
T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

1

Deliverable D2.31

Specification of the Infrastructure

Virtualisation, Management and

Orchestration - Interim

Editor Antonio Gamelas (PTIN)

Contributors Pedro Neves, Jose Bonnet, Antonio Gamelas (PTIN), Michael J.

McGrath, Vincenzo Riccobene (INTEL), Dora Christofi, Georgios

Dimosthenous (PTL), Beppe Coffano, Luca Galluppi, Pierangelo

Magli, Marco Di Girolamo (HP), Letterio Zuccaro, Federico

Cimorelli, Antonio Pietrabissa, Raffaele Gambuti (CRAT), George

Xilouris (NCSRD), Zdravko Bozakov, Panagiotis Papadimitriou

(LUH), Jordi Ferrer Riera (i2CAT)

Version 1.0

Date September 30th, 2014

Distribution RESTRICTED (RE)

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

2

Executive Summary

The specification presented in this document utilises the requirements described in

previous deliverables together with the latest NFV and virtualisation requirements

defined by various industry bodies including the ETSI ISG NFV and ITU-T, as well as

excerpts of relevant parts of the ETSI ISG MANO WG architecture and associated

Functional Entities (FEs). Information assembled via this process was used as the

critical input into a two stage process. Stage 1 consisted of a research and design

phase, where a systems engineering approach was adopted to define the key

functional blocks and their associated capabilities. Stage 2 defined both the reference

architectures and its FEs, which are described in this document. Both the architecture

and associated FEs are presented in a technology agnostic manner to decouple the

specifics of the implementations details. An additional third stage which constitutes

the key activities within WP3/4 will address the specifics of the appropriate

technologies to be utilised and their operation.

Section 1 introduces the main technical areas addressed by this deliverable such as

virtualisation, the evolution of IT compute technologies in to the carrier domain, the

advent of software defined networking etc. In addition, it also presents the T-NOVA

solution constituted by both the T-NOVA Orchestration platform and the T-NOVA

Infrastructure Virtualisation Layer (IVM) platform. This section concludes by

presenting and describing its functional architecture.

Section 2, provides a concise review of the current state-of-the-art technologies and

industry/academic initiatives that are relevant to the Orchestration and Infrastructure

Virtualisation layers in T-NOVA. While there is strong focus on ETSI related activities,

a broad perspective has been adopted in this deliverable in order to ensure that all

relevant influences are suitably considered and filtered to make sure that the

architectural components considered in this document include the state-of-the-art

architectural and technology related approaches in their design and specification.

Section 3 provides the Orchestration layer specifications by starting with an overview

of its framework, the Orchestrator Domain, followed by the requirements of the

associated FEs, and concluding by presenting and describing its functional

architecture.

Section 4 presents the overall integrated architecture for the IVM layer together with

the architecture of the various domains that comprise the IVM with their respective

internal and external interfaces. Collectively, these reference architectures and FEs

instantiate the requirements that were identified for the T-NOVA Orchestrator and

IVM together with their goals and objectives.

Section 5 presents the key Virtualised Network Function (VNF) and Network Service

(NS) workflows that should be supported by the T-NOVA architecture. The reference

architectures were interrogated and validated at a functional level through the

development of these NS and VNF workflow diagrams, which illustrated the key

actions and interactions within the T-NOVA system during standard operational

activities related to the deployment and management of NS and VNF services.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

3

Section 6 provides the results of a focused gap analysis that was carried out to

determine what steps need to be taken in order to move NFV/SDN from its current

state to a position that can fully realise the needs of carrier grade deployments.

Annexes A and B contain the requirements for Orchestrator’s and IVM’s Functional

Entities, while Annex C contains a definition for several terms used throughout the

present deliverable. Finally, Appendix I constitute a repository of relevant information

on the ETSI ISG NFV framework.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

4

Table of Contents

1. INTRODUCTION ... 11

1.1. VIRTUALISATION .. 11

1.1.1 The Virtualisation Concept ... 11

1.1.2 The Pros and Cons of NFV Deployments ... 13

1.2 THE T-NOVA SOLUTION... 14

1.2.1 The T-NOVA Orchestration Platform.. 15

1.2.2 The T-NOVA IVM Platform ... 16

2. SOTA SURVEY ... 17

2.1. GLOBAL SPECIFICATIONS COMING FROM MAIN SDOS/FORA .. 17

2.1.1 ETSI ISG NFV .. 17
2.1.1.1. WG INF (Infrastructure Architecture) ... 17
2.1.1.2. WG SWA (Software Architecture).. 18
2.1.1.3. WG MANO (Management and Orchestration Architecture) ... 19

2.1.2 ITU-T .. 20
2.1.2.1 Virtualisation in ITU-T ... 20
2.1.2.2 Work carried out by ITU-T SG13 .. 23

2.1.3 IETF ... 26
2.1.3.1 NETCONF ... 26
2.1.3.2 YANG ... 26

2.1.4 TMF – ZOOM ... 27

2.1.5 CloudNFV ... 28

2.2 VIM AND CONTROL SPECIFIC AREAS .. 30

2.2.1 IT Virtualisation Methods .. 30
2.2.1.1 Hypervisors ... 31
2.2.1.2 Open Source and Commercial Hypervisors .. 32
2.2.1.3 Containers ... 35

2.2.2 Compute, Network I/O and Storage Virtualisation .. 36
2.2.2.1 Microprocessor Virtualisation ... 37
2.2.2.2 Intel Virtualisation Technology (Intel VT) ... 37
2.2.2.3 AMD's Virtualisation (AMD-V) Opteron.. 37
2.2.2.4 Storage Virtualisation ... 38
2.2.2.5 Software and Hardware -Assisted Network Virtualisation .. 39
2.2.2.6 Data Plane Development Kit (DPDK).. 41

2.2.3 Cloud Environments and Controllers .. 43
2.2.3.1 OpenStack ... 43
2.2.3.2 Eucalyptus .. 44
2.2.3.3 Cloudstack ... 44
2.2.3.4 VMware vCloud Suite ... 45

2.2.4 Network Resource Virtualisation and Management .. 45
2.2.4.1 Tunnelling Protocols ... 45
2.2.4.2 Software Defined Network Controllers ... 48
2.2.4.3 NaaS platforms .. 51

3 THE T-NOVA ORCHESTRATION LAYER... 56

3.1 ORCHESTRATION LAYER OVERVIEW ... 56

3.2 ORCHESTRATOR REQUIREMENTS ... 59

3.2.1 NFVO requirements types ... 60

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

5

3.2.1.1 NS Lifecycle ... 61
3.2.1.2 VNF Lifecycle .. 61
3.2.1.3 Resource Handling... 62
3.2.1.4 Monitoring Process ... 62
3.2.1.5 Connectivity Handling .. 63
3.2.1.6 Policy Management ... 63
3.2.1.7 Marketplace-specific interactions.. 64

3.2.2 VNFM requirements types .. 64
3.2.2.1 VNF Lifecycle .. 65
3.2.2.2 Monitoring Process ... 65

3.3 FUNCTIONAL ORCHESTRATOR ARCHITECTURE .. 65

3.3.1 Reference Architecture ... 65

3.3.2 Functional entities ... 66
3.3.2.1 Network Function Virtualisation Orchestrator (NFVO) ... 66
3.3.2.2 Virtual Network Function Manager (VNFM) ... 70
3.3.2.3 Repositories and Catalogues ... 72

3.3.3 External Interfaces ... 73
3.3.3.1 Interface between the Orchestrator and the Network Function Store 74
3.3.3.2 Interface between the Orchestrator and the Marketplace ... 74
3.3.3.3 Interface between the Orchestrator and the VIM... 75
3.3.3.4 Interface between the Orchestrator and the Transport Network Management 76
3.3.3.5 Interface between the Orchestrator and the VNF .. 76

4. THE T-NOVA IVM LAYER .. 78

4.1 INTRODUCTION .. 78

4.2 OBJECTIVES AND CHARACTERISTICS OF THE T-NOVA IVM LAYER 79

4.3 T-NOVA IVM LAYER REQUIREMENTS ... 80

4.3.1 Virtual Infrastructure Manager ... 81

4.3.2 Transport Network Management ... 82

4.3.3 NFVI Compute .. 82

4.3.4 NFVI Hypervisor ... 82

4.3.5 NFVI DC Network .. 82

4.4 T-NOVA IVM ARCHITECTURE ... 83

4.4.1 External Interfaces ... 83

4.4.2 Internal IVM Interfaces ... 86

4.5 NFVI AND NFVI-POP.. 88

4.5.1 IT Resources ... 89
4.5.1.1 Compute Domain ... 89
4.5.1.2 Hypervisor Domain .. 94

4.5.2 Infrastructure Network Domain .. 95

4.6 VIRTUALISED INFRASTRUCTURE MANAGEMENT .. 97

4.6.1 IT Resource Management and Control ... 99
4.6.1.1 Hypervisor Management .. 99
4.6.1.2 Computing Resources Management ... 99

4.6.2 Infrastructure Network Resources Management and Monitoring 101

4.7 TRANSPORT NETWORK MANAGEMENT .. 102

4.7.1 Network Resources Management and Monitoring .. 103
4.7.1.1 SDN-enabled Network Elements ... 103
4.7.1.2 Legacy Network Elements .. 104

5 T-NOVA VNFS AND NSS PROCEDURES ... 106

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

6

5.1 VNF RELATED PROCEDURES .. 106

5.1.1 On-boarding ... 106

5.1.2 Instantiation.. 107

5.1.3 Supervision .. 111

5.1.4 Scale-out .. 114

5.1.5 Termination .. 116

5.2 NS RELATED PROCEDURES .. 119

5.2.1 On-boarding ... 119

5.2.2 Instantiation.. 120

5.2.3 Supervision .. 123

5.2.4 Scale-out .. 124

5.2.5 Termination .. 127

5.3 NS, VNF AND INFRASTRUCTURE MONITORING .. 127

6 GAP ANALYSIS ... 131

6.1 COMPUTE .. 131

6.2 HYPERVISOR .. 132

6.3 SDN CONTROLLERS .. 132

6.4 CLOUD CONTROLLERS ... 133

6.5 NETWORK VIRTUALISATION .. 134

6.6 NFV ORCHESTRATOR .. 136

7 CONCLUSIONS ... 137

ANNEX A - ORCHESTRATOR REQUIREMENTS ... 140

A.1 INTERNAL REQUIREMENTS ... 141

A.1.1 NFVO Requirements .. 141
A.1.1.1 NS Lifecycle requirements .. 141
A.1.1.2 VNF Lifecycle requirements ... 142
A.1.1.3 Resource Handling Requirements ... 143
A.1.1.4 Monitoring Process requirements ... 144
A.1.1.5 Connectivity Handling requirements ... 144
A.1.1.6 Policy Management requirements .. 145
A.1.1.7 Marketplace-specific interactions requirements ... 146

A.1.2 VNFM Requirements .. 147
A.1.2.1 VNF Lifecycle requirements ... 147
A.1.2.2 Monitoring Process requirements ... 148

A.2 INTERFACE REQUIREMENTS ... 149

A.2.1 Interface with VIM .. 149

A.2.2 Interface with VNF .. 151

A.2.3 Interface with Marketplace .. 152

ANNEX B - VIRTUALISED INFRASTRUCTURE MANAGEMENT REQUIREMENTS 154

B.1 VIRTUAL INFRASTRUCTURE MANAGEMENT REQUIREMENTS .. 154

B.2 TRANSPORT NETWORK MANAGEMENT REQUIREMENTS .. 158

B.3 NFV INFRASTRUCTURE REQUIREMENTS .. 159

B.3.1 Computing .. 159

B.3.2 Hypervisor ... 162

B.3.3 Networking ... 163

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

7

ANNEX C - TERMINOLOGY ... 167

C.1 GENERAL TERMS ... 167

C.2 ORCHESTRATION DOMAIN ... 167

C.3 IVM DOMAIN ... 168

APPENDIX I – ETSI ISG NFV FRAMEWORK ... 170

I.1 ETSI ISG NFV OVERVIEW .. 170

I.2 HIGH-LEVEL NFV FRAMEWORK AND REFERENCE ARCHITECTURE 170

I.3 RELEVANT WORKING GROUPS AND EXPERT GROUPS .. 172

I.3.1 WG INF (Infrastructure Architecture) .. 172

I.3.2 WG SWA (Software Architecture) ... 173

I.3.3 WG MANO (Management and Orchestration Architecture) 174

I.4 ETSI ISG NFV IMPACT IN WP2 OF T-NOVA ... 175

I.5 STATUS OF WORK ... 176

I.5.1 What has been achieved to date .. 176

I.5.2 WG focus .. 177

I.5.3 Publication of documents for ETSI ISG NFV Release 1 178

I.5.4 Phase 2 preparation ... 179
I.5.4.1 Global objectives .. 179
I.5.4.2 Governance model... 179
I.5.4.3 Documents maintenance .. 180
I.5.4.4 Issues related to NFV evolution ... 180
I.5.4.5 3

rd
 White Paper ... 180

I.5.4.6 Open Platform NFV ... 181

REFERENCES ... 183

LIST OF ACRONYMS .. 188

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

8

Index of Figures

Figure 1: High-level view of overall T-NOVA System Architecture 15

Figure 2 High Level Overview of the NFVI Domains and Interfaces 18

Figure 3: SWA Architectural Framework and interfaces types ... 19

Figure 4: NFV MANO reference architectural framework ... 20

Figure 5: Conceptual architecture of network virtualization .. 21

Figure 6: Y.3001: Four objectives and twelve design goals of future networks 24

Figure 7: ITU-T Future networks activity timeline (Roadmap) ... 26

Figure 8: The CloudNFV Architecture (29)... 29

Figure 9: Relation between virtualisation technologies and T-NOVA architecture 30

Figure 10: Hypervisor versus container based virtualisation approaches 35

Figure 11: VEB vs. VEPA .. 39

Figure 12: SR-IOV PF and VF conceptual overview.. 41

Figure 13: Cloud Management System Deployments .. 43

Figure 14: Open Networking Foundation Software-Defined Network Architecture 49

Figure 15: OpenNaaS Architecture (left), NaaS Resource Abstraction (right) 52

Figure 16: NSs & VNFs Complex Orchestration Overview .. 58

Figure 17: T-NOVA Orchestrator Reference Architecture ... 66

Figure 18: NS Orchestrator (Internal & External) Interactions ... 68

Figure 19: Virtualised Resources Orchestrator (Internal & External) Interactions 70

Figure 20: VNF Manager (Internal & External) Interactions .. 71

Figure 21: T-NOVA infrastructure virtualisation and management (IVM) high level

architecture ... 84

Figure 22: Compute Domain High Level Architecture .. 93

Figure 23: Hypervisor domain architecture .. 95

Figure 24: High level architecture of the Infrastructure Network... 96

Figure 25: T-NOVA VIM high level architecture .. 98

Figure 26: VIM Network Control Architecture .. 101

Figure 27: VNF On-boarding Procedure ... 107

Figure 28: VNF Instantiation Procedure (Orchestrator’s View) ... 108

Figure 29: VNF Instantiation Procedure (IVM’s View) .. 110

Figure 30: VNF Supervision Procedure (Orchestrator’s View) ... 112

Figure 31: VNF Supervision Procedure (IVM’s View) .. 113

Figure 32: Scaling out a VNF ... 114

Figure 33: VNF Scale-out Procedure .. 115

Figure 34: VNF Termination Procedure – Orchestrator’s View ... 117

Figure 35: VNF Termination Procedure – IVM’s View .. 118

Figure 36: NS On-boarding Procedure .. 119

Figure 37: NS Instantiation Procedure (Orchestrator’s View) ... 120

Figure 38: NS Instantiation Procedure (IVM’ View) ... 122

Figure 39: NS Supervision Procedure ... 123

Figure 40: Scaling-out a NS ... 125

Figure 41: NS Scale-out ... 126

Figure 42: NS Termination Procedure .. 127

Figure 43: Communication of monitoring information across the T-NOVA system .. 128

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

9

Figure 44: High-level NFV framework .. 171

Figure 45: NFV reference architectural framework ... 171

Figure 46: High Level Overview of the NFVI Domains and Interfaces 173

Figure 47: SWA Architectural Framework and interfaces types ... 174

Figure 48: NFV MANO reference architectural framework .. 175

Figure 49: T-NOVA mapping into ETSI MANO ... 176

Figure 50: Timeline for ISG Work Program from beginning of 2013 to mid-2014 177

Figure 51: Timeline for ISG Work Program during 2014 and beginning of 2015 178

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

10

Index of Tables

Table 1: Comparison of Hypervisor Types .. 32

Table 2: Comparison of key open source and commercial hypervisor technologies ... 34

Table 3: Comparison of Hypervisors and Container Approaches .. 35

Table 4: Common VLAN Tunnelling Protocols .. 47

Table 5: Key features of common SDN controllers .. 49

Table 6: External Interfaces of the T-NOVA IVM .. 85

Table 7: Internal interfaces of the IVM ... 87

Table 8: Monitoring metrics per infrastructure domain .. 129

Table 9: Gap analysis in the compute domain ... 131

Table 10: Gap analysis in the Hypervisor domain ... 132

Table 11: Gap analysis regarding SDN Controllers ... 132

Table 12: Gap analysis regarding Cloud Controllers .. 133

Table 13: Gap analysis regarding Network Virtualisation .. 134

Table 14: Gap analysis regarding Orchestration .. 136

Table 15: Orchestrator Requirements – NFVO- NS Lifecycle .. 141

Table 16: Orchestrator Requirements – NFVO- VNF Lifecycle ... 142

Table 17: Orchestrator Requirements – NFVO- Resource Handling 143

Table 18: Orchestrator Requirements – NFVO- Monitoring Process 144

Table 19: Orchestrator Requirements – NFVO- Connectivity Handling.......................... 144

Table 20: Orchestrator Requirements – NFVO- Policy Management 145

Table 21: Orchestrator Requirements – NFVO- Marketplace specific 146

Table 22: Orchestrator Requirements – VNFM- VNF Lifecycle ... 147

Table 23: Orchestrator requirements – VNFM- Monitoring Process 148

Table 24: Requirements between the Orchestrator and VIM ... 149

Table 25: Requirements between the Orchestrator and VNF ... 151

Table 26: Requirements between the Orchestrator and the Marketplace 152

Table 27: IVM Requirements - VIM ... 154

Table 28: IVM Requirements - TNM ... 158

Table 29: IVM requirements - Computing ... 159

Table 30: IVM Requirements - Hypervisor ... 162

Table 31: IVM Requirements - Networking ... 163

Table 32: General terms .. 167

Table 33: Orchestration Domain terminology .. 167

Table 34: IVM Domain terminology ... 168

Table 35: Overall GS documents status (as of June 18th) .. 177

Table 36: Expected timeline and outputs for the ETSI ISG NFV ... 178

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

11

1. INTRODUCTION

This deliverable outlines the outputs and the results of the activities carried out in

Tasks 2.3 and 2.4 in Work Package 2 (WP2). These outputs and results are focused on

the infrastructure virtualisation layer as well as of the management and orchestration

layer within the T-NOVA system.

1.1. Virtualisation

Virtualisation is a general term that can apply to a variety of different technology

approaches such as hardware, operating system, storage, memory and network. It is

the key enabler technology that allows traditional physical network functions to be

decoupled from fixed appliances and to be deployed onto industry standard servers

large Data Centres (DCs). This approach is providing operators with key benefits such

as greater flexibility, faster delivery of new services, a broader ecosystem enhancing

innovation in the network etc.

1.1.1 The Virtualisation Concept

From a computing perspective virtualisation abstracts the computing platform and, in

doing so, hides its physical characteristics from users or applications. Dating back to

the 1960’s, the concept of virtualisation was first introduced with the Atlas Computer

with the concept of virtual memory, and paging techniques for system memory. IBM’s

M44/44X project building on these innovations developed an architecture which first

introduced the concept of virtual machines (VMs). Their approach was based on a

combination of hardware and software allowing the logical slicing of one physical

server into multiple isolated virtual environments (1). Virtualisation has now evolved

from its initial mainframe origins to now being supported by the X86 architecture and

being adopted by other non-computing domain such as storage and networking.

The term Full Virtualisation describes the technique where a complete simulation of

the underlying hardware is provided. This approach has its origins in IBM’s control

programs for the CP/CMS operating system. Today this approach is used to emulate

a complete hardware environment in the form of a VM, in which a guest Operating

System (OS) runs in isolation. Full virtualisation wasn’t completely possible with the

x86 architecture until the addition of Intel’s VT and AMD-V extensions in 2005-2006.

In fact, full x86 virtualisation relies on binary translation to trap and virtualise the

execution of certain sensitivity “non-virtualisable” instructions. With this approach,

critical instructions are discovered and replaced with traps into the Virtual Machine

Manager (VMM), also called a hypervisor, to be emulated in software.

Virtualisation is now found in applications for other domains such as storage, and

network to deliver similar benefits to those realised in the compute domain.

 Storage virtualisation refers to a process by which several physical disks

appear to be a single unit. Virtualised storage is typically block-level rather

than file-level, meaning that it looks like a normal physical drive to computers.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

12

The key advantages of the approach are: (i) easier management of

heterogeneous storage environments, (ii) better utilisation of resources, (iii)

greater flexibility in the allocation of storage to VMs,

 Network virtualisation comes in many forms like Virtual Local Area Networks

(VLANs), Logical Storage Area Networks (LSANs) and Virtual Storage Area

Networks (VSANs) that allow a single physical Local Area Networks (LAN) or

Storage Area Networks (SAN) architecture to be carved up into separate

networks without dependence on the physical connection. Virtual Routing

and Forwarding (VRF) allows separate routing tables to be used on a single

piece of hardware to support different routes for different purposes. The

benefits of network virtualisation are very similar to server virtualisation,

namely increased utilisation and flexibility.

These technologies in the form of cloud computing are now being rapidly adopted

by network operators in their carrier network domains in order to consolidate

traditional network devices onto standard high volume x86 servers, switches and

storage in the form of VNFs. In doing so, they allow service providers to transform

their network functions into an elastic pool of resources while seeking compatibility

with network and operational management tools. Building on cloud DCs allows

operators to create an orchestration environment for the management and control of

their compute, network and storage resources. For VNFs to function properly the

configuration of the network underneath them is critical. To provision or adapt VNFs

to changing network conditions or customer requests requires the ability to configure

or adapt network routes in a highly expeditious manner.

The advent of Software Defined Networking (SDN) with its support for programmatic

provisioning transforms service delivery from weeks to a matter of minutes or even

seconds. SDN is based around a new networking model where control of the network

is decoupled from the physical hardware allowing a logically centralised software

program (a network controller) to control the behaviour of an entire network. The use

of centralised network control and a common communication layer protocol across

the switching elements in the network can enable increased network efficiency,

centralised traffic engineering, improve troubleshooting capabilities and the ability to

build multiple virtual networks running over a common physical network fabric. In

SDN, network elements are primarily focused on packet forwarding, whereas

switching and routing functions are managed by centralised network controller which

dynamically configures network elements using protocols such as OpenFlow. SDN is

starting to be deployed in data centre and enterprise environments e.g. Google.

Virtual networks to support VNF deployment can be deleted, modified or restored in

a matter of seconds in much the same manner that we provision virtual machines in

cloud environments.

Virtualisation and its adoption in the key constituent elements of networks and data

centres has created an agility for service providers that was not previously possible.

Virtualisation of infrastructure, networks as well as the applications and services that

run on top will allow service providers to rapidly transform their networks and to

embrace new innovations.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

13

1.1.2 The Pros and Cons of NFV Deployments

As highlighted by the ETSI ISG NFV in its first white paper (2), the scenario which

defines the situation faced by most network operators nowadays, relates to the

physical components of their networks, which are characterised by the use of a wide

range of proprietary hardware appliances. This problem of appliance and technology

diversity continues to grow for operators as new equipment is added to previous

generations of equipment in the network.

This leads to significant challenges related to the launch of new services, increasing

energy costs and capital investments coupled with the difficulty of finding people

with the most appropriate skills to handle the design, integration and operation of

increasingly complex hardware-based appliances. In addition, the trend towards

shorter operational lifespan of hardware also affects revenues, leading to situations

where there is no return on investment or where there is no time for innovation.

As previously outlined in the T-NOVA project scope (3), Network Functions

Virtualisation (NFV) will address these challenges by leveraging standard Information

Technology (IT) virtualisation technology to consolidate various network equipment

types onto industry standard high volume servers, switches and storage located in

DCs, Network Nodes and in the end user premises. In this context, NFV refers to the

virtualisation of network functions carried out by specialised hardware devices and

their migration to software-based appliances, which are deployed on top of

commodity IT (including Cloud) infrastructures.

Virtualising Network Functions potentially offers many benefits, including:

 Reduction in both equipment costs and power consumption,

 Reduced time to market,

 Availability of network appliances that support multiple-versions and multi-

tenancy, with the ability to share resources across services,

 Targeted service introduction based on geography or customer type, where

services can be quickly scaled up/down as required,

 Enabling a wide variety of eco-systems,

 Encouraging openness within the ecosystem.

One of the challenges in the deployment of NFV in the carrier domain is to leverage

the advantages of the IT ecosystem while minimising any of the associated

disadvantages. Standard high volume servers and software must be modified to meet

the specific reliability requirements in the telecoms environment, including 99.999

percent uptime availability. This mission critical level of reliability is a key requirement

and differentiates traditional IT (just reboot the system!) and telecom (where

downtime or poor performance is not acceptable) environments. To meet design

goals without sacrificing performance, software applications must be specifically

designed or rewritten to run optimally in virtualised telecom environments to meet

carrier grade requirements. Otherwise, applications ported to virtualised

environments may experience significant performance issues and may not scale

appropriately to the required network load. An additional challenge for virtualisation

in a telecom network environment is the requirement to deliver low latency to handle

real-time applications such as voice and video traffic. In addition to performance,

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

14

other operational characteristics that are crucial to successful deployments include:

maturity of the hypervisor; Reliability, Availability, and Serviceability (RAS); scalability,

security, management and automation; support and maintainability.

Deploying NFV also incurs other well-defined risks, e.g. scalability in order to handle

carrier network demands; management of both IT and network resources in support

of network connectivity services and Network Functions (NFs) deployment; handling

of network fault and management operations; Operations Supporting System (OSS) /

Business Supporting System (BSS) backwards compatibility in migration situations;

interoperability required to achieve end-to-end services offerings, including end-to-

end Quality of Service (QoS). In addition, essential software appliances should achieve

performance comparable to their hardware counterparts which is currently not always

possible due a variety of reasons such as the performance of the virtualisation

technologies.

1.2 The T-NOVA Solution

The T-NOVA project is focused on addressing some of the key challenges of

deploying NFVs in carrier grade environments by designing and implementing an

integrated architecture, which includes a novel integrated open-source Orchestration

platform. This platform is explicitly dedicated to the orchestration of cloud and

network resources for NFVs, as well as the automated provisioning, management,

monitoring and optimisation of Network Functions-as-a-Service (NFaaS) over

virtualised Network/IT infrastructures. The T-NOVA Orchestrator controls the

infrastructure resources that host the VNFs via the T-NOVA IVM. The IVM is

comprised of a number of functionalities, which collectively provide the virtualised

compute, storage and network connectivity required to host VNFs.

The overall T-NOVA system architecture is depicted in the next figure and is on the

basis of the T-NOVA solution, which includes two platforms specified in the present

deliverable: the T-NOVA Orchestration platform and the T-NOVA IVM platform.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

15

Figure 1: High-level view of overall T-NOVA System Architecture

(Source: D2.21 (4))

1.2.1 The T-NOVA Orchestration Platform

The T-NOVA architecture has been conceived using a layer stratification approach

where the Orchestration layer is positioned between the Service Layer and the

Infrastructure Management layers. This stratification approach, together with the

envisaged high level modules within the Orchestrator layer, is illustrated in Figure 1

above.

The capabilities of the T-NOVA Orchestrator are required to extend beyond

traditional cloud management as the T-NOVA scope is not restricted to a single DC.

The Orchestrator therefore needs to manage and monitor Wide-Area Networks

(WANs) as well as distributed cloud (compute/storage) services and resources in

order to couple basic network connectivity services with added-value NFs.

Orchestration layer capabilities that could improve the deployment of VNFs onto

private, heterogeneous cloud, includes:

 Application assignment to hardware platforms capable of improving its

performance though specific features, such as special purpose instructions or

accelerators,

 Allocation of an Single Root I/O Virtualisation (SR-IOV) virtual function to VMs

running VNFs that can benefit from the capability,

 Enabling live-migration.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

16

The Orchestrator’s requirements together with its detailed conception and

description in terms of FEs constitute the outputs of Task T2.3 which are described in

Section 3.

1.2.2 The T-NOVA IVM Platform

The IVM layer in the T-NOVA system is responsible for providing the hosting and

execution environment for VNFs. The IVM is comprised of a Network Function

Virtualised Infrastructure (NFVI) domain containing a Virtualised Infrastructure

Manager (VIM) and a Transport Network Manager (TNM). The IVM provides full

abstraction of these resources to VNFs. The IVM achieves this by supporting

separation of the software that defines the network function (the VNF) from the

hardware and generic software that creates the NFVI. Control and management of

the NFVI is carried out by the VIM in unison with the Orchestrator. While the IVM

provides orchestration of the virtualised resources in the form of compute, storage

and networking, responsibility for the orchestration of the VNFs is solely a function of

the Orchestration layer given its system wide view of the T-NOVA system and

centralised coordination role in the system.

A major challenge for vendors developing NFV-based solutions is achieving near-

native performance (i.e., similar to non-virtualised) in a virtualised environment. One

critical aspect is minimising the inherent overhead associated with virtualisation, and

there has been significant progress thanks to a number of key innovations. An

example is hardware-assisted virtualisation in CPUs, such as Intel’s Xeon

microprocessors with Intel VT, which reduces VM context switching time, among

other things.

Another challenge is ensuring the orchestration layer fully exploits the capabilities of

the servers it manages. Typical orchestration layer products can identify

infrastructural features (e.g., CPU type, Random Access Memory (RAM) size and host

operating system); however, some orchestrators are unaware of attached devices, like

acceleration cards or network interface cards (NICs) with advanced capabilities. In

such cases, they are unable to proactively load an application onto a platform

capable of accelerating its performance, as in assigning an IP security (IPsec) VPN

appliance to a server with cryptographic algorithm acceleration capabilities. Other

features of the platform may be of interest, i.e. the model and version of CPU, the

number of cores, and other specific features.

The lack of platform and infrastructural awareness is a major drawback since many

virtual appliances have intense I/O requirements and could benefit from access to

high-performance instructions, accelerators and Network Interface Cards (NICs) for

workloads such as compression, cryptography and transcoding. This will be a key

focus in WP3 (Task 3.2) and WP4 (Task 4.1). Undoubtedly, making the orchestration

layer aware of the innate capabilities of the devices attached to server platforms can

help maximise network performance.

The outputs of Task 2.4 with respect to the overall integrated architecture of the IVM

layer are presented in Section 4.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

17

2. SOTA SURVEY

The following sections present a concise review of the current state-of-the-art (SOTA)

technologies and industry/academic initiatives that are relevant to T-NOVA

Orchestration and T-NOVA IVM layers. While there is strong focus on European

Telecommunications Standards Institute (ETSI) related activities, a broad perspective

is adopted. This is to ensure that all relevant influences are appropriately considered

and filtered so that architectural components considered in this deliverable include

the most appropriate state-of-the-art approaches in their design and specification.

2.1. Global specifications coming from main SDOs/Fora

2.1.1 ETSI ISG NFV

The ETSI ISG NFV framework has been previously presented in deliverable D2.21

(D2.21) (4). The main outputs i.e. the high-level NFV framework and the reference

architecture as well as the work carried out in the most relevant Working Groups

(WGs) have been described in detail. In addition, the current status of the work has

been outlined and their key achievements since the beginning of 2013. Finally their

planned roadmap up to the end of 2014 has been discussed. By that time, the current

ETSI ISG NFV mandate will end and publication of documents for ETSI ISG NFV

Release 1 will take place. However, plans and activities that are being promoted in

order to create an ETSI ISG NFV phase 2, which is expected to start by the beginning

of 2015, have also been described. Among those activities special focus on the

creation of the Open Platform for NFV (OPN) has been provided.

As stated above, this extensive research work has already been outlined in D2.21 (4),

as such the contents of this subsection will focus on the activities of the INF, SWA

and MANO WGs that have specific relevance to T2.3 (Orchestration) and T2.4

(Infrastructure Virtualisation).

The complete output of the research work carried out can be found in Appendix I.

2.1.1.1. WG INF (Infrastructure Architecture)

This WG is responsible for the NFVI. They have identified three sub-domains within

the NFVI, which are as follows:

• Hypervisor Sub-domain, which operates at a virtual level, encompassing the

computing and storage slices,

• Compute Sub-domain, which operates at the lowest level, also in the

computing and storage slices,

• Network Sub-domain, which operates both at the virtual level and the

hardware level, of the network slice.

The global architecture of the NFVI domain details the specific infrastructure-related

Functional Entities. Basically, all the three sub-domains are decomposed into smaller

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

18

functional blocks, both at the virtual and hardware levels as well as the three domains

outlined above. In addition, the VIM, part of the MANO domain, is also shown in

Figure 2 as it manages this specific infrastructure level from the architecture level, or

functional level perspective.

Figure 2 High Level Overview of the NFVI Domains and Interfaces

(Source: DGS NFV INF 005 v0.3.0 (2014-05) (5))

2.1.1.2. WG SWA (Software Architecture)

As described in the Terms of Reference (ToR) of the NFV SWA WG in the ETSI portal

(http://portal.etsi.org/TBSiteMap/NFV/NFVWGsEGsToR.aspx) (6), the main

responsibilities of this group are to:

• Define a reference software architecture for network functions to be deployed,

provisioned, run and managed on virtualised infrastructure,

• Describe the functionalities specific to VNFs, i.e. functional behaviour, deployment

model, and characteristics such as security and performance,

• Identify/define the reference points/interfaces with other NFV WG building

blocks, typically MANO and INF, and preserve reference points/interfaces to

legacy OSS and BSS,

• Collect and define requirements for this reference SWA architecture from relevant

stakeholders, i.e. provided by MANO, INF and legacy OSS/BSS,

• Validate this reference functional software architecture with concrete use cases,

• Identify gaps, where existing standards/specifications do not fulfil the

requirements of the reference architecture.

http://portal.etsi.org/TBSiteMap/NFV/NFVWGsEGsToR.aspx

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

19

With respect to the architecture, and taking into account that the WG is devoted to

the domain that handles the VNFs and their manager, i.e. the VNF lifecycle, the

detailed architecture is depicted in Figure 3.

Figure 3: SWA Architectural Framework and interfaces types

(Source: DGS NFV SWA 001 v0.2.0 (2014-05) (7))

2.1.1.3. WG MANO (Management and Orchestration Architecture)

The ToRs indicated in the ETSI portal for this WG are to:

• Develop ETSI deliverables on the issues related to the deployment, instantiation,

configuration and management framework of network services based on NFV

infrastructure, focused on:

– abstraction models and Application Programming Interfaces (APIs),

– provisioning and configuration,

– operational management,

– interworking with existing OSS/BSS,

• Provide requirements for orchestration and management,

• Identify gaps in current standards and best practices.

The current working architecture conceived by the NFV MANO WG is shown in Figure

4.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

20

Figure 4: NFV MANO reference architectural framework

(Source: DGS NFV MAN 001 v0.6.3 (2014-09) (8))

2.1.2 ITU-T

2.1.2.1 Virtualisation in ITU-T

The ITU Telecommunication Standardization Sector (ITU-T) has been active in

virtualisation although its specification constitutes part of a broader area designated

by Future Networks, which will be briefly described in the last part of this section.

The framework that characterises virtualisation in ITU-T is described, in order to

indicate the manner in which this technology is being handled. A brief explanation on

the work that is being carried out in the ITU-T as well as other associated areas in of

standardisation is provided.

2.1.2.1.1 The Virtualisation concept

In the ITU-T virtualisation framework, the definition of Network Virtualisation (NV)

associated to a network that enables the creation of Logically Isolated Network

Partitions (LINPs) over shared physical network infrastructures so that multiple

heterogeneous virtual networks can simultaneously coexist over the shared

infrastructures. This includes the aggregation of multiple resources and makes the

aggregated resources appear as a single resource.

As such, NV is seen as a method that allows multiple virtual networks, called LINPs, to

coexist in a single physical network. In order to provide LINPs, physical resources are

partitioned and abstracted as virtual resources and the virtual resources are

interconnected to create an LINP.

The definition of LINP states that it is a network that is composed of multiple virtual

resources which is isolated from other LINPs. Moreover, the term virtual resource, or

logical resource, is related to an independently manageable partition of a physical

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

21

resource, which inherits the same characteristics as the physical resource and whose

capability is bound to the capability of the physical resource.

In terms of reference architecture, it is necessary to consider that NV is implemented

introducing a virtualisation layer or an adaptation layer, where the virtualisation layer

creates and manages LINPs. The virtualisation layer is a layer positioned between

physical hardware and the software running on a physical resource. This layer enables

the creation of an isolated partition of the physical resource. Each partition is

designed to accommodate different architectures and applications. Figure 5

illustrates the conceptual or reference architecture of a NV:

Figure 5: Conceptual architecture of network virtualization

(Source: Rec. ITU-T Y3011 (9))

2.1.2.1.2 Problems addressed by VNs

This section lists the problems of current networks that network virtualisation is

expected to address in order to mitigate their impact, according to ITU-T Rec. Y.3011

(9):

 Coexistence of multiple networks,

 Simplified access to resources,

 Flexibility in provisioning,

 Evolution.

Physical NW 2

Y.3011(12)_F01

Various services

Virtual
networks

LINP 1

Virtual
resources

LINP 3

Physical NW 1

Physical NW 4

Physical NW 3

Physical resources
(router, switch,

hosts, etc.)

L
IN

P
 3

 m
an

ag
er

L
IN

P
 2

 m
an

ag
er

L
IN

P
 1

 m
an

ag
er

V
ir

tu
a
l
re

so
u
rc

es
m

an
ag

er

P
h
y
si

ca
l

N
W

 4
 m

an
ag

er

P
h
y

si
ca

l
N

W
 3

 m
a

na
ge

r

P
h
y
si

ca
l

N
W

 2
 m

an
ag

er

P
h
y

si
ca

l
N

W
 1

 m
an

ag
er

LINP 2

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

22

2.1.2.1.3 Design and goals of VNs

This section addresses the design goals of realising network virtualisation covering

various aspects such as capabilities, characteristics and some challenging issues, once

again according to ITU-T Rec. Y.3011 (9):

 Isolation,

 Network abstraction,

 Topology awareness and quick reconfiguration,

 Performance,

 Programmability,

 Management,

 Mobility,

 Wireless.

In addition to the problems, design and goals listed above, the deployment of

virtualised networks should also be taken into account including the impact that

environmental and security issues may have in this context.

2.1.2.1.4 Virtualisation requirements

When considering the evolution of networks, it should be considered that while some

requirements for new networks do not change, other requirements are evolving and

changing, while new requirements may also arise, forcing networks and their

architecture to evolve.

It is, therefore, reasonable to expect that some requirements can be realised by the

new network architectures and supporting technologies, and that these could be the

foundation of networks of the future, whose trial services and phased deployment

ITU-T estimates to fall approximately between 2015 and 2020.

This target date does not mean that a network will change by that estimated

timeframe, but that parts of a network are expected to evolve. Evolution and

migration strategies may be employed to accommodate emerging and future

network technologies. Such evolution and migration scenarios are topics for further

study.

In the following, a list of the requirements identified by ITU-T in ITU-T Rec. Y3012 (10)

will be indicated:

 Physical resource management,

 Virtual resource management,

 LINP management,

 Service management,

 Authentication, authorisation, and accounting,

 LINP federation,

 Service Mobility.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

23

Again, in addition to the handling of these virtualised requirements, the deployment

of virtualized networks should also be taken into account the impact that

environmental and security issues may have in this context.

2.1.2.2 Work carried out by ITU-T SG13

This section outlines the status of the work that has been carried out in ITU-T, and in

particular in Study Group 13 (SG13), which has held responsibility for virtualisation

since 2009.

As stated before, the virtualisation technology doesn’t constitute a standalone area,

instead it is included in a broader scope designated by Future Networks (FNs).

In the following subsections, FNs are briefly described, in terms of their formal

definition, objectives, design and goals. Finally the attributes that characterise NV are

discussed in order to determine their suitability for deployment in FNs.

2.1.2.2.1 Future Networks

According to ITU-T Rec. Y.3011 (9), FNs are networks that will be able to provide

revolutionary services, capabilities, and facilities that are difficult to support using

existing network technologies. One of the basic objectives of FNs is service

awareness. The number and range of services are expected to explode in the coming

years and FNs need to adapt to the surge in the number of services. That surge

makes it difficult to satisfy the requirements of every service on a common network

architecture. However, it is unrealistic to realise heterogeneous network architectures

using multiple physical networks because of the installation, operation, and

maintenance costs.

Therefore one of the key requirements of a FN is to realise diverse services and

heterogeneous network architectures on a common physical network.

