
W
O
RK
IN
G
PA
PE
R

A blockchain ontology for the pattern-based
design of decentralized software applications

Nicolas Six, Camilo Correa Restrepo, Nicolas Herbaut, and Camille Salinesi

Centre de Recherche en Informatique (CRI)
Université Paris 1 Panthéon-Sorbonne, Paris, France

{first.last}@univ-paris1.fr

Abstract. Ensuring the quality of software design is usually a diffi-
cult task. In the blockchain field, the design of an application is partic-
ularly important as flaws can lead to critical vulnerabilities and cost
overheads. To assist practitioners in this task, software patterns can
be used (solutions to repeatable problems in a given context). Some
blockchain patterns exist but they are scattered, and described in many
different notations and templates. As a result, practitioners can be lost in
the selection of adequate blockchain-based patterns. This paper fills the
gap by proposing an ontology of blockchain-based design patterns. That
was created based on a previous systematic literature review of existing
blockchain patterns. A tool is proposed along with the ontology to assist
practitioners in finding blockchain-based patterns that fit their needs. A
survey is performed with software architects and blockchain experts to
assess the ontology usability. The survey has resulted in positive results,
as participants were able to leverage the tool in the context of survey
case studies.

Keywords: Blockchain · Software design · Knowledge engineering

1 Introduction

A blockchain is a data structure where each block is linked to the previous one
with a cryptographic hash [19]. The addition of new blocks is ruled by a network
of peers, so-called nodes, that each holds a copy of the blockchain. Each block
stores a list of transactions, that represent interactions between a user and the
blockchain. First-generation blockchains, such as Bitcoin, only allow users to ex-
change cryptocurrencies with each other through transactions. Since 2015, with
the release of Ethereum, several blockchain solutions started to support smart
contracts. A smart contract is a computer program that executes predefined ac-
tions when certain conditions within the system are met [1]. Hence, users can
interact with smart contracts using transactions.

As the internal workings of blockchain differ from traditional technologies, it
has many unique qualities. First, blockchain is decentralized: there is no central
actor in charge of the network. A consensus algorithm executed by each peer
in the network rules the addition of new blocks. Then, blockchain guarantees



W
O
RK
IN
G
PA
PE
R

2 N. Six et al.

the immutability of data1, as it is impossible to alter blocks after their addition.
Finally, blockchain is transparent: as every node has a copy of the blockchain,
any user that has access to a node can see previous transactions and stored data.

The unique capabilities of blockchain unlock a new range of innovative de-
centralized applications. For example, supply-chain applications take profit of
blockchain to enable trusted traceability of goods [2]. Healthcare applications
use blockchain as a central trusted third party for medical data sharing [12].
Because of the specific properties of blockchain, a growing number of software
architects attempt to build blockchain-based applications, but have found it to
be a tedious task. Blockchain applications can suffer from their own qualities in
certain contexts. For instance, transparency and immutability can be a burden
when coping with personal data, that might be subject to data protection regula-
tions such as the General Data Protection Regulation (GDPR). Also, blockchain
lacks certain native capabilities due to the way it functions, such as the ability
to query external data or store large amounts of data.

Practitioners often employ software patterns to address design issues in the
software design phase. A pattern is a solution to a commonly occurring problem
in a given context. In the blockchain field, blockchain-based software patterns
can be a solution to the difficulty of ensuring the quality of newly designed decen-
tralized applications. For instance, one of the best-known patterns is the Oracle
[20]: as a smart contract cannot query data from outside the blockchain, using
this pattern consists in sending fresh data to a smart contract when needed. Up
to now, only a few patterns have already been identified, regrouped in collections
(e.g., [20]) or proposed standalone (e.g., [15]). Moreover, these patterns are scat-
tered across the literature, making the task of identifying adequate patterns for
a specific design difficult. To the best of our knowledge, there is no centralized
and structured collection of blockchain-based patterns from diverse domains.

To address the aforementioned issues, this paper proposes an ontology of
blockchain-based software patterns. This ontology is built over a systematic lit-
erature study in which 160+ blockchain-based patterns were collected from the
literature. A problem ontology is also included to link pattern categories with the
problems they address in the software design phase. Problems are linked to user
story sentences to bridge between patterns and the practitioner’s requirements.
To explore the ontology, an open-source tool2 is also proposed to graphically
explore the ontology. We formally validated our ontology (a) through the verifi-
cation of its fulfillment of the requirements and (b) through a qualitative survey
conducted with 7 blockchain and software architect experts to evaluate the rel-
evance of the produced ontology by leveraging our tool.

