and reliability requirements): 

– To take advantage of the innovation in the open source community, 

– To coordinate upstream contributions to address gaps for supporting NFV, in 

current open source projects, 

– To integrate open source components and develop glue-code to create an 

E2E solution, 

• To drive for faster traction and lower development cost on realising a carrier 

grade NFV open platform: 

– To take advantage of the resource multiplier effect due to multiple company 

support, 

– To improve speed development and breadth of features. 

Internal Governance Model 

So far, an internal governance model has already been proposed and is being 

discussed amongst internal representatives in charge of OPN forum constitution, as 

well as other NOC and TSC representatives. Basically, it will be composed by three 
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internal bodies, i.e. the End-User Advisory Council, the Board and the TSC, whose 

responsibilities are: 

• The End-User Advisory Council is a broad open body to every NFV member, 

which is in charge of selecting gathering and selecting use cases and respective 

requirements. Participation in this body is meant to be free of any fees, 

• The Board is a body composed by selected expertise members, which are in 

charge of validating the proposal, by analysing the project scope, the business 

case including financial and marketing analysis, and the technical strategic 

direction. To be part of the Board, a company companies have to pay a fee, which 

terms of payment are still being studied but will depend for sure on the 

company’s size, 

• The Technical Steering Committee is a body that is more related with the 

execution part by being responsible for overseeing its design and development, 

• The Projects are groups constituted to execute a validated proposal. 

External Relationships 

In terms of external relationships, the Forum communicates with the ETSI ISG NFV, as 

well as any other SDOs in order to collect use cases and requirements. Additionally, 

the Forum also communicates with other relevant Open source projects. 
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LIST OF ACRONYMS 

 

Acronym Description 

ACPI Advanced Configuration and Power Interface 

API Application Programming Interface 

AST Automatic Storage Tiering 

BSS Business Supporting System 

CAM Control, Administration and Monitoring 

CAPEX Capital Expenditure 

CLC Cloud Controller 

CLI  Command Line Interface 

CP Control Plane 

CPU Control Processing Unit 

D2.1 Deliverable D2.1 

D2.21 Deliverable D2.21 

D2.41 Deliverable D2.41 

DC Data Centre 

DCN Data Centre Network 

DMC DOVE Management Console 

DOVE Distributed Overlay Virtual Ethernet 

DP Data Plane 

DPDK Data Plane Development Kit 

DPI Deep Packet Inspection 

E2E End-to-End 

EG Experts Group 

EM Element Manager 

EN European Norm 

EPT Extended Page Tables 

ETSI European Telecommunications Standards Institute 

EU End User 
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EVB Edge Virtual Bridge 

FE Functional Entity 

FN Future Networks 

FP Function Provider 

FPGA Field Programmable Gate Array 

GS Global Standard 

GPU Graphical Processing Unit 

GW Gateway 

HG Home Gateway 

HW Hardware 

I/O Input/Output 

IaaS Infrastructure as a Service 

IEEE  Institute of Electrical and Electronics Engineer 

IETF Internet Engineering Task Force 

INF Infrastructure 

IP Internet Protocol 

IP Infrastructure Provider 

IPAM IP Address Management 

IPsec IP security 

ISG Industry Specification Group 

ISO International Organisation for Standardisation 

IT Information Technology 

ITU International Telecommunication Union 

ITU-T ITU Telecommunication Standardization Sector 

IVM Infrastructure Virtualisation and Management 

KPI Key Parameter Indicator 

L2 Layer 2 

L3 Layer 3 

LAN Local Area Network 

LINP Logically Isolated Network Partition 

MAC Mdedia Access Control 
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MAN Metro Area Network 

MANO Management and Orchestration 

MEF Metro Ethernet Forum 

MIC Multi-Integrated Cores 

MPLS Multiprotocol Label Switching 

NaaS Network as a Service 

NC Network Controller 

NETCONF Network Configuration Protocol 
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NFVI Network Functions Virtualisation Infrastructure 
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NFVI-PoP NFVI-Point of Presence 

NFVO Network Function Virtualisation Orchestrator 

NG-OSS Next Generation Operations Supporting System 

NIC Network Interface Cards 

NIP Network Infrastructure Provider 

NOC Network Operators Council 

NS Network Service 

NSD Network Service Descriptor 

NV Network Virtualization 

NVGRE Network Virtualization using Generic Routing Encapsulation 

OAN Open Access Network 

OCCI Open Cloud Computing Interface 

ONF Open Networking Foundation 

OPEX Operational Expenditure 

OPN Open Platform for NFV 

OS Operating System 

OSI Open Systems Interconnection 

OSS Operations Supporting System 
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PF Physical Function 

PNF Physical Network Function 

PoC Proof of Concept 

PC Personal Computer 

PER Performance & Portability Best Practices 

QPI Quick Path Interconnect 

QoS Quality of Service 

RAM Random Access Memory 

RAS Reliability Availability and Serviceability 

REST API Representation State Transfer API 

RFC Request for Comments 

RPC Remote Procedure Call 

RTP Real Time Protocol 

SAN Storage Area Network 

SBC  Session Border Controller 

SDN Software-Defined Networking 

SDO Standards Development Organisation 

SG13 Study Group 13 

SLA Service Level Agreement 

SNMP Simple Network Management Protocol 

SOTA State-Of-The-Art 

SP Service Provider 

SR-IOV Single Root I/O Virtualisation 

SSD Solid-state-disk 

STP Spanning Tree Protocol 

STT Stateless Transport Tunnelling 

SW Software 

SWA Software Architecture 

ToR Terms of Reference 

ToR Top of Rack 

TMF TeleManagement Forum 



T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation, 

Management and Orchestration - Interim 

 

© T-NOVA Consortium 

 
192 

TNM Transport Network Manager 

TR Technical Report 

TS Technical Standard 

TSC Technical Steering Committee 

T-NOVA Network Functions as-a-Service over Virtualised 

Infrastructures 

UC Use Case 

UML Unified Modelling Language 

VEB Virtual Edge Bridge 

VEPA Virtual Ethernet Port Aggregator 

VIM Virtualised Infrastructure Manager 

VL Virtual Link 

VLD Virtual Link Descriptor 

VLAN Virtual Local Area Network 

VM Virtual Machine 

VMM Virtual Machine Manager 

VMX Virtual Machine Extension 

VN Virtual Network 

VNF Virtual Network Function 

VNFC Virtual Network Function Component 

VFND Virtual Network Function Descriptor 

VNFFG Virtual Network Function Fowarding Graph 

VNFFGD Virtual Network Function Fowarding Graph Descriptor 

VNFM Virtual Network Function Manager 

VRF Virtual Routing and Forwarding 

VPN Virtual Private  Network 

VSAN Virtual Storage Area Network 

vNIC Virtual Network Interface Cards 

VPN Virtual Private Network 

VTN Virtual Tenant Network 

WAN Wide Area Network 

WG Working Group 
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WP Work Package 

WP Working Procedures 

XML Extended Markup Language 

ZOOM Zero-touch Orchestration, Operations & Management 

 