Objectives of FNs

The list of the objectives for FNs identified by ITU-T in ITU-T Rec. Y3001 (11)are as

follows:

 Service awareness,

 Data awareness,

 Environmental awareness,

 Social and economic awareness.

Design goals of FNs

According to ITU-T Rec. Y3001 (11), the set of design and goals that must be

considered when elaborating specifications for FNs are as follows:

 Service diversity,

 Functional flexibility,

 Virtualisation of resources,

 Data access,

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

24

 Energy consumption,

 Service universalisation,

 Economic incentives,

 Network management,

 Mobility,

 Optimisation

 Identification,

 Reliability and security.

Figure 6 shows the relationships between the four objectives outlined in the previous

section and the design goals described above. It should be noted that some design

goals, such as network management, mobility, identification, and reliability and

security, may relate to multiple objectives. Figure 6 shows only the relationships

between a design goal and its most relevant objectives.

Figure 6: Y.3001: Four objectives and twelve design goals of future networks

(Source: Rec. ITU-T Y3001 (11))

Virtualisation as a key candidate technology for deploying FNs

Network virtualisation is a technology that realises isolated and flexible networks in

order to support a broad range of network architectures, services, and users that do

not interfere with others. It also enables the establishment of experimental networks

with greater ease and accelerates research and development on future network

technologies. Therefore, network virtualisation is considered as a key technology for

realising FNs.

FNs should provide a broad range of applications, services, and network

architectures. Network virtualisation is a key technology supporting these goals and

Y.3001(11)_F01

Service
awareness

Data
awareness

Social and
economic
awareness

Environmental
awareness

Energy consumption

Optimization

Service universalization

Economic incentives

Service diversity

Functional flexibility

Virtualization of resources

Network management

Mobility

Reliability and security

Data access

Identification

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

25

enables the creation of logically isolated network partitions over a shared physical

network infrastructure so that multiple heterogeneous virtual networks can

simultaneously coexist over the same infrastructure. It also allows aggregation of

multiple resources and makes the aggregated resources appear as a single resource.

According to ITU-T Rec. Y3011 (10), many key properties of network virtualisation,

such as flexibility, reconfigurability and network abstraction, make network

virtualisation one of the key technologies for FNs.

2.1.2.2.2 List of recommendations

A non-exhaustive list of ITU-T recommendations elaborated by SG13 are as follows:

 Rec. ITU-T Y.3001 “Future Networks: Objectives and Design Goals” (11),

 Rec. ITU-T Y.3011 “Framework of network virtualization for future networks” (9),

 Rec. ITU-T Y.3012 “Requirements of network virtualization for future networks”

(10),

 Rec. ITU-T Y.3021 “Framework of energy saving for future networks” (12),

 Rec. ITU-T Y.3031 “Identification framework in future networks” (13),

 Rec. ITU-T Y.3033 “Framework of data aware networking for future networks”

(14),

 Rec. ITU-T Y.3300 “Framework of software-defined networking” (15),

 Rec. ITU-T Y.3320 “Requirements for applying formal methods to software-

defined networking” (16),

 Rec. ITU-T Y.3501 “Cloud computing framework and high-level requirements”

(17),

 Rec. ITU-T Y.3502 “Information technology - Cloud computing - Reference

architecture” (18),

 Rec. ITU-T Y.3510 “Cloud computing infrastructure requirements” (19),

 Rec. ITU-T Y.3512 “Cloud computing - Functional requirements of Network as a

Service” (20),

 Rec. ITU-T Y.3513 “Cloud computing - Functional requirements of Infrastructure

as a Service” (21).

2.1.2.2.3 Roadmap

The envisaged timeline by ITU-T for the elaboration of recommendations regarding

FNs and their four objectives is depicted in Figure 7.

This timeline involves two study periods (2009-2012 and 2013-2016). The conceptual

phase has been completed and preparation of detailed document is underway. With

respect to network virtualisation, the first set of recommendations related to the

requirements and architecture are in the process of being approved or have already

been approved.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

26

Figure 7: ITU-T Future networks activity timeline (Roadmap)

(Source: ETSI 3
rd

 Future Networks Workshop (22))

2.1.3 IETF

2.1.3.1 NETCONF

NETCONF is designed to be a replacement for Command Line Interface (CLI) based

programmatic interfaces. Network automation is currently blocked by available

approaches where we need to write device specific CLI scripts. The CLI is used by

humans, but increases the complexity and reduces the predictability of the API for

real application usage. NETCONF allows the management console (manager or client)

to issue commands and change configuration of networking devices (NETCONF

agent or server). In this respect, it is somewhat similar to Simple Network

Management Protocol (SNMP), but since it uses Extensible Markup Language (XML),

provides a much richer set of functionality than the simple key/value pairs of SNMP.

It is both session and connection-oriented and uses RPC for protocol operations,

which are encoded in XML. Both the device configuration data, and the protocol

itself, are encoded in XML. In order to exchange NETCONF messages, a client must

first establish a NETCONF session with a server. When a session is established, each

NETCONF peer exchanges a list of its capabilities with the other peer.

2.1.3.2 YANG

YANG is a data modelling language used to model configuration and state data

manipulated by the NETCONF, NETCONF remote procedure calls, and NETCONF

notifications in a “human readable” format (23).

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

27

YANG is used to model both configuration and state data of network elements. YANG

structures the data definitions into tree structures and provides many modelling

features, including an extensible type system, formal separation of state and

configuration data and a variety of syntactic and semantic constraints. YANG data

definitions are contained in modules and provide a strong set of features for

extensibility and reuse.

2.1.4 TMF – ZOOM

The TM Forum has initiated a project to create a living blueprint for a new generation

of service provider support systems to deliver true business agility and expert

guidance on how to navigate the complexity of the journey– project Zero-touch

Orchestration, Operations & Management (ZOOM).

ZOOM specifically targets business agility by defining a framework that enables the

delivery and management of physical and virtual resources and services while

simultaneously dramatically lowering associated capital and operational expenditures.

This necessitates a new architecture that supports dynamic adaptation between

changing needs and the capabilities of the infrastructure, enabling targeted and

personalised services to be rapidly created, changed, and retired. ZOOM leverages

the capabilities of NFV and SDN.

The main benefits of the ZOOM project are (24):

 Zero-touch, self-service operations that can respond with the speed and

agility to outpace competitors;

 Adaptive automation, where changes in user needs, business goals, and/or

environmental conditions are recognised, and a new, agile OSS uses these

inputs to provide the resources and services needed at that point in time;

 Customer-centric services that are easily configured to fit individual customer

preferences and requirements, by the customer themselves;

 Significantly lower operating costs and capital expenses achieved through

automation of manual tasks, simplification of configuration, virtualisation and

use of commodity-based resources;

 Technology-driven innovation, where business agility meets rapid

development and experimentation and enables the transition from NetOps

and SysOps to DevOps.

Three main Working Items (WIs) are under the scope of ZOOM (25):

 DevOps Transformation Framework for the  Digital Ecosystem;

 Blueprint for End-to-End Management;

 Operations & Procurement Readiness.

The DevOps Transformation Framework for the  Digital Ecosystem WI is focused

on clarifying the requirements for a digital world in terms of approaches to hybrid

and virtualised operations, specifically outlining how to transform from

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

28

SysOps/NetOps to an agile DevOps approach to introduce new services that make it

possible to better compete in a digital world.

The Blueprint for End-to-End Management will define the essential requirements

for effective management of physical and virtualised services end-to-end across

multiple provider environments, specifically outlining how to make end-to-end

management happen and what common practices, architectural and integration

principles are needed to get there.

The Operations & Procurement Readiness WI will identify the key requirements –

including technical, business, organizational, and cultural changes – necessary for

service providers to include when sourcing agile services in a hybrid environment,

specifically outlining how to best adhere to these requirements throughout the full

sourcing lifecycle. This will help meet the NFV promise of service agility, Operational

Expenditure (OPEX) reductions (NetOps to DevOps), and Capital Expenditure (CAPEX)

reductions (migration from specialised and expensive telco hardware to standard

low-cost IT fabric).

At the time of writing this document, the TMF ZOOM group has released three

documents, namely:

 TR227: TM Forum Specifications relevant to MANO Work (26).

The contents provide a description of the set of TM Forum documents that

are relevant to MANO related activities. It identifies areas where each TM

Forum document can help standardise the information presented and the

interfaces of the MANO reference points.

 TR228: TM Forum GAP Analysis related to MANO Work (27).

The contents provide an initial ETSI NFV MANO Gap Analysis of the TM Forum

specifications for MANO Interfaces and Information Elements.

 TR229: ZOOM/NFV User Stories (24).

This technical report provides a snapshot of the User Stories that have been

identified by the ZOOM project team and have been derived from:

- Scenarios being developed in The TM Forum NFV Catalyst program;

- Requirements in ETSI and ATIS Reports;

- Agile brainstorming sessions amongst Service Providers active in the

ZOOM Project.

2.1.5 CloudNFV

CloudNFV is an industry lead initiative that is focused on the design of an open,

highly flexible, cloud-driven implementation of the ETSI NFV specification, and

secondly to develop an implementation of that design. The founding members of

CloudNFV are 6WIND, CIMI Corporation, Dell, EnterpriseWeb, Overture Networks and

Qosmos. CloudNFV has delivered a number of public demos during the 2014

including the OpenStack Summit in Atlanta.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

29

CloudNFV is based around the concept of an Active Contract that utilises service

templates representing the structures of network functionality, which can be ordered,

and includes variable parameters such as service locations, QoS, etc. When these

values are specified, a Service Contract is created. The service contract is then

dispatched to an Orchestrator for fulfilment. Policy rules and resource status from

Active Resources (as shown in Figure 8) are used by the Orchestrator to determine

the optimal location for the deployment of a VNF service and how to provide

appropriate connectivity.

This combination of where to host and how to connect instructions is known as a

Manifest. The manifest is given to OpenStack, which uses NOVA compute and

Neutron APIs to create VMs, provision network connectivity to the VMs and to deploy

the VNF service. When virtual resources are deployed and connected they report their

status and traffic to the Active Resource. Management processes can run against the

Active Resource, which can take the form of a Multifunctional Information

Distribution System (MIDS) that support current management systems or can be

implementation specific depending on the customer requirements.

Virtual management states are derived from the status of the hosts and networks.

This approach represents what CloudNFV designates by contract resource

management. The data model of the Active Contract is structured in a manner to

reflect the TMF SID (GB922) (28) description of services and forms the basis for

CloudNFV vision for contract-driven management.

Figure 8: The CloudNFV Architecture (29)

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

30

2.2 VIM and Control specific areas

The following sections review the key virtualisation technologies that are relevant to

the T-NOVA virtualised infrastructure management and control capabilities together

with their respective pros and cons. While not exhaustive the focus is on the leading

candidate technologies, which will be most likely adopted during the implementation

tasks in WP3 and WP4. A mapping of the technologies and their relationship to

architectural components within the T-NOVA IVM is presented in Figure 9. The

candidate technologies represent an initial starting point, however it is expected that

these technologies choices will evolve and be refined during the course of the T-

NOVA project as new technology options emerge or as candidate technologies are

found to be insufficient to meet the needs of the T-NOVA implementation or prove

to be difficult to extent in an appropriate manner.

Figure 9: Relation between virtualisation technologies and T-NOVA architecture

2.2.1 IT Virtualisation Methods

There are two primary methods commonly used nowadays to implement

virtualisation: hypervisors and containers. The former is based on the usage of a

Virtual Machine Monitor, whereas the latter is an operating system virtualisation

mechanism, where the virtualisation software layer is installed on top of the operating

system. The following sections will look both of these approaches in more detail.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

31

2.2.1.1 Hypervisors

A hypervisor is a program that allows multiple operating systems to share the same

hardware. By “virtualise”, we mean the division of resources (CPU, RAM etc.) in the

physical computing environment (known as a host) into several smaller independent

‘virtual machines’ known as guests. Each guest can run its own operating system, to

which it appears the virtual machine has its own CPU and RAM, i.e. it appears as if it

has its own physical machine even though it does not.

One of the key functions of hypervisors is isolation, meaning that a guest cannot

affect the operation of the host or any other guest, in any case. This is achieved by

hardware emulation of a physical machine and (except under carefully controlled

circumstances) prevention of direct access to real hardware by the guests.

Hypervisor can be classified using different taxonomies.

One approach is centred on the virtualisation approach used by the hypervisor. Three

main approaches can be used to implement virtualisation:

Full virtualisation - the hypervisor artificially emulates the hardware device with

everything it needs to run an operating system. This allows VMs to run in a single

server, each completely independent of the other. The drawback is the addition of

another layer of software between the operating system and the hardware which can

negatively influence performance,

 Para-virtualisation – the hypervisor modifies the VM OS eliminating the need

for binary translation. It offers potential performance advantages, but requires

the use of specially modified operating system kernels that relies on ‘para-

virtualised drivers’ (an optimised interface to the hardware for the hypervisor

is provided). This approach is generally only suited to Open Source OSs, (i.e.

Linux and FreeBSD),

 Hardware-assisted virtualisation – The underlying hardware has to provide

specific instructions for virtualisation support to the hypervisor. This provides

a simpler and a better solution in terms of performance in comparison to

other solutions, giving direct access to resources without emulation.

Another taxonomy approach relates to the type of hypervisor. There are two types of

hypervisors, namely Type 1 and Type 2:

 Type 1 hypervisors run directly on the system hardware, and are often

referred to as a "native" or "bare metal" or "embedded" hypervisors. Each

guest operating system runs atop the hypervisor. Examples of Type 1

hypervisors are: VMware ESXi, Microsoft Hyper-V, Citrix XenServer and KVM1,

 Type 2 hypervisors (also called ‘Hosted’ hypervisors) run inside an operating

system, which in turn runs on the physical hardware. Each guest operating

system then runs atop the hypervisor. Desktop virtualisation systems often

1
There is considerable debate over whether KVM is a type 1 or type 2 hypervisor

http://searchservervirtualization.techtarget.com/news/2240034817/KVM-reignites-Type-1-vs-

Type-2-hypervisor-debate

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

32

work in this manner. Example of Type 2 hypervisors are: Microsoft Hyper-V,

Oracle VirtualBox, VMware Workstation, Microsoft Virtual PC.

Table 1 presents a summary of the respective advantages and disadvantages of type

1 and 2 hypervisors.

Table 1: Comparison of Hypervisor Types

Hypervisor Type Advantages Disadvantages Examples

1 – Bare Metal Hypervisor can “own” the

device, for security,

performance, SLAs, etc.

Users cannot break the

base environment

Possibly more secure due

to the smaller attack

surface of the hypervisor

(And the user cannot

interact with the host OS)

Better performance since

your “OS” is a purpose-

built hypervisor instead

of a general purpose OS

Server and components

need to be certified.

Destructive install

VMware ESXi

Citrix XenServer

KVM

Microsoft

Hyper-V

2 - Hosted The users can install their

own hypervisor

Adding the hypervisor

doesn’t destroy the

existing OS

Runs on most existing

hardware that can run

Linux, Windows, or Mac

Possibly not as secure

since the client cannot

“trust” the base. (End

user could run a screen

recorder, key logger,

etc.)

No guarantee of

performance.

Two OSs to manage

(host OS and guest VM

OS)

Oracle

VirtualBox,

VMware

Workstation

Microsoft

Virtual PC

2.2.1.2 Open Source and Commercial Hypervisors

There are a variety of open source and commercial hypervisors available such as

Oracle's VirtualBox, Parallels, Bochs, Xen, KVM, Qemu, various flavours of VMware.

However, four hypervisors currently dominate the market, namely:

 VMware ESXi,

 Linux KVM,

 Linux Xen (mainly with Citrix XenServer implementation),

 Microsoft's HyperV.

The choice of the hypervisor for the T-NOVA architecture will be fully interrogated in

WP4 where the benefits of open source vs commercial will be analysed together with

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

33

the level of integrated with the chosen cloud platform.. The next sections present a

short overview of the key hypervisor technologies.

KVM

KVM can run unmodified Linux or Windows images, but it

requires CPU virtualisation extensions (Intel VT or AMD-V). It

consists of a loadable kernel module, that provides the core

virtualisation infrastructure, and a processor-specific module.

KVM is used in conjunction with Qemu to emulate other hardware such as network

card, hard disk, graphics adapter, etc. Qemu can be used in standalone mode (i.e.

does not require a special kernel module, or CPU virtualisation extensions, or a

hypervisor layer) and is capable of running unmodified operating system images.

KVM and Qemu are normally used with libvirt, a C library for interfacing with the

underlying virtual machines, that provides a stable, consistent API for machine

management across a variety of virtualisation technologies and currently supports

Xen, Qemu, KVM, User Mode Linux and VirtualBox, among others. Libvirt uses XML-

based configuration files to define the virtualised hardware. Libvirt is also used by the

libvirtd daemon, used to mediate communication with the virtualisation system.

XEN

Xen dates back to a Cambridge University research project

in 2003. Since it is a Type 1 hypervisor, its ‘dom0’ host runs

on Linux, which in turn runs on Xen. The Xen community

develops and maintains Xen as free and open-source

software under GNU GPL licence. In 2013, it was announced that the Xen Project was

moving to the Linux Foundation as a Collaborative Project. Key features include: small

footprint and interface; operating system agnostic; driver isolation (it allows the main

device driver for a system to run inside of a VM so that if the driver crashes, the VM

containing the driver can be rebooted without affecting the rest of the system) and

compatibility with hardware that doesn't support virtualisation extensions.

vmware

VMware’s ESXi hypervisor is very mature and

extremely stable. It is popular among enterprise

customers including many telco service providers

where brand and the commercial guarantee of a rock

solid hypervisor matters more than cost. The performance level of ESXi is similar

other hypervisors for most workloads. However the orchestration performance is

generally worse than either KVM or Xen (30). vSphere was developed as an enhanced

suite of tools for cloud computing utilising VMware ESX/ESXi hypervisors. Some key

components of this platform are: vMotion and Storage vMotion (for live migration of

respectively VMs and vDisks); VMware High Availability (automatic restart of the VMs

if the underling hardware goes down); DRS (Distributed Resource Scheduling for VM

placement at the VM provisioning and VMs balancing among hosts; both can be

manually or automatically done) and SDRS (Storage DRS); Fault Tolerance (a more

powerful High Availability (HA) that runs in real time a mirrored VM); Distributed

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

34

Power Management and VMware Consolidated Backup (for both energy efficiency and

data consolidation) and SRM (Site Recovery Manager, that manages a full failover

and failback of a disaster event from a centralised console. Additionally full disaster

simulation and testing is supported without interrupting the production

environment).

Hyper-V

Hyper-V is a commercial hypervisor provided by

Microsoft. While designed for running Windows, being a

hypervisor it will run any operating system supported by

the hardware platform. As a commercial hypervisor, the

licensee must bear the cost of licensing Hyper-V itself. Arguably, the hypervisor itself

is less well tested in the market place than any other hypervisor. Guest server

performance appears reasonable, and is particularly good with Windows guests as

expected. However, many orchestration actions can take more time than with KVM.

Both networking and storage are a little limited which can affect the ability to scale.

Until recently it has rarely been adopted for large deployments in enterprise

environments although it has been used widely in small and medium business

environments for a number of years.

Table 2 compares the hypervisors discussed above.

Table 2: Comparison of key open source and commercial hypervisor technologies

Feature KVM Xen ESXi Hyper-V

Licence Open Source (free) Open Source

(free)

Proprietary Proprietary

Full virtual. yes yes yes yes

Hw-assisted no yes yes yes

Para-virtual. no yes yes yes

Architecture X86-X64 X86

X86-64

ARM

X86

X86-64

X86

X86-64

CPU

Scheduling

Features

Linux schedulers

(completely fair

queuing scheduler,

maximum

throughput,

weighted fair

queuing)

SEDF (Simple

Earliest Deadline

First)

Credit -

proportional fair

share

Proportional

Share-based

Algorithm,

Relaxed

Coscheduling,

Distributed

Locking with

scheduling Cell

Control with

VM reserve,

VM limit,

relative

weight

SMP

Scheduling

Features

SMP-Aware

Scheduling

Work-

Nonconserve,

WorkConserve

CPU Topology –

aware load

balancing

CPU

Topology

based

scheduling

Speed Up to near native Up to native Up to near native Up to near

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

35

Relative to

Host OS

native

2.2.1.3 Containers

The alternative approach to hypervisor-based virtualisation is OS virtualisation, where

the virtualisation software layer is installed on top of the operating system. This

approach is commonly referred to as “containers”. Figure 10 provides a high-level

view of the differences between container-based and hypervisor-based virtualisation.

One of the most popular container technologies is Docker (31). All of the guest

systems run on top of this layer using the same operating system as the host OS, but

with each guest having its own resources and running in complete isolation from the

other guest machines. The main identifying differentiator for OS virtualisation is the

fact that every guest OS must be identical to the host. This is a cost effective and

efficient approach, but it is only practical for certain situations.

Figure 10: Hypervisor versus container based virtualisation approaches

However containers currently lag behind VMs from a security standpoint particularly

for isolation since the only way to have real isolation with Docker is to either run one

Docker per host, or one Docker per VM. A comparison of the hypervisor versus

container based virtualisation approaches is presented in Table 3.

Table 3: Comparison of Hypervisors and Container Approaches

 Container-based Hypervisor-based

Common Features (i) Migration between hardware nodes

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

36

(ii) Root access

(iii) Web-based remote control (restart, shutdown)

(iv) Backup.

Operating System

Limited number of simultaneously

OSs, container-based

virtualisation.

Highly flexible and allows

installation of most operating

system.

Advantages

More efficient, high concentration

of containers per hardware node

(hundreds of containers per

hardware node), low overhead per

container.

Potentially more economical and

is charged less than hypervisor-

based virtualisation.

QOS is best effort.

The kernel is upgraded by the

provider.

Full control on the operating

system and its parameters.

Full control on version and

upgrade of the OS.

Hardware resources are fully

dedicated to VMs. QoS (quality of

service) is therefore a

commitment. The virtual machine

presents itself exactly as a

hardware node.

Mix of operating system on the

same hardware node.

Disadvantages

No control on the kernel: only the

provider controls the version and

upgrades of the kernel.

Only one kernel can run on the

hardware node.

The provider generally supports a

limited number of OS.

Security isolation concerns.

More costly and higher overhead

per virtual machine.

Customer has full responsibility on

maintenance.

Less VMs can run on a hardware

node (order of magnitude: a few

per hardware node).

Licence

Operating system licence included

in the container price.

OS licence fees not included in the

virtual machine price.

It can be bought over the provider

or bring your own licence.

Set-up

Quick, usually ready in a few

seconds.

Fully automation possible.

Can have a longer set-up phase,

from a few minutes to hours

depending on the OS. Install times

reduced with automation in cloud

environments.

2.2.2 Compute, Network I/O and Storage Virtualisation

Virtualisation has now extended into the domains of storage and infrastructure

(L2/L3) network resources. Storage virtualisation is replacing the need for locally

attached storage through pooling of physical storage from multiple network storage

devices into what appears to be a single storage device that is accessed via a

controller. Similarly with network I/O virtualisation, a single physical network interface

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

37

card can be abstracted into virtual NICs or L2 virtual switching and L3 virtual routing

to provide inter/intra-VM connectivity or connectivity to the transport network.

The key value that virtualisation brings to those new domains is improved scalability

and resource utilisation. Additionally, virtualisation supports the centralisation of

administrative tasks such day-to-day updates or large-scale deployments and

migrations. These capabilities are very important in enabling the roll-out of VNFs into

networks by service providers.

2.2.2.1 Microprocessor Virtualisation

Microprocessor virtualisation extensions consist of extra instruction sets called virtual

machine extensions (VMX). There are two modes to run under virtualisation: VMX root

operation and VMX non-root operation. Normally only the hypervisor runs under root

operation, while OS’s run on top of the VMs under non-root operation. Software

running on top of the VMs is commonly referred to as ‘guest software’.

More recent microprocessors have an extension called EPT (Extended Page Tables)

which allow each guest to have its own page table to keep track of memory

addresses. Without this extension, the VMM has to exit the virtual machine to

perform address translation. The exiting-and-returning task reduces performance.

Context switching and its associated cost can have a significant impact on the

performance of VNF applications. While EPT increases virtualisation performance,

careful consideration must be given to overall design of the VNF.

2.2.2.2 Intel Virtualisation Technology (Intel VT)

Intel Virtualisation Technology (Intel VT) is a set of hardware enhancements to Intel

server and client platforms that provide software-based virtualisation solutions. Intel

VT allows a platform to run multiple operating systems and applications in

independent partitions, allowing one computer system to function as multiple virtual

systems. VT-x provides basic support for virtualisation software and affords the

capabilities needed to deliver hardware assistance to a VMM. VT-x allows virtual

machine to run at privilege levels in the processor that enable its proper operation.

On some motherboards the VT-x feature must be enabled in the BIOS before

applications can make use of it.

2.2.2.3 AMD's Virtualisation (AMD-V) Opteron

AMD's Virtualisation (AMD-V) technology takes some tasks that virtual machine

managers (VMMs) perform in software, through emulation, and simplifies them

through enhancements to the AMD Athlon 64 and Opteron instruction set. AMD

Virtualisation Technology was announced in 2004, under the code-name Pacifica, and

AMD released technical details in mid-2005. The latest release AMD-V 2.0 includes

extra features, such as I/O level Virtualisation, and Extended Migration. AMD-V is

supported in almost all latest AMD mobile and desktop processors, whereas AMD V

supported only in the latest generation of AMD server-class CPUs.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

38

2.2.2.4 Storage Virtualisation

Storage virtualisation consists in implementing an abstraction layer between physical

resources (disks and storage networking) and logical resources that can be served up

to applications (VNFs in case of T-NOVA). Multiple benefits are offered by virtual

storage. It makes the overall pool of storage easier to manage, and enables the

allocation of storage as and when it is needed. Furthermore, it can optimise power

utilisation, and improves the ability to support disaster recovery scenarios, as data

can be replicated and moved within the overall storage pool with minimum

disruption to users and applications.

Storage virtualisation can occur internally within storage arrays (usually known as

storage-based virtualisation), or externally among storage arrays (usually called

network-based storage virtualisation). External virtualisation can operate across arrays

of the same brand and model or in a network of heterogeneous arrays. External

virtualisation can facilitate tiered storage to disparate devices as well as providing

simplified management of storage across a large enterprise. Implementation choices

should take into account the characteristics of the whole virtualised environment,

since there are different underlying technologies whose effectiveness and

performance can depend upon the kind of server virtualisation environment in place.

The most common enabling technologies are as follows:

 Thin Provisioning - storage-optimisation technique that relies on on-

demand allocation of blocks of data, rather than on traditional upfront block

allocation. This approach makes it possible to implement over-allocation,

storage capacity to host applications than has actually been provisioned). It

may be paired with other techniques, like thin reclamation and data de-

duplication. Thin reclamation automatically reclaim unused space associated

with deleted data within system storage volumes, while data de-duplication is

a data compression technique for eliminating duplicate copies of redundant

data. Both techniques ensure that thin volumes stay as lean and efficient as

possible. These techniques are popular and integrated in many enterprise

storage array products from companies such as HP, 3PAR, and EMC, VNX (32).

 Automatic Storage Tiering - this approach is based on the ability to save

data on different tiers of disks, each characterised by different performance

and redundancy schemes. For example, a typical 2-tier array could have SSD

disks as Tier 0 and SAS disks as Tier 1. Automatic Storage Tiering is a

technique used to automatically promote or demote data between storage

tiers, based on actual application usage. Many storage vendors (e.g. HP with

3PAR Adaptive Optimisation (33) and EMC with its FAST technology (34))

nowadays implement automatic storage tiering in hardware.

 Virtual SAN solutions - For many years, local storage was not the best

option for virtualised infrastructures, however due to technology advances

and, in particular, the introduction of Solid State Disks, it can now be used as

an effective and cheaper solution with respect to standard NAS or SAN

enterprise solutions. Moreover, software vendors have introduced

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

39

functionality to use shared local storage into a fully-featured shared storage

array, for example VMware Virtual SAN and HP StoreVirtual VSA.

2.2.2.5 Software and Hardware -Assisted Network Virtualisation

The Network Virtualisation process strongly involves the lower levels of the ISO/OSI

protocol stack: virtual machines require L2 NICs to connect to virtual network

segments; all the VMs in a segment need to connect to one or more (virtual) switches

that manage different VLANs.

Two main approaches are commonly used to implement virtualisation at the edge of

the network: software-assisted and hardware-assisted virtualisation.

Software-assisted network virtualisation

In software-assisted network virtualisation, communication capabilities are provided

by the hypervisor through vSwitches, according to the Edge Virtual Bridging (EVB)

specifications. More specifically, Edge Virtual Bridging is the term for a range of new

technologies and protocols that are being standardised in terms of coordination and

management of virtualised architectures at the edge of the network. A vSwitch is a

software component managed by the hypervisor that, in turn, manages both the

traffic flows from and to VMs that are running on a physical server. EVB technologies

are embraced within the IEEE 802.1Qbg standardisation project (35). The two most

common approaches included in EVB and currently used in commercial available

technologies are:

 Virtual Ethernet Bridge (VEB),

 Virtual Ethernet Port Aggregator (VEPA).

External communications (i.e. the communication between a VM and an external

node) are managed by both VEB and VEPA in the same way: packets are sent through

the physical interface of hosting node to reach external network. This allows the

traffic to be handled by an external physical switch and, consequently, to be

monitored, managed and secured using all the tools available to the physical switch.

The difference between VEB and VEPA is related to the management of internal

communication (i.e. the communication between VMs running on the same physical

host).

Figure 11: VEB vs. VEPA

VM1 VM2 VM3

vNIC vNIC vNIC

Adjacent
switch

External
Communication

Internal
Communication

VEB

NIC

Hypervisor

VM1 VM2 VM3

vNIC vNIC vNIC

VEPA

NIC

Adjacent
switch

External
Communication

Internal
Communication

Hypervisor

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

40

Using the first approach, internal communications are managed directly by the VEB

that resolves the L2 destination address of the target machine and avoids sending

traffic through external switches. Consequently, the internal traffic is managed only

by software, and, for this reason, it is not captured by the external network devices:

this makes network traffic monitoring difficult and, at the same time, delegates to the

host the network address resolution overhead, affecting the performance. On the

contrary, VEPA forces the traffic between local VMs to pass through the adjacent real

switch. Therefore, using this approach the traffic can be easily monitored and

secured, reducing the node overhead. On the other hand, the internal traffic uses the

physical port, with impacts to bandwidth and latency as a result.

Hardware-assisted network virtualisation

The disadvantage of a software-assisted approach is that, when multiple guests run

on the host and the network traffic volumes are high, the virtual switch can be a

potential bottleneck. To avoid this, multiple NICs should be used in the host,

adjusting the virtual switch connected to each NIC such that the network bandwidth

used by the guest can be distributed. However, this method is not particularly

efficient for some tasks, such as placing guests dynamically and moving a guest to

another host using live migration. To address these limitations Intel has developed its

VT-c suite of technologies.

Single Root I/O Virtualisation (SR-IOV) enables a single PCI Express (PCIe) network

adapter to appear to the hypervisor as multiple special-purpose network adapters.

These special-purpose network adapters, termed Virtual Functions (VF), are only

available for direct presentation to VMs. By providing a VF directly to a VM, the

hypervisor’s virtual switch is no longer required to process network traffic. This

hypervisor bypass increases network throughput, lowers latency, and reduces overall

CPU utilisation.

Network adapters that feature SR-IOV are comprised of one Physical Function (PF)

and multiple VFs per port. The PF is responsible for the management and

configuration of its associated VFs. On the host server, the administrator configures a

PF to present a defined number of VFs.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

41

Figure 12: SR-IOV PF and VF conceptual overview

Virtualisation technology for Directed I/O (VT-d) developed by Intel is implemented

in I/O devices and provides support for virtualisation of I/O transactions. It helps the

VMM to better utilise hardware by improving application compatibility and reliability,

and providing additional levels of manageability, security, isolation, and I/O

performance. VT-d is primarily implemented in a chipset, and not in the CPU itself. In

emulation based I/O, the intermediate software layer controls all the I/O between the

VMs and the device. The data gets transferred through the emulation layer to the

device and vice versa (36).

Virtualisation technology for Connectivity (VT-c) is a collection of input/output (I/O)

virtualisation technologies primarily concerned with I/O. VT-c is complementary to

but independent of VT-d. The key technologies are:

 I/O Acceleration Technology for the Reduction of CPU Loads – For network

applications the key technology is Intel’s Data Plane Development Kit (DPDK);

 Virtual Machine Device Queues (VMDq) improve traffic management within

the server by offloading traffic sorting and routing from the hypervisor’s

virtual switch to an Intel Ethernet Controller for the reduction of system

latency;

 Virtual Machine Direct Connect (VMDc) is implemented using the PCI-SIG

standard called Single Root I/O Virtualisation (SR-IOV) which allows

partitioning of a single Ethernet Server Adapter port into multiple virtual

functions. Administrators can use these virtual ports to create multiple

isolated connections to virtual machines for the improvement of network I/O

throughput.

2.2.2.6 Data Plane Development Kit (DPDK)

One of the most important issues which must be tackled in NFV is the plane

performance for VNFs. In fact, even if the commercial vSwitches offers good

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

42

performance, they are generally not comparable with real network device. To enable

VNFs to be efficiently deployed and provide the performance that support their

requirements the internal mechanisms for communication management within

hypervisors are being improving.

One approach that is being widely adopted is Intel’s Data Plane Development Kit

(Intel DPDK). It is a set of libraries and drivers for fast packet processing on x86

platforms that can improve packet-processing performance by up to ten times. DPDK

support, which actually depends on the processor, is integrated in all recent Intel

Atom and Xeon processors.

In order to accelerate the adoption of DPDK and its usage in NFV deployments, Intel

also released a DPDK-enabled version of the popular OpenvSwitch, called Intel DPDK

vSwitch (37). Open vSwitch (38) is an open source virtual switch that supports

distribution across multiple physical servers. It can be integrated with multiple Linux-

based hypervisors (including Xen, XenServer, KVM and VirtualBox) and supports

different features, like STP, NIC bonding with source MAC load balancing, IPv6

support, standard 802.1Q VLAN tagging and trunking, tunnelling protocols (GRE,

VXLAN, IPsec), monitoring capabilities of internal VM communication via NetFlow or

sFlow, QoS control, OpenFlow protocol and multi-table forwarding pipeline, and

user-space forwarding engine options, and so forth.

Open vSwitch architecture is composed by a small portion of in-kernel code, a kernel

module called openvswitch_mod.ko, which implements the part of the behaviour of

switch that interacts with the ovs-vswitchd demon, running in user-space. These

modules implement the switching logic. Moreover, there is also another module,

called ovsdb-server, which behaves as a lightweight database containing information

regarding the configuration parameters of the switch and it is queried by the ovs-

vswitchd module. There are also other modules that provide interfaces which are

useful for configuring the system both locally and remotely.

Coupling OpenvSwitch and Intel DPDK acceleration technology, Intel DPDK vSwitch

has been developed with the aim of realising a virtual switching platform with high

performance capabilities, reducing network access time of the VM traffic and the

computation overload on the hypervisor. This specific solution is based on QEMU and

is part of an open source project called Packet Processing (39).

The Intel DPDK vSwitch has been realised through modification of the Open vSwitch

kernel forwarding module (data plane) by building the switching logic directly on top

of the DPDK library: it significantly improves the switching throughput. Intel DPDK

vSwitch currently provides four different communication methods between the virtual

machine and the host (each one optimised for a specific communication application)

with the purpose to optimise the copy operations due to the VMs’ communication.

This product, which is freely available, is currently focused on fast L2 switching, with

more advanced features (like dynamic flows, tunnel support and multiple table

support) coming in later releases.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

43

2.2.3 Cloud Environments and Controllers

Cloud management platforms are integrated tools that provide management of

cloud environments. These tools incorporate self-service interfaces, provisioning of

system images, enabling metering and billing, and providing some degree of

workload optimisation through established policies. Through the self-service interface

(e.g. based on OCCI) the user can request virtual infrastructure. This request is issued

to a Cloud Controller, which provisions this virtual infrastructure somewhere on

available resources within the DC. The Cloud Controller provides the central

management system for cloud deployments as shown in Figure 13.

Figure 13: Cloud Management System Deployments

The most popular cloud management platforms include open source solutions such

as OpenStack, CloudStack and Eucalyptus and commercial solutions from Microsoft

and VMware. This section provides an overview of some of these solutions, on the

Cloud Controller component. In the T-NOVA context, the Cloud Controller is a key

component that needs to deliver end-to-end provisioning of virtual infrastructure, to

enable full control over it and also to provide a detailed and real-time view of the

infrastructure load.

2.2.3.1 OpenStack

OpenStack is a cloud OS that controls large pools of compute,

storage, and networking resources throughout a DC, all managed

through a dashboard that gives administrators control while

empowering their users to provision resources through a web

interface (40; 40). As an open source solution, OpenStack is

developed and supported by a global collaboration of developers

and cloud computing technologists. The project seeks to deliver

solutions for all types of clouds by being simple to implement, scalable, and feature

rich. The technology consists of a series of interrelated projects delivering various

components for a cloud infrastructure solution. All OpenStack source code is

available under an Apache 2.0 license.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

44

OpenStack has a modular design that enables integration with legacy and third-party

technologies. It is built on a shared-nothing, messaging-based architecture with

modular components, each of which manages a different service; these services,

together to instantiate an IaaS Cloud. The primary component of the cloud operating

environment is the Nova compute service. Nova compute orchestrates the creation

and deletion of compute/VM instances. Nova is designed to operate as much as

possible as hypervisor-agnostic. It works with open source libraries such as libvirt.

Similar to other OpenStack components, Nova is based on a modular architectural

design where services can be co-resident on a single host or, more commonly, on

multiple hosts. The core components of Nova include the following:

 The nova-api accepts and responds to end-user compute API calls. It also

initiates most of the orchestration activities (such as running an instance) as

well as enforcing some policies.

 The nova-compute process is primarily a worker daemon that creates and

terminates VM instances via hypervisor APIs (XenAPI for XenServer/XCP, libvirt

for KVM or QEMU, VMwareAPI for vSphere, etc).

 The nova-scheduler process keeps a queue of VM instance requests and for

each request it determines where the VM instance should run (specifically,

which compute node it should run on).

 The Nova service itself does not come with a hypervisor, but manages

multiple hypervisors, such as KVM or ESXi. Nova orchestrates these

hypervisors via APIs and drivers. For example, Hyper-V is managed directly by

Nova and KVM is managed via libvirt, while Xen and vSphere can be managed

directly or through management tools such as libvirt and vCenter for vSphere,

respectively.

2.2.3.2 Eucalyptus

Eucalyptus (Elastic Utility Computing Architecture Linking

Your Programs To Useful Systems) is an open-source Cloud

that provides on-demand computing instances and shares

the same APIs as Amazon’s EC2 cloud. Eucalyptus was designed as a highly-modular

framework in order to enable extensibility with minimal effort (41). The Cloud

Controller (CLC) in Eucalyptus acts as the Cloud entry-point by exposing and

managing the virtualised resources. The CLC offers a series of web services oriented

towards resources, data and interfaces (EC2-compatible and Query interfaces). In

addition to handling incoming requests, the CLC acts as the administrative interface

for cloud management and performs high-level resource scheduling and system

accounting. The CLC accepts user API requests from command-line interfaces like

euca2ools or GUI-based tools like the Eucalyptus Management Console and manages

the underlying compute, storage, and network resources.

2.2.3.3 Cloudstack

Apache CloudStack is open source software designed to

deploy and manage large networks of virtual machines, as a

highly available, highly scalable Infrastructure as a Service (IaaS) cloud computing

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

45

platform (42). CloudStack is used by a number of service providers (e.g. BT) to offer

public cloud services, and by many companies to provide an on-premises (private)

cloud offering, or as part of a hybrid cloud solution. CloudStack is a turnkey solution

that includes the entire "stack" of features most organisations want with an IaaS

cloud: compute orchestration, Network-as-a-Service, user and account management,

a full and open native API, resource accounting, and a first-class User Interface (UI).

CloudStack is a framework that allows pooling of computing resources in order to

IaaS cloud services that can be used to provide IT infrastructure such as compute

nodes (hosts), networks, and storage as a service to the end users on demand.

CloudStack Management Server is the main component of the framework, consisting

of managing resources such as hosts, storage devices and IP addresses. The

Management Server runs on a dedicated host in a Tomcat container and requires a

MySQL database for persistence. The Management Server controls allocation of VMs

to hosts and assigns storage and IP addresses to VM instances. This component also

controls or collaborates with the hypervisor layers on the physical hosts over the

management network and thus controls the IT infrastructure.

2.2.3.4 VMware vCloud Suite

VMware’s vCloud Suite - is a comprehensive, integrated

cloud platform for building and managing cloud

environments (43). Tools for cloud management are

delivered through VMware vCenter Server, a centralised and extensible platform for

managing virtual infrastructure. The tools included in the vCenter Server framework

support: configuration of ESX servers and VMs, performance monitoring throughout

the entire infrastructure, using events and alerts. The objects in the virtual

infrastructure can be securely managed with roles and permissions.