The rest of the paper is organized as the following: section 2 introduces
existing blockchain-based pattern collections and software pattern ontologies,
then section 3 presents the research method employed to build the ontology as
well as its requirements. Section 4 describes the resulting ontology, and section
5 presents the validation phase to assess the relevance of the ontology. Finally,

1 This assumption is only valid if the network is not compromised
2 https://github.com/harmonica-project/blockchain-patterns-ontology

https://github.com/harmonica-project/blockchain-patterns-ontology


W
O
RK
IN
G
PA
PE
R

A blockchain-based pattern ontology 3

threats of validity are discussed in section 6, and section 7 concludes with future
works.

2 Related Works

The literature shows that the idea of using ontologies to describe software pat-
terns has already been explored. In [9], Kampffmeyer et al. propose an ontology
derived from GoF [4] for design patterns. Each pattern is linked to a set of design
problems it solves, along with a tool to help practitioners select patterns with-
out having to write semantic queries. However, their ontology does not bring out
any dependency link between patterns themselves. Our contribution reuses the
concept of problem ontology and extends it, as shown in Section 4.

Another ontology for software patterns is proposed in [5]. This ontology en-
compasses not only design patterns but also architectural patterns and idioms.
A pattern is described using different attributes (such as Problem, Context, So-
lution, ...), and can be linked to other patterns through a pattern system and
specific relations (e.g., require, use).

A similar metamodel for software patterns is proposed in [8]. Some differ-
ences can be mentioned, such as the possibility to specify that two patterns
conflict with each other and cannot be applied at the same time, or the seeAlso
relationship to indicate other patterns related to a specific pattern.

In addition, [10] proposes a design pattern repository taking the form of an
ontology. The contribution enlights tedious knowledge management and sharing
with traditional pattern collections and argues for a structured ontology for-
mat. The proposed ontology group patterns into pattern containers, where one
pattern can belong to many containers. Patterns can also be linked to a set of
questions and answers, elicited from expert knowledge, through an answer rel-
evance attribute. It indicates how relevant a pattern is in addressing a specific
question. Our contribution follows a similar path to that taken by the aforemen-
tioned pattern ontologies by structuring a set of patterns of a specific domain,
in our case blockchain-based patterns.

Some ontologies have been proposed for modeling the blockchain domain,
such as that proposed by De Kruijff and Weigand [3], that of Ugarte-Rojas and
Chullo-Llave [7], and that of Glaser [6] (though Glaser provides no formalization
of his ontology) that models the technology itself and its components. Another
work by Seebacher and Maleshkova [11] focuses on modeling the characteristics
of blockchains within corporate networks and their use. To the best of our knowl-
edge, no work has been conducted on exploring formal ontologies for software
patterns within the blockchain domain.

3 Methodological Approach

The proper design of an ontology relies on the usage of a reliable and proven
method. For the construction of the blockchain-based pattern ontology, the NeOn
method [16] has been chosen due to its inherent flexibility and focus on the reuse



W
O
RK
IN
G
PA
PE
R

4 N. Six et al.

of both ontological and non-ontological sources in a structured manner. It does
not force rigid guidelines upon its users: a set of scenarios is given and the user
is free to select, and if needed, adapt any scenario that suits their needs. In this
study, we base our approach on two of the scenarios envisaged within NeOn.
The first scenario mainly concerns ontology construction from the ground up,
to produce a new, standalone, ontology. The principal motivation for this choice
is the absence of literature on existing ontologies covering blockchain patterns
and the inability of existing software pattern ontologies to adequately capture
the results of the literature review upon which we base our ontology; hence our
need to produce a standalone ontology to cover our particular domain of interest.
The second addresses the specific aspects of reusing non-ontological resources in
the construction of ontologies. This is key, since the blockchain-based pattern
ontology will be primarily based on the reuse of previous results obtained through
a systematic literature review. The NeOn methodology proposes a set of closely
related life cycle models linked to the different scenarios it incorporates. In our
case, given our need to reuse non-ontological resources, the six-phase waterfall
life cycle has been chosen (Figure 1).

Initiation
Ontology

requirements
specification

Reuse
Non-ontological

resources
identification

Re-engineering
Non-ontological

resources
refactoring to

ontologies

Design
Conceptual

model design

Implementation
Ontology

implementation

Maintenance
Prepare new

versions of the
ontology

Identified errors

Fig. 1: NeOn framework workflow.