2.2.4 Network Resource Virtualisation and Management

Virtualising the Network Infrastructure refers to the environment that supports the

coexistence of multiple Virtual Networks (VNs) on the same physical substrate, also

realising different isolated domains of nodes characterised by a specific topology that

can be managed as real networks. In the T-NOVA architecture those nodes are Virtual

Machines (VMs) that host the VNFs. VMs are connected to VLANs that can be within

a single DC or distributed over different DCs. In this last case, tunnelling protocols are

needed in order to encapsulate the VLAN L2 frames in L3 transport networks. In the

T-NOVA architecture the inter-DC connectivity is provided by the Transport Network

Manager (TNM), whose capabilities and functionalities are discussed in Section 4.7.

This section provides an overview of the common Tunnelling Protocols which can be

of interest to T-NOVA, followed by a review of the major SDN initiatives of interested

finally some common open source NaaS frameworks are reviewed.

2.2.4.1 Tunnelling Protocols

As mentioned above, a single physical server may host a number of different VNF

services that need to be connected to different VLANs. Moreover, each of these

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

46

VLANs may span several DCs interconnected via L3 networks; all the VMs in a

segment have to be connected to a virtual switch that can manage different VLANs.

The most important standardisation activities carried out on VLAN specification is

802.1Q. This standard however does inherently support the expansion of VLANs over

L3 technologies. The continuity of L2 segments (i.e. VLANs) among different DCs is a

requirement for the T-NOVA architecture. In order to preserve the L2 segments

continuity amongst the NFVI-Point of Presence (NFVI-PoP), tunnelling protocols

(heavily used in today’s cloud services) will be exploited.

In the following subsections a brief introduction to IEEE 802.1Q is presented and the

three most common tunnelling protocols are discussed namely VxLAN (44), Network

Virtualization using Generic Routing Encapsulation (NVGRE) (45) and Stateless

Transport Tunneling (STT) (46).

IEEE 802.1Q and L2 Virtualisation

IEEE 802.1Q is the networking standard that supports virtual LANs (VLANs) on an

Ethernet network. The standard defines a system of VLAN tagging for Ethernet

frames and the accompanying procedures to be used by bridges and switches in

handling these frames. The standard also contains provisions for a quality of service

prioritisation scheme (commonly known as IEEE 802.1p) and defines the Generic

Attribute Registration Protocol.

Network segments, which are VLAN-aware (i.e., IEEE 802.1Q conformant) may include

VLAN tags. Traffic on a VLAN-unaware (i.e., IEEE 802.1D conformant) segment of the

network will not contain VLAN tags. When a frame enters the VLAN-aware segment

of the network, a tag is added to represent the VLAN membership of the frame's port

or the port/protocol combination, depending on whether port-based or port-and-

protocol-based VLAN classification is being used. Each frame must be distinguishable

as being within exactly one VLAN. A frame in the VLAN-aware portion of the network

that does not contain a VLAN tag is assumed to be flowing on the native (or default)

VLAN.

The standard was developed by IEEE 802.1, a working group of the IEEE 802

standards committee, and continues to be actively revised with notable revisions

including IEEE 802.1ak, IEEE 802.1Qat and IEEE 802.1Qay.

In T-NOVA, 802.1q VLANs can be established within a NFVI-PoP, e.g. to facilitate

communication among Virtual Network Function Components (VNFCs) of the same

service.

L3 tunnelling protocols

While L2 virtualisation seems adequate within a single L2 topology, transporting L2

frames via a L3 network (e.g. a wide-area transport network interconnecting data

centres) mandates the use of tunnelling protocols.

The aim of a tunnelling protocol is to virtualise (abstract) the physical network

topology and bring functionality like isolation of multiple tenants, isolation of

overlapping address space between multiple tenants, expanded VLAN/tenant ID

address space, and enhanced VM mobility by providing L2 services over an L3

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

47

network (L2 over L3).). In T-NOVA, the use of a tunnelling protocol is considered

essential in order to interconnect VNFCs dispersed among remote NFVI-PoPs.

The three commonly used L3 tunnelling protocols are:

 VXLAN - A Layer 2 overlay scheme over a Layer 3 network. It uses MAC

Address-in-User Datagram Protocol (MAC-in-UDP) encapsulation to provide a

means to extend Layer 2 segments across the data centre network. VXLAN is a

solution to support a flexible, large-scale multitenant environment over a

shared common physical infrastructure. The transport protocol over the

physical data centre network is IP plus UDP (44).

 NVGRE - Network virtualisation method that uses encapsulation and

tunnelling to create large numbers of virtual LANs (VLANs) for subnets at layer

2 that can extend across dispersed data centres) at layer 3 . The purpose is to

enable multi-tenant and load-balanced networks that can be shared across

on-premises and cloud environments. NVGRE was designed to solve problems

caused by the limited number of VLANs that the IEEE 802.1Q specification

enables, which are inadequate for complex virtualised environments, and

make it difficult to stretch network segments over the long distances required

for dispersed data centres (45),

 STT - Proposed by Nicira, it is written from a software centric view point

rather than from a network centric view point. The main advantage of the STT

proposal is its ability to be implemented in a software switch while still

benefitting from NIC hardware acceleration. STT uses a 64-bit network ID

rather than the 24 bit IDs used by NVGRE and VXLAN. STT is particularly

useful when some tunnel endpoints are in end-systems, as it utilises the

capabilities of standard network interface cards to improve performance (46),

Each protocol has a different set of advantages and disadvantages. Table 4 presents

the main strengths and weaknesses for each protocol.

Table 4: Common VLAN Tunnelling Protocols

Item VxLAN NVGRE STT

Proposed/used by VMware, Cisco,

Broadcom, Red

Hat

Microsoft, HP,

Intel, Broadcom

Nicira, VMware

Encapsulation UDP GRE TCP

Standard No No No

Overhead

(additional header

information)

54 bytes 46 bytes 80 bytes of new header for

the first segment of this

packet, 62 for each following

segment

Tenant space

(network identifier

length)

24-bit 24-bit 64-bit

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

48

OpenFlow Yes (OF v1.4) No? No?

OVS Yes Yes Yes

Hardware-based

TCP Segmentation

Offload (TSO)

support

No No Yes

2.2.4.2 Software Defined Network Controllers

A key abstraction of the SDN paradigm is the separation of the network control and

forwarding planes. Conceptually, in SDN networks, resources are treated as a dynamic

collection of arbitrarily connected forwarding devices with minimal intelligence. The

control logic is implemented on top of a so-called SDN controller. The controller is a

logically centralised entity which is responsible for a set of tasks, including the

extraction and maintenance of a global view of the network topology and state, as

well as the instantiation of forwarding logic appropriate to a given application

scenario. In practice the controller manages connections to all substrate switches

using a southbound protocol such as OpenFlow, and installs, modifies and deletes

forwarding entries into the forwarding tables of the connected switches by using

protocol specific control messages.

While it is possible to implement single purpose controllers, e.g. for L2 forwarding or

routing, available SDN controller implementations typically provide an extendable

software platform on top of which SDN applications may be developed and

deployed. Such a controller framework offers easy to use (northbound) APIs to the

functionality provided by the SDN substrate. Further, it may include helper functions

that provide, for example topology discovery or flow statistics collection. As a result

an SDN controller may be regarded as a layer between the SDN substrate and the

SDN application layer, which implements the logic for concrete network services (see

Figure 14). Typically, SDN controllers are executed on commodity server hardware.

While conceptually SDN controllers are centralised, in real world deployments the

controller functionality may be distributed across multiple devices to ensure

scalability and failure resilience.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

49

Figure 14: Open Networking Foundation Software-Defined Network Architecture

The NOX controller was the first widely available OpenFlow controller (47). NOX was

originally developed by Nicira and released as open-source software. Due to its early

availability and its simplicity NOX quickly become the de-facto reference design for

OpenFlow controllers. As a result it has been used to test new OpenFlow features,

novel controller ideas and it has been employed extensively in research and feasibility

studies. NOX applications – called modules – are implemented using the C

programming language. NOX is event based; each module essentially consists of a

collection of callback functions, triggered by the arrival of specific OpenFlow protocol

messages. A spin-off of NOX called POX (48) enables the use of Python for

programming modules. While NOX/POX is extremely versatile it is not primarily

aimed for production use, as it is not optimised for performance and stability and

lacks resilience features.

Other controller frameworks aimed at deployment in production environments,

include Beacon (49), Maestro (50) and FloodLight (51), all of which are implemented

in Java. FloodLight is the open source basis for Big Switch’s commercial OpenFlow

controller. OpenDayLight (52) is currently the newest and also largest SDN controller

platform. It is backed by the Linux Foundation and developed by an industrial

consortium, which includes Cisco, Juniper and IBM, among many others.

OpenDayLight includes numerous functional modules which are interconnected by a

common service abstraction layer. Further, OpenDayLight provides a flexible

northbound interface using Representation State Transfer APIs (REST APIs), and

includes support for the OpenStack cloud platform. Table 5 summarises the main

features of existing SDN controllers:

Table 5: Key features of common SDN controllers

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

50

Controller Developer Open Source Language Openflow

support

Openstack

support

NOX Nicira Yes C++ /

Python

v1.0 No

POX Nicira Yes Python v1.0 No

Maestro Rice

University

Yes Java v1.0 No

Beacon Stanford

University

Yes Java v1.0 No

Floodlight Big Switch

Networks

Yes Java v1.0 Quantum

plug-in

ONOS Open

Networking

Lab

Yes Java

Ryu NTT Yes Python v1.0-v1.4

&Nicira

extensions

Neutron

plug-in

(Havana and

Grizzly)

Nodeflow CISCO Yes Javascript

Trema NEC Yes C & Ruby v1.0 Quantum

plug-in

OpenDayLight Linux

Foundation

Yes Java v1.0, v1.3 Neutron

plug-in

Iris ETRI Yes Java v1.0.1-v1.3.2

MUL Kulcloud Yes C v1.0, v.1.3

Jaxon Independent

developers

Yes Java

JunosV

Contrail

Juniper No No Yes

Another framework that is attracting attention is OpenContrail led by Juniper

Networks. Actually it is more than a SDN controller: it is a modular project that

provides an environment for network virtualisation and published northbound APIs.

In particular, the network virtualisation is provided by means of a set of building

blocks and high level policies; it integrates an SDN controller to support network

programmability and automation, and a well-defined data model to describe the

desired state of the network; an analytics engine is designed for very large scale

ingestion and querying of structured and unstructured data. It also provides an

extensive REST API to configure and gather operational and analytics data from the

system.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

51

2.2.4.3 NaaS platforms

Network service delivery and management models remain an area of on-going

evolution, and are additionally being continually revised in tandem with the

constantly evolving needs of the R and E community. The network as a service

concept represents an interesting service model from which T-NOVA can benefit.

Network as a Service (NaaS) is a business model for delivering network services

virtually over any network on a pay-per-use basis. It is not a new concept. However,

its development has been hindered by some of the same concerns that have affected

also other cloud computing services, such as high availability or service level

agreements. In the following section a brief review of the NaaS platforms is

presented.

Open Network as a Service (OpenNaas)

The NaaS model has been instantiated in the OpenNaaS easy prototyping and proof

casing of NaaS concepts. OpenNaaS is an open-source framework, which provides

tools for managing the different resources present in any network infrastructure. The

software platform was created in order to offer a neutral tool to the different

stakeholders comprising an Open Access Network (OAN). It allows them to

contribute and benefit from a common NaaS software-oriented stack for both

applications and services. It is based on a lightweight, abstracted, operational model,

which is decoupled from actual vendors’ specific details, and is flexible enough to

accommodate different designs and orientations. In fact, the OpenNaaS framework

provides tools to implement the logic of an SDN-like control and management plane

on top of the lightweight abstracted model. The manner in which it is designed

allows the deployment of VNFs within it. The elements loaded in OpenNaaS contains

a model which stores the information about the resource, and a set of capabilities

that allows to access to the data of the model.

Figure 15 depicts the layered architecture of the framework, with the platform layer,

the resource abstraction layer with the NaaS manageable units, and the upper layer,

where the network intelligence resides, as well as the integration of the framework

with third-party components. Besides, the resource abstraction, the core platform

concepts are also depicted. Different OpenNaaS deployment examples can be found

in the following list of European projects extending the OpenNaaS framework:

OFERTIE (53), CONTENT (54), and SODALES (55). Furthermore, authors in (56) used

OpenNaaS in order to build a first proof-of-concept pilot for the VNF creation and

management.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

52

Figure 15: OpenNaaS Architecture (left), NaaS Resource Abstraction (right)

OpenStack Neutron

OpenStack Neutron (57), historically known as Quantum, is an OpenStack project

focused on delivering Networking as a Service (NaaS). It is designed to address

deficiencies in “baked-in” networking technology found in cloud environments, as

well as the lack of tenant control (in multi-tenant environments) over the network

topology and addressing, which makes it hard to deploy advanced networking

services.

Neutron provides a way for organisations to make it easier to deliver networking as a

service in the cloud and provides REST APIs to manage network connections for the

resources managed by other OpenStack services.

It is designed to implement a “plugin” mechanism that will provide an option for

network operators to enable different technologies via the Neutron API making it

technology agnostic.

Neutron provides native multi-tenancy support (isolation, abstraction and full control

over virtual networks), letting tenants create multiple private networks and control

the IP addressing on them, and exposes vendor-specific network virtualisation and

SDN technologies.

As a result of API extensions, administrators and users have additional control over

security and compliance policies, QoS monitoring and troubleshooting, the ability to

build sophisticated networking topologies, as well as the ability to easily deploy

advanced network services, such as a firewall, L2-in-L3 tunnelling, end-to-end quality

of service support intrusion detection or VPN.

The core Neutron API includes support for Layer 2 networking and IP Address

Management (IPAM), as well as an extension for a Layer 3 router construct that

enables routing between Layer 2 networks and gateways to external networks. It is

based on a simple model of virtual networks, subnet, and port abstractions to

describe networking resources. Network is an isolated layer-2 segment, analogous to

a VLAN in the physical networking world. More specifically, it is a broadcast domain

reserved for the tenant that created it or explicitly configured as shared. Neutron

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

53

includes a growing list of plugins that enable interoperability with various commercial

and open source network technologies, including routers, switches, virtual switches

and SDN controllers.

Starting with the Folsom release, Neutron is a core and supported part of the

OpenStack platform. However, it is a standalone and autonomous service that can

evolve independently to OpenStack.

OpenDaylight Virtual Tenant Network (VTN)

OpenDaylight Virtual Tenant Network (VTN) provides multi-tenant virtual network on

an SDN controller (58). Traditionally physical networks have been configured as silos

for each department within an organisation (or for each customer) by a service

provider. This has resulted in significant and unnecessary hardware investments and

operating expenses due to underutilised, redundant network equipment required to

implement this scheme.

VTN addresses this problem by providing an abstraction that enables the complete

separation of the logical plane from physical plane of the network. This allows users

to design and deploy virtual networks for their customers without needing to know

the physical network topology or underlying operating characteristics. The VTN also

allows the network designer to construct the virtual networks using common L2/L3

network semantics.

VTN allows the users to define the network with a look and feel of conventional L2/L3

network. Once the network is designed on VTN, it is automatically mapped onto the

underlying physical network, and then configured on the individual switches

leveraging an SDN control protocol. The definition of the logical plane makes it

possible not only to hide the complexity of the underlying network but also to better

manage network resources. It achieves a reduction in the reconfiguration time of

network services and minimising network configuration errors.

Open DOVE

Open DOVE (Distributed Overlay Virtual Ethernet) is a network virtualisation platform

that provides isolated multi-tenant networks on any IP network in a virtualised DC

(59). DOVE provides each tenant with a virtual network abstraction providing layer-2

or layer-3 connectivity and the ability to control communications using access control

policies. Address dissemination and policy enforcement in DOVE is provided by a

clustered directory service. It also includes a gateway function to enable virtual

machines on a virtual network to communicate with hosts outside the virtual network

domain.

Users interact with Open DOVE to create and manage virtual networks through the

Open DOVE Management Console (DMC), which provides a REST API for

programmatic virtual network management and a basic graphical UI. The DMC is also

used to configure the Open DOVE Gateway to provide connectivity to non-virtualised

networks.

The Open DOVE Connectivity Server (DCS) supplies address and policy information to

individual Open DOVE vswitches, which implement virtual networks by encapsulating

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

54

tenant traffic in overlays that span virtualised hosts in the data centre. The DCS also

includes support for high-availability and scale-out deployments through a

lightweight clustering protocol between replicated DCS instances. The Open DOVE

vswitches serve as policy enforcement points for traffic entering virtual networks.

Open DOVE uses the VxLAN encapsulation format but implements a scalable control

plane that does not require the use of IP multicast in the data centre.

The DOVE technology was originally developed by IBM Research and has also been

included in commercial products.

Flowvisor

FlowVisor is the ON.LAB network slicer, which allows multiple tenants to share the

same physical infrastructure (60). A tenant can be either a customer requiring his own

isolated network slice; a sub-organisation that needs its own slice; or an experimenter

who wants to control and manage some specific traffic from a subset of endpoints.

FlowVisor acts as a transparent proxy between OpenFlow switches and various guest

network operating systems. It supports network slicing and allows a tenant or an

experimenter to control and manage some specific traffic from a subset of end

points. This approach enables multiple experimenters to use a physical OpenFlow

network without interfering with each other.

FlowVisor enables network virtualisation by dividing a physical network into multiple

logical networks ensuring that each controller touches only the switches and

resources assigned to it. It also partitions bandwidth and flow table resources on

each switch and assigns those partitions to individual controllers.

FlowVisor slices a physical network into abstracted units of bandwidth, topology,

traffic and network device CPUs. It operates as a transparent proxy controller

between the physical switches of an OpenFlow network and other OpenFlow

controllers and enables multiple controllers to operate the same physical

infrastructure, much like a server hypervisor allows multiple operating systems to use

the same x86-based hardware. Other standard OpenFlow controllers then operate

their own individual network slices through the FlowVisor proxy. This arrangement

allows multiple OpenFlow controllers to run virtual networks on the same physical

infrastructure.

FlowVisor, originally developed at Stanford University, has been widely used in

experimental research and education networks to support slicing where multiple

experimenters get their own isolated slice of the infrastructure and control it using

their own network OS and a set of control and management applications. FlowVisor

has been deployed on a Stanford production network and sponsors, such as GENI,

Internet2, NEC and Ericsson, have been contributing to it and using it in their research

labs. The SDN research community considers FlowVisor an experimental technology,

although Stanford University has run FlowVisor in its production network since 2009.

FlowVisor lacks some of the basic network management interfaces that would make it

enterprise-grade. For example it currently does not any CLI or Web-based

administration console but requires users to make changes to the technology with

configuration file updates.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

55

OpenVirteX

OpenVirteX is a network hypervisor that can create multiple virtual and

programmable networks on top of a single physical infrastructure (61). Each tenant

can use the full addressing space, specify their own topology, and deploy the

network OS of their choice. Networks can be reconfigured at run-time, and

OpenVirteX can automatically recover from physical failures.

OpenVirteX is actually a network hypervisor that enables operators to provide

networks whose topologies, management schemes, and use cases are under the full

control of their tenants. More specifically OpenVirteX builds on OpenFlow as protocol

and FlowVisor for design. In this respect they share some common properties i.e. act

as proxies between tenants and the underlying physical infrastructure. Unlike

FlowVisor however, OpenVirteX provides each tenant with a fully virtualised network

featuring a tenant-specified topology and a full header space.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

56

3 THE T-NOVA ORCHESTRATION LAYER

This section describes the Orchestration layer, starting with an overview of its main

characteristics, challenges and framework (subsection 3.1); followed by a description

of requirements associated with its FEs (subsection 3.2), and finally a description of its

functional architecture (subsection 3.3).

3.1 Orchestration Layer Overview

NFV is an emerging concept, which refers to the migration of certain network

functionalities, traditionally performed by dedicated hardware elements, to virtualised

IT infrastructures where they are deployed as software components. NFV leverages

commodity servers and storage to enable rapid deployment, reconfiguration and

elastic scaling of network functionalities.

Decoupling the network functions software from the hardware creates a new set of

entities, namely:

 Virtual Network Functions (VNFs): software-based network functions

deployed over virtualised infrastructure;

 Network Functions Virtualized Infrastructure (NFVI): virtualised hardware

that supports the deployment of network functions;

 Network Service (NS): chain of VNFs and/or Physical Network Functions

(PNFs) interconnected through virtual network links (VLs).

Since VNFs, NFVIs, NSs and the relationships between them did not exist before the

NFV paradigm, handling them requires a new and different set of management

orchestration functions.

VNFs require more agile management procedures when compared with legacy PNFs

deployed over dedicated appliances. Besides the traditional management procedures

already in place for PNFs, in charge of BSSs/OSSs, such as customer management,

accounting management and SLA management, VNFs require new management

procedures, e.g. to automatically create, to update and/or to terminate VNFs and

NSs. Furthermore, the automatic deployment and instantiation procedures associated

with a specific VNF need to be in place as well as the monitoring and automatic

scaling procedures during the service runtime phase.

Another challenge brought about by the NFV paradigm is the management of the

virtualised infrastructure. In fact, one of the main advantages of virtualising the

network functions is to enable the automatic adjustment of NFVI resources according

to the network function demands. To achieve this, the VNF specific requirements,

according to the contracted SLA, have to be mapped to the required virtualised

infrastructure assets (compute – e.g. virtual and physical machines, storage and

networking – e.g. networks, subnets, ports and addresses). The mapping procedures

should also consider the network topology, connectivity and network QoS

constraints, as well as function characteristics (e.g. some functions may require low

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

57

delay, low loss or high bandwidth). Since virtualised resources can be centralised in a

single NFVI-PoP or distributed across several NFVI-PoPs, the management and

orchestration entities will also have to decide what is the most appropriated NFVI-

PoP or NFVI-PoPs to deploy the function.

Besides the VNFs and the NFVI-PoPs management challenges, new and more

complex NSs will be provided based on the combination/chaining of several VNFs.

Therefore, in addition to the managing and orchestrating of each VNF and of the

associated NFVI-PoP, orchestration and management procedures also have to be

defined at the service level. These will coordinate several VNFs, as well as their

association through Virtual network Links (VLs). Moreover, since the NSs can also be

composed by PNFs, the interconnections between these and the VNFs are also

required. The NS composition includes the constituent VNFs, PNFs and VLs, in the

VNF Forwarding Graph (VNFFG). Each NS can have one or more VNFFGs, if there are

conditions to have alternatives in terms of path creation, which can be used as

backups.

Figure 16 illustrates the entities introduced by the NFV paradigm, as well as their

relationships.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

58

Figure 16: NSs & VNFs Complex Orchestration Overview

The NS presented in Figure 16 is composed by the following entities:

 Four VNFs: A, B, C and D;

 One PNF;

 Five VLs: 1 (interconnecting VNF A and PNF), 2 (interconnecting VNF A and

VNF B, 3 (interconnecting VNF A and VNF C), 4 (interconnecting VNF B and

VNF D) and 5 (interconnecting VNF C and VNF D).

The VNFs are deployed over two different NVFI-PoPs:

 NFVI-PoP I: supports VNF A and D deployments;

 NFVI-PoP II: supports VNF B and C deployments.

Two VNFFGs are illustrated:

 VNFFG I: delivers the NS through the PNF – VNF A – VNF C – VNF D

networking path;

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

59

 VNFFG II: delivers the NS through the PNF – VNF A – VNF B – VNF D

networking path.

Internally, the VNFs can be composed by one or more software components, also

known as Virtual Network Function Components (VNFCs). Each VNFC is typically

deployed in a single Virtual Machine (VM), although other deployment procedures

can exist. As VNFs, VNFCs can be instantiated in a single NFVI-PoP or distributed

across several NFVI-PoPs. The VNFCs interconnections are made through dedicated

VLs. Figure 16 illustrates the internals of a specific (VNF D). The latter software

components, namely web server (VNFC A), application server (VNFC B) and database

(VNFC C), interconnected through VLs (VL6 and VL7).

On top of all these entities (e.g. NS, VNF, VNFC, VL, NFVI-PoP, etc) stands the

orchestrator, which has responsibility for managing the complexity associated with

the NSs and VNFs lifecycle management (e.g. on-boarding/deployment, instantiation,

supervision, scaling, termination), including the internals of the VNFs (not illustrated

in the figure).

In summary, the T-NOVA Orchestrator platform is focused on addressing two of the

most critical issues in NFV:

1. Automated deployment and configuration of NSs/VNFs;

2. Management and optimisation of networking and IT resources for VNFs

accommodation.

To address the complex management processes related with the NSs and VNFs, the

Orchestrator is split in two main FEs:

1. NFV Orchestrator (NFVO): manages the virtualised NSs lifecycle procedures,

including the networking links that interconnect the VNFs;

2. VNF Manager (VNFM): manages the VNFs lifecycle procedures.

The T-NOVA Orchestrator will also be able to deploy and monitor T-NOVA services

by jointly managing WAN resources and cloud (compute/storage) assets (DCs).

Indeed, the T-NOVA Orchestrator goes beyond traditional cloud management, since

its scope is not restricted to a single DC; it needs to jointly manage WAN and

distributed cloud resources in different interconnected DCs in order to couple the

basic network connectivity service with added-value NFs.

Further details regarding these T-NOVA Orchestrator entities and functionalities are

provided in the following subsections. The VNF related concepts and architectural

components are discussed extensively in Deliverable D2.41 (D2.41) (62).

3.2 Orchestrator requirements

As already outlined in subsection 3.1, the T-NOVA Orchestrator is composed by two

main building blocks: the NFVO and the VNFM.

The NFVO orchestrates the subset of functions that are responsible for the lifecycle

management of Network Services (NSs). In addition, it is also responsible for the

resource orchestration of the NFVI resources across:

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

60

 a single VIM, corresponding to a single NFVI-PoP, and/or

 multiple VIMs, corresponding to multiple NFVI-PoPs, by using a specialized

VIM designated by TNM.

The VNFM is the functional block that is responsible for the lifecycle management of

the VNFs.

The deployment and operational behaviour of the Orchestrator is captured in

deployment templates, where the most important for this subsection are the Network

Service Descriptor (NSD), the Virtual Network Function Descriptor (VNFD). Other

templates are also used, e.g., Virtual Link Descriptor (VLD), and the VNF Forwarding

Graph (VNFFGD), which will be further detailed in subsection 3.3.

This subsection details the Orchestrator requirements that have been identified after

a research study involving several sources, e.g. use cases defined in D2.1 (63), ETSI

ISG NFV requirements (64), ITU-T requirements for NV (10), as well as excerpts of

relevant parts of the ETSI ISG MANO architecture and associated FEs (8).

The list of requirements for each FE may be found in Annex A, where 35 requirements

have been identified for the NFVO and 11 for the VNFM. However, it should be noted

that none of these requirements imposes any specific solution at the implementation

level, which will be performed in WP3/4.

Taking into account that the list of requirements is quite extensive, the entire set of

requirements has been classified and divided into types as indicated in the remaining

part of the current subsection.

3.2.1 NFVO requirements types

Network Services under the responsibility of the NFVO, are composed by VNFs and,

as such, are defined by their functional and behavioural specification. In this context,

the NFVO coordinates the lifecycle of VNFs that jointly realise a NS. This coordination

includes managing the associations between the different VNFs that make-up part of

the NS, and when applicable between VNFs and PNFs, the network topology of the

NS, and the VNFFGs associated with the NS.

The operation of NSs defines the behaviour of the higher Orchestration layer, which

is characterised by performance, dependability, and security specifications. The end-

to-end network service behaviour is the result of combining individual network

function behaviours as well as the behaviours of the composition mechanisms

associated with the underlying network infrastructure layer, i.e. the IVM layer.

In terms of deployment and operational behaviour, the requirements of each NS are

carried in a deployment template, the NSD, and stored during the NS on-boarding

process in the NS catalogue, for future selection once the instantiation of the service

takes place. The NSD fully describes the attributes and requirements necessary to

implement a NS, including the service topology, i.e. constituent VNFs and the

relationships between them, VLs, VNFFGs, as well as NS characteristics, e.g. in terms

of SLAs and any other information necessary for the NS on-boarding and lifecycle

management of its instances.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

61

As the NS is the main responsibility of the NFVO, the NS lifecycle constitutes the

most relevant technical area regarding the NFVO classification in terms of

requirements.

As indicated below, the other requirement types are related with the VNF lifecycle

management with respect to the actions and procedures taken by the NFVO, which

also includes the second FE that constitutes part of the Orchestrator, together with

the NFVO: the VNFM. The actions and procedures associated with the VNFM’s

behaviour, and in particular those related to the VNF lifecycle, will be further

discussed in subsection 3.2.2.

Regarding the remaining requirement types, it should be noted that there is one type

related to the NFVO, which handles the management of the resources located in

the VIM and in the TNM; another one related with the policy management; and

another one, specific to the T-NOVA system, which is concerned with the most

relevant interactions with the Marketplace, the layer immediately above the

Orchestration layer.

Finally, there are still two further types that relate to NS lifecycle operations:

connectivity handling and the monitoring process. A decision was taken to create

separate groups for these two (sub)types in order to emphasize the importance they

play in the overall operation of the Orchestrator.

3.2.1.1 NS Lifecycle

A Service Provider (SP) may choose one or more VNFs to compose a new NS, by

parameterising those VNFs, selecting a SLA, etc. within the context of the T-NOVA

system. The NFVO is then notified of the composition of this new NS, by the

reception of a request that includes a NSD, which is validated in terms of description.

In a similar process, when a Customer subscribes to a NS, the Marketplace notifies

the NFVO, which instantiates the NS according to its NSD description, agreed SLA

and the current status of the overall infrastructure usage metrics. Upon a successful

instantiation, the Orchestrator notifies the Marketplace, thus triggering the

accounting process of the subscribed NS as well as of the customer.

After these steps the NFVO becomes responsible for NS lifecycle management, where

lifecycle management refers to a set of functions required to manage the

instantiation, maintenance and termination of a NS.

3.2.1.2 VNF Lifecycle

The NFVO performs its capabilities by using the VNFM operation in what concerns

the handling of the VNF lifecycle. Although the VNFM is the FE in charge of the

management of the VNF lifecycle, as further described in subsection 3.2.2, some

operations require the intervention of the NFVO.

The requirement type specified in the current subsection refers precisely to those

parts of the VNF lifecycle management that are performed by the NFVO.

In this context, Function Providers (FPs) publicise their VNFs in the Network

Function Store (NF Store). This implies the use of a VNFD describing the

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

62

infrastructure (computation, storage, network infrastructure and connection) needed

for the VNF to be instantiated later on by a request sent to the Orchestrator.

After a validation of the VNFD, the NFVO publicises the VNF to the Marketplace as

being ready to be part of a NS. Associated with the VNFD, there may be potentially a

VM image that will make part of the deployment of such VNF.

As the FP provides newer versions this process is repeated. If and when the FP wishes

to withdraw the VNF, the reverse process is executed taking into consideration the

current status of NS exploiting the under deletion VNF.

3.2.1.3 Resource Handling

The NFVO is the Orchestrator FE that performs the resource handling of the subset of

Orchestrator functions that are responsible for global resource management

governance.

In terms of scope, the following domains and associated IT virtualised resources are

managed by the NFVO: Compute, i.e. virtual processing CPUs and virtual memory;

Storage, i.e. virtual storage; and Network, i.e. virtual links intra/interconnecting VNFs

within the Data Centre Network (DCN). In T-NOVA, the NFVO also manages the

resources of the TNM network domain.

The governance described above is performed by managing the between the VNF

instances and the NFVI resources allocated to those VNF instances and by using the

Infra Resources catalogue as well as information received from the VIM and from the

TNM.

According to the characteristics of each service (agreed SLA) and the current usage of

the infrastructure (computation, storage infrastructure and connectivity), there is an

optimal allocation for the required infrastructure.

This optimal infrastructure allocation will be the responsibility of an allocation

algorithm (or a set of algorithms) that will be defined, in WP3.

3.2.1.4 Monitoring Process

One of the key aspects of the T-NOVA project is not only the ability to optimally

allocate infrastructures for a NS, but also to react, in real time, to the current

performance of a subscribed NS, so that the agreed SLA is maintained. To accomplish

these two aspects, it is crucial that a meaningful set of infrastructure (computational,

storage, infrastructure and connectivity) usage metrics be collected.

NS metrics must be defined together with the SLA(s) to be provided with every NS

instantiation.

It is expected that the data to be collected will be significant with a high frequency of

change, so adequate strategies will have to be designed to support collecting large

volumes of data.

As such, during the NS lifecycle, the NFVO may monitor the overall operation of a NS

with information provided by the VIM and/or by the TNM, if such requirements were

captured in the NS deployment template.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

63

Such data may be used to derive usage information for NFVI resources being

consumed by VNF instances or groups of VNF instances. For instance, the process

may involve collecting measurements about the number of NFVI resources consumed

by NFVI interfaces, and then correlating NFVI usage records to VNF instances.

Beyond the infrastructure usage metrics sets of NS usage metrics, need to be defined

upon service composition, in order to allow tracking of the agreed SLA and to

determine if it is being maintained or not.

These metrics are more service oriented than infrastructure oriented, and are built on

top of infrastructure usage metrics. For instance, a metric such as “the current

number of simultaneous sessions” is something that the infrastructure cannot

measure, but the “current maximum network latency” is something available at the

infrastructure level, which might make sense at the service level as well. The choice

between which metrics to track is made by the Marketplace, at service composition

time.

The collection of these measurement metrics may be reported to external entities,

e.g. the Customer, the SP or the FP, via the Marketplace, if such requirements were

captured in the NS deployment template.

In addition, this information may be compared with additional information included

in the on-boarded NS and VNF deployment templates, as well as with policies

applicable to the NS that can be used to trigger automatic operational management

of the NS instance, e.g. automatic scaling of VNF instances that are part of the NS.

3.2.1.5 Connectivity Handling

The NFVO has an abstracted view of the network topology and interfaces to the

underlying VIMs and TNMs in order to handle connectivity services by performing

the management of the NS instances, e.g., create, update, query, delete VNFFGs.

Connectivity management must be handled over the same domains as those

indicated for resource handling.

3.2.1.6 Policy Management

Policies are defined by conditions and corresponding actions/procedures, e.g. a

scaling policy may state execution of specific actions/procedures if the required

conditions occur during runtime. Different actions/procedures defined by the policy

can be mutually exclusive, which implies a process of selection of a particular

action/procedure (or set of actions/procedures) to be executed either automatically

or manually.

In the context of T-NOVA, once declared, a policy may be bound to one or more NS

instances, VNF instances, and NFVI resources. Policy management always implies

some degree of evaluation for the NS instances and VNF instances, e.g., in term of

policies related with affinity/anti-affinity, lifecycle operations, geography, regulatory

rules, NS topology, etc.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

64

In addition, policy management also refers to the management of rules governing

the behaviour of Orchestrator functions, e.g., management of NS or VNF scaling

operations, access control, resource management, fault management, etc.

Associated with the policy management terminology is the concept of policy

enforcement, i.e. polices are defined by certain entities and are then enforced in other

entities, which may in their turn enforce them in additional entities.

In the T-NOVA context, policies may be defined by external entities, e.g. the

Customer, the SP or the FP, and are then enforced into the NFVO, via the

Marketplace. In its turn, the NFVO may enforce them into the VNFM.

Policy enforcement may be static or on-demand.

3.2.1.7 Marketplace-specific interactions

The Marketplace is the T-NOVA layer that interfaces with external entities, e.g.,

Customers, SPs and FPs. In the T-NOVA global architecture, it interacts with the

Orchestration layer through an interface whose requirements are defined in

subsection 3.4.

The deployment and behaviour of the Marketplace imposes requirements that the

Orchestration must fulfil in order to offer those external entities an entire set of

functionalities, which are defined in D2.41 (62).

The request made by the Marketplace for those requirements as well as the

correspondent responses from the Orchestrator are, most of the time, implicit in the

current description of the Orchestrator requirements.

However, for some of those requirements that are based within D2.1 (63), e.g.

publishing the outcome of the NS instantiation, publishing NS metrics, or reporting

usage metrics, it was decided to create a separate group in order to highlight their

processing mechanisms.

For instance, the various kinds of metrics described above may be used by business-

oriented processes residing in the Marketplace, namely to start and stop tracking of

the usage a NS for billing purposes.

3.2.2 VNFM requirements types

The deployment and operational behaviour requirements of each VNF is captured in

a deployment template, the VNFD, and stored during the VNF on-boarding process

in the VNF catalogue as part of a VNF Package, for future use. The deployment

template describes the attributes and requirements necessary to realise such the VNF

and captures, in an abstracted manner, the requirements to manage its lifecycle.

The VNFM performs the lifecycle management of a VNF based on the requirements

included in this template. As such, the VNF lifecycle constitutes the most relevant

type in the VNFM classification of requirements in relation to the procedures taken in

this global process.

As also decided for the NFVO, there is still a further type that constitutes, in fact, an

area of operation that belongs to the VNF lifecycle: the monitoring process. Once

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

65

again, the reason behind the creation of a separate group for this (sub)type is related

to emphasising the importance of its rule in the Orchestrator’s operation.

3.2.2.1 VNF Lifecycle

The VNFM is responsible for the VNF lifecycle management, where lifecycle

management refers to a set of functions required to manage the instantiation,

maintenance and termination of a VNF.

3.2.2.2 Monitoring Process

During the lifecycle of a VNF, the VNF Management functions may monitor Key

Parameter Indicator (KPIs) of a VNF, if such KPIs were captured in the deployment

template. The management functions may use this information for scaling operations.

Scaling may include changing the configuration of the virtualised resources (scale

down, e.g., add CPU, or scale up, e.g., remove CPU), adding new virtualised resources

(scale out, e.g., add a new VM), shutting down and removing VM instances (scale in),

or releasing some virtualised resources (scale down).

So, every VNF will usually provide its own usage metrics to the VNFM, which will be,

in general, specific to the function the VNF provides, although they might be based

on the infrastructure on top of which the VNF has been deployed.

The treatment of the information collected during the VNF monitoring process is very

similar to the one described for the NS process and may result in reports being sent

external entities, via the Marketplace, and/or to trigger automatic operational

management of the VNF instance, e.g. automatic scaling.

3.3 Functional Orchestrator Architecture

This subsection describes the Orchestrator reference architecture, including its

functional entities as well as external interfaces.

3.3.1 Reference Architecture

The Orchestrator reference architecture, as well as the interfaces with the external

Functional Entities (FEs) is depicted in Figure 17. In detail, the orchestrator interacts

with the Marketplace, which is the T-NOVA domain responsible for accounting, SLA

management and business functionalities. Besides the Marketplace, the Orchestrator

also interfaces with the IVM, and in particular with the VIM, for managing the data

centre network/IT infrastructure resources, as well as with the TNM for WAN

connectivity management. Finally, the Orchestrator interacts with the VNF itself,

which in the T-NOVA scope is located in the IVM domain, to ensure its lifecycle

management.

Internally, the T-NOVA Orchestrator consists of two main components and a set of

repositories. One of the core elements is the NFVO, acting as the front-end with the

Marketplace and orchestrating all the incoming requests towards the other

components of the architecture. Further details relating to the NFVO and the

associated incoming requests are available in subsection 3.3.2.1. To support the

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

66

NFVO operation procedures, a set of repositories is identified in order to store the

description of the available VNFs and NSs (VNF Catalogue and NS Catalogue), the

instantiated VNFs and NSs (NS & VNF Instances), as well as the available resources in

the virtualised infrastructure (Infrastructure Resources Catalogue). Further details

about the orchestrator repositories are provided in subsection 3.3.2.3. Finally, the

NFVO also interacts with the other core element, the VNF Manager (VNFM),

responsible for the VNF-specific lifecycle management procedures, as described in

subsection 3.3.2.2.

Figure 17: T-NOVA Orchestrator Reference Architecture

3.3.2 Functional entities

This subsection describes the functional entities of the Orchestrator architecture.

3.3.2.1 Network Function Virtualisation Orchestrator (NFVO)

The main function of the NFVO is to manage the virtualised NSs lifecycle and its

procedures. Since the NSs are composed by VNFs, (PNFs, VLs and VNFFGs, the NFVO

is able to decompose each NS into these constituents. Nevertheless, although the

NFVO has the knowledge of the VNFs that compose the NS, it delegates their

lifecycle management to another dedicated FE of the Orchestrator domain,

designated by VNFM.

A description of the main deployment templates must be taken into account when

determining the best connectivity paths to deliver a service is provided:

 a VNFFGD is a deployment template that describes a topology of the NS or a

portion of the NS, by referencing VNFs and PNFs as well as VLs that used for

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

67

interconnection. In addition to the VLs, whose descriptor is described below, a

VNFFG can reference other information elements in the NS such as PNFs and

VNFs. A VNFFG also contains a Network Forwarding Path (NFP), i.e. an

ordered list of Connection Points forming a chain of NFs, along with policies

associated to the list,

 a VLD is a deployment template which describes the resource requirements

that are needed for establishing a link between VNFs, PNFs and endpoints of

the NS, which could be met by choosing an option between various links that

are available in the NFVI. However, the NFVO must first consult the VNFFG in

order to determine the appropriate NFVI to be used based on functional (e.g.,

dual separate paths for resilience) and other needs (e.g., geography and

regulatory requirements).

In addition to the orchestration of the virtualised service level operations, which

allows the abstraction of service specificities from the business/operational level – in

this case the T-NOVA Marketplace – the NFVO also manages the virtualised

infrastructure resource level operations as well as the configuration/allocation of

transport connections when two or more distinct DCs are involved. Hence, it

coordinates the resource reservation/allocation/removal to specific NSs and VNFs

according to the availability of the virtualised infrastructures, also known as data

centres.

To address the two main functionalities above mentioned, the NFVO is architecturally

split in two modules, namely the Network Services Orchestrator (NSO) and the

Virtualised Resources Orchestrator (VRO), further described below.

Network Service Orchestrator

The NSO is one of the components of the NFVO with the responsibility for managing

the NS lifecycle and its procedures. More precisely, the following tasks fall under the

responsibility of the NSO:

 NSs and VNFs on-boarding: management of Network Services deployment

templates, also known as NS Descriptors and VNF Packages, as well as of the

NSs instances topology (e.g., create, update, query, delete VNF Forwarding

Graphs). On-boarding of a NS includes the registration in the NS catalogue

therefore ensuring that all the templates (NSDs) are stored, see NS on-

boarding procedure detailed in subsection 5.2.1;

 NS instantiation: trigger instantiation of NS and VNF instances, according to

triggers and actions captured in the on-boarded NS and VNF deployment

templates. In addition, management of the instantiation of VNFs, in

coordination with VNFMs as well as validation of NFVI resource requests from

VNFMs, as those may impact NSs, e.g. scaling process, see NS instantiation

procedure detailed in subsection 5.2.2;

 NS update: support NS configuration changes of various complexity such as

changing inter-VNF connectivity or the constituent VNFs;

 NS supervision: monitoring and measurement of the NS performance and

correlation of the acquired metrics for each service instance. Data is obtained

from the IVM layer (performance metrics related with the virtual network links

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

68

interconnecting the network functions) and from the VNFM (aggregated

performance metrics related with the VNF, see NS supervision procedure

detailed in subsection 5.2.3;

 NS scaling: increase or decrease of the NS capacity according to per-instance

and per-service auto-scaling policies. The NS scaling can imply either

increasing/decreasing of a specific VNF capacity, create/terminate new/old

VNF instances and/or increase/decrease the number of connectivity links

between the network functions;

 NS termination: release of a specific NS instance by removing the associated

VNFs and associated connectivity links, as well as the virtualised infrastructure

resources, (see NS termination procedure detailed in subsection 5.2.5).

In addition to these lifecycle related procedures, the NSO also performs policy

management and evaluation for the NS instances and VNF instances, e.g., policies

related with scaling.

Figure 18 provides an illustration about the NSO interactions within the T-NOVA

Orchestrator and with the remaining T-NOVA external entities:

Figure 18: NS Orchestrator (Internal & External) Interactions

From the external perspective, it interacts with the Marketplace for operational and

business management purposes as follows:

 Exchange provisioning information (e.g., requests, modifications/updates,

acknowledgements) about the NSs (through the T-Da-Or interface);

 Provides the orchestrator with information on each NS instance SLA

agreement. In turn he orchestrator sends SLA-related metrics to the

Marketplace (through the T-Sl-Or interface);

 Deliver to the Marketplace usage accounting information with respect to

VNFs and NSs (through the T-Ac-Or interface);

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

69

 Provides the orchestrator with information about the NSs composition. The

orchestrator delivers to the Marketplace information about the available VNFs

(through the T-Br-Or interface).

Internally, the NSO has the following communication points:

 NS Catalogue: collects information about the NSs (NSD), including the set of

constituent VNFs, interconnecting network links (VLD) and network topology

information (VNFFGD);

 VNF Catalogue: stores the VNFD during the on-boarding procedures;

 NS and VNF Instances: stores information about the NS instances status;

 Virtualised Resources Orchestrator (VRO): exchanges management actions

related to virtualised resources and/or connections, either within the data

centre scope (e.g. compute, storage and network) and/or on the transport

network segment;

 Virtual Network Function Manager (VNFM): exchange lifecycle

management actions related with the VNFs.

Virtualised Resources Orchestrator

The Virtualised Resources Orchestrator (VRO) is the resource layer management

Functional Entity of the NFVO main block. It is responsible for the following actions:

 Coordinate resource reservation/allocation/removal and establish the

placement for each VM that composes the VNF (and the NS);

 Interact with the WAN elements for connectivity management actions;

 Validate NFVI resource requests from VNFMs, as those may impact the way

the requested resources are allocated within one NFVI-PoP or across multiple

NFVI-PoPs. Whether the resource related requests comes directly from the

VNFM or from the NFVO is implementation dependent;

 Manage the relationship between the VNF instances and the NFVI resources

allocated to those VNF instances;

 Collect usage information of the NFVI resources;

 Collect performance information about the network links interconnecting the

VNFs;

 Collect performance about the virtualised infrastructure resources supporting

NSs.

The following virtualised resources are managed by the VRO:

 Compute: virtual processing CPUs and virtual memory;

 Storage: virtual storage;

 Network: virtual links intra/interconnecting VNFs within the DCN.

Figure 19 provides an illustration with further details about the VRO interactions

within the T-NOVA Orchestrator and with the remaining T-NOVA external entities:

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

70

Figure 19: Virtualised Resources Orchestrator (Internal & External) Interactions

From an external perspective, it interacts with the VIM and the TNM for the following

purposes:

 Virtualised Infrastructure Manager: to enforce resource

reservation/allocations/removal and to collect monitoring information about

the virtual links interconnections of the VNFs, through the T-Or-Vi interface;

 Transport Network Manager: enforces resource/connectivity decisions

allocations/removals and to collect monitoring information about the

transport network elements, through the T-Or-Tm interface.

Internally, the VRO interacts with the following blocks:

 Network Services Orchestrator: exchanges resource

reservation/allocation/removal management actions related with a specific

NS, for all the constituent VNFs;

 Infrastructure Resources catalogue: queries and stores information about

the virtualised and non-virtualised infrastructure resources;

 Virtual Network Function Manager: exchanges resource

reservation/allocation/removal management actions, in the case the resource

management is handled by the VNFM.

3.3.2.2 Virtual Network Function Manager (VNFM)

The VNFM is responsible for the lifecycle management of the VNF. Each VNF instance

is assumed to have an associated VNFM. A VNFM may be assigned the management

of a single VNF instance, or the management of multiple VNF instances of the same

type or of different types. The Orchestrator uses the VNFD to create instances of the

VNF it represents, and to manage the lifecycle of those instances. A VNFD has a one-

to-one correspondence with a VNF Package, and it fully describes the attributes and

requirements necessary to realize such a VNF. NFVI resources are assigned to a VNF

based on the requirements captured in the VNFD (containing resource allocation

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

71

criteria, among others), but also taking into consideration specific requirements

accompanying the request for instantiation.

The following management procedures are within the scope of the VNFM:

 Instantiate: create a VNF on the virtualised infrastructure using the VNF on-

boarding descriptor, as well as the VNF feasibility checking procedure, see

VNF instantiation procedure detailed in subsection 5.1.2;

 Configure: configure the instantiated VNF with the required information to

start the VNF. The request may already include some customer-specific

attributes/parameters;

 Monitor: collect and correlate monitoring information for each instance of

the VNF. The collected information is obtained from the IVM layer (virtualised

infrastructure performance information) and from the VNF (service specific

performance information), see VNF monitoring procedure detailed in section

5.1.3;

 Scale: increase or decrease the VNF capacity by adding/removing VMs (out/in

horizontal scaling) or adding/removing resources from the same VM

(down/up vertical scaling), see VNF scale-out procedure detailed in subsection

5.1.4;

 Update: modify configuration parameters;

 Upgrade: change software supporting the VNF;

 Terminate: release infrastructure resources allocated for the VNFs, see VNF

termination procedure detailed in subsection 5.1.5.

Figure 20 provides an illustration with further details on the VNFM interactions within

the T-NOVA Orchestrator and with the remaining T-NOVA external entities:

Figure 20: VNF Manager (Internal & External) Interactions

From the external perspective, it interacts with the VNF and with the VIM with the

following purposes:

 Virtual Network Function (VNF): configures VNF specific information and

receives VNF related monitoring information (through the T-Ve-Vnfm

interface);

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

72

 Virtual Infrastructure Management (VIM): collects monitoring information

about the virtualised infrastructure resources allocated to the VNF (through

the T-Vi-Vnfm interface).

Internally, the VNFM interacts with the following components:

 Network Services Orchestrator (NSO): receive VNF instantiation requests for

a specific NS and provide VNF monitoring information;

 VNF Catalogue: collects information about the VNFs internal composition

(VNFD), including the VNF Components (VNFCs), software images (VMs) and

management scripts;

 Virtualised Resources Orchestrator (VRO): exchanges resource

reservation/allocation/removal management actions, in cases where the

management is handled by the VNFM.

3.3.2.3 Repositories and Catalogues

To support the T-NOVA Orchestrator lifecycle management operations, the following

catalogues are defined:

 NSs Catalogue (NS Catalogue);

 VNFs Catalogue (VNF Catalogue);

 NSs and VNFs Instances Repository;

 Infrastructure Resources Repository.

NS Catalogue

Represents the repository of all the on-boarded NSs in order to support the NS

lifecycle management:

 NS Descriptor (NSD): contains the service description template, including

SLAs, deployment flavours, references to the virtual links (VLDs) and the

constituent VNFs (VNFFG);

 Virtual Link Descriptor (VLD): contains the description of the virtual network

links that compose the service (interconnecting the VNFs);

 VNF Forwarding Graph Descriptor (VNFFGD): contains the NS constituent

VNFs, as well as their deployment in terms of network connectivity.

VNF Catalogue

Represents the repository of all the on-boarded VNFs in order to support its lifecycle

management:

 VNF Descriptor (VNFD): contains the VNF description template, including its

internal decomposition in VNFCs, deployment flavours and references to the

VLDs;

 Software images of the VMs located in the IVM layer.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

73

NS & VNF Instances

Represents the repository of all the instantiated NSs and VNFs, which can be

created/updated/released during the lifecycle management operations.

Infrastructure Resources

Represents the repository of available, reserved and allocated NFVI-PoP resources,

also including the ones related to the WAN segment.

3.3.3 External Interfaces

In this section the external interfaces of the Orchestrator are described. However it is

important within the perspective of the T-NOVA architecture to understand the

context in which the term interface is used as is its relationship to reference points a

common architectural locus used within the networking domain

In network terms a reference point is an abstract point in a model of network or

protocol. This reference point essentially serves to partition functions or

configurations and so assists in the description of a network model as well as serving

as a point of interoperability between different parts of the network (65). In a

networking context, an interface may or may not be associated with any given

reference point. An interface typically represents a protocol level connection which

may or may not be mapped to a reference point.

This strict delimitation between the definition of reference points and interfaces in

the context of NFV and SDN given the hybridisation of networking and IT

technologies can be challenging, i.e. in the network domain, this framework is strictly

defined, and it is therefore normal practice to retain the use of the term reference

point, while in the IT domain, there is a more flexible demarcation between

technologies leading to a degree of hybridisation. As a consequence in the IT domain

the term interface is used in a more flexible manner to encompass reference points

also.

While strictly speaking the separation of the terms should be technically maintained

the approach adopted in this deliverable is to utilise a broader and more flexible

definition of interfaces and reference points given the expected one-to-one mapping

of reference points and interfaces in the context of the proposed T-NOVA

architecture. Additionally interfaces in the T-NOVA system may not necessarily be

tied specifically to a protocol but rather act as point of information exchange through

APIs. Hence within the context of this deliverable interfaces are envisioned to

encompass both the architectural characteristics of interfaces and references points

given fusion of the IT and networking domains.

Having clarified the use of the term, the description of the Orchestrator’s external

interfaces will start to be provided by means of a very short reference on security,

which is a common area that affects all the interfaces. It will be followed by an

introduction to the interface requirements that are presented in Annex A.2 in a

tabular format.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

74

Regarding the common issue, and considering the most generic scenarios in which

the roles described in D2.1 (63) are played by distinct entities all the external

interfaces being described in this section must support at least a minimum degree of

security. The decision on the exact degree of security for each implemented interface

will be taken later in the project’s timeline.

3.3.3.1 Interface between the Orchestrator and the Network Function Store

The interface between the Orchestrator and the Network Function Store (NF Store)

serves two purposes:

 For the NF Store, to notify the Orchestrator about new, updated and

withdrawn VNFs;

 For the Orchestrator, to retrieve from the NF Store and store in the VNF

Catalogue the VNFD and VMs images that need to be instantiated to support

that VNF.

This “two-phase” interaction between the Orchestrator and the NF Store, instead of

just one in which the NF Store could pass the Orchestrator the VNF Descriptor and

VM images, allows for the optimisation of resources on both sides of the interface.

On the NF Store side this is just a notification to the Orchestrator, and on the

Orchestrator’s side, the download of the VM images is only carried out when the VNF

is instantiated preventing unnecessary use of resources. Uploading of the VNFD to

the VNF catalogue is executed at the start of the VNF on-boarding process.

3.3.3.2 Interface between the Orchestrator and the Marketplace

The interface between the Orchestrator and the Marketplace serves the following

purposes:

 Provide available VNFs: involves SP browsing and selection of VNFs, as well

as composition of market services by the Marketplace, followed by a request

to the Orchestrator;

 Publish a new network service: related to the request for the storage of

information related to a new service by the Marketplace, included in the

provision of the NSD, see subsection 3.2. This process is also called NS on-

boarding by the Orchestrator FEs;

 Request for a Network Service: after a Customer’s or a SP subscription of a

service, a subsequent request from the Marketplace is generated, which

includes in the NSD all the VNFs the NS to be deployed needs, as well as all

the VMs those VNFs need in the VNFD, the available infrastructure and its

current usage;

 Change configuration of a deployed network service upon a request from

the Marketplace;

 Provide network service state transitions: notification provided by the

Orchestrator to the Marketplace;

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

75

 Provide network service monitoring data: notification provided by the

Orchestrator to the Marketplace;

 Terminate a provisioned network service: upon a request from the

Marketplace when there is an explicit solicitation.

3.3.3.3 Interface between the Orchestrator and the VIM

The interface between the Orchestrator and the VIM serves the following purposes:

 Allocate/release/update resources: upon a request from the Orchestrator to

(re)instantiate, update the configuration of, or release a resource (VM or

connection within the same DC);

 Reserve/release resources: upon an expected future need from the

Orchestrator to instantiate or release a reserved resource (VM or connection

in the same DC). This requirement makes sense in scenarios where allocating

resources from scratch is complex or too time consuming for the purpose in

mind. Reserved resources may have lower prices than effective allocated ones

and become faster to allocate when time comes;

 Add/update/delete SW image: whenever a new, update or removal of a VM

image is needed in the process of allocating, updating or removing a new

VNF/VNFC instance;

 Retrieve infrastructure usage data to NSO: information provided by the

VIM to the Orchestrator, NSO FE, so that optimal allocation of NS instances is

possible and an adequate level of metrics can be reported to the Marketplace,

if allowed by information included in the NSD;

 Retrieve infrastructure usage data to VNFM: information provided by the

VIM to the Orchestrator, VNFM FE, so that optimal allocation of VNF instances

is possible and an adequate level of metrics can be reported, via NSO, to the

Marketplace, if allowed by information included in the VNFD;

 Retrieve infrastructure resources metadata to VRO: information provided

by the VIM to the Orchestrator, VRO FE, so that optimal allocation of NS

instances is possible, according to the characteristics of the supporting

infrastructure (e.g., the availability of specialized components, such as

Graphical Processing Units (GPUs) or Digital Signal Processors (DSPs), as well

as the maximum number of vCPUs or Giga-bytes of RAM, which will influence

the allocating algorithm for determining the most appropriate resources);

 Manage VM’s state: information provided by the VIM to the Orchestrator,

VNFM FE, so that atomic operations, such as redeployment/withdrawal of an

entire VNF, on the allocated VMs are feasible (depending on the

implementation approach, these operations can also be done by the IVM

layer).

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

76

3.3.3.4 Interface between the Orchestrator and the Transport Network

Management

The interface between the Orchestrator and the Transport Network Management

serves the following purposes:

 Allocate/release/update transport connection: upon a request from the

Orchestrator to (re)instantiate, update the configuration of or release a

transport connection (between two distinct DCs);

 Reserve/release transport connection: upon an expected future need from

the Orchestrator to instantiate or release a transport connection (between two

distinct DCs). This requirement makes sense in scenarios where allocating

connections from scratch is complex or too time consuming. Reserved

connections may have lower prices than effective allocated ones and become

faster to allocate when time comes;

 Retrieve transport connection usage data to NSO: information provided by

the TNM to the Orchestrator, NSO FE, so that optimal allocation of transport

connections between two or more distinct DCs is possible and an adequate

level of metrics can be reported, together with VNF an NS level metrics, to the

Marketplace;

 Retrieve transport connection metadata: information provided by the TNM

to the Orchestrator, VRO FE, such that the optimal allocation of transport

connections between two or more distinct DCs is made possible, according to

the characteristics of the supporting infrastructure e.g., maximum number of

vLinks allowed, maximum bandwidth, etc.;

 Manage transport connection state: information provided by the TNM to

the Orchestrator, NSO FE, so that atomic operations, such as

redeployment/withdrawal of an entire VNF within different DCs are feasible

(depending on the implementation approach, these operations can also be

executed by the IVM layer).

3.3.3.5 Interface between the Orchestrator and the VNF

The interface between the Orchestrator and the VNF serves the following purposes:

 Instantiate/terminate VNF: sent by the VNFM as a request, whenever an

instance of a NS of which the VNF is a component is to be launched or

removed. Removal of a VNF instance can only be done if there is no NS

instance using that VNF.

 Retrieve VNF instance run-time information: sent by the VNFM, so that

VNF SLA metrics can be checked and the SLA can be fulfilled;

 Configure a VNF: sent by the VNFM, so that open configuration parameters

can be fulfilled later or changed after the VNF instance is already running;

 Manage VNF state: sent by the VNFM, so that the Orchestrator is able to

start, stop, suspend already running VNF instances;

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

77

 Scale VNF: sent by the VNFM, so that VNF scaling is feasible. All the VNF

scaling information is available in the VNFD. Virtualised resources are

available through the VRO.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

78

4. THE T-NOVA IVM LAYER

4.1 INTRODUCTION

T-NOVA’s Infrastructure Virtualisation and Management (IVM) layer provides the

requisite hosting and execution environment for VNFs. The IVM incorporates a

number of key concepts that influence the associated requirements and architecture

for the layer. Firstly the IVM supports separation between control and data planes

and network programmability. The T-NOVA architecture leverages SDN for designing,

dimensioning and optimising control- and data-plane operations separately, allowing

capabilities from the underlying hardware to be exposed independently. Secondly the

IVM is based around the use of clusters of commodity computing nodes in cloud

computing configurations to support instantiation of software components in the

form of VMs for NFV support, offering resource isolation, optimisation and elasticity.

This configuration should support automated deployment of VNFs from the T-NOVA

marketplace and dynamically expansion/resizing of VMs as required by SLAs. Building

on physical IT and network resource domains the IVM provides full abstraction of

these resources to VNFs. Finally the IVM must expose the necessary external and

internal interfaces to support appropriate integration. The external interfaces provide

connectivity with the T-NOVA Orchestration layer in order to execute requests from

the Orchestrator and secondly to provide information on the infrastructure and VNF

being hosted in order for the Orchestrator to make effective management decisions.

The internal interfaces provide connectivity between the internal domains of the IVM

to ensure the requests for the creation, deployment, management and termination of

VNF services and their host VMs can be executed appropriately among the

constituent infrastructure and control components.

For an architectural perspective the IVM is comprised of NFVI, VIM and TNM

capabilities. The NFVI in turn is composed of Compute, Hypervisor and Network

Domains. The VIM is comprised of compute, hypervisor and network control and

management capabilities, while the TNM works as a single FE. All the various domains

within the IVM implement northbound and southbound interfaces to provide

management, control and monitoring of the composite infrastructure, both physical

and virtualised. Secondly these interfaces provide the key integration capabilities

within the overall T-NOVA system architecture.

The following sections describe the key objectives and characteristics of the IVM and

its constituent components, along with their requirements. These requirements where

then utilised together with T-NOVA D2.1 (63) and D2.21 (4) to define the architecture

of IVM in a manner that addressed these requirements and the overall goals of T-

NOVA. The architecture for T-NOVA is presented as an overall integrated architecture

together with detailed descriptions of the architecture FEs and interfaces of the

constituent domains.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

79

4.2 OBJECTIVES AND CHARACTERISTICS OF THE T-NOVA

IVM LAYER

The T-NOVA IVM is considered to comprise of a mixture of physical and virtual nodes

and will be used to develop, implement and showcase T-NOVA’s services. The IVM

will be fully integrated with the T-NOVA Orchestrator to ensure that requirements for

the deployment and lifecycle management of T-NOVA VNF services can be carried

out in an appropriate and effective manner. The IVM should be sufficiently flexible to

support a variety of use cases beyond those explicitly identified in T-NOVA (see D2.1

(63)). As mentioned previously, infrastructure virtualisation plays a key role in

achieving this vision in T-NOVA. Virtualisation and management of the virtualised

resources extends beyond the compute and storage to include network infrastructure

in order to fully exploit the capabilities of the T-NOVA architecture. Virtualisation of

the DC network infrastructure allows decoupling of the control functions from the

physical devices they control. In this regard the T-NOVA will implement an SDN

control plane for designing, dimensioning and optimising the control- and data-

plane operations separately, allowing capabilities from the underlying hardware to be

exposed independently.

In summary the key objectives for the T-NOVA IVM are as follows:

 Support separation of control and data plane and network programmability at

least at critical locations within the network such as the network

access/borders,

 Utilisation of commodity computing nodes in cloud configurations to support

the instantiation of software components in the form of VMs for NFV support,

offering resource isolation, optimisation and elasticity,

 Use of L2 Ethernet switched networks (subnets) to provide physical network

connectivity between servers,

 Each server supports virtualisation and hosts a number of VMs (virtual

appliances) belonging to their respective vNets. Virtual switch instances or

real physical SDN-capable switches handle network connectivity among the

VMs either on the same server or among the servers co-located in the same

DC,

 Interconnection of L2 subnets inside and outside DC’s boundaries via a L3

network (IP routers). This inter data centre connectivity is provisioned through

appropriate WAN ingress and egress points.

 Virtualisation of compute and network resources allows the T-NOVA system

to dynamically expand/resize VMs. This accommodates for dynamic scaling of

sudden spikes in the workload; the instantiation of network elements as VMs

into clusters of nodes facilitates horizontal scaling (hosting of many VM

instances into the same cluster) and vertical scaling (automatic re-sizing of

VM instances according to function requirements and traffic load) (see T-

NOVA requirements/use cases – D2.1 (63)).

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

80

4.3 T-NOVA IVM LAYER REQUIREMENTS

The requirements capture process focused on identifying the desired behaviours of

the IVM. The requirements identified focus on the entities within the IVM, the

functions that are performed to change states or object characteristics, monitoring of

state and the key interactions with the T-NOVA Orchestration layer. None of these

requirements specifies how the system will be implemented. Implementation details

are left to the appropriate tasks in WP3/4 as the implementation-specific descriptions

are not considered to be requirements. The goal of the requirements was to develop

an understanding of what the IVM needs, how it interacts with Orchestration layer, its

relationship to the overall T-NOVA architecture described in D2.21 (4). Additionally

the use cases included in D2.1 (63) were also considered and cross-referenced with

IVM requirements where appropriate.

The initial phase of eliciting requirements included:

 Reviewing available documentation including early and final drafts of (63) and

(66),

 Reviewing the high level T-NOVA architecture that was developed by Task 2.2

to gather information on how the users and service providers will perform

their tasks such as VNF deployment, scale out etc., and to better understand

the key characteristics of the T-NOVA system that will be required to realise

user goals including those at a system level.

The adopted approach was generally in-line with the Institute of Electrical and

Electronics Engineer (IEEE) guidelines for requirements specification. A similar process

was used in Tasks 2.1 and 2.2. Requirements were primarily anchored to the existing

T-NOVA use cases and the interactions with Orchestrator both in terms of the actions

and requests that Orchestrator would expect the IVM to execute. Additionally the

data/information that is required by the Orchestrator to successful deploy and

manage VNF services were considered. Identified requirements were primarily

functional in nature since they were related to the behaviour that the IVM is expected

to exhibit under specific conditions. In addition ETSI’s NFV Virtualisation Framework

requirements were also considered, in order to ensure approach scope and coverage

for the requirements that have been specified. The following are the key categories of

requirements that were considered:

 Portability,

 Performance,

 Elasticity,

 Resiliency,

 Security,

 Service Continuity,

 Service Assurance,

 Operations and Management,

 Energy Efficiency.

Using a system engineering approach the high level architecture for the IVM was

previously described in (4). Each component of the overall system was specified in

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

81

terms of high-level functional block and the interactions between the functional

blocks are specified as interfaces. This approach identified the following functional

blocks:

 Virtualised Infrastructure Management (VIM),

 Transport Network Management (TNM),

 Infrastructure Elements, consisting of Computing, Hypervisor and Networking.

The requirements presented in the following section are related to these functional

blocks and were developed using the previously described methodology. These

requirements were used as a foundational input into the development of the overall

IVM architecture and its constituent functional blocks, which is presented in

subsection 4.4.

A detailed specification of the requirements for each module within the scope of the

T-NOVA IVM architecture can be found in Annex B. A total of 70 requirements were

identified and documented relating to the VIM, NFVI (compute, hypervisor, DC

network) and TNM. It should be noted that requirements that relate to basic

expected behaviours of the various domains components have been excluded in

order to focus on requirements that are specifically needed by the T-NOVA system.

Analysis of these requirements has identified the following conclusions for each

architectural module.

4.3.1 Virtual Infrastructure Manager

The VIM is required to manage both the IT (compute and hypervisor domains) and

network resources by controlling the abstractions provided by the Hypervisor and

Infrastructure network domains. It also implements mechanisms to efficiently utilise

the available hardware resources in order to meet the SLAs of the VNFs and NSs. The

VIM is also required to play in a key role in the VNF lifecycle management.

Additionally, the VIM is required to collect infrastructure utilisation/performance data

and to make this data available to the Orchestrator in order to generate

usage/performance statistics. The specifics of how the metrics are provisioned and

processed at both the VIM and Orchestrator layers can vary and will typically be

implementation specific. The details of the T-NOVA implementation will be

determined in WP3/4. To accomplish these goals the VIM needs the following

capabilities:

 The Network Control capability in the VIM requires SDN features to manage

the infrastructure network domain within an NFVI-PoP;

 Hardware abstraction in the Compute domain for efficient management of

resources; However, the abstraction process should ensure that platform

specific information relevant to the performance of VNFs is available for

resource mapping decisions;

 Virtual resource management in the Hypervisor domain to provide

appropriate control and management of VMs;

 Strong integration between these three sub-domains through appropriate

interfaces;

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

82

 Integration with the Orchestrator via well-defined interfaces to provide

infrastructure related data to the Orchestrator and to receive management

and control requests from Orchestrator for execution by the VIM.

4.3.2 Transport Network Management

The Transport Network Management is expected to provide the connectivity to NSs

allocated in more than one NFVI-PoP. Connectivity should take form of VLAN to

WAN connections through ingress and egress points at each NFVI-PoP involved in

the NS service. This connectivity has to be provided in a configurable manner (i.e.

supports a high level of customisation). Moreover, to setup this connectivity,

cooperation between the TNM and the NFVI Network domain is needed in order to

allocate the traffic over the inter-DC and intra-DC networks in an appropriate

manner.

4.3.3 NFVI Compute

The NFVI Compute domain should be able to provide an appropriated performance

level for the VNFs that are been deployed in terms of performance and utilisation of

the infrastructure resources. Moreover, the compute nodes and the hypervisor should

work in an integrated and performant manner. The compute domain should collect

metrics on the performance of the physical resources and make them available over a

suitable interface to the Orchestrator. Finally, the T-NOVA Compute domain should

have the capability, if required by a network service, to support heterogeneous

compute resources, such as Graphical Processing Unit (GPUs), Field Programmable

Gate Array (FPGAs), Multi-Integrated Cores (MICs) etc.

4.3.4 NFVI Hypervisor

The NFVI Hypervisor domain should be able to implement hardware resource

abstraction, virtual resource lifecycle management mechanisms which are

coordinated by the Orchestrator via the VIM, and to provide to the VIM monitoring

information while having minimal impact on the VNF workload performance.

Additional details on the collection, processing and utilisation of metrics in the T-

NOVA system can be found in subsection 5.3.

4.3.5 NFVI DC Network

The NFVI DC Network domain should implement an SDN approach to provide

network virtualisation capabilities inside a NFVI-PoP (creation of multiple distinct

domains over one single physical network using VLANs), network programmability

through the separation between Control Plane (CP) and Data Plane (DP), and, at the

same time, it should support transport tunnelling protocols of L2 packets over L3

networks, to assist the TNM in setting up the communication between different NFVI-

PoPs. It should also be able to gather performance data and send them to the VIM

Network Control module.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

83

4.4 T-NOVA IVM Architecture

As mentioned above, the T-NOVA IVM layer comprises of three key architectural

components namely the NFVI, the VIM and the TNM.

The high-level architecture, which has previously been described in D2.21 (4), was

designed to align with the ETSI MANO architecture featuring corresponding

components to the NFVI and the VIM. However, the addition of the TNM is a T-NOVA

specific feature.

The approach adopted in the design and elucidation of the IVM focused on the

functional characteristics of the overall IVM architecture and its sub domains. Careful

consideration was given to decoupling the functional characteristics from

implementation-oriented designs. This allowed us to focus on what the IVM needs to

do rather to avoid the inclusion of implementation-orientated functionality. A good

example of where this approach generated challenges was with the VIM architecture

where there was a tendency to gravitate towards technology solutions as a means to

easily encapsulate functional needs. However careful consideration of the key inputs

was important in fully decoupling functional needs from implementation details to

ensure that T-NOVA IVM architecture remains technology-agnostic but at same time

provides appropriate guidance and structure to the activities in WP3/4.

The key inputs that were considered during the architecture design process are the

following:

 D2.1 (Use case and requirements) (63),

 D2.21 (subsection 3.3.3) (4),

 DGS NFV-INF 001 v0.3.8 - Infrastructure Overview (67),

 DGS NFV-INF 003 v0.3.1 - Architecture of the Compute Domain (68),

 DGS NFV-INF 004 v0.3.1 - Architecture of the Hypervisor domain (69),

 DGS NFV-INF 005 v0.3.1 - Infrastructure network domain (5),

 DGS NFV-INF 007 v0.3.1 - Interfaces and Abstractions (70),

 DGS NFV-MAN 001 v0.6.3 - Management and orchestration (8),

 DGS NFV-REL 001 v0.1.3 - Resiliency Requirements (71),

 DGS NFV-SWA 01 v0.2.0 - VNF Architecture (7).

The IVM architecture has been defined in accordance to a systems design process

which was used to identify the components, modules, interfaces, and data necessary

for the IVM in order to satisfy the requirements outlined in the previous subsection

and those described in D2.1 (63) and D2.21 (4). Figure 21 shows the overall

architecture of the VIM, as discussed so far.

4.4.1 External Interfaces

The key external interfaces for the IVM are outlined in Table 6. These interfaces

primarily deal with the connection between the IVM and the T-NOVA Orchestrator;

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

84

however there is also an external interface between the TNM and the transport

network.

The interfaces between the Orchestrator and VIM support a number of key functions

within T-NOVA. The functions supported by the interfaces can be categorised as

either management or control. As shown in the IVM architecture in Figure 21, two

specific interfaces have been identified, mapping to the interfaces identified in the

ETSI MANO architecture.

Figure 21: T-NOVA infrastructure virtualisation and management (IVM) high level

architecture

The first interface is the VNFM – VIM Interface (T-Vi-Vnfm) and is responsible for the

exchange of infrastructure monitoring information either through explicit request by

the Orchestrator or through periodic reporting initiated by the VIM. The types of data

exchanged over this interface include detail information on the status, performance

and utilisation of infrastructural resources (such CPU, storage, memory, etc.). Data will

also encompass networking information relating to a specific VNF such as NIC level

network traffic from the hosting VM or inter VM network traffic, if a VNF is deployed

across more than one VM.

Finally VNF performance data will also be exchanged over this interface. Collectively

the data will be used by the VNF Manager within the T-NOVA Orchestrator to track

VNF service performance by comparison with specific KPIs in order to ensure SLA

compliance.

The second interface identified is the NFV Orchestrator – VIM interface (T-Or-Vi). This

interface is responsible for handling requests from the NFV Orchestrator with respect

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

85

to the full lifecycle of a NS. Typical examples of requests sent over this interface

would include, for example, parts of the on-boarding, scaling and termination

procedures of a NS. This interface will be used by the NFV Orchestrator to send

resource related commands/information to the VIM such as resource

reservation/allocation or configuration definitions of VMs (e.g. HEAT templates in an

OpenStack Cloud environment or network requirements such as the specification of

the interconnections between VNF instances, i.e. network topology). Specific types of

monitoring information will also be exchanged over this interface such as data

related to the network connections between NS instances either within a data centre

or within intra data centre connections that are physically dispersed. This interface is

also used by the VIM to report back to the NFV Orchestrator the outcome of all

received requests.

The Transport Network Manager provides management capabilities of network

connectivity between NFVI-PoPs. The NFV Orchestrator – Transport Network

Interface (T-Or-TN) interface support requests from the NFV Orchestrator to provide

connectivity to either SDN Controlled or non SDN control transport networks (such as

IP or MPLS based networks) typically for inter DCs (MAN or WAN). These networks

are non-virtualised in nature.

The TNM Interface – External networks (T-Ex-TN) is the explicit network connection

to the transport network. The implementation of this interface will vary based on the

protocol the network is using. More than one interface may also be implemented if

connectivity to different types of transport networks is required.

Table 6: External Interfaces of the T-NOVA IVM

T-Nova

Name

T-NOVA

Reference

ETSI ISG NFV

Framework

Reference Point

Reference

Point Type

Description and

Comment

Virtual

Network

Function

Management–

VIM Interface

T-Vi-Vnfm Vi-Vnfm
Management

Interface

This interface is

responsible for the

exchange of

infrastructure

monitoring

information either

through explicit

request by the

Orchestrator or

through periodic

reporting initiated by

the VIM. The types of

data exchanged over

this interface include

status, performance

and utilisation of

infrastructural

resources

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

86

NFV

Orchestrator–

VIM Interface

T-Or-Vi Or-Vi
Orchestration

Interface

This interface allows

the NFV Orchestrator

to request/reserve

and configure

resources to the VIM

and for the VIM to

report the

characteristics,

availability, and

status of

infrastructure

resources.

NFV

Orchestrator–

Transport

Network

Interface

T-Or-TN -
Orchestration

Interface

This interfaces the

TNM with the NFV

Orchestrator and is

used to manage the

set-up, tear down

and monitoring of

connections in

transport networks.

Transport

Network

Interface–

External

networks

T-Ex-TN Ex-Nf
Traffic

Interface

This interfaces the

TNM with existing

transport networks

(SDN-enabled or

non-SDN-enabled)

and are used to

implement requests

received from the

Orchestrator via the

Or-TN interface.

4.4.2 Internal IVM Interfaces

The key internal interfaces of the IVM as outlined in Table 7. The interface for NFVI

management including its functional entities is provisioned via the T-Nf-Vi interface.

It is this interface, which will be utilised to establish trust and compliance of the

underlying infrastructure specifically the Hypervisor domain via the T-Nf-Vi/H

implementation of the interface, the compute domain via the T-Nf-Vi/C interface and

the network domain via the T-Nf-Vi/N interface. A full description of these interfaces

is presented in Table 7. A possible deployment configuration for the VIM could be

provided running it within a hosted VM (it can be virtualised). For this specific

configuration, the T-Nf-Vi management interface might be abstracted as a SWA-5

interface (see Figure 3). However, even if this configuration is possible, it is not

desirable, due to security concerns and FE responsibilities. There are also reliability

concerns regarding virtualising the VIM on the same infrastructure that it is

managing. In a scenario where the hypervisor domain of the NFVI requires a restart,

the VIM will lose its ability to operate and continue to manage the NFVI therefore the

VIM should run on separated hardware platforms.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

87

One of the interfaces that are internal to the NFVI is the SWA-5 interface2, which is

used for resources, such as a virtual NIC, a virtual disk drive, virtual CPU, etc.

Examining Figure 21, this interface involves both the T-Vn-Nf/VN and T-Vn-Nf/VM. It

is not intended for use as a management interface; hence a VNF should not use

SWA-5 to manage the NFVI. This interface is primarily intended to logically fence off

responsibilities, but is also intended for security considerations. In fact, reasonable

steps must be taken to prevent unauthorised access, from within a VM, from

attacking the underlying infrastructure and possibly shutting down the entire domain,

including all other adjacent VMs.

Table 7: Internal interfaces of the IVM

T-Nova

Name

T-NOVA

Referenc

e

ETSI NFV

Framework

Reference

Point

INF

Reference

Point

Reference

Point Type

Description and

Comment

VIM-

Network

Interface

T-Nf-Vi/N

Nf-Vi

[Nf-Vi]/N

Management,

Orchestration

and

Monitoring

Interface

This interface is

used for the

management of

Infrastructure

Network domain

resources.

VIM-

Hypervisor

Interface

T-Nf-Vi/H [Nf-Vi]/H

Management,

Orchestration

and

Monitoring

Interface

This interface is

used for the

management of

the Hypervisor

domain resources.

VIM –

Compute

Interface

T-Nf-Vi/C [Nf-Vi]/C

Management

and

Orchestration

Interface

This interface is

used for the

management of

Compute domain

resources.

Hypervisor

– Network

Interface

T-Vl-

Ha/Nr
Vl-HA [Vl-Ha]/Nr

Execution

Environment

This interface is

used to carry

execution

information

between the

Hypervisor and the

Infrastructure

Network domains.

Hypervisor

-Compute

Interface

T-Vl-

Ha/CSr
VI-Ha [Vl-Ha]/CSr

Execution

Environment

This interface is

used to carry

execution

2
 SWA-5 corresponds to VNF-NFVI container interfaces: This is a set of interfaces that exist

between each VNF and the underlying NFVI thus SWA-5 describes the execution environment

for a deployable instance of a VNF (7).

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

88

information

between the

Compute and the

Hypervisor

domain.

Compute–

Network

Interface

T-

Ha/CSr-

Ha/Nr

VI-Ha
Ha/CSr-

Ha/Nr

Traffic

Interface

This interface is

used to carry

execution

information

between the

Compute and the

Network domain.

Virtual

Machine–

VNFC

Interface

T-Vn-

Nf/VM
Vn-Nf [Vn-Nf]/VM

VNF

Execution

Environment

This interface is

used to carry

execution

environment

information for

each VNFC

instance.

Virtual

Network–

Virtual

Network

Interface

T-Vn-

Nf/VN
 [Vn-Nf]/VN

VNF

Execution

Environment

This interface is

used to carry

execution

environment

information

between VNFC

instances.

4.5 NFVI and NFVI-PoP

The execution environment for VNFs is provided by the NFVI deployed in various

NFVI-PoPs. The NFVI-PoP acts single geographic location i.e. a DC where a number of

NFVI-nodes are located. A NFVI PoP is responsible for providing the infrastructural

building blocks to host and execute VNF services deployed by the T-NOVA system in

a particular location. The NFVI comprises of the IT resources in the form of the

Compute and Hypervisor domains and network resources in the form of Network

domain, as shown in Figure 21. The NFVI can utilise these domains in a manner that

supports extension beyond a single NFVI-PoP to multiple NFVI-PoPs as required to

support the execution of a given NS.

The NFVI-PoP is expected to support the deployment of VNFs in a number of

potential configurations. These deployments will range from a single VNF deployed

at a single NFVI-PoP, to multiple VNFs from different VNF providers in a multi-tenant

model at one NFVI-PoP. Additionally, the NFVI may need to support VNFs deployed

at more than one NFVI-PoP to instantiate the required NS. Interconnectivity between

these PoPs is provisioned and managed in the case of T-NOVA by the TNM module,

which is similar in function to the WAN Controller in the ETSI MANO architecture (8)

(see subsection 4.7).

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

89

The network access capacity required at a particular NFVI-PoP will depend on the

network service workload type, the number and capacity of the VNFs instantiated on

the NFVI. The management and orchestration of virtualised resources should be able

to handle NFVI resources in a single NFVI-PoP as well as when distributed across

multiple NFVI-PoPs. Management of the NFVI is provided by the VIM through

domain interfaces (T-Nf-Vi) as shown in Figure 21. The VIM also provides the

intermediate interfaces between the Orchestrator and the NFVI (T-Or-Vi and T-Vi-

VNFM). The NFVI will execute requests from the Orchestrator relating to the lifecycle

management of VNFs such as deployment scale in/out, scale up/down and

termination.

The following sections describe the architecture and the respective internal

components of the NFVI, namely the compute, hypervisor and network domains. The

interfaces required to implement an overall functional architecture for the T-NOVA

NFVI system are also described.