3.1 Ontology requirements specification

One important step in the construction of a sound ontology is the specification
of requirements through an ORSD (Ontology Requirement Specification Doc-
ument) [16] that serves as an agreement on what requirements the ontology
should cover, its scope, implementation language, intended uses and end-users.
The ORSD facilitates the reuse of existing knowledge-aware resources in the cre-
ation of new ontologies [16]. Competency questions (CQs) encode the functional
requirements of an ontology; their coverage, ideally in a generalizable manner,
allows one to consider the ontology functionally complete. For the sake of brevity,
only the CQs are detailed in this paper, listed in Table 1. However, more infor-
mation about the ontology’s purpose can be found in the introduction or in the
full ORSD, available on GitHub3.

The set of competency questions is divided in three categories. The first, Pro-
posed patterns information, relates to obtaining information on a specific pat-
tern. The main elements of the ontology are the patterns themselves. However,

3 https://github.com/harmonica-project/blockchain-patterns-ontology

https://github.com/harmonica-project/blockchain-patterns-ontology


W
O
RK
IN
G
PA
PE
R

A blockchain-based pattern ontology 5

Table 1: Blockchain-based software patterns ontology competency questions.

CGQ1 - Proposed patterns information

CQ1 What are the context and problem linked with the Oracle pattern in [20]?

CQ2 What is the solution proposed by the Oracle pattern in [20]?

CGQ2 - Relations between patterns

CQ3 What are the linked patterns of the Contract Registry pattern in [20]?.

CQ4 What are the patterns proposed in the literature for the Oracle pattern?

CQ5 What is the pattern targeted proposed in [20] under the name Oracle?

CGQ3 - Pattern recommendation

CQ6 What patterns can I use to improve the security of a smart contract?

a distinction is made between software patterns that are proposed in different
sources (so-called proposal), and software patterns that are the result of merg-
ing all sources into one common definition (so-called pattern). This distinction
is important as a pattern within a source is proposed in relation to a specific
context (domain, technology, language, ...). The second, Relations between pat-
terns, relates to dependency links between pairs of patterns. As an example, the
Tokenization pattern requires the Address mapping pattern, as it is necessary to
establish a mapping between users and owned tokens to enable their usage. Be-
ing able to answer those questions using the ontology is important to extend the
capabilities of recommending relevant patterns in a given case later. Indeed, the
usage of some patterns is conditioned on the usage of others. Two more questions
(CQ4 and CQ5) address the relations between a proposed pattern and its cor-
responding class. The ontology must allow the user to get all proposed patterns
that are linked to a specific pattern class, but also the opposite. Finally, the
third, Pattern Recommendation, relates to the connection between patterns and
the problems they address. Answering CQ6 returns a set of proposed patterns
that address a high-level problem that have multiple patterns as an answer.

The process outlined in [16] was followed to validate our requirements specifi-
cation, within the larger framework of the NeOn methodology. Since the ontology
was to be built with extensibility in mind, should new requirements arise, the
queries that correspond to the competency questions to act as a test suite that
ensures the ontology remains conformant as it evolves.

3.2 Reuse of non-ontological resources

As the purpose of constructing the ontology is to formalize the knowledge of a
previous systematic literature review, the ontology incorporates knowledge from
two different non-ontological resources that can both be found on GitHub4. The
first is a collection of 160 patterns that were found during the literature review
within 20 different papers; out of which 120 unique patterns have been derived.

4 https://github.com/harmonica-project/blockchain-patterns-collection



W
O
RK
IN
G
PA
PE
R

6 N. Six et al.

Each of the collected patterns is described by a set of attributes, e.g., a Name, a
Context and Problem, and a Solution. The domain, programming language, im-
plementation examples, and blockchain technology associated with the pattern
are also collected if available. Indeed, some patterns may be proposed by paper
for a specific programming language (the Solidity smart contract language5),
or in the context of a specific domain (e.g., patterns to enable decentralized
identity on blockchain). Also, different types of relations between patterns were
identified throughout the study: Created from, Variant of, Requires, Benefits
from, and Related to. As the application of a specific pattern might require con-
sidering other patterns, its relations to others must be made explicit. Further
details about these relations are given in Subsection 4.1. Patterns are classified
in one of three categories depending on their general purpose: Architectural pat-
terns that regroup patterns impacting the general structure of the application
(elements, connections); Design patterns that are a way to organize modules,
classes, or components to solve a problem; and Idioms, solutions to a program-
ming language-related problems.

The second non-ontological resource is used to extend this classification; de-
sign patterns are classified in subcategories derived from a taxonomy. This taxon-
omy emerges from the categorization of the results in the literature review, and is
comprised of 4 main categories and 14 subcategories. The blockchain-based soft-
ware pattern ontology reuses all collected knowledge from the literature review.
More details are given in the introduction of the ontology conceptual model in
the results in Section 4.