4.5.1 IT Resources

The T-NOVA IT Resources encompasses the compute and hypervisor domains of the

NFVI. These domains have their origins in traditional enterprise IT environments and

more recently in the deployment of cloud computing environments. In order to

support the development of NFV architectural approaches in carrier grade

environments, IT resources and capabilities have been embraced in these

environments to support the deployment of VNFs. However the functionality,

capabilities and how these IT resources are composed within virtualised network

architectures need to be careful considered. The enterprise origins of these

technologies often have inherent gaps in capability such as line-rate packet

processing performance limitations. These gaps can influence architectural decisions

and may require innovative solutions to address any identified gaps for VNF service

deployment. The following sections discuss the compute and hypervisor domain

architecture considerations and the proposed approach in the context of the T-NOVA

system architecture.

4.5.1.1 Compute Domain

The Compute Domain is one of three domains constituting the NFVI and consists of

servers, NICs, accelerators, storage, racks, and any associated physical components

within the rack related to the NFVI, including the networking Top of Rack (ToR)

switch. The Compute domain may be deployed as a number of physical nodes (e.g.

Compute and Storage Nodes) interconnected by Network Nodes (devices) within an

NFVI-PoP.

Traditionally the compute environment within the telecoms domain has been

heterogeneous based around a variety around microprocessor architectures such as

MIPS, PowerPC, SPARC, etc. with tight coupling between the microprocessor and the

software implementation. Many traditional telecommunication systems are built in

C/C++ technology with high interdependence on the underlying processing

infrastructure and a specific instruction set.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

90

As the first generation of VNFs have appeared in the marketplace based around

adaption of specific software to a version that can run on virtualised X86

environments some performance difficulties have been encountered. While

virtualisation decouples software and hardware from a deployment point of view, it

does not do it from a development point of view. Selection of an appropriate cross

compiler for the target platform (e.g. X86) may address some of the issues. However

in order to achieve optimal performance, a proper redesign of the software may be

required to ensure appropriate use of specific capabilities, like for example hyper

threading in X86 processors. The specific application may also need to make use of

software libraries to improve the performance of certain actions such as packet

processing.

The compute domain architecture should have the capability to support distributed

virtual appliances that can be hosted across multiple compute platforms as required

by specific SLAs of VNFs services. Moreover storage technologies and management

solutions are included in the domain and show a large degree of variability in terms

of different technologies; scalability and performance (see subsection 2.2). Depending

on the workloads and use-cases the choice of storage technology is likely to be

specific to certain workloads.

Another important objective of the compute domain is to expose hardware statistics

of the compute node with high temporal resolution. The VIM communicates directly

to the compute domain and through the hypervisor to access all the hardware

metrics, which can be static or dynamic in nature.

Subsection 5.3 describes requirements for exposing hardware characteristics (i.e.

metrics) for planning/provisioning and high temporal resolution

monitoring/deployment of VNFs. Interfaces to pass metrics to the VIM are described

in the NFVI domains and interfaces (NFV Infrastructure Architecture).

Static metrics expose compute node characteristics which do not change or change

slowly (e.g. once a day). These metrics ultimately act as a first order filter for

selecting/provisioning a node for deploying a VNF. Static metrics are obtained from

reading OS and ACPI tables. The Advanced Configuration and Power Interface (ACPI)

specification provides an open standard for device configuration and power

management by the operating system. Additional metrics may be stored in local

structures provisioned by the vendor or administrator. For example compute node

performance index, energy efficiency index, geographic location, specific features

enabled/supported, security level, etc.

An Orchestrator can identify a candidate platform based on static metrics, however

actually instantiate a VNF additional dynamic metrics will be required, e.g. CPU

utilisation, memory, I/O headroom currently available etc. These metrics could be

provided on a per-query basis or the compute node could proactively update

hypervisor domain at regular intervals.

Heterogeneous Compute Architectures

A VNF developed for a target compute architecture needs to be fully optimised and

validated prior to rollout. This process will also need to be repeated on a per

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

91

compute architecture basis. While the initial focus has been on X86 compute

architectures, recently there has been interest in the use of co-processors such GPUs

or FPGAs to accelerate certain VNF workloads: some NFV workloads can experience

performance benefits by having access to different processing solutions from a

variety of silicon vendors including network processors and general-purpose co-

processors. The move towards more heterogeneous cloud computing environments

is starting to gain attention, as standard X86 processors may have performance

limitations for certain workloads tasks e.g. high speed packet processing. This has led

DC equipment vendors to investigate the use of alternative compute architectures to

enhance their offerings. In defining heterogeneous compute domain architectures for

T-NOVA, we divided devices into two main categories:

 Devices which can only operate in conjunction with a host CPU, like GPUs,

multi-integrated cores (MIC) and Micron’s Automata processor;

 Devices which can operate in a stand-alone fashion, like FPGAs and FPGA

SoCs (although FPGAs and FPGA SoCs can also act as devices attached to a

CPU-controlled system).

For the first class of devices we can derive a compute node architecture, where the

compute node is complemented by a co-processor, which can be any of the four

technologies mentioned above (in the FPGA and FPGA SoC cases, they will, act as

slave devices to the processor). The extent to which the accelerator resources

themselves are virtualised is left to each specific implementation, though such a

solution is known to improve the performance of the accelerator hardware. It must be

noted that such a solution is only available for GPUs (e.g. nVidia’s GRID), but not for

FPGAs or the automata processor. This general architecture leaves a lot of the

implementation choices open. For example the interconnection of the CPU and the

co-processor could be implemented either over PCIe or over a direct link like Quick

Path Interconnect (QPI) or division of the memory between the CPU and the co-

processor. In any scenario, the system must be able to adhere to the requirements for

the compute nodes as outlined down in Annex B.

The second class of devices is based around an FPGA SoC, which is an FPGA that

integrates one or more processor cores in the same silicon die. Devices like these are

available from all major FPGA vendors. In this case, the processing system on the

FPGA SoC runs a Hypervisor on which OS’ and applications are executed. To a large

extend the same considerations as in the previous scenario apply, both in terms of

interconnection of components and virtualisation of accelerator resources. The

important difference here is the degree of integration, since the whole

heterogeneous compute node resides within one physical device.

From an external interface perspective the heterogeneous compute nodes do not

differentiate themselves from the standard compute node. Thus, there is an interface

to the hypervisor, an interface to the controller for the virtualised network

infrastructure and finally an interface to the VIM.

However, supporting heterogeneous devices in the compute domain will require

appropriate changes to be made to several areas of the T-NOVA architecture. For

instance, a VNF that is to be deployed to a heterogeneous compute node may need

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

92

to be specifically created for this compute architecture. Additionally, the deployment

of the container of the associated VNFD needs to take into account different relevant

factors (e.g. location of compute nodes with the appropriate resources). Finally, data

collected in the VIM will need to reflect the resources available in the heterogeneous

node and their occupancy. This trade-off between deployment flexibility and

performance will probably need to be assessed on a case by case basis.

Key Components of the Compute Domain

The main components of the Compute domain’s architecture are:

 CPU and Accelerator: A general-purpose compute architecture is considered

based on commercial x86 server clusters. Additionally co-processors

cards/FPGAs are also considered for application specific workloads or

functions such as packet processing. As outlined in subsection 2.2 the CPU

nodes will incorporate technologies to support virtualisation of the actual CPU

such as VT-x. Connections to I/O devices will use technologies such as VT-d.

Specific co-processors include acceleration chip for classification, Crypto,

DPI/Regular Expression, Compression/Decompression, Buffer management,

Queue management, Work scheduler, Timer management, Traffic

management, address translation);

 Network Interfaces: The network interface could either be a NIC which

connects to the processor via PCIe or the network interface capability may be

resident on-board the server. Provisioning of virtualised network connectivity

and acceleration will use technologies such as VT-c.

 Storage: Storage encompasses large-scale storage and non-volatile storage,

such as hard disks and solid-state disk (SSD) which can be with locally

attached or networked in configurations such as SAN. For some purposes, it is

necessary to have visibility of the different storage hierarchy level (Cache

Storage, Primary Storage, Secondary Storage, Cold Storage or Archived

Storage) each one characterised by specific levels of latency, costs, security,

resiliency and feature support. However, for many applications, the different

forms of storage can be abstracted, especially when one form of storage is

used to cache another form of storage. These caches can also be automated

to form a tiering function for the storage infrastructure.

Collectively these technologies enable the hypervisor to abstract the physical

resources into virtual resources which can be assembled into VMs for hosting VNFs. It

should be noted that a single Compute Platform can support multiple VNFs.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

93

Figure 22: Compute Domain High Level Architecture

Compute Domain Interfaces

The compute domain presents three external interfaces:

 The T-Nf-Vi/C - used by the VIM to manage the compute and storage

portion of the NFVI. It is the reference point between the management and

orchestration agents in compute domain and the management and

orchestration functions in the virtual infrastructure management (VIM);

 The T-[Vi-Ha]/CSr interface is the interface between the compute domain

and the hypervisor domain. It is primarily used by the hypervisor/OS to gain

insight into the available physical resources of the compute domain;

 The T-HA/CSr-Ha/Nr interface is used to carry execution information

between the Compute and the Network domain.

Orchestration and management of the NFVI is strictly implemented via the T-Nf-Vi

interfaces. The implementation of the interface must match the requirements

outlined in Annex B in addition to having the general characteristics of being

dedicated and secure. This interface is utilised to establish trust and compliance

between the VIM and the underlying compute infrastructure. The interface is exposed

by management agents of the compute node and allows both control and

monitoring of the compute domain. With regard to monitoring, agents are installed

both at the host OS (to measure physical resources) as well as the guest OSs (to

measure virtualised resources associated with a specific VNFC). The latter metrics are

of particular interest to T-NOVA operations, since they provide an indication of the

resources consumed by a VNFC instance and are directly used for service monitoring.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

94

Application performance such as SLA compliance depends on a variety metrics such

as resource and system level metrics. The ability to measure application performance

and consumption of resources plays a critical role in operational activities such as

customer billing. Furthermore, statistical processing of VNFC metrics will be exploited

to indicate a particular malfunction. Metrics to be collected at both physical compute

node and VM include CPU utilisation, memory utilisation, network interface

utilisation, processed traffic bandwidth, number of processes, etc.

4.5.1.2 Hypervisor Domain

The hypervisor domain is the part of the T-NOVA architecture that provides the

virtualised compute environment to VNFs. Since the hypervisor domain embraces

different types of hosts, with different Guest OSs and/or hypervisors, it is important

to manage interoperability issues appropriately. Issues relating to the virtualisation of

VNFs on technologies from different vendors need to be carefully considered.

The primary goal of the hypervisor domain is therefore to manage the heterogeneity

of technologies from different vendors, thus providing an interoperable cloud

environment to the VNFs. In that sense, the hypervisor domain provides an

abstraction layer between the VIM (which controls, monitors and administrates the

cloud) and the VNFs resources. The high level architecture of the hypervisor domain

is shown in Figure 23.

Looking at a single host, the hypervisor module provides virtual resources by

emulating different components, like CPUs, NICs, memory and storage. This

emulation can be extended to include complete translation of CPU instructions sets;

so that the VM believes it is running on a completely different hardware architecture

with respect to the one it is actually running on. The environment provided by the

hypervisor is functionally equivalent to the original machine environment. This

emulation is carried out in cooperation with the Compute domain. The hypervisor

module manages slicing and allocation of the local hardware resources to the hosted

VMs.

It also provides the NICs to the VMs and connects them to a virtual switch in order to

support both internal and external VM communication. A suitable memory access

driver is integrated into the virtual switch that interconnects VMs with each other.

The virtual switches (vSwitches) are also managed by the hypervisor, which can

instantiate and configure one or more vSwitches for each host. They are logical

switching fabrics reproduced in software.

The integration of vSwitches and hypervisors is an area of specific focus due to its

significant influence on the performance and on the reliability of VMs, especially in

the case of VNFs. The various aspects and issues related to the integration of

vSwitches with hypervisors are discussed in subsection 2.2.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

95

Figure 23: Hypervisor domain architecture

The Control, Administration and Monitoring module is essentially responsible for the

control functionality for all the hosts within the cloud environment, abstracting the

whole cloud. The main goal of this module is to provide a common and stable layer

that will be used by the VIM to monitor, control and administrate the VNFs over the

T-NOVA cloud. Moreover, as previously described it provides a unified the VIM and is

used to control the lifecycle of the VNFs. This supports various operations on the VMs

(or VNFs) such as provisioning, creation, modification of state, monitoring, migration

and termination.

Since different hypervisors provide different interfaces, the Control, Administration

and Monitoring (CAM) module needs to support heterogeneous hypervisors,

managing virtual resources on different vendors’ hypervisor at the same time. This

particular task is accomplished by the hypervisor manager.

4.5.2 Infrastructure Network Domain

The T-NOVA network infrastructure comprehends the networking domain of the

NFVI, i.e. the different virtualised network resources populating the NFVI as shown in

Figure 24. The Network domain within the NFVI considers virtual resources

composing virtual networks as the functional entity. Those virtual networking

resources are devoted to provide connectivity to the different virtualised compute

resources, which has been presented in previous section.

The T-NOVA architecture, and thus the network domain controlled by the VIM,

leverages SDN for optimising network operations. Both the Control and Data Planes

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

96

are separated. The network domain builds a full abstraction of the actual resources

included in the physical substrate and then creates vLinks between VMs (composing

vNets), which are provisioned in order to satisfy the requirements of the different

VNFs.

The main objectives of the network (aforementioned) resources are to provide

connectivity between VMs which can run on the same server, on different servers

within the same DC, or outside the same DC boundaries. (In the latter case, a co-

operation with the TNM module is required). Within the T-NOVA IVM, this is directly

translated into the creation of virtual networks that interconnect a set of compute

resources which are providing the execution substrate to VNFs.

Virtual networks must be dynamically programmed in order to ensure network

slicing, isolation, and ultimately connectivity in the T-NOVA multi-tenant scenario.

Each vNet is dedicated to a specific VNF service, and provides connectivity between

the different hosts serving the VNF service. Elasticity of the vNet is strictly required in

order to guarantee that the corresponding VNF services can be properly scaled-up or

–down. A virtualised control plane (SDN-like) will be responsible for controlling each

one of these virtual networks (refer to subsection 4.6.2).

Basically, the network domain performs abstraction of the physical network devices

themselves and then creates a set of virtual slices in an on-demand fashion. The

architecture basically contains the southbound components, with the different

resource agents and the abstracted models, with the upper part of the network

domain contains the basic virtualisation capabilities, responsible for creating and

composing the virtual networks.

The network domain contains two basic interfaces: (i) one to the VNF (T-Vn-Nf/VN),

and (ii) the other to the basic VIM controller (T-Nf-Vi/N). A full description of the

interfaces can be found in Table 7.

Figure 24: High level architecture of the Infrastructure Network

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

97

4.6 Virtualised Infrastructure Management

Within the T-NOVA IVM architecture the VIM is the functional entity that is

responsible for controlling and managing the NFVI compute, storage and network

resources within the NFVI. The VIM general is expected to operate in one operator’s

infrastructure domain (e.g., NFVI-PoP). However as many operators now have data

centres distributed on a global basis, scenarios will arise where the VIM may operate

in more than one NFVI-PoP to support either the architecture requirements for VNF

services and/or operator business needs. Alternatively multiple VIMs may operate

across operator data centres providing multi NFVI-PoPs that can operate

independently or cooperatively as required under the control of an Orchestrator.

While a VIM, in general, can potentially offer specialisation in handling certain NFVI

resources, in the specific context of the T-NOVA system the VIM will handle multiple

resources types as shown in Figure 25. The VIM acts as the interface between the T-

NOVA Orchestrator and the available IT-Infrastructure abstracted by the NFVI. The

control components are at the heart of the VIM, encompassing the following

elements:

 The algorithms and logic for control, monitoring and configuration of their

related domain;

 An interface or API server to offer the implemented logic and collected

information’s in an abstracted way to other components;

 An interface to control and access the virtualised infrastructure.

The interfaces of the API servers from each control component in the VIM are

furthermore aggregated in the Orchestrator Agent and the VNF Manager Agent to

deliver a unified interface to the upper layers of the T-NOVA components via the T-

Vi-Vnfm and T-Or-Vi interfaces. This architecture allows interaction with the upper

layers with a higher level of abstraction giving the T-NOVA Orchestrator the layers

with a higher level of abstraction giving the T-NOVA orchestrator the flexibility, to

configure a particular part of the infrastructure or to collect infrastructure related

data. The VIM also exposes southbound interfaces (as shown in Figure 25Figure 26)

to the infrastructure resources (Hypervisor/Compute/Network) of the NFVI which

enable control and management of these resources. A summary of the key north

bound VIM interfaces can be found in Table 7.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

98

Figure 25: T-NOVA VIM high level architecture

The following are the key set functions identified that must performed by T-NOVA

VIM based on general requirements identified by ETSI for a VIM within the MANO

architecture (8).

 Resource catalogue management,

 Orchestrating the allocation/upgrade/release/reclamation of NFVI resources,

and managing the association of the virtualised resources to the physical

compute, storage, networking resources,

 Supporting the management of VNF Forwarding Graphs (create, query,

update, delete), e.g., by creating and maintaining Virtual Links, virtual

networks, sub-nets, and ports,

 Management of the NFVI capacity/inventory of virtualised hardware resources

(compute, storage, networking) and software resources (e.g., hypervisors),

 Management of VM software images (add, delete, update, query, copy) as

requested by other T-NOVA functional blocks (e.g., NFVO),

 Collection and forwarding of performance measurements and faults/events

information relative to virtualised resources via the northbound interface to

the Orchestrator (T-Or-Vi),

 Management of catalogues of virtualised resources that can be consumed

from the NFVI. The elements in the catalogue may be in the form of

virtualised resource configurations (virtual CPU configurations, types of

network connectivity (e.g., L2, L3), etc.), and/or templates (e.g., a virtual

machine with 2 virtual CPUs and 2 GB of virtual memory).

The high level architecture for the T-NOVA VIM architecture reflects these key

functions.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

99

4.6.1 IT Resource Management and Control

In the T-NOVA system we distinguish between IT and visualised network resources

Also from a management and control perspectives this categorisation is clearly visible

in the architectural design of the VIM. In fact, on the one hand, the VIM provides to

the Orchestration layer a unified access point to all infrastructural resources at an

abstracted level, but, on the other hand, internally the control modules are explicitly

split into Compute and Hypervisor Control managing the IT resources, whereas the

Network Control module manages the network resources. This architectural choice

allows the T-NOVA system to manage them according to different requirements and

needs (in terms of performance, time constraints, and so forth) The following

subsections discuss the respective management and control needs of the hypervisor

and compute resources within the VIM and their relationship to the NFVI.

4.6.1.1 Hypervisor Management

The hypervisor control function is responsible for providing high level control and

configuration capability that is independent of the technology implementation within

the hypervisor domain. The interface to the hypervisor domain (T-Nf-Vi/H) provides

the necessary level of abstraction to the specifics of the underlying hypervisor. The

hypervisor control component provides the basic commands like start, stop, reboot

etc. and offers these commands through an API server to the VIM. Specific

commands related to a particular hypervisor implementation may also be supported

on case by case basis through the same API server allowing finer performance tuning.

Additionally the hypervisor controller can implement a query API that can be used to

provide detailed information such as configuration details, version numbers etc.

The network configuration of a newly created VM is usually configured by a script

that runs at boot-time or can be done manually after the VM has booted. The

hypervisor control component will offer the capability to implement a network

configuration during VM instantiation thus enabling a higher degree of automation

which is important for service provider operations. The hypervisor controller is able to

push onto the VM, provided the hypervisor supports the action, the desired network

configuration before the first boot of the OS.

The reliability capabilities inside the hypervisor controller have an important role as

custom configurations can be requested by the T-NOVA Orchestrator. Their primary

role is to prevent the user of the API from placing the hypervisor in an inconsistent or

error state leaving it unable to manage or respond to the VMs under its control. The

module may also play a role in managing issues such as misconfiguration,

compromised commands or hypervisor options that do not work well with the

allocated hardware.

4.6.1.2 Computing Resources Management

A key functionality of the compute domain management will be the collection and

processing of the monitoring metrics collected by both the physical compute nodes

as well as the VMs (VNFCs). A dedicated monitoring manager is envisaged;, to which

monitoring agents will connect to communicate compute domain resource metrics.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

100

At the monitoring manager, these metrics will undergo statistical processing in order

to extract additional information such as fluctuation, distribution and correlation. This

processing will provide useful information about the behaviour of each VNF

component and will contribute towards the early detection of possible VNFC

malfunctions. This will be the case e.g. if some measurements fall outside the normal

VNF load curve (e.g. if CPU utilisation rises abnormally even though processed

network traffic volume does not).

The placement of a VM on a compute resource is a critical task and the compute

controller carries out this function using a placement scheduler. This scheduler will, if

no further options are specified, make a decision based on the requirements of the

infrastructure provider and place the VM in an automated fashion. To influence this

decision making process, the scheduler will have a filter API that can be used via the

Orchestrator agent and thus by the Orchestrator. The filter may have of details

related to the desired SLA or specific hardware and software requirements. The main

filter categories that influence the decision process by the scheduler are:

 Specific hardware requirements like CPU speed or type of disc,

 Specific software requirements like the host OS or the hypervisor,

 Current load and performance metrics of the compute node such as average

CPU utilisation rate etc.,

 Financial considerations such as newest hardware or most energy efficient

hardware.

A further core task of the compute controller is to provide specific management

capabilities of the VMs for the Orchestrator especially where the operations overlap

with hypervisor and network controller actions. Such tasks include:

 Creation and deletion of a VM,

 Rebuilding, suspend and pause a VM,

 Migrating a VM from one compute node to another compute node,

 Resizing a VM.

Creation of a VM requires close interaction with the base image repository that

contains the basic unmodified OS images. In many cloud computing platforms, these

base images are known as flavours.

A CLI capability is generally required within the compute controller in order to enable

infrastructure administrators to carry out routine maintenance and administration

tasks. For example, the administrators may need to migrate VMs on a physical

compute node to another one as part of an infrastructure upgrade activity. Other

potential action may include interaction with the scheduler and filters in order to

modify the configuration of a VM or set of VMs to maintain an associated SLA for a

VNF service running on the VMs.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

101

4.6.2 Infrastructure Network Resources Management and

Monitoring

The Network Control functional block within the VIM is responsible for configuring

and managing the SDN-compatible network elements to provide an abstracted

platform for running SDN applications (i.e. network virtualisation, load balancing,

access control etc.).

In order to meet specific VNF services’ requirements, the network elements, physical

and virtual, need to be properly programmed by the Network Control function to

ensure appropriate network slicing, isolation and connectivity in a multi-tenant

environment. In this way, the network will be properly partitioned and shared among

several vNets, each dedicated to a specific VNF service. In the T-NOVA architecture

there is an explicit distinction between virtual and physical network control domains:

the virtual network control domain is managed by the VIM, whereas the physical

network control domain is managed by the TNM entity (discussed in next section).

The virtualisation of the Network Control is intended to address scalability and

centralisation issues affecting the SDN controller in large network infrastructures. The

proposed approach is to virtualise each instance of CP, enabling the distribution of

the overall workload to multiple VM. In this regard, the SDN Control Plane can offer

elasticity, auto-scaling and computational load balancing by exploiting cloud-

computing capabilities.

In order to guarantee an efficient CP virtualisation, a SDN Control Plane Coordinator

is expected to manage and monitor multiple CP instances. Moreover, it maintains a

global consistent view of the network by means of a Distributed Cache among each

running CP instance.

Figure 26: VIM Network Control Architecture

The Network Control component interfaces internally with the VIM Hypervisor and

Compute components and externally with the Orchestrator layer, by accepting

requests to deploy vNets based on certain topology and QoS requirements.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

102

4.7 Transport Network Management

The ETSI specifications indicate that the NFVI is the totality of the NFVI-PoPs along

with the transport network that interconnects them. In T-NOVA architecture, there is

an explicit separation between those two domains and two different network

domains have been identified: the former involves the SDN based network which is

internal to an NFVI-PoP, whereas the latter involves the transport networks that

interconnect NFVI-PoPs.

The TNM is the module of the IVM architecture whose main function is to manage

the transport network, composed by PNFs, providing also the connectivity between

different NFVI-PoPs, relying on existing WAN networks.

Those PNFs can be classified in two different categories:

 SDN-enabled network elements - physical devices that implement an SDN

approach,

 Legacy network element - physical devices which do not support any SDN

programmability feature.

The NFVO interfaces to the TNM through the T-Or-TN reference point (see Annex B,

Table 28) supporting requests relating to the creation and management of virtual

networks over different NFVI-PoPs: therefore, in order for the Orchestrator to request

a virtual network connection between VNFs running in different DCs interaction with

both virtual network resources (through the VIM) and physical networks among

NFVI-PoPs (through the TNM) is required.

The TNM is invoked by the Orchestrator to setup the interconnection among

Network Controllers (NCs) belonging to different NFVI-PoPs. In fact, within a VIM,

potentially, multiple NCs are encompassed (e.g., if different virtual network

partitioning techniques are used within the domain); in this case, the VIM is

responsible for requesting virtual networks from each underlying NC and setting-up

the interworking functionality between them. Thus, at the lowest level, network

controllers have visibility to L2 network elements within the NFVI-PoP whereas, at a

higher level, the VIM provides connectivity services to the Orchestrator in a suitable

manner using the underlying resources.

The TNM is responsible for a number of key aspects related to connectivity services.

These include the following:

 Management and control of existing PNFs;

 Monitoring of WAN resources and virtual links in order to provide the

Orchestrator with useful statistics (such as jitter, RTT, delay, bandwidth, etc.) to

make decisions about allocation of network resources;

 Management of virtual/physical links between NFVI-PoPs according to NFVO

provisioning via configuration of:

o SDN-enabled network elements, that enable network slicing

techniques,

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

103

o Legacy network elements, relying on tunnelling protocols (e.g., VXLAN

(44), NVGRE (45), STT (46)) in case of L3 PNFs or on native

trunking/aggregation protocols in case of L2 PNFs (e.g. VLAN, Q-in-Q,

etc.),

 Interfacing to the NFVO in order to accept provisioning requests and to

submit monitoring information.

In the following sections the management and monitoring of network resources are

discussed for both SDN-enabled and legacy network devices.

It is worth noting that the T-NOVA scope does not include elaboration on

implementation of a full solution for legacy technologies. However, existing

management solutions will be investigated in order to develop an understanding of

how to support interfacing to the NFVO in order to achieve the provisioning of the

required functions (i.e. configuration, tunnel establishment, QoS provision, failover

support etc).

4.7.1 Network Resources Management and Monitoring

The TNM plays a very important role within the IVM by providing the NFVO with an

abstracted view of the network topology and resources, (i.e. link capacities, latency,

etc.), for available WAN networks. It is common for large domains to be segmented

into different administration domains in order to increase the efficiency of both

management and monitoring. In this respect, T-NOVA expects that two types of

transport network domains will be supported: (i) the SDN Domain which comprises

SDN network elements (usually L2 devices) and (ii) the Legacy Domain which

comprises L2/L3 network elements that do not support programmability, but support

traffic engineering technologies (e.g. MPLS/IP).

4.7.1.1 SDN-enabled Network Elements

Today’s WANs are becoming more complex and the introduction of SDN aligned

approaches holds great potential for managing and monitoring network devices and

the traffic which flows over them. The benefits are mainly related to automated

network provisioning and to the flexibility in link deployment between different data

centres.

From a T-NOVA perspective, the TNM has responsibility for controlling and

monitoring the physical network devices which are SDN-enabled, with the purpose of

providing WAN connectivity between different NFVI-PoPs while considering both

SLAs required by VNFs and efficient management of cloud infrastructure resources.

In this context, the interaction with per-existent SDN will be needed to manage and

monitor network resources to get required flexibility and customisation capabilities:

TNM and VIM Network Control modules will need to be coordinated both by the

Orchestrator in an appropriate manner, in order to setup VLANs among different

virtual and physical SDN-enabled devices.

Although for the intra-DC networking the deployment of SDN technologies is

becoming more common place, the adoption of SDN at the transport level and

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

104

especially at Layer 0 to 1, is still very much in its infancy (72), (73). When considering

the transport layers we encompass technologies at layer 0 (DWDM, photonics) and

layer 1 (Sonet/SDH and OTN). A key reason for the delay in SDN adoption in the

transport network is the on-going transition from the analog to digital domain. The

mechanisms for dealing with analog attributes in optical networks are vendor

specific, and it is not possible for a generic controller to deal with the current myriad

of vendor specific implementations. Nor is it possible for network operators to

remove all of their transport equipment from their networks and replace it with a

standardised optical hardware based around open standards. However, at higher

layers (i.e. WAN) the adoption path is potentially more expeditious. Companies like

Google and the Carrier Ethernet (MEF) and cloud business units of network operators

have already adopted SDN solutions for their WANs (74).

For the purpose of the T-NOVA proof-of-concept demonstration the TNM

development of SDN compatible devices, is out of scope as it is not part of the

objectives of the project which are mostly focusing on the NFVI-PoP network

management and control. However, at an architectural level it is thoroughly

supported to ensure appropriate future proofing.

4.7.1.2 Legacy Network Elements

Managing and monitoring legacy network domains is a well understood and mature

capability. A variety of standardised and proprietary frameworks have been proposed

and implemented varying from commercial to open source solutions.

As outlined in subsection 2.2.4.2 the standard method for allowing network overlays

over legacy network domain is the exploitation of L2 to L3 tunnelling mechanisms.

Those mechanisms introduce the use of tunnelling protocols that allow the

management aspects of each tunnel on an end-to-end basis. The most interesting

tunnelling protocols, from a T-NOVA architecture perspective, (as discussed in

subsection 2.2.4.2) are VxLAN, NVGRE and STT. In short these protocols allow the

interconnection of NFVI-PoPs over L3 legacy network by encapsulating the NFVI

network traffic (actually DC traffic) end-to-end. They require the setup of an end-

point for each connected DC, which is responsible for encapsulation and

decapsulation of packets.

At a WAN level the architecture design of T-NOVA supports any type of legacy WAN

technology (i.e. MPLS, Optical, Carrier Ethernet etc.) or SDN compatible, provided that

the appropriate interfaces are developed. In this context, and for the sake of

demonstrating the UC as discussed in D2.1, T-NOVA will exploit an IP/MPLS transport

network and provide a simple implementation of TNM in order to support

provisioning of vNETs in an end-to-end manner.

From a monitoring perspective, there are a number of frameworks ranging from

passive to active and hybrid that allow the monitoring of legacy networks (75), (76).

T-NOVA will employ such mechanisms in order to monitor adequately the status of

the network and more importantly the status and resource usage of the established

tunnels. Monitoring of the transport network resources will also be part of the

considered TNM functionalities that will be implemented. Moreover, the monitoring

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

105

information will be conveyed to the NFVO as an input in the mapping and path

computation mechanism. Historical monitoring data collection will also be collected

to facilitate tracking of SLA breaches.

.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

106

5 T-NOVA VNFS AND NSS PROCEDURES

This section illustrates the set of most common procedures associated with the

deployment and management of VNFs (e.g. on-boarding, instantiation, monitoring,

scaling, etc.) to illustrate the interactions between the T-NOVA Orchestrator and IVM

architecture FEs that have been described in Sections 3 and 4. The flow diagrams

presented in this section serve as a means to validate the architectures for the T-

NOVA Orchestrator and IVM layers and their constituent architectural components. In

addition, the flow diagrams also illustrate the interactions at the FE level and validate

the purpose and capabilities of the interfaces that have been identified in subsections

3 and 4. As stated above, the sequence diagrams are intended to illustrate specifically

the interaction of the entities of the Orchestration and the IVM layers, however some

of the details of the internal actions of each module are not illustrated as these are

implementation specific and depend on the technologies utilised.

While a conceptual exercise, the description and illustration of the key VNF

deployment and management workflows provide a means to stress tests regarding

the taken architectural decisions and capture necessary refinements prior to

implementation related activities in WP3/4. Subsection 5.1 focuses on the VNF

procedures, whereas subsection 5.2 is centred on the NS procedures.

5.1 VNF related procedures

To describe the VNF procedures, the following assumptions are made:

 The VNF is composed by one or more VNFC3s;

 Each VNFC has a dedicated VM;

 VNFCs are interconnected through Virtual Network Links;

 The VNF, as well as the constituent VNFCs, is instantiated within a single data

centre, which implies that no scenarios involving the TNM are applicable.

The VNF details (e.g. deployment rules, scaling policies, and performance metrics) are

described in the VNF Descriptor.

5.1.1 On-boarding

VNF on-boarding (Figure 27) refers to the process of making the T-NOVA

Orchestrator aware that a new VNF is available on the NF Store.

3
 A single VNF which is hosted by a single VM is called a Virtual Network Function Component

(VNFC)

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

107

Figure 27: VNF On-boarding Procedure

Steps:

1. A new VNF is uploaded to the NF Store. As a result, the NF Store notifies the

NFVO that a new VNF is available.

2. The NFVO requests the metadata (VNF Descriptor) of the new VNF from the

NF Store.

3. The VNF Descriptor is provided to the NFVO.

4. The NFVO processes the VNFD to check if the mandatory elements are

provided.

5. The NFVO uploads the VNFD to the VNF Catalogue.

5.1.2 Instantiation

VNF instantiation (Figure 28 and Figure 29) refers to the process of creating and

provisioning a VNF instance. Figure 28 refers to the instantiation process from the

perspective of the Orchestration Layer, whereas Figure 29 shows the instantiation

process from the IVM layer point of view.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

108

Figure 28: VNF Instantiation Procedure (Orchestrator’s View)

Steps VNF Instantiation – Orchestrator’s View:

1. NFVO calls the VNFM to instantiate the VNF, with the instantiation data.

 Optionally, and before the instantiation request from the NFVO to the

VNFM, a feasibility check could be made to ensure the required

resources for the VNF are available (and reserved) at the virtual

infrastructure (interacting with the VIM) layer.

2. The VNFM validates the request and processes it. This might include

modifying/complementing the input instantiation data with VNFD data and

VNF lifecycle specific constraints.

3. The VNFM then calls the NFVO for resource allocation.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

109

4. The NFVO retrieves VNF image(s) from the NF Store.

5. NF Store delivers the VNF image(s) to the NFVO.

6. The NFVO executes any required pre-allocation processing work.

 VNF location selection: The selection of where to locate a VNF

instance could be based on the request, available resources, the nature

of the VNF, the Network Service(s) in which the VNF instance is

participating in as well as defined policies.

 Resource pool selection: The resource pool to be used needs to be

selected. Note that this is not the same as the VNF location. Multiple

resource pools could exist in the same location or some VNFCs that

are part of a VNF instance may need to be located remotely from the

rest.

 Dependency checking: Availability of all the required external

dependencies from the required location need to be checked. If the

VNF instance has any QoS requirements, it also needs to be verified if

they can be met in the selected location. Note that the QoS

requirements could be on compute or network resources, or on

external services on which the VNF instance is dependent.

7. The NFVO requests the allocation of resources from the VIM (compute,

storage and network) needed for the VNF instance (and delivers the VNF

image(s)).

8. The VIM instantiates the required compute and storage resources from the

infrastructure, for further details see VNF Instantiation Procedure – IVM View.

9. The VIM instantiates the internal connectivity network – a VNF may require

dedicated virtual networks to interconnect it’s VNFCs (networks that are only

used internally to the VNF instance), for further details see VNF Instantiation

Procedure – IVM’s View.

10. The VIM interconnects the instantiated internal connectivity network with the

VNFCs, for further details see VNF Instantiation Procedure – IVM View.

11. Acknowledgement of completion of resource allocation back to NFVO.

12. The NFVO acknowledges the completion of the resource allocation back to

VNFM, returning appropriate configuration information.

13. After the VNF is instantiated, the VNFM configures the VNF with any VNF

specific lifecycle parameters (deployment parameters).

14. The VNF sends an acknowledgement to the VNFM that the configuration

process is completed.

15. The VNFM notifies the EM (if present) of the new VNF, step outside the scope

of T-NOVA.

16. The EM acknowledges the VNFM, step outside the scope of T-NOVA.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

110

17. The EM configures the VNF with application-level parameters and

acknowledges the VNFM, step outside the scope of T-NOVA.

18. The VNFM acknowledges the completion of the VNF instantiation back to the

NFVO.

The diagram corresponding to steps 8-10 is indicated below.

Figure 29: VNF Instantiation Procedure (IVM’s View)

The specifics details of steps 8-10 are as follows:

8.1. The VIM Orchestrator Agent submits a request to the VIM Compute

Control module to create new VMs, according to the VNF requirements.

8.2. The VIM Compute Control module:

 Processes the request;

 Analyses the required configuration;

 Selects one or more suitable compute nodes to host the VMs;

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

111

 Sends request to allocate VMs to the selected nodes.

8.3. The selected NFVI Compute node(s) allocates the VMs.

8.4. The NFVI Compute nodes send back an acknowledgment to the VIM

Compute Control module when they successfully boot.

8.5. The VIM Compute Control module sends back an acknowledgment to the

VIM Orchestrator Agent.

9.1. The VIM Orchestrator Agent submits a request to the VIM Network Control

module for the allocation of Network Resources.

9.2. The VIM Network Control module:

 Processes the request;

 Analyses the required configuration;

 Sends a request for allocation of virtual network resources on the NFVI

Network.

9.3. The NFVI Network:

 Allocates the resources;

 Sets up the virtual networks, by configuring the required

interconnectivity between virtual switches.

9.4. The NFVI Network sends back an acknowledgment to the VIM Network

Control module.

9.5. The VIM Network Control module sends back an acknowledgment to the

VIM Orchestrator Agent.

10.1. The VIM Orchestrator Agent submits a request to the VIM Hypervisor

Control module to attach the new VMs to the required virtual networks.

10.2. The VIM Hypervisor Control module sends the request to the hypervisors

controlling the new VM hosting nodes.

10.3. The hypervisors of those nodes:

 Configure the vSwitches in order to manage the VLANs connectivity

necessary to support the VNF requirements;

 Setup the interconnections among VMs and vSwitches.

10.4. The hypervisors send back acknowledgments to the VIM Hypervisor

Control module.

10.5. The VIM Hypervisor Control module sends back an acknowledgment to the

VIM Orchestrator Agent.

5.1.3 Supervision

VNF supervision from the Orchestrator’s layer point of view (Figure 30) refers to the

process of monitoring of the VNF, including the infrastructure specific parameters

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

112

collected and reported by the IVM, as well as the VNF application/service-specific

parameters.

VNF supervision from the IVM’s layer point of view (Figure 31) refers to the process of

monitoring of the VIM, including the VM performance metrics, the VL performance

metrics, and the physical machines performance metrics.

As far as the supervision procedure from the Orchestrator’s layer point of view is

concerned, the sequence is as follows:

Figure 30: VNF Supervision Procedure (Orchestrator’s View)

Steps (VNF Supervision – Orchestrator’s View):

1. VNF collects performance metrics related with the VNF application/service.

2. VNF notifies the VNFM with the VNF application specific metrics:

 As a result, the VNFM may decide to scale the VNF and/or provide

aggregated monitoring information towards the NFVO.

3. VIM collects performance metrics related with the infrastructure allocated for

the VNF, for further details see VNF Supervision Procedure – IVM View.

4. VIM notifies the VNFM with the VNF infrastructure related performance

metrics.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

113

As a result, the VNFM may decide to scale the VNF and/or provide aggregated

monitoring information towards the NFVO. As far as the supervision procedure from

the IVM’s layer point of view is concerned, the sequence is as follows:

Figure 31: VNF Supervision Procedure (IVM’s View)

Steps (VNF Supervision – IVM’s View):

5.1. The NFVI Hypervisors:

 Collect VM performance metrics data;

 Send the data to the VIM Hypervisor Control module.

5.2. The VIM Hypervisor Control module sends the data to the VIM VNF Manager

Agent.

5.3. The NFVI Network devices:

 Collect performance metrics data from virtual network links (VLs);

 Send the data to the VIM Network Control module.

5.4. The VIM Network Control module sends the collected data to the VIM VNF

Manager Agent.

5.5. The NFVI Compute nodes:

 Collect the physical performance metrics data;

 Send the data to the VIM Compute Control module.

5.6. The VIM Compute Control module sends the data to the VIM VNF Manager

Agent.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

114

5.1.4 Scale-out

VNF scale-out refers to the process of creating a new VM to increase the VNF

capacity with additional compute, storage, memory and network resources.

The scaling policies that indicate which/how/when VMs/VNFCs should be scaled are

identified in the ”VNF Deployment Flavour” attribute, which makes part of the VNF

Descriptor (VNFD).

Figure 32 illustrates this case for a scaling-out: VNFC A is instantiated and a new VL is

created to connect this new instance to the existing VNFC B instance. VNF scaling is

further detailed on another deliverable of this project, D2.41 (62).

Figure 32: Scaling out a VNF

Figure 33 illustrates the VNF scale-out process where it is the VNFM that decides to

scale the VNF, after receiving VNF application/service specific metrics from the VNF

and VNF infrastructure related metrics from the VIM:

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

115

Figure 33: VNF Scale-out Procedure

Steps:

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

116

1. The VNFM collects performance metrics related with the VNF

application/service (from the VNF) and with the infrastructure resources (from

the VIM), for further information about the performance metrics collection,

check the “VNF Supervision Procedure”.

2. Based on the retrieved performance metrics and on the auto-scaling policies

(included in the VNFD), the VNFM detects the need to scale.

3. The VNFM decides that the best option is to scale-out the VNF.

4. The VNFM requests the NFVO to scale-out the VNF by indicating the required

resources for the new VM – matching a specific “VNF deployment flavour”

from the VNFD stored in the VNF Catalogue.

 NFVO may perform a VNF feasibility check where a resource reservation is

made in the VIM (further information on the VNF Instantiation Procedure-

Orchestrator’s View).

5. The NFVO executes any required pre-allocation processing work, e.g. VNF

location selection, Resource pool selection, Dependency checking, for further

details see VNF Instantiation Procedure – Orchestrator’s View.

6. The NFVO requests allocation of resources from the VIM (compute, storage

and network) needed for the VNF instance (and delivers the VM image(s)).

7. The VIM instantiates the required compute and storage resources from the

infrastructure (according to the new “VNF Deployment Flavour” attribute), for

further details see VNF Instantiation Procedure – IVM’s View.

8. The VIM instantiates the internal connectivity network – a VNF may require

dedicated virtual networks links (VLs) to interconnect its VNFCs (networks that

are only used as internal to the VNF instance), for further details see VNF

Instantiation Procedure – IVM’s View.

9. Thereafter the VIM interconnects the instantiated internal connectivity

network with the VNFCs (according to the “VNF Lifecycle Script & VLD”

attribute), for further details see VNF Instantiation Procedure – IVM’s View.

10. Acknowledgement of completion of resource allocation is sent back to NFVO.

11. NFVO acknowledges the completion of the scale-out/resource allocation back

to VNFM, returning appropriate configuration information.

 Thereafter the VNFM proceeds with the VNF configuration procedures,

as described in the “VNF Instantiation Procedure - Orchestrator’s

View”.

5.1.5 Termination

VNF termination Figure 34 and Figure 35 refer to the process of releasing a VNF

instance, including the network and VM resources allocated to it. Figure 34 refers to

the termination process from the perspective of the Orchestrator’s layer, whereas

Figure 35 shows the termination process from the IVM internal point of view.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

117

Figure 34: VNF Termination Procedure – Orchestrator’s View

Steps (VNF Termination Orchestrator’s View):

1. The NFVO calls the VNFM to terminate the VNF service. The VNF termination

procedure can be triggered, for example, by the following actions:

 Termination of the NS in which the VNF is instantiated;

 Scale-in of the NS, requesting a specific VNF instance to be

terminated;

 Explicit request from the SP or the FP to remove the VNF.

2. The VNFM gracefully shuts down the VNF, i.e. without interrupting the NS

that is being delivered, if necessary in coordination with other management

entities. The VNF image(s) will be maintained on the NF Store (in order to be

instantiated again in the future). The VNF catalogue is not affected by the VNF

termination.

3. The VNFM acknowledges the completion of the VNF termination back to the

NFVO.

4. The NFVO requests deletion of the VNF resources by the VIM.

5. Virtual network links (VLs) interconnecting the VMs are released, for further

details see VNF Instantiation Procedure – IVM’s View.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

118

6. VMs resources (compute, storage and memory) used by the VNF are released,

for further details see VNF Instantiation Procedure – IVM’s View.

7. An acknowledgement is sent indicating the success or failure of resource

release back to NFVO.

 The NFVO updates the infrastructure resources repository.

Figure 35: VNF Termination Procedure – IVM’s View

Steps (VNF Termination – IVM’s View):

5.1. The VIM Orchestrator Agent submits a request to the VIM Hypervisor

Controller for detaching VM(s) from the virtual network;

5.2. The VIM Hypervisor Control module forwards the request to the NFVI

Hypervisors involved;

5.3. The NFVI Hypervisors detach VM(s) from the network;

5.4. The NFVI Hypervisors send back an Acknowledgement to the VIM Hypervisor

Control;

5.5. The VIM Hypervisor Control sends back an Acknowledgement to the VIM

Orchestrator Agent;

6.1. The VIM Orchestrator Agent submits a request to the VIM Network Controller

for releasing virtual network resources;

6.2. The VIM Network Control module forwards the request to the NFVI Network

domain;

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

119

6.3. The NFVI Network Infrastructure releases the network resources and sends

back an Ack;

6.4. The VIM Network Control sends back an Ack to the VIM Orchestrator Agent;

6.5. The VIM Orchestrator Agent submits a request to the VIM Compute

Controller for releasing virtual compute resources;

6.6. The VIM Compute Control module forwards the request to the involved NFVI

Compute nodes;

6.7. The NFVI Compute nodes releases the compute resources and sends back

an Ack;

6.8. The VIM Compute Control sends back an Ack to the VIM Orchestrator Agent.

5.2 NS related procedures

To describe the NS procedures, the following assumptions are made:

 The NS is composed by one or more VNFs (in the following procedures, two

VNFs – VNF1 and VNF2 – compose the NS);

 VNFs composing the NS are interconnected through Virtual Network Links (if

VNFs run on the same DC) or through Non-virtual/legacy Network Links (if

VNFs run on different DCs) (in the following procedures, VNF1 runs on DC1

and VNF2 runs on DC2);

 The NS constituent VNFs can be implemented in a single DC or spread across

several DCs;

 Besides VNFs, PNFs can also be part of the NS (in the following procedures,

PNF1 is interconnected with VNF1).

The NS details (e.g. deployment rules, scaling policies, performance metrics, etc) are

described in the NSD, e.g. VNF Forwarding Graph for detailing the VNFs

interconnections.

5.2.1 On-boarding

NS on-boarding (Figure 36) refers to the process of submitting a NSD to the NFV

Orchestrator in order to be included in the catalogue.

Figure 36: NS On-boarding Procedure

Steps:

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

120

1. The Marketplace submits the NSD to the NFVO for on-boarding the NS.

2. NFVO processes the NSD to check if the mandatory elements are provided.

3. NFVO notifies the catalogue for insertion of the NSD.

4. NFVO acknowledges the NS on-boarding.

5.2.2 Instantiation

NS instantiation refers to the instantiation of a new NS, i.e. Figure 37 from the

Orchestrator’s view, and Figure 38 from the IVM’s view.

As stated above, the next sequence diagram depicts a situation where VNFs

composing the NS run on different DCs and are interconnected through Non-

virtual/legacy Network Links.

Figure 37: NS Instantiation Procedure (Orchestrator’s View)

Steps (Orchestrator View):

1. The NFVO receives a request to instantiate a new NS.

2. The NFVO validates the request, both validity of request (including validating

that the sender is authorised to issue this request) and confirming the

parameters passed are technically correct.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

121

3. The Orchestrator checks the NS composition (e.g. VNFFG) in the NS

catalogue:

 Thereafter, a feasibility check procedure may optionally be carried out

for each VNF that is part of the NS, in this case VNF1 and VNF2 For

further details about the “VNF Feasibility Check”, please see the “VNF

Instantiation Procedure”;

 The NFVO triggers the instantiation of the VNFs (VNF1 and VNF2). For

further details about the “VNF Instantiation”, please check the “VNF

Instantiation Procedure”.

4. The NFVO executes any required pre-allocation processing work, e.g. VNF

location selection, Resource pool selection, Dependency checking. For further

details see VNF Instantiation Procedure – Orchestrator’s View.

5. The NFVO requests the TNM to setup the WAN resources required for

interconnecting the VNFs across the DCs (resource phase establishment).

6. The TNM configures the WAN resources between DC1 and DC2.

7. The TNM sends an acknowledgment to the NFVO reporting that the WAN has

been configured as requested.

8. The NFVO sends a request to the VIM to interconnect the WAN ingress and

egress routers to the DC VLANs (connectivity phase establishment).

9. The VIM interconnects the configured WAN resources with VNF1 and VNF2 in

DC1 and DC2, respectively.

10. The VIM acknowledges completion of the WAN / VLANs configuration:

 If necessary, NFVO requests Network Manager to connect VNF

external interfaces to PNFs interfaces:

1. The Network Manager can be an OSS, an NMS or an EM;

2. Connection to PNFs is assumed to be done by the NFVO.

11. The NFVO acknowledges completion of the NS instantiation.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

122

Figure 38: NS Instantiation Procedure (IVM’ View)

Steps (IVM View):

6.1. The TNM Orchestrator Agent sends the request to the TNM Network Control

to configure the WAN end points.

6.2. The TNM Network Control configures the endpoints.

6.3. The TNM Network Control sends an acknowledgement indicating success or

failure of the configuration setup to the TNM Orchestrator Agent.

9.1. When the acknowledgement of a successful WAN configuration is received

the NFVO sends a request to the VIM Orchestrator Agent to connect a VLAN

to WAN endpoints. The VIM Orchestrator Agent sends the request to connect

a VLAN to WAN endpoints to the VIM Network Controller.

9.2. The VIM Network Controller sends the request to connect a VLAN to WAN

endpoints to the NFVI Network.

9.3. The NFVI Network connects the VLAN to the WAN endpoints.

9.4. The NFVI endpoint sends an acknowledgement of a successful or failed

connection configuration to the VIM Network Controller.

9.5. The VIM Network Controller sends an acknowledgement of a successful or

failed connection to the VIM Orchestration Agent.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

123

5.2.3 Supervision

NS supervision (Figure 39) refers to the monitoring of the NS performance metrics,

including:

 VNF infrastructure and service specific information;

 Network links interconnecting the VNF (across multiple DCs).

Again, as stated above, the next sequence diagram depicts a situation where VNFs

composing the NS run on different DCs and are interconnected through Non-

virtual/legacy Network Links.

Figure 39: NS Supervision Procedure

Steps:

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

124

1. The VNFM sends performance metrics related to a VNF to the NFVO. This

includes both metrics from the infrastructure supporting the VNF (VMs,

Virtual Links) – obtained directly from the VIM - as well as

application/service-specific metrics from the VNF - obtained directly from

the VNF or from the EM). For further details about the VNF performance

metrics retrieval, please check the “VNF Supervision Procedure”, where the

option to forward aggregated information to NFVO has been taken by the

VNFM.

2. The TNMNetCtrl fetches and delivers the WAN segment metrics to the

TNMOrchAg.

3. The TNMOrchAg provides the WAN segment performance metrics to the

NFVO.

4. The VIM delivers VM-related metrics to the NFVO:

 Based on the metrics received (VNFM, VIM and TNM) and on the

defined scaling policies included in the NSD, the NFVO may decide to

trigger a scaling procedure. Furthermore, if configured, the NFVO will

also deliver aggregated NS-related performance metrics to the

Marketplace.

5.2.4 Scale-out

NS scale-out refers to the process of increasing the capacity of the service in order to

accomplish a SLA that is changing to a new NS deployment flavour, or to maintain an

existing SLA.

The scale-out policies are triggered based on the following information:

 NS issues (retrieved from VNFM);

 VNF issues (retrieved from VNFM);

 WAN segment, i.e. connecting VNFs issues, retrieved from TNM.

Figure 40 illustrates NS scaling case, where a second instance of VNF B is created and

the existing VNF A instance is reconfigured so that it becomes able to communicate

with the two VNF B instances.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

125

Figure 40: Scaling-out a NS

Figure 41 refers to a situation where, according to the metrics received, the required

performance of the SLA cannot be achieved. As such the NFVO decides to scale-out

to a new deployment flavour, taking also into account the auto-scaling policies

included in the NSD. This implies:

 Scale-out a specific VNF to a new deployment flavour (included in this

workflow);

 Creation of a new VNF instance (included in this workflow);

 Changing the VNF location to another DC (not included in this workflow);

 Increasing the WAN segment network link capacity (included in this

workflow).

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

126

Figure 41: NS Scale-out

Steps:

1. The NFVO collects and checks monitoring information from the VNF, VIM and

the WAN.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

127

2. Based on the retrieved performance metrics and on the auto-scaling policies

defined on the NSD, the NFVO detects the need to scale-out the NS.

3. The NFVO decides to change to another NS deployment flavour, which

comprises the VNF1 scale-out, a new instantiation of VNF2#2 and an increase

on the WAN link capacity:

 The other procedures (VNF scale-out, VNF instantiation and WAN

interconnection) have already been described in the previous

workflows.

5.2.5 Termination

NS termination (Figure 42) refers to the process of releasing the NS instance,

including the constituent VNFs (VNF1, VNF2#1 - instance 1 of VNF2 and VNF2#2 –

instance 2 of VNF2), as well as the WAN segment.

Figure 42: NS Termination Procedure

5.3 NS, VNF and Infrastructure Monitoring

Proper NS/VNF as well as infrastructure monitoring is crucial for the implementation

of many of the use cases foreseen for the T-NOVA system, see D2.1 (63). Especially

UC2 (Provision NFV services), UC3 (Reconfigure/Rescale NFV services) and UC5 (Bill

NFV services) use the monitoring metrics, which are collected during UC4

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

128

(Monitoring). Specifically, the latter presents an overview of the T-NOVA monitoring

procedures, focusing on both:

1. VNF and Service Monitoring - related to the status and resources of the

provisioned services, as well as,

2. Infrastructure Monitoring - related to the status and resources of the physical

infrastructure.

Monitoring metrics are mostly collected at the various domains of the Infrastructure

layer and communicated to the upper layers. Figure 43 depicts a high-level view of

the flow of the monitoring information across the T-NOVA system.

Figure 43: Communication of monitoring information across the T-NOVA system

The first step is the collection of both Infrastructure and NS/VNF monitoring metrics

from different domains within the T-NOVA Infrastructure layer. These metrics are

typically offered by a dedicated monitoring agent at each physical or virtual

infrastructure element. In addition, some compute node and VNF/VM metrics can be

VNF

Marketplace

Orchestrator

Virtualised Infrastructure Management
Transport
Network

Management

Compute Storage

Infrastru-
cture

Network

Transport
Network

Hypervisor

Service and
Infrastructure

Monitoring
(VNFM / NFVO)

Accounting
SLA

Management
Dashboard

VNF

NS/VNF Instances
Records

Infrastructure
Resources Records

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

129

collected directly via the hypervisor, which also provides host and guest machine

resource information.

Table 8 presents an indicative list of monitoring metrics to be collected at each

infrastructure domain. It must be noted that this list is tentative and is expected to be

modified/updated throughout the project course, as the specific metrics which will be

actually needed for each step of the T-NOVA service lifecycle, will be precisely

defined.

Table 8: Monitoring metrics per infrastructure domain

Domain VNF App/Service Metrics Infrastructure Metrics

VNF (VM, guest machine) CPU utilisation

CPU time used

No. of vCPUs

RAM allocated

Disk read/write bitrate

Network interface in/out

bitrate

No. of processes

-

Compute (per compute node, host

machine of the DC domain) -

CPU utilisation

RAM allocated

Disk read/write bitrate

Network interface in/out bitrate

Storage (object or volume storage

of the DC domain)

Read/write bitrate

Volume usage (volume

storage)

No. of objects (object

storage)

Total objects size (object

storage)

Total Read/write bitrate

Total Volume usage (volume

storage)

Total no. of objects (object

storage)

Total objects size (object

storage)

Infrastructure Network (per

network element of the DC

domain)

Per-flow packets cumulative

and per second

Per-flow bytes packets

cumulative and per second

Flow duration

Per-port packets cumulative and

per second

Per-port bytes packets

cumulative and per second

Per-port receive drops

Per-port transmit drops

Per-port link state and speed

CPU utilisation

Transport Network (per network

element)

Per-flow packets cumulative

and per second

Per-flow bytes packets

cumulative and per second

Flow duration

Per-port packets cumulative and

per second

Per-port bytes packets

cumulative and per second

Per-port receive drops

Per-port transmit drops

Per-port link state and speed

CPU utilisation

Infrastructure metrics, as well as events/alerts are aggregated by the VIM and the

TNM and communicated to the Orchestrator FEs, NFVO and VNFM, which are in

charge of associating each group of metrics to specific VNFs and Network Service.

Those parameters are then compared against the NS and VNF templates composed

by a. o. the NSD and the VNFD, which denote the expected NS and VNF behaviour. If

any mismatch is detected, appropriate actions are selected and executed, e.g. scaling.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

130

This procedure needs to be carried out at the Orchestrator level, since only the latter

has the entire view of the end-to-end service as well as the resources allocated to it.

In this context, and in addition to the double check (NS and VNF) mentioned above,

the monitoring processed at the Orchestrator, as part of the NFVO and VNFM,

performs the following operations:

 Aggregate infrastructure-related metrics and update the Infrastructure

Resources records,

 Associates metrics (e.g. VM and flow metrics) to specific services, produce an

integrated picture of the deployed service and updates the NS/VNF instances

records,

 Checks monitored parameters against the NS and VNF templates, composed

by the NSD and the VNFD, which denote the expected NS and VNF behaviour.

If any mismatch is detected, appropriate actions are selected and executed,

e.g. scaling,

 Communicate service metrics to the Marketplace via the Orchestrator

northbound interface.

At the Marketplace level, service metrics are exploited for accounting (especially in

pay-as-you-go billing models) as well as SLA Management, in order to compare the

status of the service against the contracted one. They are also presented via the

Dashboard to the Customer, so that he/she can have a consolidated overall view of

the status of the service and the resources consumed.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

131

6 GAP ANALYSIS

Considering both existing industry oriented initiatives and currently available

technologies that are being used commercially (or are in a development stage) a

focused gap analysis was carried out to determine what steps need to be taken in

order to move NFV/SDN from its current state to a position that can fully realise the

needs of key areas that need to be addressed during the project activities. In the

following, key results of this gap analysis are described, for all the various domains

relating to the T-NOVA Orchestrator and T-NOVA IVM architectures. Where possible

the gaps have been aligned with T-NOVA tasks where these could be either

elucidated or progressed towards addressing the gap could be made.

6.1 Compute

The Compute domain of the T-NOVA architecture provides basic building blocks for

VNFs execution. Gap analysis for this domain identified two key areas that need to be

addressed during the project activities:

Table 9: Gap analysis in the compute domain

Gap Description T-Nova

Task Alignment

Virtualisation

infrastructure for

telecommunication

workloads

Features requested by workloads need to

be investigated in greater detail and

special purpose processors (or co-

processors) have to be integrated in

compute domain infrastructures.

Those enhanced features have also to be

exposed to the upper layer of the

architecture, in order to make them

available from an orchestration

perspective

Task 3.2

Task 4.1

Interoperability between

different hardware

architectures

Compute architecture heterogeneity

needs to be improved in current compute

domain infrastructure to provide a greater

diversity of options for certain NFV

workload types.

Support for heterogeneity should not only

apply in terms of multi-vendor

technologies, but also in terms of different

hardware architectures required by

different VNFs.

Task 4.1

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

132

6.2 Hypervisor

The Hypervisor domain is responsible for abstracting VNFs from the underlying

physical resources. The main gap issues that have to be addressed by T-NOVA

system for this domain are:

Table 10: Gap analysis in the Hypervisor domain

Gap Description T-Nova Task

Alignment

Integration of vSwitches

with hypervisors and vNICs

The hypervisors are responsible for the

integration between vSwitches and vNICs.

However this integration currently needs

further performance improvements. In

order for the T-NOVA platform to provide

the required level of performance, it is

necessary to address these performance

features.

Task 4.1

Portability of Virtual

Resources across different

platforms

In order to support the live migration of

VNFs, all the vSwitch solutions need to be

described using the same syntax,

providing to the T-NOVA system a

common interface to allow portability on

different platforms and support live

migration by the hypervisor.

Task 3.2

Processor Pinning

Some VNF vendors use a dedicated CPU

placement policy, which strictly ‘pins’ the

vCPUs to a set of host physical CPUs.

This is normally done to maximise

performance such L3 cache hit rates.

However this can make migration `by the

hypervisor challenging in order to

guarantee that same pinning allocation of

vCPUs to physical cores on the

destination system.

Task 4.1

6.3 SDN Controllers

The SDN Controller domain is responsible for the control of the SDN-enabled

network elements regarding the deployment and the management of the vNets. The

main issues related to the virtualisation of the SDN Control Plane (CP) are:

Table 11: Gap analysis regarding SDN Controllers

Gap Description T-Nova Task

Alignment

Distribution of CP Standardisation activities are required to Task 3.3

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

133

workloads mitigate various scalability and availability

issues due to SDN Control plane

centralization, where a distribution

approach would have also to be

considered.

Task 4.2

Bottleneck Avoidance

Standardisation activities are required to

address large-scale, high load

deployment scenarios to avoid

bottlenecks where a distribution

approach would necessitate consideration

Task 3.3

Task 4.2

Interoperability of different

controllers

Currently a uniform interface for all the

SDN controllers does not exist, which

increases both the complexity of

development process. Work is required in

the abstraction of north bound interfaces

to support application developers.

Task 4.3

6.4 Cloud Controllers

The Cloud Controller represents the central management system for cloud

deployments. Ranging from basic to more advanced, the T-NOVA project will

investigate gaps in the current solutions within this domain, which fall short with

respect to the following aspects:

Table 12: Gap analysis regarding Cloud Controllers

Gap Description T-NOVA Task

Alignment

Interoperability between

different Cloud Computing

Platforms

From a T-NOVA Orchestrator perspective,

a unified southbound interface is needed,

in order to make the API of different IaaS

providers accessible and to enable

communications with different Cloud

Computing Platforms. Even if most cloud

platforms have widely adopted open

standards, there are still inconsistencies

with respect to the different versions and

APIs, inconsistencies that need to be

concealed under a single interface.

Task 3.1

Resource Allocation and

Configuration

From a T-NOVA VNF perspective, cloud

controllers need to support the allocation

and configuration of network resources

and allow enhanced resource

management.

Existing cloud management solutions

need to be extended to provide an

interface that would allow, for instance,

enhanced configuration of network

Task 3.2

Task 3.3

Task 3.4

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

134

parameters.

Providing infrastructure

utilisation data

Monitoring and collecting information

with respect to the current load and

availability of resources is a crucial

capability for T-NOVA system, as it will be

a cloud management framework that

needs to perform in real-time and

support very high volume traffic.

Although cloud platforms already offer

monitoring capabilities, the challenge

with respect to T-NOVA is to collect the

information that is relevant for VNFs and

how to represent it such that the

Orchestration layer can best utilise it.

Task 3.2

Task 3.4

Task 4.1

Platform Awareness

Cloud environments need to become

more aware of the features and

capabilities of their constituent resources

and to expose these enhanced platform

features to the Orchestration layer to

improve the placement decisions of

workloads such as VNFs.

A common data model to describe

resources is needed, which could be used

to identify specific features like DPDK

enablement or SR-IOV capable devices.

Task 3.2

Task 4.1

6.5 Network Virtualisation

Network virtualisation introduces several gaps and open issues that need to be

addressed by the T-NOVA project:

Table 13: Gap analysis regarding Network Virtualisation

Gap Description T-NOVA Task

Alignment

Network resource isolation

VNs are by definition based on shared

resources and this brings up the

isolation problem, especially when the

number of VNs sharing the same

infrastructure is very high.

On the other hand, the strictness of

isolation varies according to the

specific use case. In a Network as-a-

Service scenario isolation it will

obviously be a fundamental

requirement.

Isolation is required between the VNs

Task 4.2

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

135

running separate Telco services. Within

the T-NOVA platform, a VN might

require complete isolation while

another one might share its resources

when it is idle, depending on the

business model and the type of the

specific service.

Multiple DC

interconnection

Limitations of supporting distributed

cloud service provisioning and the

requirement for VNs to span multiple

computing farms; seamless networking

handover technologies are still

immature or inefficient; potentially

complicating service delivery processes

or business models.

T-NOVA platform needs to manage this

complexity, since one of its mainly

features is to support service

deployment over different DCs.

Task 4.2

Task 4.5

Reliability of a virtual

network (VN)

Reliability is ultimately determined by

the dependability of the underlying

infrastructure. Virtualisation introduces

an additional level of complexity and

represents a potential extra source of

failure.

VNs must be reliable, at least as reliable

as a physical network counterpart.

Today most of the available products

with network virtualisation capabilities

are mainly targeted at the high-end

segment of the market.

On the other hand, very promising,

flexible and adaptable technologies

such as OpenFlow are perceived as

research tools and have not yet

reached a point of maturity to enable

large-scale deployment.

Task 4.2

Task 4.5

Interoperability between

different heterogeneous

domains

Standardisation activities are required,

especially with interconnection of non-

contiguous network domains.

Interoperability is a crucial requirement

to enable widespread deployment of

network virtualisation. Standardisation

will be required to enable

interoperability between VNs, as well as

interoperability between virtualised and

non-virtualised networks.

Task 4.5

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

136

Scalability and dynamic

resource allocation

Dealing with the increasing number of

services as well as subscribers for each

service would be challenging. The

importance of scalability as a network

virtualisation requirement is particularly

relevant when the number of VNs is

expected to grow. New solutions are

required to help the T-NOVA system to

scale with respect to the network size

(for instance reducing the size of

OpenFlow tables).

Task 4.1

6.6 NFV Orchestrator

The NFV orchestrator is responsible for the NSs & VNFs lifecycle management.

Several open issues are still to be addressed:

Table 14: Gap analysis regarding Orchestration

Gap Description T-NOVA Task

Alignment

VNFs Placement

Standardisation bodies should

address the definition and

implementation of algorithms for

optimal infrastructure allocation

according to the virtualised service

characteristics and SLA agreements.

Task 3.3

Interoperability between

heterogeneous virtualized

domains

Standardisation activities are

required in order to deliver end-to-

end services that have virtualised

components distributed across

multiple domains, owned and

operated by different virtual service

and/or infrastructure providers.

Task 3.1

Virtual and Physical

Network Functions

Orchestration

Enhancements are required in

standardisation bodies, such as ETSI

MANO, to address data centre WAN

links interconnectivity configuration

and orchestration issues.

Task 3.2

Task 3.4

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

137

7 CONCLUSIONS

Virtualisation is a foundational technology for the T-NOVA system in particular for

the infrastructure virtualisation and management layer. Originating in the compute

domain, use of this approach now finds application in a variety of domains including

storage and networking. The approach is based on abstracting physical resources

into a form that hides its physical characteristics from either users or applications. It

brings a variety of benefits including better utilisation of resources, greater flexibility,

improved scalability, etc. Virtualisation encompasses a number of technology

approaches, at both a hardware and software level. In subsection 2.2 we reviewed the

key virtualisation methods including hypervisors, storage virtualisation,

microprocessor and I/O support for virtualisation, hardware and software network

virtualisation and accelerators. These technologies are utilised in a variety of both

commercial and open sources platforms a number of which will be utilised in the

development of the T-NOVA system. Key among these technologies are Cloud OSs,

such as OpenStack, for the provisioning and management of virtualised compute

resources that host the VNF services. We have also reviewed SDN Controllers, such as

OpenDayLight, which provision and manage the VLANs providing connectivity

between the nodes hosting VNF services and also connecting the VLANs to WANs for

inter-DC connectivity, if required by the VNF service architecture.

In the course of reviewing the various virtualisation technologies and considering

them in both the context of the telecoms service providers and the potential needs of

the T-NOVA system a variety of gaps in the capabilities of the currently available

technologies were identified; see Table 9 to Table 14. While the use of virtualisation

technologies in the IT domain is well established, adoption of this approach in carrier

grade environments to support NFV and SDN proliferation brings a unique set of

challenges that do not exist in enterprise IT environment. A variety of further

developments will be required to address specific issues in the currently available

compute, hypervisor, SDN Controller, Cloud OSs, network virtualisation and

orchestration related technologies. Where appropriate, we have mapped T-NOVA

tasks whose activities will be related to these technologies challenges or limitations. It

is expected that we will further refine these gaps to specific issues identified in

implementation of the T-NOVA system, and highlight progress that has been made in

further elucidating the characteristics of these problems, as well as the work that T-

NOVA has carried out in order to contribute towards a solution.

From an architectural point of view, the T-NOVA Orchestrator is composed by two

main building blocks: the NFVO and the VNFM.

The NFVO has two main responsibilities, which are accomplished by its two FEs

designated by NSO and VRO in the T-NOVA terminology. The NSO orchestrates the

subset of NFVO functions that are responsible for the lifecycle management of

Network Services, while the VRO performs the orchestration/management of the

virtualized infrastructure resources distributed across multiple DCs. In particular, it

performs the mapping of the incoming NS requests to the virtualized infrastructure

resources, as well as the coordination of the resources allocation and placement for

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

138

each VM that composes the VNF (and the NS). The VRO does this by interacting with

a local virtualized entity, designated by VIM, as well as with the entity that interacts

with the WAN elements for connectivity management purposes, a single specialized

VIM designated by TNM.

Since the NSs are composed by VNFs and PNFs, the NFVO is able to decompose each

NS into the constituent VNFs and PNFs. Nevertheless, although the NFVO has the

knowledge of the VNFs that compose the NS, it delegates their lifecycle management

to a dedicated FE designated by VNFM.

In Section 3, the architecture for T-NOVA Orchestrator has been derived, taking into

account the working Stage 1/Stage 2 methodology, which departed from the

elaboration of a list of Orchestrator requirements identified after a research study

involving several sources, e.g. use cases defined in D2.1 (66), ETSI ISG NFV

requirements (67), ITU-T requirement for NV (10), as well as excerpts of relevant parts

of the ETSI ISG MANO WG architecture and associated FEs (8). After that Stage 1 step,

(see subsection 3.2), a Stage 2 methodology has taken place with the derivation of

the Stage 2 reference architecture and its Functional Entities, see subsection 3.3.

However, the work carried out till the moment has only produced abstracted outputs.

Stage 3 work will follow in WP3/4 where specific implementation solutions are

expected.

The T-NOVA IVM is responsible for providing the hosting and execution environment

for VNF services in the form of virtualised resources that are abstracted from the

physical resources in compute and infrastructure network domains. A system

engineering approach was adopted to define the key functional blocks in the IVM

and their interfaces. In addition the key objectives for the IVM were defined. Use of

this information and previous T-NOVA deliverables contributed to a requirement

capture process that focused on identifying the desired behaviours for the IVM.

Requirements where identified for each of the functional entities within the IVM

namely the VIM, TNM, NFV Infrastructure (compute, hypervisor, and infrastructure

network). These requirements where then used in the design of the IVM.

From an architectural perspective the T-NOVA IVM includes the key functional blocks

NFVI, VIM and TNM, which are defined and discussed in Section 4. These functional

blocks are comprised of various domains that have specific technology capabilities

required for the delivery and management of virtualised resources. For example the

NFVI is comprised of the Compute, Hypervisor and Network domains. A number of

specific interfaces provide both the internal and external connectivity that integrates

the various technology components into a functional IVM. From a T-NOVA system

perspective the key external interfaces of the IVM are those to the T-NOVA

Orchestrator, which are implemented in the VIM. These interfaces enable the T-NOVA

Orchestrator to send requests to the VIM to create and connect VMs in order to

support the deployment of VNF service and to manage the virtual resources allocated

to the VNFs in order to accomplish to SLAs. Additionally, these interfaces allow the

IVM to send infrastructure metrics related to the utilisation and performance to the T-

NOVA Orchestrator in order that this entity can perform placement decisions and

management of existing deployed services. Another important interface is the one

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

139

provided by the TNM to the Orchestrator in order for it to manage the network

resources related to external networks i.e. WAN transport between DCs.

In Section 4 the overall integrated architecture of the IVM was presented together

with the architecture of the various domains that comprise the IVM with their

respective internal and external interfaces.

Collectively, these reference architectures and FEs instantiate the requirements that

were identified for the T-NOVA Orchestrator and for the T-NOVA IVM together with

its goals and objectives. The reference architectures were interrogated and validated

at functional level through the development of NS and VNF workflow diagrams as

illustrated in Section 5, which described the key actions and interactions taken within

the T-NOVA system during standard operational activities related to the deployment

and management of NS and VNF services.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

140

ANNEX A - ORCHESTRATOR REQUIREMENTS

The present annex contains a set of tables, which include the requirements identified

in Subsection 3, i.e. Orchestrator internal requirements and Interface requirements.

Each requirement has associated a set of attributes related to its identification (Req.

ID and Req. Name), to its text support (Alignment) and to its description

(Requirement Description and complementary Comments).

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

141

A.1 Internal requirements

A.1.1 NFVO Requirements

A.1.1.1 NS Lifecycle requirements

Table 15: Orchestrator Requirements – NFVO- NS Lifecycle

Req. ID Alignment Req. Name Requirement Description Comments

NFVO.1 ETSI

MANO

§C.2.1

On-boarding NS The NFVO SHALL be able to accept new or updated NSs to

be on-boarded, upon request.

The NS lifecycle is initiated by a VNF on-boarding process request,

e.g. by Customer or by SP, and includes providing the NS

Descriptor (NSD) to the NFVO and storing in the NS Catalogue.

The NSD, which must be validated, includes the NS deployment

flavours, as well as references to the VNF Forwarding Graph

(VNFFG) and to the Virtual Link Descriptor (VLD).

NFVO.2 ETSI

MANO

§C.3

NS Instantiation

request

The NFVO SHALL be able to instantiate an already on-

boarded NS, upon request.

In order to start a T-NOVA service, an instantiation process must

be deployed, where the external request may be performed by a

Customer, a SP, or even by an OSS (through the Marketplace).

During the instantiation process, the NFVO validates the request,

e.g. by authorizing the requester, by validating technical contents

and policy conformance.

NFVO.3 T-NOVA Extraction of NS

information

The NFVO SHALL be able to decompose the incoming NS

instantiation request into the set of required information to

proceed with the instantiation procedure.

After receiving the NS instantiation request, the NFVO decomposes

the received information about the NS (deployment flavours,

VNFFG, VLDs, etc.).

NFVO.4 T-NOVA Configure NS The NFVO SHALL be able to configure or update the

configuration of an instantiated NS, upon request.

T-NOVA NSs must be configured upon external request e.g.

Customer or SP.

As a NS is the result of the composition of atomic VNF instances,

the configuration of a NS implies the configuration of the entire

set of VNFs.

NFVO.5 UC1 NS Termination The NFVO SHALL be able to decompose a NS when the SLA

terminates, when a NS is terminated by internal triggers,, or

when a NS is terminated upon request, e.g. by Customer, by

SP.

The duration of the NS will be specified in the SLA.

Alternatively the SLA or the NS can be terminated on-demand, e.g.

by the Customer or by the SP.

When the NS is no longer needed the system should decompose

the NS and cancel the SLA.

The NS remains on-boarded in order that other customers can use

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

142

it.

NFVO.6 ETSI

MANO

§C.4.1

Scale-out NS The NFVO SHALL be able to scale out the NS, either upon

request or automatically.

Automatic scaling out depends on an algorithm and alternative

architecture or deployment flavours provided by the SP when

composing the NS.

Scaling out a NS might imply increasing the VMs supporting its

VNF(s).

NFVO.7 ETSI

MANO

§C.4.2

Scale-in NS The NFVO SHALL be able to scale in the NS, either upon

request or automatically.

Automatic scaling implies the use of an algorithm and alternative

architecture or deployment flavours provided by the SP when

composing the NS.

Scaling in a NS might imply decreasing the VMs supporting its

VNF(s).

A.1.1.2 VNF Lifecycle requirements

Table 16: Orchestrator Requirements – NFVO- VNF Lifecycle

Req. ID Alignment Req. Name Requirement Description Comments

NFVO.8 §B.2.1 On-boarding

VNF Package

Request

The NFVO SHALL receive new VNF packages from the NF

Store and store them in the VNF Catalogue.

VNF package includes the VNF Description (VNFD) and the VNF

software image(s).

NFVO.9 ETSI

MANO

§B.3.1.2

VNF

Instantiation

Request by the

NVFO

The NFVO SHALL be able to instantiate a VNF, upon request. When a request to instantiate a VNF is received, the NFVO

validates the request.

Optionally, the NFVO runs a feasibility check to reserve resources

before performing the actual allocation to the VIM.

The NFVO acknowledges the completion of the VNF instantiation

after configuring the VNF through the VNFM.

NFVO.10 UC2

UC3

VNF

Configuration

Request by the

NFVO

The NFVO SHALL be able to request the VNFM to configure

an instantiated VNF.

T-NOVA VNFs must be configured upon external request, e.g.

Customer or SP, or automatically upon the completion of an

instantiation process.

It includes the notification of the successful configuration.

NFVO.11 ETSI

MANO

§B.3.1.1

Check VNF

instantiation

feasibility by the

NFVO

The NFVO SHALL be able to accept and process a check

feasibility request regarding a VNF instantiation.

NFV Orchestrator receives a request to check feasibility of VNF

instantiation/scaling.

This request may come from an OSS, from commissioning of a new

VNF or VNF scaling, or as part of an order for a Network Service

instantiation/scaling.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

143

The Check Feasibility runs a feasibility check of the VNF

instantiation or scaling request and reserves resources before

doing the actual instantiation/scaling.

NFVO.12 ETSI

MANO

§C.3

Check of VNFs

of a NS by the

NFVO

The NFVO SHALL be able to request the VNFM for checking

the VNFs associated with a NS, according to the NS

descriptor.

For each VNF instance indicated in the NS descriptor, the NFVO

checks with the VNFM if an instance matching the requirements

exists already.

The procedure includes re-instantiation of mal-functioning VNFs.

The procedure does not include any resource reservation.

NFVO.13 UC3.2 VNFM Request –

VNF Scale Out

The NFVO SHALL recognise and act upon a VNFM request

to scale-out an existing VNF by creating new VMs and

deploying VNFs onto the new VMs.

The T-NOVA system must provide the ability for additional VMs

requests in order to meet business needs.

NFVO.14 UC3.2 VNFM Request –

VNF Scale In

The NFVO SHALL recognise and act upon a VNFM request

to scale-in an existing VNF by releasing VMs used by

instances of the VNF.

T-NOVA system must provide the ability for a reduction of VMs or

to completely remove a VNF as required by their changing

business needs.

NFVO.15 UC3.1 VNFM Request –

VNF Scale Up

The NFVO SHALL recognize and act upon a VNFM request

to scale-up an existing VNF by increasing specified amounts

of VM resources from VMs used by instances of the VNF.

The T-NOVA system must provide the ability for increasing in a

VNF in order to meet business needs.

NFVO.16 UC3.1 VNFM Request –

VNF Scale Down

The NFVO SHALL recognize and act upon a VNFM request

to scale-down an existing VNF by decreasing specified

amount of allocated resources from VMs, such as memory

and storage., used by instances of the VNF.

The T-NOVA system must provide the ability for decreasing

resources in a VNF in order to meet business needs.

A.1.1.3 Resource Handling Requirements

Table 17: Orchestrator Requirements – NFVO- Resource Handling

Req. ID Alignment Req. Name Requirement Description Comments

NFVO.17 ETSI

MANO

§C.3

Mapping of

resources

The NFVO SHALL be able to optimally map the VNFs that

are part of a NS to the existing infrastructure, according to

an agreed NS SLA.

Based upon the current infrastructure status, the requested VNF

and SLA, the NFVO must be able to find the resources it should

allocate in terms of VMs and connections.

NFVO.18 IT resources

instantiation

The NFVO SHALL be able to request the VIM for the

instantiation of the VMs that compose each VNF of the NS.

During the NS instantiation/scaling procedures, after deciding on

the best location for the VMs, the NFVO requests the VIM to

allocate the required virtualised IT resources (a.k.a. VMs).

NFVO.19 ETSI

MANO

§5.4.1,

Management of

VM images

The NFVO SHALL be able to manage VM images related to

the VMs supporting a given VNF.

The NFVO is the FE in charge of handling VM and VM resources in

the T-NOVA system.

As such, it must be able to manage VM images, e.g. by providing

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

144

§5.4.3 VIM with VM images for VNF on-boarding or updating, or by

removing images for VNF removal.

NFVO.20 UC3.1 Resources

Inventory

Tracking

The NFVO SHALL update its inventory of allocated/available

resources when resources are allocated/released.

The T-NOVA System must maintain the Infrastructure Catalogue

and accurately track resource consumption and the details of the

services consuming those resources.

A.1.1.4 Monitoring Process requirements

Table 18: Orchestrator Requirements – NFVO- Monitoring Process

Req. ID Alignment Req. Name Requirement Description Comments

NFVO.21 UC2,

UC3,

UC4

NS-specific

resource

monitoring by

the NFVO

The NFVO SHALL be able to monitor NS-related resources

on a real time basis.

NS-specific monitoring is related with the monitoring of the virtual

network links that interconnect the VNFs (retrieved from the VIM),

as well as monitoring of VNF-specific details that can be used to

assure that the NS is fulfilling the established SLA with the

customer.

NFVO.22 UC4 Monitoring

metrics

consolidation by

the NFVO

The NFVO SHALL be able to aggregate and consolidate all

monitoring metrics associated with a service.

A consolidated operational picture of the service via the dashboard

is considered a mandatory customer requirement.

The gathered metrics should be presented to the Customer, to the

SP, or to the FP, with an integrated status of the provisioned

service.

A.1.1.5 Connectivity Handling requirements

Table 19: Orchestrator Requirements – NFVO- Connectivity Handling

Req. ID Alignment Req. Name Requirement Description Comments

NFVO.23 UC1,

UC2,

UC3

NS Composition The NFVO SHALL be able to compose a NS from atomic VNF

instances and define the Forwarding Graph based on the

logical topology to interconnect the several components.