4 Results

The application of the NeOn method resulted in a blockchain-based software
pattern ontology, and a querying tool that can be used to leverage the ontology
through different ways of retrieving then selecting blockchain-based patterns.

4.1 Blockchain-based software pattern ontology

The primary outcome is the creation of the blockchain-based software pattern
ontology, stands in the conceptual model6 presented in Figure 2. As the figure
shows, the driving idea of the ontology is the explicit distinctions between: (a)
patterns and pattern proposals, (b) proposals and descriptions of proposals in
source papers, and (c) design problems outside the scope of patterns.

The central element of this model is the Proposal class. A proposal is a
pattern introduced within an academic paper. Each proposal instance is linked
to concrete instances of the Pattern and Source classes. In the current form
of the ontology, all sources are academic papers, but this class includes other
types of sources such as technical reports. As an example, the Oracle pattern

5 https://docs.soliditylang.org/
6 For the sake of clarity, subclasses of Domain, Blockchain, Pattern, and Design prob-
lem were omitted in the figure.



W
O
RK
IN
G
PA
PE
R

A blockchain-based pattern ontology 7

proposed by Xu et al. [20] is an individual of Proposal as it is proposed in the
Xu et al. [20] paper, and attached to the Oracle pattern, an individual of the
Pattern class. The distinction between a pattern and the proposals it results
from is important as in some cases multiple papers proposed the same pattern
using different words, templates, and for different domains or blockchains. In
the previous example, the Oracle pattern has multiple proposals from different
papers. This is represented in the ontology by one-to-many relations between
Proposal, Domain, Language, or Blockchain technology. The usage of Proposal
entity to map a paper and its proposed patterns also allows extensibility, as
papers can be abstracted as documents, regrouping other types of literature
(industrial reports, documentation, ...).

In this conceptual model, a Proposal is described by a Context and Problem,
that gives a rationale for the purpose of the pattern and addressed problems,
and a Solution field to introduce the different elements composing the pattern
solution. This structure for pattern description is derived from the two main
pattern formats (GoF pattern format and Alexandrian form [17]), usually used
by researchers and practitioners to express software patterns. Because of the
lack of standardization across the literature on the description of patterns, only
the context, problem, and solution have been kept to describe a pattern in this
ontology. Proposals and Patterns can also be linked as pairs, using 5 different
relation types that were identified from the systematic literature review: Created
from for a pattern that directly takes its sources in another, Variant of when
a pattern is a variant of another, Requires and Benefits from when a pattern
might or have to use another to perform well once implemented, and Related to
to identify a weak relation between a pattern and another (e.g., “see also”).

The subclasses of the Pattern class emanate from the reused taxonomy for
blockchain-based patterns, built in its related systematic literature review. For
instance, the Oracle proposal from [20] is linked to the Oracle pattern class, that
inherits from the Data exchange pattern, then On-chain pattern, Design pattern,

ProposalPattern

Blockchain Domain

Source

Language

Design problem

Implementation

0.
.*

0.
.*

0.
.*

0.
.*

0..* 1

0..
*

11

1 0..*

0..*

Pattern form <pattern format
attributes>

1 1

ap
pl

ie
dI

n

address

describedBy describedBy

0..*

0..*

proposes

hasSource
ha

sD
om

ain

ha
sB

lo
ck

ch
ai

n

hasLanguage

linkedTo

0..*

Possible links: 
- Related to 
- Variant of 
- Requires 
- Benefits from 
- Created from

0.
.*

Design question

linkedTo

0.
.*

0..*

0..* 0..
*

Fig. 2: Ontology conceptual model.



W
O
RK
IN
G
PA
PE
R

8 N. Six et al.

and finally Pattern. To further refine this part of the ontology, each Pattern ad-
dresses a specific Design problem. By extension, each subclass of Pattern address
a design Design problem subclass. Each problem has been assigned an associated
literal question, notably used for recommendations. These questions have been
designed along the construction of the design problem taxonomy to give a literal
sentence of the problem. The question is presented as an affirmation (here, a user
story sentence), that can be answered by yes or no. For instance, the question
associated with the Smart contract usage design problem, solved by the Smart
contract patterns is “I want to use smart contracts in the design of my blockchain
application”. Such an affirmation can be thus presented as a question to the user
and answered positively or negatively, to guide pattern recommendation.