The creation of a NS from the combination of atomic/simple VNF

is important in order to simplify the process provision of NS to the

customers and avoid complex path calculations.

NFVO.24 IT Network

connectivity

instantiation

The NFVO SHALL be able to request the VIM for

instantiation and inter-connection of required VMs in the IT

compute domain.

During the NS instantiation/scaling procedures, after installing the

VMs for the VNF/NS, the NFVO requests the VIM to allocate the

required virtual IT network resources (a.k.a. IT virtual network

links).

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

145

NFVO.25 ETSI

MANO

§C.3

Virtual Network

connectivity

instantiation

The NFVO SHALL be able to request the VIM for the

instantiation and inter-connection of every needed VM in the

IT network domain.

During the NS instantiation/scaling procedures, after installing the

VMs for the VNF/NS, the NFVO requests the VIM to allocate the

required virtual network resources (a.k.a. virtual network links).

NFVO.26 Legacy Network

connectivity

instantiation

The NFVO SHALL be able to request the TNM for

instantiation and inter-connection of nodes in the

infrastructure network.

During the NS instantiation/scaling procedures, after installing the

VMs for the VNF/NS, the NFVO requests the TNM to allocate the

required legacy network resources.

NFVO.27 ETSI

MANO

§C.3.6

IT network

connectivity

deletion

The NFVO SHALL be able to request the VIM the deletion of

IT network connectivity for a given NS instance and the

removal of the infrastructure allocated for a given VNF.

The T-NOVA system should able to ask the deletion of IT network

connectivity.

This requirement includes notification of the VNFM of the

removed VNF. VNFs having instances participating in NS instances

cannot be removed until the NS instance stops and is requested to

be removed. Also used in re-instantiating VNF infrastructure (e.g.,

for performance or mal-function reasons).

NFVO.28 ETSI

MANO

§C.3.6

Virtual Network

connectivity

deletion

The NFVO SHALL be able to request the VIM to delete of

virtual network connectivity for a given NS instance and to

remove the infrastructure allocated for a given VNF.

The T-NOVA system should able to ask for the deletion of virtual

network connectivity.

This requirement includes notification of the VNFM of the

removed VNF. VNFs having instances participating in NS instances

cannot be removed until the NS instance stops and is requested to

be removed. Also used in re-instantiating VNF infrastructure (e.g.,

for performance or mal-function reasons).

NFVO.29 ETSI

MANO

§C.3.6

Legacy network

connectivity

deletion

The NFVO SHALL be able to request the TNM to delete

legacy network connectivity for a given NS instance and to

remove of the infrastructure allocated for a given VNF.

The T-NOVA system should able to ask TNM for the deletion of

legacy network connectivity.

A.1.1.6 Policy Management requirements

Table 20: Orchestrator Requirements – NFVO- Policy Management

Req. ID Alignment Req. Name Requirement Description Comments

NFVO.30 UC4

ETSI

MANO

§4.5.2,

§5.4.1

Policy

enforcement

The NFVO SHALL provide the means for setting/changing

policies associated with an existing VNF.

The T-NOVA system must provide the ability for customers and

SPs to change how their VNFs behave to meet evolving business

needs, e.g. by applying new packet handling rules.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

146

A.1.1.7 Marketplace-specific interactions requirements

Table 21: Orchestrator Requirements – NFVO- Marketplace specific

Req. ID Alignment Req. Name Requirement Description Comments

NFVO.31 T-NOVA Publish NS

instantiation

The NFVO SHALL be able to notify that the requested (new,

updated) NS instantiation is ready to be used.

T-NOVA system must notify relevant external entities upon

successful instantiation of every VNF and connections between

them.

If the external entity is the Marketplace, it may use this notification

for Accounting/Billing purposes.

NFVO.32 T-NOVA Publish NS

metrics

The NFVO SHALL be able to publish the NS metrics, if

allowed by SLA.

The T-NOVA system must provide to external entities NS metrics in

order to enable service control.

NFVO.33 UC1.1 NFV mapping of

SLA data

The NFVO SHALL map the SLA related data to NFV

attributes.

Results of selection offerings materialized in SLAs need to be

translated into NFV attributes in order to be processed by the T-

NOVA system, according to the contents of the VNF descriptor

where the amount of needed resources is indicated.

NFVO.34 T-NOVA SLA

enforcement

request

The NFVO SHALL be able to take the required actions (e.g.

scale out, new instantiation) upon request to enforce a SLA.

It is assumed that the SLA provides all the information about

metrics and thresholds to be compared with, together with the NS

descriptor providing alternative architectures or deployment

flavours, e.g. scaling in when metrics show under-used resources

should be automatic.

NFVO.35 UC4,

UC5

NS usage

accounting and

billing

The NFVO SHALL store all the information about resources

usage per service, and SHALL provide it to external entities

to bill on a pay-per-use mode.

Pay-as-you-go may be considered attractive for some Customers,

as an option, as opposed to flat-rate.

The NFVO should notify relevant FEs in order that the T-NOVA

system becomes able to deploy this type of billing/charging.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

147

A.1.2 VNFM Requirements

A.1.2.1 VNF Lifecycle requirements

Table 22: Orchestrator Requirements – VNFM- VNF Lifecycle

Req. ID Alignment Req. Name Requirement Description Comments

VNFM.1 ETSI

MANO

§B.3.1.2

VNF

Instantiation

Request by the

VNFM

The VNFM SHALL be able to accept a request from the

NFVO to instantiate a VNF.

After receiving a VNF instantiation request from the NFVO, the

VNFM will start coordinating the VNF instantiation procedure.

Nevertheless, the virtualized resources allocation is under the

scope of the NFVO and therefore the VNFM will have to request

the later to allocate the required resources for the VNF.

VNFM.2 UC2

UC3

VNF

Configuration

Request by the

VNFM

The VNFM SHALL be able to accept a NFVO request to

configure an instantiated VNF.

T-NOVA VNFs must be configured upon external request or

following an external instantiation request.

It includes the notification of the successful configuration.

VNFM.3 ETSI

MANO

§B.3.1.1

Check VNF

instantiation

feasibility by the

VNFM

The VNFM SHALL be able to accept requests coming from

the NFVO and process a check feasibility procedure

regarding a VNF instantiation.

The VNFM receives a request to check feasibility of a VNF

instantiation/scaling and processes the VNF descriptor after

validating the request.

VNFM.4 ETSI

MANO

§C.3

Check of VNFs

part of a NS by

the VNFM

The VNFM SHALL be able to accept a request from the

NFVO to check the VNFs associated with a NS, according to

the NS descriptor.

For each VNF instance indicated in the NS descriptor, the VNFM

checks if a VNF instance matching the requirements already exists.

Includes re-instantiation request of mal-functioning VNFs..

VNFM.5 UC2 VNF lifecycle

automation by

the VNFM

The VNFM SHALL be able to automate the instantiation of

VNFs and associated VM resources by triggering scaling

procedures.

Automation of VNF lifecycle is an essential characteristic of the T-

NOVA system.

Triggering of scaling procedures is based on the monitoring

process maintained over VNFs, as well as on policy management

and other internal algorithm criteria.

VNFM.6 UC3.2 Auto VNF Scale

Out

The VNFM SHALL provide the means to automatically scale-

Out a VNF.

T-NOVA system needs to automatically scale-out a VNF to meet

SLAs in an efficient and timely manner.

VNFM.7 UC3.2,

UC4

Auto VNF Scale

In

The VNFM SHALL provide the means to automatically scale-

In an existing VNF.

T-NOVA system needs to automatically scale-in a VNF to meet

SLAs in an efficient and timely manner.

VNFM.8 UC3.1 Auto VNF Scale

Up

The VNFM SHALL provide the means to automatically scale-

Up an existing VNF.

This procedure ensures that resources are consumed in an efficient

manner and SLA specified targets on resource consumption are

met.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

148

VNFM.9 UC3.1 Auto VNF Scale

Down

The VNFM SHALL provide the means to automatically scale-

Down a VNF.

This procedure ensures that resources are consumed in an efficient

manner and SLA specified targets on resource consumption are

met.

A.1.2.2 Monitoring Process requirements

Table 23: Orchestrator requirements – VNFM- Monitoring Process

Req. ID Alignment Req. Name Requirement Description Comments

VNFM.10 UC2,

UC3,

UC4

VNF-specific

resource

monitoring by

the VNFM

The VNFM SHALL be able to monitor VNF-related resources

on a real time basis.

VNF-specific monitoring is related with the monitoring of

information retrieved from the VIM, related to the virtualized

infrastructure resources allocated to the VNF (i.e.

compute/storage/memory of the VMs and virtual network links

that interconnect the VMs), as well as monitoring of VNF-specific

metrics that can be used to assure that the VNF is behaving as it

should.

VNFM.11 UC4 Monitoring

metrics

consolidation by

the VNFM

The VNFM SHALL be able to aggregate and consolidate all

monitoring VNF metrics associated with a service.

A consolidated operational picture of the service via the dashboard

is considered a mandatory customer requirement.

The collected metrics should be presented by the VNFM to the

NVFO, and from this FE to the dashboard with an integrated status

of the provisioned service.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

149

A.2 Interface requirements

A.2.1 Interface with VIM

The requirements identified for the Interface with the VIM module are as follows:

Table 24: Requirements between the Orchestrator and VIM

Req. id Alignment Domain(s) Requirement

Name

Requirement Description Justification of Requirement

Or-Vi.01
Orchestrator,

VIM

Reserve / release

resources

The Orchestrator SHALL use this interface

to request the VIM to reserve or release

the entire required infrastructure needed

for a given VNF

Care must be taken in order not to have resources

allocated for long periods of time, thus impacting on the

optimisation of resource usage.

Or-Vi.02

T_NOVA_03,

T_NOVA_21,

T_NOVA_22,

T_NOVA_26,

T_NOVA_31,

T_NOVA_33,

T_NOVA_34,

T_NOVA_36,

T_NOVA_37,

T_NOVA_38,

T_NOVA_39,

T_NOVA_40,

T_NOVA_42,

T_NOVA_43,

T_NOVA_44,

T_NOVA_45,

T_NOVA_58
4

Orchestrator,

VIM

Allocate / release /

update resources

The Orchestrator SHALL use this interface

to request the VIM to allocate, update or

release the required infrastructure needed

for a given VNF

It is assumed that configuration information is a resource

update. Resource update might imply stop and re-start,

with a migration in between.

4
 Refers to T-NOVA requirements described in deliverable D2.1 (63)

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

150

Or-Vi.03 Orchestrator,

VIM

Add / update /

delete

SW image

The Orchestrator SHALL use this interface

to add, update or delete a SW image

(usually for a VNF Component)

Performance will probably demand having these images

ready to be deployed on the Orchestrator’s side

Or-Vi.04
UC4,

T_NOVA_46
Orchestrator,

VIM

Retrieve

infrastructure

usage data

The Orchestrator SHALL use this interface

to collect infrastructure utilisation data

(network, compute and storage) from the

VIM

Some of this data is used to determine the performance

of the infrastructure (including failure notifications) and

to inform decisions on where to provision newly

requested services or to where to migrate an already

provisioned NS that is predicted to break its SLA. This

interface will very likely have to support very high

volume traffic.

Or-Vi.05
UC4,

T_NOVA_20
Orchestrator,

VIM

Retrieve

infrastructure

resources

metadata

The Orchestrator SHALL use this interface

to request infrastructure's metadata from

the VIM

Due to high performance needs, this metadata will most

probably have to be cached on the Orchestrator’s side

Or-Vi.06

T_NOVA_24,

T_NOVA_25,

T_NOVA_35,

T_NOVA_27

Orchestrator,

VIM

Manage

VM’s

state

The Orchestrator SHALL use this interface

to request the VIM to manage the VMs

allocated to a given VNF.

We can assume a finite and small number of possible VM

states, e.g., ‘Being configured’, ‘Not running’, ‘Running’,

‘Being re-scaled’, ‘Being stopped’. It is assumed that

when in a ‘Running’ state the VM is ready to be (re-)

configured.

Or-Vi.07 T_NOVA_02 Orchestrator,

VIM
Secure interfaces

The interfaces between the Orchestrator

and the VIM SHALL be secure, in order to

avoid eavesdropping (and other security

threats)

We should keep in mind that encrypting all the

communication between these two entities will probably

make a performing solution too costly

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

151

A.2.2 Interface with VNF

The requirements identified for the Interface with the VNF module are as follows:

Table 25: Requirements between the Orchestrator and VNF

Req. id Alignment Domain(s) Requirement

Name

Requirement Description Justification of Requirement

Vnfm-

Vnf.01
T_NOVA_02 VNFM, VNF Secure interfaces

All the interfaces between the VNFM and

the VNF SHALL be secure, in order to avoid

eavesdropping (and other security threats)

Required to avoid eavesdropping the connection

between the VNFM and each VNF. We should keep in

mind that encrypting all the communication between

these two entities will probably make a high

performance solution too costly

Vnfm-

Vnf.02
 VNFM, VNF

Instantiate/termin

ate VNF

The VNFM SHALL use this interface to

instantiate a new VNF or terminate one that

has already been instantiated

Required to create/remove VNFs during the VNF lifecycle

Vnfm-

Vnf.03

T_NOVA_46,

T_NOVA_48
VNFM, VNF

Retrieve VNF

instance run-time

information

The VNFM SHALL use this interface to

retrieve the VNF instance run-time

information (including performance metrics)

VNF instance run-time information is crucial both for

automating VNF scaling and for showing Network

Services’ metrics in the Marketplace’s Dashboard

Vnfm-

Vnf.04

T_NOVA_23

T_NOVA_33
VNFM, VNF Configure a VNF

The VNFM SHALL use this interface to (re-

)configure a VNF instance

In the general case, the Customer should be able to (re-

)configure a VNF (instance). Includes scaling.

Vnfm-

Vnf.05

T_NOVA_24,

T_NOVA_35,

T_NOVA_58

VNFM, VNF Manage VNF state

The VNFM SHALL use this interface to

collect/request from the NFS the

state/change of a given VNF (e.g. start, stop,

etc.)

This interface includes collecting the state of the VNF (as

well as changing it). The VNF instance should include a

state like ‘Ready to be used’ when it is registered in the

repository.

Vnfm-

Vnf.06

T_NOVA_36,

T_NOVA_37,

T_NOVA_38,

T_NOVA_39,

T_NOVA_42,

T_NOVA_43,

T_NOVA_44,

T_NOVA_45

VNFM, VNF Scale VNF

The VNFM SHALL use this interface to

request the appropriate scaling

(in/out/up/down) metadata to the VNF

VNF scaling depends on the (mostly architectural)

options the FP provided when registering the VNF. The

VNF scaling metadata is then used by the NFVO to

request the VIM to allocate the required infrastructure

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

152

A.2.3 Interface with Marketplace

The requirements identified for the Interface with the Marketplace are as follows:

Table 26: Requirements between the Orchestrator and the Marketplace

Req. id Alignment Domain Requirement

Name

Requirement Description Justification of Requirement

NFVO-

MKT.01

UC1,

T_NOVA_10,

T_NOVA_15

Orchestrator,

Marketplace

Provide

available VNFs

The Marketplace SHALL use this interface

with the Orchestrator to provide the Service

Provider with a list of the VNFs, so that it can

select and parameterise them, or use them in

the composition of a new network service.

It is assumed that this VNF metadata includes a

URL/repository name from which to fetch the actual VNF

software and install it on the previously allocated

infrastructure (see NFVO.10 below). Note that, although

this information will most certainly have to be cached on

the Orchestrator’s side for performance reasons, the

available VNFs will be dynamic, so updates to this

cached information will be rather frequent.

NFVO-

MKT.02

UC2,

T_NOVA_04,

T_NOVA_08,

T_NOVA_20

Orchestrator,

Marketplace

Provision a

new network

service

The Marketplace SHALL use this interface to

inform the Orchestrator to provision the

network service, after the Customer has

selected and parameterised the network

service. The Orchestrator SHALL read the SLA

and the date/time to start the new network

service. Each NS can be composed of one or

more VNFs.

The date/time of start/end the service are part of the

SLA.

NFVO-

MKT.03

UC3,

T_NOVA_31,

T_NOVA_32,

T_NOVA_33,

T_NOVA_36,

T_NOVA_42,

T_NOVA_44

Orchestrator,

Marketplace

Change

configuration

of a deployed

network

service

The Marketplace SHALL use this interface to

change the configuration of an already

provisioned network service on the

Orchestrator.

It is assumed that information about scaling

(up/down/in/out) is included in the SLA (or at least

reasonable values can be inferred).

NFVO-

MKT.04

UC5,

T_NOVA_28,

T_NOVA_29,

T_NOVA_34,

Orchestrator,

Marketplace

Provide

network

service state

transitions

The Marketplace SHALL use this interface to

determine the state transitions of a given

network service, e.g. to facilitate starting and

stopping billing for the service.

It is assumed that each NS has a pre-defined state-

diagram, like ‘Ready to run’, ‘Running’, ‘Stopped’, etc.,

that is also known to the Marketplace.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

153

T_NOVA_41,

T_NOVA_48,

T_NOVA_56,

T_NOVA_57

NFVO-

MKT.05

UC4,

T_NOVA_28,

T_NOVA_29,

T_NOVA_30,

T_NOVA_46,

T_NOVA_52

Orchestrator,

Marketplace

Provide

network

service

monitoring

data

The Marketplace SHALL use this interface to

show the Customer how the subscribed

network service is behaving, how it compares

to the agreed SLA and bill the service usage.

This interface will very likely have to support very high

volume traffic.

NFVO-

MKT.11

UC6,

T_NOVA_03,

T_NOVA_58

Orchestrator,

Marketplace

Terminate a

provisioned

NS

The Marketplace SHALL use this interface to

request the Orchestrator to terminate

provisioned NSs

It is assumed that the impact on the dependent modules

like billing, are taken care by the Marketplace (see

NFVO.04). SLA Management is part of the Marketplace.

Either after a customer’s request or by the pre-defined

ending date had been attained, the SLA Management

notifies the Orchestrator of the end of the SLA.

NFVO-

MKT.12
T_NOVA_02 Orchestrator,

Marketplace

Secure

communicatio

n

Interfaces between the Marketplace and the

Orchestrator SHOULD be secured.

Encryption should be used, in order to prevent

eavesdropping. Even between the Marketplace and the

Orchestrator, since the Marketplace is really a set of

distributed apps.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

154

ANNEX B - VIRTUALISED INFRASTRUCTURE MANAGEMENT REQUIREMENTS

B.1 Virtual Infrastructure Management Requirements

Table 27: IVM Requirements - VIM

Req. id T-NOVA Use

Case

Alignment

Domain Requirement Name Requirement Description Justification of Requirement

VIM.1 UC1, UC2.1 VIM Ability to handle

heterogeneous physical

resources

The T-NOVA VIM SHALL have the ability to

handle and control both IT and network

physical infrastructure resources.

Basic functional requirement of the VIM.

VIM.2 UC1, UC2.1 VIM Ability to provision

virtual instances of the

infrastructure resources

The T-NOVA VIM SHALL be able to create

virtual resource instances from physical

infrastructure resources upon request

Required to support VIM integration with

the T-NOVA Orchestrator.

VIM.3 UC3/3.1/3.2 VIM API Exposure The T-NOVA VIM SHALL provide a set of API’s

to support integration with its control

functions with the T-NOVA Orchestration layer.

Required to support VIM integration with

the T-NOVA Orchestrator

VIM.4 UC2.1 VIM Resource abstraction The T-NOVA IVM system SHALL provide

resource abstraction at the VIM level for

representation of physical resources.

Required to support VIM integration with

the T-NOVA Orchestrator.

VIM.5 UC1.1 UC1.3

UC2.1 UC4

VIM Ability to support

different service levels

The VIM network controller SHOULD provide

the ability to request different service levels

with measurable reliability and availability

metrics.

Required to supported SLA’s agreement

when purchasing a VNF service in the T-

NOVA Marketplace

VIM.6 UC3.1, UC3.2 VIM Live VM and link

migration

The VIM network controller SHOULD support

live VM migration within a data centre and

between data centres including migration of

virtual links without traffic disruption

This capability is required for a number of

operational reasons such as service

optimisation, SLA management, service

resilience etc.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

155

VIM.7 UC1 VIM Translation of references

between logical and

physical resource

identifiers

The VIM network controller SHOULD be able

to assign IDs to virtual components (e.g., NFs,

virtual links) and provide the translation of

references between logical and physical

resource identifiers.

Need to track the use of physical network

resources.

VIM.8 UC2

UC3

VIM Isolated virtual networks

sharing the same

physical infrastructure

The VIM network controller SHALL guarantee

isolation among the different virtual network

resources created to provision the requested

services through the marketplace.

T-NOVA system will be providing services

for different customers through the

composition and deployment of VNFs.

Those services will share the same

physical network infrastructure, at the

same time they belong to different

customers. Thus, isolation at the physical

level must be guaranteed for each

customer.

VIM.9 UC3.1, UC3.2,

UC3.3 UC4

VIM Control and Monitoring The VIM network controller SHALL be able to

visualise the real-time status and the history

reports related to the performance and

resource utilisation of both the physical

network infrastructure and multiple instances

of virtual networks running over it.

T-NOVA must be able to visualise the

real-time status and the history reports

related to the performance and the

resource utilisation of both the physical

infrastructure and the multiple instances

of virtual networks running over it.

VIM.10 UC3 VIM Scalability The VIM network controller SHOULD scale in

accordance to the number of virtual resource

instances and physical network domains

The T-NOVA system should be able to

manage a large network infrastructure.

VIM.11 UC1 VIM Network service and

resource discovery

The VIM network controller SHOULD provide

mechanisms to discover physical network

resources.

The Orchestrator must be aware of the

available physical network resources.

VIM.12 UC1.1

UC2.1

UC3.1

UC3.2

UC3.3

UC4

VIM Specification of

performance parameters

The VIM network controller SHOULD allow the

infrastructure connectivity services to specify

the following performance related parameters:

 Maximum overhead (bits required

for the network virtualisation

technique, per packet or percentage

of traffic)

 Maximum delay

 Maximum delay variation

T-NOVA system should support a high

level of customisation for the network

service.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

156

 Throughput (CIR, CIR+EIR and

packets per second)

 Maximum packet loss allowable

VIM.13 VIM Flow entry generation The VIM network controller SHOULD be able

to generate and install the required flow

entries to the OF switches for packet

forwarding and NF policy enforcement (i.e.,

ensuring that traffic will traverse a set of NFs in

the correct order).

Required to support the Network Service

definition.

VIM.14 VIM Path computation The VIM Network Controller MAY be able to

compute paths that satisfy given bandwidth

requirements (within and between DCs). Path

redundancy in DCs should be exploited.

The Patch Computation functionality is

required when the overall end-to-end

virtual network topology is constructed

over the actual infrastructure. The critical

part is the calculation of cost for the

transport network in order to guarantee

certain QoS attributes for the transport

links. However in T-NOVA the transport

network and its management will be

addressed at demonstration level with a

set of basic functionalities. In this context

PCE implementation will follow a similar

simple approach.

VIM.15 VIM Virtual address space

allocation

The VIM network controller SHOULD be able

to allocate virtual address space for NF graphs

(virtual addresses of NFs belonging to different

graphs could overlap).

Required to support isolation among

different virtual network domains.

VIM.16 UC4 VIM QoS support The VIM network controller SHALL provide

mechanisms to support QoS control over the

network infrastructure.

Required to support the specific

performance needed by a network service.

VIM.17 VIM SDN Controller

performance

The VIM network controller SHOULD minimise

the flow setup time maximising the number of

flows per second that it can setup.

Required to provide a responsive

configuration of the underlying

infrastructure.

VIM.18 VIM VIM Network Controller

Robustness

The VIM network controller SHALL be able

deal with control plane failures (e.g., via

Required for resiliency in the T-NOVA

system.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

157

redundancy) in a robust manner.

VIM.19 VIM Hypervisor Abstraction

and API

The VIM Hypervisor Controller SHALL abstract

a basic subset of hypervisor commands in a

unified interface and in a Plug-In fashion. This

includes commands like start, stop, reboot etc.

Different Hypervisors have various

advantages such as full hardware

emulation or paravirtualization. In order to

get the best functionality and the best

performance for a VM, different

Hypervisors must be supported.

VIM.20 VIM Query API and

Monitoring

The VIM Hypervisor Controller SHALL have a

Query API that allows other T-NOVA

components to retrieve metrics, configuration

and used hypervisor technology per compute

node.

The orchestrator must be able to make

the best decision regarding performance,

functionality and a SLA for the creation of

VMs. The orchestrator requires

information from the hypervisor and the

compute infrastructure under its control

to make placement and management

decisions.

VIM.21 VIM VM Placement Filters The VIM Compute Controller SHALL offer a set

of filters that are appropriate to VNF

deployments to achieve a more granular

placement strategy with a scheduler.

Some requirements set by the

orchestrator do need a more specific

placement of the VM. E.g. a CPU core filter

can be applied to the scheduler so that

the VM is only placed on a compute node,

if more than 3 CPU cores are available.

VIM.22 VIM Base-Image Repository

integration

The VIM Compute Controller SHALL have an

integration-module to interact directly with the

non-configured VM images that need to be

deployed.

The compute controller must have access

to the repository with the basic VM

images. Those base images will be

deployed in the desired flavour by the

orchestrator regarding configuration, disk

space, CPU and memory.

VIM.23 UC2 VIM Hardware Information

Collection

The VIM Compute Controller SHALL be able to

receive physical hardware information and

provide this information via an API to the

orchestrator.

In order to operate efficient high level NF

like deep packet inspection, specific

capabilities need to available on the CPU

or in the form of co-processor cards.. This

module can retrieve such information

automatically and provide it to the

orchestrator for intelligent decisions.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

158

VIM.24 UC4 VIM Virtualised Infrastructure

Metrics

The VIM SHALL collected performance and

utilisation metrics from the virtualised

resources in the NFVI and report this data in

raw or processed formats via a northbound

interface to the Orchestrator.

The Orchestrator needs data to make

scaling decisions on VNF service based on

SLA criteria.

B.2 Transport Network Management Requirements

Table 28: IVM Requirements - TNM

Req. id T-NOVA Use

Case

Alignment

Domain Requirement Name Requirement Description Justification of Requirement

TN.1 Transport Network

Management

Legacy (non-SDN)

Network Management

The IVM SHOULD be extensible in order to

support interaction with WAN network devices

via a Network Infrastructure Manager.

It is assumed that any legacy network

technology used for the realisation of

transport network links interconnecting

NFVI-PoPs is managed through this

Network Management system. The

implementation is out T-NOVA scope.

TN.2 UC1.1, UC2.1,

UC3.1, UC3.2,

UC3.3, UC4

Transport Network

Management

Specification of

performance parameters

The network SHOULD allow the provisioning

of network services according to the following

performance related parameters:

 Maximum overhead (bits required

for the network virtualisation

technique, per packet or percentage

of traffic)

 Maximum delay

 Maximum delay variation (jitter)

 Throughput (CIR, CIR+EIR and

packets per second)

 Maximum packet loss allowed

 QoS level

 Failover/Resiliency

Some or all of these parameters will be

taken into account when configuring and

provisioning transport network links.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

159

TN.3 UC1.1, UC1.3,

UC2.1, UC4

Transport Network

Management

Ability to support

different service levels

The TNM SHOULD provide the ability to

request different service levels with

measurable reliability and availability metrics,

(e.g. percentage of time the network is

available) from the Transport Network.

To support SLA’s availability in the T-

NOVA marketplace.

TN.4 UC2 Transport Network

Management

Path computation The TNM SHOULD be able to compute paths

that satisfy given bandwidth requirements (i.e.

between DCs). Path redundancy in DCs should

be exploited.

Given a demand for a NS transport links

inter- connecting NFVI-PoPs need to be

configured and provisioned. The actual

path in the network that needs to be

installed and provisioned should be

calculated in order to ensure the service

parameters (see T2) and service levels

(see T3). It is expected that path

computation algorithms will be re-used.

TN.5 UC2 Transport Network

Management

Tunnels setup The TNM SHALL cooperate with the NFVI-PoP

Network domain to configured VLAN tunnels

between different NFVI-PoP’s hosted at

different Data Centres.

This functionality is required to set-up the

necessary tunnels between different

NFVI-PoPs through external legacy

networks as required by VNF service

architecture, SLA’s and service provider

business needs.

B.3 NFV Infrastructure Requirements

B.3.1 Computing

Table 29: IVM requirements - Computing

Req. id T-NOVA

Use Case

Alignment

Domain Requirement Name Requirement Description Justification of Requirement

C.1 UC2 Compute Nested/Extended Hardware page virtualisation SHALL be utilised

to improve performance.

Performance benefits from hardware

page virtualisation are tied to the

prevalence of VM exit transitions. CPU

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

160

should have large TLBs

C.2 UC2, UC3 Compute Central Storage A central storage subsystem (SAN) SHALL be

available in order to enable advanced

functionalities like VM migration and server

clustering

Required to support use cases 3/3.1/3.2.

Also required for system resilience.

C.3 UC4 Compute No SPOF All hardware components SHALL be deployed

with proper redundancy mechanisms (e.g.

redundant SAN switches and network

switches) in order to avoid single points of

failure

Required to support use cases 3/3.1/3.2.

Also required for system resilience.

C.4 UC4.1 Compute Performance All hardware components SHALL satisfy

specific performance parameters (e.g. IOPS

and R/W operation ratio in case of storage

resources) in order to provide required

performance levels

Required to guarantee proper SLAs

C.5 UC2 Compute Hypervisor compatibility Servers and storage SHOULD be compatible

with the chosen hypervisor(s)

Required to ensure basic system

functionality and reliability.

C.6 UC2, UC3 Compute Central Storage -

efficiency

Central storage SHALL support functionalities

like Automatic Storage Tiering (AST), thin

provisioning and deduplication, in order to

reduce costs, improve efficiency and

performance

Required to support SLA’s associated

with VNF services.

C.7 UC4 Compute Compute Domain

Metrics

The compute domain SHALL provide metrics

and statistics relating to the capacity, capability

and utilisation of hardware resources:

• CPU cores

• Memory

• IO (including accelerators)

• Storage subsystem

These metric shall include both static and

dynamic metrics

This information is required at the

Orchestration layer to make decisions

about the placement of new VNF,

services, to manage existing services to

ensure SLA compliance and to ensure

reliable of the system.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

161

C.8 UC3 Compute Power Management The compute domain SHALL provide power

management functions that enable the VIM to

remotely control the power state of the

domain

This capability maybe required to meet

SLA requirements on energy utilisation,

service costs or time of day service

settings

{Non-functional requirement}

C.9 UC2, UC3 Compute Hardware Accelerators The compute domain SHALL support

discovery and reservation of hardware (HW)

/functional accelerators

Certain VNF functions may require or

experience performance benefits from

the availability of co-processor cards

such as FPGA’s, MIC (e.g. XEON PHI) or

GPU’s (e.g. Nvida). The Orchestrator

should be aware of these capabilities to

ensure correct placement decisions.

C.10 UC2, UC3 Compute Hardware Accelerators All HW accelerators SHOULD be able to

expose their resources to the VIM Controllers.

The Orchestrator should be aware of

accelerator capabilities available within

an NFVI-PoP for placement of VNF’s that

can utilise these capabilities to improve

their performance.

C.11 UC2, UC3 Compute Hardware Accelerators HW accelerator resources MAY be virtualisable

themselves and this feature SHALL be made

available to the host processor.

Typically accelerator HW is not

virtualisable with the exception of GPUs.

Virtualising the accelerator can provide

performance improvement and

guarantees and could be exposed and

used by the T-NOVA system.

C.12 UC4 Compute Hardware Accelerators HW accelerators SHALL provide performance

metrics to the VIM.

Necessary to measure performance,

guarantee SLAs and determine limits for

scaling up and down the service if

necessary.

C.13 VIM Traffic classification The VIM Network Controller SHOULD be able

to classify packets among VMs (where NFs are

hosted). Packet classification offloading to the

NIC is desirable (e.g., Intel VMDq)

This is required to ensure appropriate

performance of VNF’s running on VM’s

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

162

B.3.2 Hypervisor

Table 30: IVM Requirements - Hypervisor

Req. id T-NOVA

Use Case

Alignment

Domain Requirement Name Requirement Description Justification of Requirement

H.1 UC3

UC4

Hypervisor Compute Domain

Metrics

The Hypervisor SHALL gather all relevant

metrics and resource status information

required by the Orchestrator from the

compute domain and will provide the data to

the VIM via a VIM-Hypervisor interface

The Orchestrator requires the

information from the compute domain

to make decisions regard the placement

of new VNF services to adjusting existing

services to maintain SLA’s

H.2 UC3,

UC4

Hypervisor Network Domain Metrics The hypervisor SHALL gather all relevant

metrics (e.g. bandwidth requirements) from

the infrastructure networking domain and

provide data to the VIM via a VIM-Hypervisor

interface

The Orchestrator requires the

information from the next work domain

to make decisions regard the placement

of new VNF services to adjusting existing

services to maintain SLA’s

H.3 UC3 Hypervisor VM Portability The T-NOVA hypervisor SHALL be able to

unbind the VM from the hardware in order to

allow the VM to be migrated to a different

physical resource.

Required to ensure that VNF are fully

portable in the T-NOVA systems for

support various conditions such as

scaling, resilience, maintenance etc.

H.4 UC3 Hypervisor VM Migration -

Notification

The T-NOVA hypervisor SHALL support

instructions to provision, migrate, rescale,

delete etc. a VM received via a Hypervisor-VIM

interface

Fundamental requirement for the T-

NOVA system to function

H.5 UC3 Hypervisor Predictive VM Migration

Performance

The hypervisor SHALL provide metrics to allow

the VIM and Orchestrator to make predictions

as to the impact of migration.

This capability is required to ensure that

any infrastructure management actions

such as consolidation will not impact on

VNF service performance

H.6 UC2 Hypervisor Performance Impact The hypervisor SHALL have minimal impact on

VNF workload performance

Require to ensure that the performance

of the hosted VNF is not impacted.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

163

H.7 UC2

UC3

Hypervisor Platform Features

Awareness/Exposure

The hypervisor SHALL be able to discover the

existence of features and functionality

provided by resources such as the compute,

accelerators, storage and networking and to

expose these features to the Orchestrator via

the VIM.

Enhanced platform awareness by the

Hypervisor and making this information

available to the Orchestrator will allow

the Orchestrator to make more

intelligent placement decisions during

the deployment of VNF services.

H.8 UC3. Hypervisor VM Reconfigure

/Rescale

The hypervisor SHALL have the ability to scale

a VM up and down: to add / remove compute

and memory dynamically

Prerequisite to meet the requirements

described in UC3/3.1/3.2

H.9 UC2 Hypervisor VM Low Power State The hypervisor SHALL have the ability to put

resources into a lower power state based on

utilization/SLA requirements to expose a lower

power state to the Orchestrator.

This capability maybe required to meet

SLA requirements on energy utilisation,

service costs or time of day service

settings

H.10 UC2

UC6

Hypervisor Request Results

Information

The hypervisor SHALL make available to the

VIM the results of requests completion

Required so the VIM and Orchestrator

can maintain a consistent view of the

infrastructure resources.

H.11 UC2,

UC4

Hypervisor Performance – Resource

overcommit

The hypervisor SHALL be able to provide

mechanisms to control resource overcommit

policies

Required to improve performances and

guarantee proper SLAs

H.12 UC4 Hypervisor Alarm/Error Publishing The hypervisor SHALL publish alarm or error

events to the Orchestrator via the VIM

The Orchestrator requires this

information in order for it react

appropriately

H.13 UC2

UC3

Hypervisor Security The hypervisor SHALL be able to guarantee

resource (instruction, memory, device access,

network, storage) isolation in order to

guarantee performance

Necessary to ensure that VNF services

do interfere with each other and impact

performance or reliability

H.14 UC2

UC3

Hypervisor Network The hypervisor SHALL be able to control

network resources within the VM host and

provide basic inter-VM traffic switching.

This is required to allow proper VNF

graph creation for VNFs that are

instantiated within the same VM Host.

B.3.3 Networking

Table 31: IVM Requirements - Networking

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

164

Req. id Alignment Domain Requirement Name Requirement Description Justification of Requirement

N.1 UC1-UC6 Networking Switching
Networking devices of the T-NOVA NFVI PoP

SHOULD support L2 and L3 connectivity
Mandatory requirement

N.2 UC1-UC6 Networking Virtualization

Networking devices of the T-NOVA IVM

SHOULD have the ability to be virtualised to

allow the VNFs deployment.

Required to support scalability within the

T-NOVA system.

N.3 UC1-UC6 Networking

QoS configuration and

performance

configuration

Networking devices of the T-NOVA NFVI PoP

ΜΑΥ allow the configuration of specific quality

of service parameters such as overhead,

throughput, service differentiation and packet

loss.

Required to ensure QoS configurability

for the NSs.

N.4 UC1-UC6 Networking
Transport technologies

support

Networking devices of T-NOVA NFVI PoP MAY

support transport technologies (e.g. MPLS,

Metro Ethernet, etc.) for the support of traffic

trunks between NFVI-PoPs

Required for inter-NVFI-PoP connectivity

N.5 UC1-UC6 Networking Tunnelling

Networking devices of the T-NOVA NFVI PoP

ΜΑΥ support the creation of multiple distinct

broadcast domains (VLANs) through one or

more tunnelling protocols (e.g. STT, NVGRE,

VxLAN) to allow the creation of virtual L2

networks interconnected within L3 networks

(L2 over L3).

This is a requirement for the deployment

of VNF’s across different NFVI-PoPs

N.6 UC1-UC6 Networking Usage monitoring

Networking devices of the T-NOVA NFVI PoP

SHOULD provide monitoring mechanisms of

their usage through commonly used APIs.

Required for trouble-shooting,

events/alarms detection, and live

optimisation

N.7 UC1-UC6 Networking Configuration

Networking devices of the T-NOVA NFVI PoP

SHOULD allow configuration through

common technologies and protocols such as

NETCONF and SNMP.

Required for (remote) uniform

configuration access.

N.8 UC1-UC6 Networking SDN

Physical and Virtual Networking devices

performing L2 switching of the T-NOVA NFVI-

PoP SHOULD be SDN enabled.

Required to allow the use of SDN in

order to dynamically configure the

network at runtime.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

165

N.9 UC1-UC6 Networking Open Flow

All L2 networking devices of the T-NOVA

NFVI-PoP SHOULD support the OpenFlow

protocol.

Required to allow the use of SDN in

order to dynamically configure the

network at runtime.

N.10 UC1-UC6 Networking SDN Management

All L2 networking devices of the T-NOVA NFVI

PoP SHOULD be managed by an SDN

controller located in the VIM.

Required to ensure the network

infrastructure properly works.

N.11 UC1-UC6 Networking Network slicing

Networking devices of the T-NOVA NFVI PoP

SHOULD allow programmability of their

forwarding tables through the Open Flow

protocol. Each flow SHOULD be handled and

configured separately to enable network

slicing.

VIM should be able to create network

slices composed with different

networking devices, which are then

configured independently.

N.12 UC1-UC6 Networking Scalability

The infrastructure network of the T-NOVA
NFVI PoP SHOULD be able to support a large

number of connected servers, which in turn,

SHOULD be able to support a large number of

concurrent VMs.

Required to support scalability and

multi-tenancy.

N.13 UC1-UC6 Networking Address uniqueness

The virtual networks of the T-NOVA NFVI PoP

MUST ensure address uniqueness within a

given virtual network.

Required to uniquely identify the VM’s

attached to a VLAN.

N.14 UC1-UC6 Networking
Address space and

traffic isolation

For L2 services, the infrastructure network of

the T-NOVA NFVI PoP MUST provide traffic

and address space isolation between virtual

networks.

For L3 services, the infrastructure network of

the T-NOVA NFVI PoP MUST provide traffic

isolation between virtual networks. If address

isolation is also required it can be achieved

using various techniques:

 An encapsulation method to provide

overlay networks (L2 or L3 service).

 The use of forwarding table partitioning

mechanisms (L2 service).

 By applying policy control within the

Required to ensure the correct function

of multi-tenancy in the T-NOVA system.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

166

infrastructure network (L3 service).

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

167

ANNEX C - TERMINOLOGY

This annex contains general terms used throughout the deliverable in association

with all main T-NOVA architectural entities.

The terms marked with an asterisk (*) have been aligned with ETSI NFV ISG

terminology (77).

C.1 General Terms

Table 32: General terms

Name Description

Virtualised Network

Function (VNF)*

A virtualised (pure software-based) version of a network

function.

Virtualised Network

Function Component

(VNFC)*

An independently manageable and virtualised component

(e.g. a separate VM) of the VNF.

T-NOVA Network

Service (NS)

A network connectivity service enriched with in-network

VNFs, as provided by the T-NOVA architecture.

NFV Infrastructure

(NFVI)*

The totality of all hardware and software components

which build up the environment in which VNFs are

deployed.

C.2 Orchestration Domain

Table 33: Orchestration Domain terminology

Name Description

Orchestrator*

The highest-level infrastructure management entity

which orchestrates network and IT management entities

in order to compose and provision an end-to-end T-

NOVA service.

Resources Orchestrator*

The Orchestrator functional entity which interacts with

the infrastructure management plane in order to

manage and monitor the IT and Network resources

assigned to a T-NOVA service.

NS Orchestrator*

The Orchestrator functional entity in charge of the NS

lifecycle management (i.e. on-boarding, instantiation,

scaling, update, termination) which coordinates all other

entities in order to establish and manage a T-NOVA

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

168

service.

VNF Manager*

The Orchestrator functional entity in charge of VNF

lifecycle management (i.e. installation, instantiation,

allocation and relocation of resources, scaling,

termination).

NS Catalogue*
The Orchestrator entity which provides a repository of

all the descriptors related to available T-NOVA services

VNF Catalogue*
The Orchestrator entity which provides a repository with

the descriptors of all available VNF Packages.

NS & VNF Instances

Record*

The Orchestrator entity which provides a repository with

information on all established T-NOVA services in terms

of VNF instances (i.e. VNF records) and NS instances (i.e.

NS records).

NF Store
The T-NOVA repository holding the images and the

metadata of all available VNFs/VNFCs.

C.3 IVM Domain

Table 34: IVM Domain terminology

Name Description

Virtualised

Infrastructure

Management (VIM)*

The management entity which manages the virtualised

(intra-NFVI-PoP) infrastructure based on instructions

received from the Orchestrator.

Transport Network

Management (TNM)
The management entity which manages the transport

network for interconnecting service endpoints and NFVI-

PoPs, e.g. geographically dispersed DCs.

VNF Manager Agent* The VIM functional entity which interfaces with the

Orchestrator to expose VNF management capabilities

Orchestrator Agent* The VIM/TNM functional entity which interfaces with the

Orchestrator to expose resource management

capabilities.

Hypervisor Controller* The VIM functional entity which controls the VIM

Hypervisors for VM instantiation and management.

Compute Controller* The VIM functional entity which manages both physical

resources and virtualised compute nodes.

Network Controller @

VIM*

The VIM functional entity which instantiates and

manages the virtual networks within the NFVI-PoP, as

well as traffic steering.

Network Controller @ The TNM functional entity which instantiates and

manages the virtual networks within transport network,

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

169

TNM as well as traffic steering.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

170

APPENDIX I – ETSI ISG NFV FRAMEWORK

This appendix is the repository for the results of a research study carried out on the

ETSI ISG NFV framework.

I.1 ETSI ISG NFV Overview

The IT and Networks industries have been combining their complementary expertise

and resources in a joint collaborative effort to reach broad agreement on

standardised approaches and common architectures, which address identified

technical challenges, are interoperable and have economies of scale.

As a result, a network operator supported Industry Specification Group (ISG) with

open membership was setup in the last quarter of 2012 under the umbrella of ETSI to

work through the technical challenges of NFV.

However, it should be noted that ETSI ISG NFV is not a Standards Development

Organisation (SDO) but a body that produces guideline documents. The ETSI ISG NFV

delivers its findings in the form of Group Specifications and not in the form of

European Norms (EN) or Technical Standards (TS). The outputs are openly published

and shared with relevant standards bodies, industry Fora and Consortia, to encourage

a wider collaborative effort. If misalignments are detected, the ETSI ISG NFV will

collaborate with other SDOs in order to meet the requirements.

The ISG NFV also provides an environment for the industry to collaborate on Proof-

of-Concept (PoC) platforms to demonstrate solutions, which address the technical

challenges for NFV implementation and to encourage growth of an open ecosystem.

In the following sections, the NFV concept will be introduced, as well as the manner

in which it has been handled by the ISG NFV and by the ISG NFV WGs. In addition, a

status of the work will also be provided.

It is recognised that the ETSI ISG NFV Phase 1 won’t cover all the aspects of the NFV

domain and, as such, a Phase 2 is being prepared. As its scheduled timeline, with a

start in January 2015, will have potential to influence the deployment of T-NOVA; a

brief description of their activities is presented.

I.2 High-level NFV framework and reference architecture

The NFV concept envisages the implementation of NFs as software-only entities that

run over the NFV Infrastructure (NFVI). Figure 44, published in October 2013 by the

ETSI ISG NFV in its document on global architecture, illustrates the high-level NFV

framework, where three main working domains can be identified:

• Virtualised Network Function (VNF), as the software implementation of a

network function which is capable of running over the NFVI,

• NFV Infrastructure (NFVI), which includes the diversity of physical resources and

how these can be virtualised. NFVI supports the execution of the VNFs,

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

171

• NFV Management and Orchestration (NFV MANO), which covers the

orchestration and lifecycle management of physical and/or software resources

that support the infrastructure virtualisation, and the lifecycle management of

VNFs. NFV MANO focuses on all virtualisation-specific management tasks

necessary in the NFV framework.

Figure 44: High-level NFV framework

(Source: GS NFV 002 v1.1.1 - NFV - Architectural Framework (66))

The NFV architectural framework handles the expected changes that will probably

occur in an operator’s network due to the network function virtualisation process.

Figure 45 shows this global architecture, depicting the functional blocks and

reference points in the NFV framework:

Figure 45: NFV reference architectural framework

(Source: GS NFV 002 v1.1.1- NFV - Architectural Framework (66))

The architectural framework shown in Figure 45 focuses on the functionalities that are

necessary for the virtualisation and the consequent operation of an operator’s

Computing

Hardware

Storage

Hardware

Network

Hardware

Hardware resources

Virtualisation Layer
Virtualised

Infrastructure

Manager(s)

VNF

Manager(s)

VNF 2

OrchestratorOSS/BSS

NFVI

VNF 3VNF 1

Execution reference points Main NFV reference pointsOther reference points

Virtual

Computing

Virtual

Storage

Virtual

Network

NFV Management and

Orchestration

EMS 2 EMS 3EMS 1

Service, VNF and Infrastructure

Description

Or-Vi

Or-Vnfm

Vi-Vnfm

Os-Ma

Se-Ma

Ve-Vnfm

Nf-Vi

Vn-Nf

Vl-Ha

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

172

network. It does not specify which network functions should be virtualised as that is

solely a decision of the owner of the network.

I.3 Relevant Working Groups and Expert Groups

As stated above, looking at the high-level NFV framework and at the global NFV

architecture, three main domains can be identified:

 NFVI,

 VNFs,

 NFV MANO.

This domain partition is the basis of the WGs5 currently operating in ETSI ISG NFV:

INF, SWA and MANO.

I.3.1 WG INF (Infrastructure Architecture)

This WG is responsible for the NFVI. They have identified three sub-domains within

the NFVI, which are as follows:

• Hypervisor Sub-domain, which operates at a virtual level, encompassing the

computing and storage slices,

• Compute Sub-domain, which operates at the lowest level, also in the

computing and storage slices,

• Network Sub-domain, which operates both at virtual level and at hardware

level, of the network slice.

The global architecture of the NFVI domain, shown in Figure 46 details the specific

infrastructure-related Functional Entities. All the three sub-domains can be

decomposed into smaller functional blocks, both at the virtual and hardware levels. In

addition, the VIM, part of the MANO domain, is also shown in Figure 46 as it

manages this specific infrastructure level from the architecture level, or functional

level perspective.

5
 WGs work at an architecture or functional level, not at an implementation or physical level.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

173

Figure 46: High Level Overview of the NFVI Domains and Interfaces

(Source: DGS NFV INF 005 v0.3.0 (2014-05) (5))

I.3.2 WG SWA (Software Architecture)

As described in the Terms of Reference (ToR) of the NFV SWA WG in the ETSI portal

(http://portal.etsi.org/TBSiteMap/NFV/NFVWGsEGsToR.aspx) (6), the main

responsibilities of this group are to:

• Define a reference software architecture for network functions to be deployed,

provisioned, run and managed on a virtualised infrastructure,

• Describe the functionalities specific to VNFs, i.e. functional behaviour, deployment

model, and characteristics such as security and performance,

• Identify/define the reference points/interfaces with other NFV WG building

blocks, typically MANO and INF, and preserve reference points/interfaces to

legacy OSS and BSS,

• Collect and define requirements for this reference SWA architecture from relevant

stakeholders, i.e. provided by MANO, INF and legacy OSS/BSS,

• Validate this reference functional software architecture with concrete use cases,

• Identify gaps, where existing standards/specifications do not fulfil the

requirements of the reference architecture.

With respect to the architecture, and taking into account that the WG is devoted to

the domain that handles the VNFs and their manager, i.e. the VNF lifecycle, the

detailed architecture is depicted in Figure 47.

http://portal.etsi.org/TBSiteMap/NFV/NFVWGsEGsToR.aspx

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

174

Figure 47: SWA Architectural Framework and interfaces types

(Source: DGS NFV SWA 001 v0.2.0 (2014-05) (7))

I.3.3 WG MANO (Management and Orchestration Architecture)

The ToRs indicated in the ETSI portal for this WG are to:

• Develop ETSI deliverables on issues related to the deployment, instantiation,

configuration and management framework of network services based on NFV

infrastructure, focused on:

– abstraction models and APIs,

– provisioning and configuration,

– operational management,

– interworking with existing OSS/BSS,

• Provide requirements for orchestration and management,

• Identify gaps in current standards and best practices.

The current working architecture conceived by the NFV MANO WG is shown in Figure

48.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

175

Figure 48: NFV MANO reference architectural framework

(Source: DGS NFV MAN 001 v0.6.3 (2014-09) (8))

I.4 ETSI ISG NFV impact in WP2 of T-NOVA

The overall set of standards in the current approval process appear to be aligned with

T-NOVA, due to the fact that they have been carefully considered in the development

of both the overall T-NOVA architecture and the architectural components to ensure

appropriate alignment to the ETSI NFV reference architecture.

In this context, the scope of the three main WGs, INF, SWA and MANO, are aligned

with the various architecture related tasks in WP2:

• T2.3 orchestrator requirements and architecture clearly point to the NFVO

Functional Entities currently being worked in ETSI NFV MANO WG,

• T2.4 infrastructure key requirements and architecture clearly point to the NFVI

and Functional Entities currently being worked on in the ETSI NFV INF WG,

• T2.5 virtual network functions requirements and architecture clearly point to the

VNF Functional Entities currently being worked on in the ETSI NFV SWA WGs.

Figure 49 illustrates the mapping between ETSI ISG NFV Functional Entities and the

Work Packages / Tasks of the T-NOVA system as described above.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

176

Figure 49: T-NOVA mapping into ETSI MANO

(Source: T-NOVA T2.3 Kick-Off Call 2014/04/24 (3))

I.5 Status of work

The current section outlines the status of the work that has been carried out in the

ETSI ISG with respect to the new paradigm of NFV. In this context, the following will

be provided:

 an overview on what has been achieved to date,

 the status of the release 1 set of documents under the responsibility of each

WG, and

 the current roadmap of publications up to the end of the year.

In addition, several activities carried out under the scope of NFV Phase 2 will be

indicated. The current scheduled timeline includes a January 2015 start, and therefore

has the potential to influence the deployment of T-NOVA.

I.5.1 What has been achieved to date

From the beginning of 2013, the ETSI ISG NFV WGs have been constituted and have

started their work in accordance with their Terms of Reference (ToRs), i.e.

responsibilities and activities. Therefore, several documents have been initiated

related with their currently on-going work.

Figure 50 illustrates the roadmap of activities of the ISG NFV from the start of 2013

up to the middle of 2014.

T2.3/WP3

T2.4/WP4

T2.5/WP5

T2.6/WP6: NF Marketplace
Mk-Ma

T2.3/WP3 & T2.6/WP6

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

177

Figure 50: Timeline for ISG Work Program from beginning of 2013 to mid-2014

(Source: ETSI ISG NFV 2nd White Paper, October 15-17, 2013 at the “SDN and OpenFlow

World Congress”, Frankfurt-Germany (78))

Also in October 2013, a first set of parallel high level documents have been published

by ETSI to inform the on-going work and to provide guidelines to the industry in a

number of different areas:

• NFV Use Cases document describing initial fields of application,

• NFV Requirements document describing the high level business and technical

requirements for an NFV framework including service models,

• NFV Architectural Framework document describing the high-level functional

architecture and design philosophy for virtualised network functions and the

underlying virtualisation infrastructure. By delineating the different constituents

and outlining the reference points between them, it paves the way for fully

interoperable multi-party NFV solutions,

• NFV Terminology document is a common repository for terms used within the

NFV ISG documents,

• NFV Proof of Concept Framework document, which appears as a consequence

of the launch of a global call for multi-party NFV Proof of Concepts (PoC) to

validate NFV approaches and to encourage progress towards interoperability and

development of an open ecosystem.

I.5.2 WG focus

Table 35 shows the status of the documents under the responsibility of each WG. In

addition the table has links to related documents located in the ETSI servers.

Table 35: Overall GS documents status (as of June 18
th

)

(Source: WG SWA internal)

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

178

I.5.3 Publication of documents for ETSI ISG NFV Release 1

The activities of the ETSI ISG NFV will to continue until the end of the year, when its

mandate is expected to terminate. The agreed timeline for the outputs from this

group are shown in Figure 51:

Figure 51: Timeline for ISG Work Program during 2014 and beginning of 2015

(Sources:

NFV(14)000034r1_NFV_Drafts_maintenance_process_and_release_plan_proposal invoked

by NFV(14)000028_NFV5 Plenary draft Minutes) (6)

Table 36 presents the expected timeline and outputs for the ETSI ISG NFV:

Table 36: Expected timeline and outputs for the ETSI ISG NFV

Due Date Expected Output

mid of June 2014 Progress all NFV WG documents

(INF+SWA+MANO+PER+etc) and approval,

Date Target is Final Draft ASAP
GS SWA May 28th Final Draft: http://docbox.etsi.org/ISG/NFV/SWA/70-DRAFT/SWA001/NFV-SWA001v020.zip

GS MANO May 23rd Stable draft: http://docbox.etsi.org/ISG/NFV/MAN/70-DRAFT/MAN1/NFV-MAN001v050.zip

GS REL June 12th Stable Draft: http://docbox.etsi.org/ISG/NFV/REL/70-DRAFT/REL1/NFV-REL001v013.docx

GS SEC #1 June 6th Stable Draft : http://docbox.etsi.org/ISG/NFV/SEC/70-DRAFT/SEC001/NFV-SEC001v013.zip

GS SEC #2 April 29th Early Draft: http://docbox.etsi.org/ISG/NFV/SEC/70-DRAFT/SEC2/NFV-SEC002v003.docx

GS SEC #3 Nov 25th Early Draft: http://docbox.etsi.org/ISG/NFV/SEC/70-DRAFT/SEC3/NFV-SEC003v007.docx

GS PER April 25 Final Draft: http://docbox.etsi.org/ISG/NFV/PER/70-DRAFT/PER001/NFV-PER001v009.zip

GS INF #1 Final Draft Final Draft: http://docbox.etsi.org/ISG/NFV/INF/70-DRAFT/INF1/NFV-INF001v038.doc

GS INF #2 Final Draft Final Draft: http://docbox.etsi.org/ISG/NFV/INF/70-DRAFT/INF2/NFV-INF002v032.docx

GS INF #3 May 29th Final Draft: http://docbox.etsi.org/ISG/NFV/INF/70-DRAFT/INF3/NFV-INF003v031.docx

GS INF #4 May 27th Final Draft: http://docbox.etsi.org/ISG/NFV/INF/70-DRAFT/INF4/NFV-INF004v031.doc

GS INF #5 May 30th Final Draft: http://docbox.etsi.org/ISG/NFV/INF/70-DRAFT/INF5/NFV-INF005v031.docx

GS INF #6 N/A

GS INF #7 May 25th Final Draft: http://docbox.etsi.org/ISG/NFV/INF/70-DRAFT/INF7/NFV-INF007v031.zip

GS INF #8 N/A => 2/3/4 Stable Draft: http://docbox.etsi.org/ISG/NFV/INF/70-DRAFT/INF8/NFV-INF008v012.doc

GS INF #9 N/A

GS INF #10 June 12th Stable Draft: http://docbox.etsi.org/ISG/NFV/INF/70-DRAFT/INF010/NFV-INF010v009.docx

DecOctSepAugJulyJuneAprilMarchFebJan May Nov JuneAprilMarchFebJan May

Release
Interim

NFV#7
USA

NFV#6
JP

NFV#5
SP

NFV#9
FR

NFV#8
USA

Release Maintenance

Release
”Freeze”

Progress NFV release
NFV
App

WG
App

All WG drafts are WG-
approved

Focus on

WG App preparation

Focus on

General Alignment

Focus on

Final Release

Focus on

Phase 2

Release
PUBLICATION

Release
Approval

30d
Approval

Stage #1 &
#2

By NFV#7

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

179

Freeze release and begin release maintenance, envisaging

consistency update6

Mid November 2014 End release maintenance followed by beginning of release

approval.

end of December 30 days of release approval by ETSI ISG NFV

end of January 2015 Release 1 NFV documents publication.

I.5.4 Phase 2 preparation

The mandate of the ETSI ISG NFV runs for two years until the end of 2014.

It is widely recognised that the ETSI ISG NFV Phase 1 documents won’t cover the NFV

domain in its entirety, i.e. there are business and technical issues that will be left for

further study in Phase 2, which is scheduled to begin in January 2015, by NFV#9. This

is the key reason why a set of activities has been in preparation since February-March

of 2014, in order to ensure a successful end to Phase 1 followed by a smooth

transition to a sustained Phase 2 with well-defined objectives and a clear schedule.

In the remaining part of this subsection, a selected number of those activities that are

taking place will be briefly outlined bearing in mind that discussions are still ongoing

and no definitive results have been obtained at the moment.

I.5.4.1 Global objectives

In this context, it is worth to be considered what the Chairman has pointed out as

global objectives in his presentation during the last Okinawa closing plenary meeting

(6):

“There is room for quite a lot of issues, technical and non-technical, to be considered,

e.g.:

• To foster interoperable implementations,

• To facilitate development of an open ecosystem,

• To provide guidance to open source and open innovation efforts,

• To drive towards commonly defined operating environment that can support a

variety of VNFs,

• To provide direction for NFV outbound messaging,

• To develop documents that provides requirements to relevant SDOs.”

I.5.4.2 Governance model

In this Phase 2 preparation, the governance model that will lead to a new structure is

under discussion. When compared to the structure adopted in Phase 1, one of the

main drivers is the replacement of a vertical-based structure by another one that

6
 The Release Maintenance concept has been introduced in order to guarantee harmonisation

between overall documents. In this phase, drafts are WG approved, i.e. technical content is

ready for publication, only corrections and inter WG alignments are allowed

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

180

might be considered as horizontal, with a NFV Steering Board (NSB), and still a

Network Operator Council (NOC) and a Technical Steering Committee (TSC), on the

top, but with slightly different responsibilities. The innovation relies on the intention

to close the WGs and EGs, replacing them by ad hoc groups with a very limited scope

and timeframe, i.e. the group is disbanded upon completion of the work by the

agreed deadline.

However, this position is not consensual as there are other people that consider that

a lot of outstanding issues remain to be addressed in the WGs and, as such, the

preference is to retain the current working groups.

The outcome will probably merge the two approaches.

I.5.4.3 Documents maintenance

It is expected that the documents that the ISG NFV will publish by the end of this year

will require a maintenance process due to errors and inconsistencies that will only be

discovered when people start using them extensively.

In addition, as stated in a draft document recently circulated, some operators expect

that the ETSI NFV’s new work items will lead to two types of deliverables, equivalent

in contents to ETSI Technical Specifications (TSs) and to ETSI Technical Reports (TRs).

This does not preclude both types of documents to be published as ETSI Group

Specifications.

However, once again, the issue is not consensual and it is still being discussed in the

mailing list and in the Phase 2 wiki.

I.5.4.4 Issues related to NFV evolution

The evolution of NFV must also be considered. In the future, new requirements will

emerge as NFV matures and will likely justify new releases/phases of NFV

specification work. In addition, the activity carried out in this area will be close to the

work performed in the new Open Platform for NFV (OPN), as detailed bellow.

As an example, the importance of focusing on interoperability, in order to guarantee

an e2e architecture framework, may be one of most inevitable issues, one of those

that can’t be avoided. This has to be addressed by the specification of some

interfaces that were left as almost void in Phase 1.

Another example of a recognised (technical) issue, but with less priority, is the

interworking with legacy OSS/BSS and a plan for migration.

Finally, some new documents may be necessary to cover areas that in the initial

phase were thought to be out of scope.

I.5.4.5 3rd White Paper

The elaboration of a 3rd White Paper by NOC was agreed in order to position the

published release 1 documents and to describe the operators’ vision for the next

steps (i.e. role and governance of ISG NFV Phase 2, maintaining influence on the

wider industry). It will not contain any proprietary information and the objective will

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

181

be to secure the widest possible support of network operators. The agreed timescale

is October 2014, in time for Layer123 conference in Dusseldorf.

I.5.4.6 Open Platform NFV

Mission and Goals, Scope and Objectives

According to a contribution presented at the NFV#6 closing plenary, 13-16 May

Okinawa, Japan, the mission of this envisaged new forum is to drive NFV’s evolution

through the creation of a new an Open Platform for NFV (OPN), which the carrier and

vendor community will benefit from, i.e.:

• To create an integrated and tested open (SW, HW) platform to address the

industry’s needs,

• To create an environment for continuous system level validation and

integration,

• To contribute changes to and influence upstream open source projects

leveraged in the platform,

• To build new open source components within the project where needed,

• To use the open implementations to drive an open standard and open

ecosystem for NFV solutions.

The scope of the work will be based on the ETSI MANO and NFVI architectures. As far

as the objectives are concerned, the following have been indicated:

• To provide an environment for realisation and implementation of the ETSI ISG

NFV architecture and requirements,

• To create an open platform which supports NFV and is carrier grade (meets

performance, scale and reliability requirements):

– To take advantage of the innovation in the open source community,

– To coordinate upstream contributions to address gaps for supporting NFV, in

current open source projects,

– To integrate open source components and develop glue-code to create an

E2E solution,

• To drive for faster traction and lower development cost on realising a carrier

grade NFV open platform:

– To take advantage of the resource multiplier effect due to multiple company

support,

– To improve speed development and breadth of features.

Internal Governance Model

So far, an internal governance model has already been proposed and is being

discussed amongst internal representatives in charge of OPN forum constitution, as

well as other NOC and TSC representatives. Basically, it will be composed by three

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

182

internal bodies, i.e. the End-User Advisory Council, the Board and the TSC, whose

responsibilities are:

• The End-User Advisory Council is a broad open body to every NFV member,

which is in charge of selecting gathering and selecting use cases and respective

requirements. Participation in this body is meant to be free of any fees,

• The Board is a body composed by selected expertise members, which are in

charge of validating the proposal, by analysing the project scope, the business

case including financial and marketing analysis, and the technical strategic

direction. To be part of the Board, a company companies have to pay a fee, which

terms of payment are still being studied but will depend for sure on the

company’s size,

• The Technical Steering Committee is a body that is more related with the

execution part by being responsible for overseeing its design and development,

• The Projects are groups constituted to execute a validated proposal.

External Relationships

In terms of external relationships, the Forum communicates with the ETSI ISG NFV, as

well as any other SDOs in order to collect use cases and requirements. Additionally,

the Forum also communicates with other relevant Open source projects.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

183

REFERENCES

1. Booch, G., Rumbaugh, J., and Jacobson, I. The UML Reference Manual. s.l. :

Addison-Wesley, 1999.

2. ETSI ISG NFV. An Introduction, Benefits, Enablers, Challenges & Call for Action.

2012. Introductory White Paper.

3. T-NOVA project. Network Functions as-a-Service over Virtualised Infrastructures.

T-NOVA. [Online] 2014. http://wiki.t-nova.eu/tnovawiki/index.php/Main_Page.

4. —. Overall System Architecture and Interfaces. 2014. D2.21.

5. ETSI ISG NFV. Architecture of Infrastructure Network Domain. s.l. : ETSI, 2014. DGS

NFV INF 005 v.0.3.1.

6. —. Portal of Network Functions Virtualisation. ETSI. [Online] [Citação: 27 de 5 de

2014.] http://portal.etsi.org/TBSiteMap/NFV/NFVWGsEGsToR.aspx.

7. ETSI ISG NFV SWA. VNF Architecture. s.l. : ETSI, 2014. DGS NFV SWA v.0.2.0.

8. ETSI ISG NFV MANO. Management and Orchestration. 2014. GS NFV-MAN 001

v0.6.3.

9. ITU-T. Framework of network virtualization for future networks. s.l. : ITU-T, 2012.

ITU-T Rec. Y.3011.

10. ITU-T. Requirements of network virtualization for future networks. s.l. : ITU-T, 2014.

ITU-T Rec. Y.312.

11. ITU-T. Future networks: Objectives and design goals. s.l. : ITU-T, 2011. ITU-T Rec.

Y.3001.

12.ITU-T. Framework of energy saving for future networks. s.l. : ITU-T, 2012. ITU-T Rec.

Y.3021.

13.ITU-T. Identification framework in future networks. s.l. : ITU-T, 2012. ITU-T Rec.

Y.3031.

14. ITU-T. Framework of data aware networking for future networks. ITU-T Rec. Y.3033.

15. ITU-T. Framework of software-defined networking. s.l. : ITU-T, 2014. ITU-T Rec.

Y.3300.

16. ITU-T. Requirements for applying formal methods to software-defined networking.

s.l. : ITU-T, 2014. ITU-T Rec. Y3320.

17. ITU-T. Cloud computing framework and high-level requirements. s.l. : ITU-T, 2013.

ITU-T Rec. Y.3501.

18. ITU-T. Information technology - Cloud computing - Reference architecture. s.l. :

ITU-T, 2014. ITU-T Rec. Y.3502.

19. ITU-T. Cloud computing infrastructure requirements. s.l. : ITU-T, 2013. ITU-T Rec.

Y.3510.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

184

20. ITU-T. Cloud computing - Functional requirements of Network as a Service. s.l. :

ITU-T, 2014. ITU-T Rec. Y.3512.

21. ITU-T. Cloud computing - Functional requirements of Infrastructure as a Service.

s.l. : ITU-T, 2014. ITU-T Rec. Y.3513.

22. ETSI Workshop. 3rd ETSI Future Networks Workshop. ETSI Future Networks

Workshop. [Online] 2013. http://www.etsi.org/news-events/events/617-2013-future-

networks.

23. Bjorklund, M. RFC 6020. YANG - A Data Modeling Language for the Network

Configuration Protocol (NETCONF), s.i. [Online] 2010.

http://tools.ietf.org/html/rfc6020. RFC 6020.

24. TMF. Frameworx Exploratory Report, "ZOOM/ NFV User Stories”. TR229.

25. TM Forum. TMF. [Online] http://www.tmforum.org.

26. TMF. Frameworx Exploratory Report , “TM Forum Specifications relevant to MANO

Work”. TR227.

27. TMF. “TM Forum GAP Analysis related to MANO Work”. TR228.

28. TMF SID GB922. Information Framework (SID)Documents. [Online]

http://www.tmforum.org/DocumentsInformation/1696/home.html. GB922.

29. CloudNFV. CloudNFV unites the best of Cloud Computing, SDN and NFV. White

Paper.

30. Flexiant. Common considerations when selecting your hypervisor your cloud

simplified. [Online] http://learn.flexiant.com/hypervisor-white-paper.

31. Docker. Docker. Docker. [Online] 2014. blog.docker.com.

32. EMC2. VNX Series. [Online] http://www.emc.com/storage/vnx/vnx-series.htm.

33. HP. Adaptive Optimisation for HP 3PAR StoreServ Storage. HP.com. [Online] 2013.

34. EMC. Fully Automated Storage Tiering (FAST). EMC.com. [Online] 2014.

http://www.emc.com/corporate/glossary/fully-automated-storage-tiering.htm.

35. IEEE. 802.1Qbg - Edge Virtual Bridging. IEEE.org. [Online] 2013.

http://www.ieee802.org/1/pages/802.1bg.html.

36. Virtualisation- Containers and virtual machines. servernest.com. [Online] 2011.

http://servernest.com/container-virtual-machine.html.

37. Intel. Packet Processing - Intel DPDK vSwitch. 01.org. [Online] 2014.

https://01.org/packet-processing/intel%C2%AE-onp-servers.

38. Open vSwitch. Production Quality - Multilayer Open Virtual Switch.

openvSwitch.org. [Online] 2014. www.openvswitch.org.

39. Intel. Packet Processing. 01 Intel Open Source Technology Centre. [Online] 2014.

https://01.org/packet-processing.

40. OpenStack. Open source software for building. OpenStack. [Online] 2014.

www.openstack.org.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

185

41. Eucalyptus Systems, Inc. Eucalyptus. Eucalyptus. [Online] 2014.

www.eucalyptus.com.

42. The Apache Software Foundation. Apache CloudStack™ - Open Source Cloud

Computing™. Apache CloudStack. [Online] 2014. http://cloudstack.apache.org/.

43. vmware. vCloud Suite. vmware.com. [Online] 2014.

http://www.vmware.com/products/vcloud-suite.

44. IETF. VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks over.

tools.ietf.org. [Online] 2014. http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-

vxlan-09.

45. IETF. NVGRE: Network Virtualization using Generic Routing Encapsulation.

tool.ietf.org. [Online] 2012. http://tools.ietf.org/html/draft-sridharan-virtualization-

nvgre-00.

46. Davie, B, Gross, J. Internet-draft. A Stateless Transport Tunneling Protocol for

Network Virtualization. s.l. : IETF, 2012. http://tools.ietf.org/html/draft-davie-stt-01.

47. NOXREPO.org. NOX. NOXREPO.org. [Online] 2014. www.noxrepo.org.

48. NOXREPO.org . About POX. NOXREPO. [Online] 2014.

www.noxrepo.org/pox/about-pox.

49. What is Beacon? Openflow. [Online] 2013.

https://openflow.stanford.edu/display/Beacon/Home.

50. Maestro Platform -A scalable control platform writen in Java which supports

OpenFlow switches. code.google.com. [Online] 2011.

https://code.google.com/p/maestro-platform/.

51. Project Floodlight. Project Floodlight - Open Source Software for Building

Software-Defined Networks Project Floodlight - Open Source Software for Building

Software Defined Networks. Project Floodlight. [Online] 2014.

www.projectfloodlight.org/floodlight.

52. OpenDaylight.org. OpenDaylight. OpenDaylight. [Online] 2014.

www.opendaylight.org.

53. OFERTIE Project. OFERTIE - OpenFlow Experiment in Real-time Internet

Edutainment. OFERTIE.org. [Online] 2014. http://www.ofertie.org/.

54. CONTENT. Convergence of Wireless Optical Networks and IT Resources in

Support of Clould Services. Content. [Online] 2014. http://content-fp7.eu/.

55. SODALES. SODALES - Software Defined Access using Low Energy Subsystems.

SODALES. [Online] 2014. http://www.fp7-sodales.eu/.

56. OpenNaaS: An enabler to deploy Virtual Network Functions. Ferrer Riera, J.,

Batallé, J., Escalona, E. e García-Espín, J.A. Dublin, Ireland : TERENA Networking

Conference, 2014.

57. OpenStack. OpenStack Neutron. OpenStack. [Online] 2014.

https://wiki.openstack.org/wiki/Neutron.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

186

58. OpenDaylight. OpenDaylight Virtual Tenant Network (VTN):Main.

wiki.opendaylight.org. [Online] 2014.

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%

29:Main.

59. OpenDaylight. . Open Dove - Distributed Overlay Virtual Network.

wiki.opendaylight.org. [Online] 2013.

https://wiki.opendaylight.org/view/Project_Proposals:Open_DOVE.

60. ON.LAB. Flowvisor. Flowvisor. [Online] 2014. http://onlab.us/flowvisor.html.

61. OpenVirtex. Programmable virtual networks. OpenVirtex. [Online] 2014.

http://ovx.onlab.us/.

62. T-NOVA project. Specification of the Network Function Framework and T-NOVA

Marketplace. 2014. D2.41.

63. T-NOVA project. Use System Cases and Requirements. 2014. D2.1.

64. ETSI NFV ISG. Virtualisation Requirements. s.l. : ETSI, 2013. GS NFV 004 v1.1.1.

65. Ahmad, Khalid. Sourcebook of ATM and IP Internetworking. s.l. : IEEE Press.

66. ETSI ISG NFV. Architectural Framework. 2013. GS NFV 002 v1.1.1.

67. ESTI ISG NFV. Infrastructure Overview. 2014. DGS NFV INF 001 v.0.3.8.

68. ETSI ISF NFV. Architecture of the Compute Domain. s.l. : ETSI, 2014. DGS NFV INF

003 v0.3.1.

69. ETSI ISG NFV. Architecture of the Hypervisor Domain. s.l. : ETSI, 2014. DGS NFV

INF 004 v0.3.1.

70. ETSI ISG NFV. Interfaces and Abstractions. s.l. : ETSI, 2014. DGS NFV INF 007 v

0.3.1.

71. ETSI ISG NFV Resiliency Requirements. s.l. : ETSI, 2014. DGS NFV REL 001 v0.1.3.

72. BRIEF, ONF SOLUTION. OpenFlow-enabled Transport SDN, ONF. May 27 2014.

73. T. Kourlas, IP Routing and Transport Group, Alcatel-Lucent. SDN FOR

IP/OPTICAL TRANSPORT NETWORKS. [Online] April de 2014.

http://www.commtechshow.com/east/wp-content/uploads/ALU-SDN-for-IPOptical-

Transport-Networks.pdf.

74. OpenFlow @ Google. Hölzle, Urs. Santa Clara : Open Networking Summit, 15-17

April, 2012.

75. Mohyuddin, A and P. S. Dowland. The Art of Network Monitoring - Advances in

Networks, Computing and Communications.

76. Landfeldt, Björn, Pipat Sookavatana, and Aruna Seneviratne. The case for a

hybrid passive/active network monitoring scheme in the wireless Internet. s.l. :

Networks, IEEE International Conference on IEEE Computer Society, 2000, 2000.

77. ETSI NFV ISG. Terminology for Main Concepts in NFV. s.l. : ETSI, 2013. GS NFV INF

003 v1.1.1.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

187

78. ETSI ISG NFV. Network Operator Perspectives on Industry Progress. s.l. : ETSI, 2013.

Update White Pape.

79. IEEE. IEEE Guide for Developing System Requirements Specifications. 1998. IEEE Std

1233.

80. TM Forum. SLA Management Handbook, Release 3.0. s.l. : TM Forum, 2011.

81. Bradner, S. RFC 2119 - Key words for use in RFCs to Indicate Requirement Levels.

s.l. : IETF, 1997.

82. ETSI NFV ISG. Network Functions Virtualisation; Use Cases. s.l. : ETSI, 2013.

83. —. Network Functions Virtualisation; Proof of Concepts; Framework. s.l. : ETSI, 2013.

84. Booch, G., Rumbaugh, J., and Jacobson, I. The UML Reference Manual. s.l. :

Addison-Wesley, 1999.

85. Rogier Ditter, Rule Jr., David. The Best Damn Server Virtualisation Book Period.

Burlington, MA : Syngress Publishing Inc, 2011.

86. ServerNest. Virtualisation- Containers and virtual machines. servernest.com.

[Online] 2011. http://servernest.com/container-virtual-machine.html.

87. Intel. Intel, Intel® Virtualisation Technology for Directed I/O (VT-d): Enhancing

Intel platforms for efficient virtualisation of I/O devices, Available:. Developer Zone.

[Online] 2012. https://software.intel.com/en-us/articles/intel-virtualization-

technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-

virtualization-of-io-devices/.

88. Production Quality, Multilayer Open Virtual Switch. Open vSwitch - An Open

Virtual Switch. [Online] http://openvswitch.org/.

89. Juniper Networks. OpenContrail. OpenContrail. [Online] 2014.

http://opencontrail.org/.

90. Enns, R. RFC 4741. NETCONF Configuration Protocol, s.l. [Online] 2006.

http://tools.ietf.org/html/rfc4741. RFC 4741.

91. Enns, R. et al RFC 6241. Network Configuration Protocol (NETCONF), s.l. [Online]

2011. http://tools.ietf.org/html/rfc6241. RFC 6241.

92. OPENNAAS. OpenNAAS - Open Platform for Networks as a Service. OpenNAAS.

[Online] 2014. http://www.opennaas.org.

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

188

LIST OF ACRONYMS

Acronym Description

ACPI Advanced Configuration and Power Interface

API Application Programming Interface

AST Automatic Storage Tiering

BSS Business Supporting System

CAM Control, Administration and Monitoring

CAPEX Capital Expenditure

CLC Cloud Controller

CLI Command Line Interface

CP Control Plane

CPU Control Processing Unit

D2.1 Deliverable D2.1

D2.21 Deliverable D2.21

D2.41 Deliverable D2.41

DC Data Centre

DCN Data Centre Network

DMC DOVE Management Console

DOVE Distributed Overlay Virtual Ethernet

DP Data Plane

DPDK Data Plane Development Kit

DPI Deep Packet Inspection

E2E End-to-End

EG Experts Group

EM Element Manager

EN European Norm

EPT Extended Page Tables

ETSI European Telecommunications Standards Institute

EU End User

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

189

EVB Edge Virtual Bridge

FE Functional Entity

FN Future Networks

FP Function Provider

FPGA Field Programmable Gate Array

GS Global Standard

GPU Graphical Processing Unit

GW Gateway

HG Home Gateway

HW Hardware

I/O Input/Output

IaaS Infrastructure as a Service

IEEE Institute of Electrical and Electronics Engineer

IETF Internet Engineering Task Force

INF Infrastructure

IP Internet Protocol

IP Infrastructure Provider

IPAM IP Address Management

IPsec IP security

ISG Industry Specification Group

ISO International Organisation for Standardisation

IT Information Technology

ITU International Telecommunication Union

ITU-T ITU Telecommunication Standardization Sector

IVM Infrastructure Virtualisation and Management

KPI Key Parameter Indicator

L2 Layer 2

L3 Layer 3

LAN Local Area Network

LINP Logically Isolated Network Partition

MAC Mdedia Access Control

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

190

MAN Metro Area Network

MANO Management and Orchestration

MEF Metro Ethernet Forum

MIC Multi-Integrated Cores

MPLS Multiprotocol Label Switching

NaaS Network as a Service

NC Network Controller

NETCONF Network Configuration Protocol

NF Network Function

NFaaS Network Functions-as-a-Service

NFV Network Functions Virtualisation

NFVI Network Functions Virtualisation Infrastructure

NFVIaaS Network Function Virtualisation Infrastructure as-a-Service

NFVI-PoP NFVI-Point of Presence

NFVO Network Function Virtualisation Orchestrator

NG-OSS Next Generation Operations Supporting System

NIC Network Interface Cards

NIP Network Infrastructure Provider

NOC Network Operators Council

NS Network Service

NSD Network Service Descriptor

NV Network Virtualization

NVGRE Network Virtualization using Generic Routing Encapsulation

OAN Open Access Network

OCCI Open Cloud Computing Interface

ONF Open Networking Foundation

OPEX Operational Expenditure

OPN Open Platform for NFV

OS Operating System

OSI Open Systems Interconnection

OSS Operations Supporting System

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

191

PF Physical Function

PNF Physical Network Function

PoC Proof of Concept

PC Personal Computer

PER Performance & Portability Best Practices

QPI Quick Path Interconnect

QoS Quality of Service

RAM Random Access Memory

RAS Reliability Availability and Serviceability

REST API Representation State Transfer API

RFC Request for Comments

RPC Remote Procedure Call

RTP Real Time Protocol

SAN Storage Area Network

SBC Session Border Controller

SDN Software-Defined Networking

SDO Standards Development Organisation

SG13 Study Group 13

SLA Service Level Agreement

SNMP Simple Network Management Protocol

SOTA State-Of-The-Art

SP Service Provider

SR-IOV Single Root I/O Virtualisation

SSD Solid-state-disk

STP Spanning Tree Protocol

STT Stateless Transport Tunnelling

SW Software

SWA Software Architecture

ToR Terms of Reference

ToR Top of Rack

TMF TeleManagement Forum

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

192

TNM Transport Network Manager

TR Technical Report

TS Technical Standard

TSC Technical Steering Committee

T-NOVA Network Functions as-a-Service over Virtualised

Infrastructures

UC Use Case

UML Unified Modelling Language

VEB Virtual Edge Bridge

VEPA Virtual Ethernet Port Aggregator

VIM Virtualised Infrastructure Manager

VL Virtual Link

VLD Virtual Link Descriptor

VLAN Virtual Local Area Network

VM Virtual Machine

VMM Virtual Machine Manager

VMX Virtual Machine Extension

VN Virtual Network

VNF Virtual Network Function

VNFC Virtual Network Function Component

VFND Virtual Network Function Descriptor

VNFFG Virtual Network Function Fowarding Graph

VNFFGD Virtual Network Function Fowarding Graph Descriptor

VNFM Virtual Network Function Manager

VRF Virtual Routing and Forwarding

VPN Virtual Private Network

VSAN Virtual Storage Area Network

vNIC Virtual Network Interface Cards

VPN Virtual Private Network

VTN Virtual Tenant Network

WAN Wide Area Network

WG Working Group

T-NOVA | Deliverable D2.31 Specification of the Infrastructure Virtualisation,

Management and Orchestration - Interim

© T-NOVA Consortium

193

WP Work Package

WP Working Procedures

XML Extended Markup Language

ZOOM Zero-touch Orchestration, Operations & Management