4.2 Ontology Querying Tool

In parallel with the ontology, a tool was designed to leverage the blockchain-
based pattern ontology without having to query directly the ontology through
SPARQL requests. This tool has two main features. The first one is the explorer
feature, which allows one to dive into the blockchain-based pattern ontology
through the presentation of all available patterns in a grid. This section’s purpose
is to link the solution domain (the list of patterns) to the problem domain (user
requirements and goals). Indeed, any user reading available patterns descriptions
might find some that suit their goals. In the application, each pattern is displayed
by its name but also the number of proposals linked to the pattern. By clicking
on the pattern card, proposals can be consulted in detail: the context, problem,
and solution are given to the user, along with a list of linked patterns following
the same notation as the ontology. Patterns can also be filtered out using the
proposal respective domains, blockchains, and languages, as filters. For instance,
a user can select Ethereum as the desired blockchain and filter out every non-
corresponding pattern.

The second part of the tool is the recommender feature. Contrary to the ex-
plorer feature, any user can leverage the recommender to pass from the problem
domain (a set of questions asked by the user), to the solution domain (a set of
patterns matching given answers). In the recommender, the user must answer a
set of questions linked to design problems, as presented in Subsection 4.1.

The recommender must be able to convert the answers from the questions
to a set of scores attributed to each pattern. An illustrative scheme of this
process is shown in Figure 3. The set of questions is browsed as a tree structure:
the questionnaire begins with a high-level question (e.g. “I want to use design
patterns in my application”) and if the user answer “Yes”, direct subquestions
are asked to the user. Also, the question is assigned a score of 1. The user can
also answer “No”: in this case, the question and every subquestion below will
be assigned a score of -1, and subquestions will be automatically skipped. A
third possible case is answering “I don’t know”. In this case, the question will
simply be skipped and its score will be of 0. Once the questionnaire is filled,
recommendations are generated.



W
O
RK
IN
G
PA
PE
R

A blockchain-based pattern ontology 9

As the set of questions forms a tree, and as patterns are grouped under leaves
categories from the taxonomy, the tool can compute the score of a pattern by
summing the score of all tree questions, then dividing it by the length of the
branch. This step is essential as some branches are shorter than others, thus the
sum would be lower although the user answered yes to all questions of those
branches. After this scoring phase, the recommendation process is concluded by
a presentation of the patterns to the user, ordered by score. To facilitate the
understanding of the pattern recommendation level among others, this score is
displayed as a label. 5 labels have been created, from “Not recommended” to
“Extremely recommended”. As patterns are scored between 0 and 1, each label
corresponds to an interval of 0.2.

5 Validation

To evaluate whether the ontology addresses the initial requirements, and if the
implemented tool is capable of leveraging the ontology, a two-fold validation was
conducted. First, it has been verified that the ontology indeed covers the set of
requirements as set out in the ORSD and is thus functionally complete. Second,
a survey is performed with experts in the software development and blockchain
fields, to validate the usability of the tool designed over the ontology. Validating
the tool usability is, by extension, validating the ontology soundness.

ProblemPattern
addresses

"I want to use commonly used design
constructs and features in my

application"

"I want to leverage blockchain in my
application"

"I want to use smart-contracts in the
design of my blockchain application"

"I want to enable access control and
permissions measures when

requesting my smart-contracts"

Questions

"Yes"

"Yes"

"Yes"

"I don't"
know

Design patterns Design pattern
application 1

On-chain patterns Build on-chain
application 1

Smart-contract
patterns

Smart-contract
usage 0

Contract access-
control patterns

Enable smart-
contract access
control 1Ownership 

pattern

0.75

Fig. 3: Pattern scoring based on patterns/problem categories.



W
O
RK
IN
G
PA
PE
R

10 N. Six et al.

5.1 Protocol

In this survey, we surveyed a panel of 7 experts from different backgrounds
(academia, industry) and positions (engineers, manager) as shown in Table 2.

Table 2: Panel Description7

ID E1 E2 E3 E4 E5 E6 E7

Role * § † ‡ § † §
Blockchain Experience (y) 4 4 4 4 2 1 2

Software Design Experience (y) 5+ 1 5 5 2 2 5+

This survey is divided into three parts. The first two parts aim at assess-
ing whether the users were able to exploit the ontology through the tool, either
for pattern recommendations or consultation. Then we assess the overall accep-
tance of the tool for the design of blockchain applications. For that, 3 validation
hypotheses were proposed:

– H1: A practitioner can leverage the tool to navigate from the solution space
(blockchain-based patterns), to the problem space (requirements).

– H2: A practitioner can leverage the tool to navigate from the problem space
(requirements), to the solution space (relevant blockchain-based patterns).

– H3: A practitioner can leverage the tool to design blockchain applications.

In other terms, if the tool fulfills those three hypotheses, a user will be able
either to assess if the proposed software patterns fit its goals and requirements,
but also to get a selection of recommended patterns from the tool recommender
system, and use the tool to design blockchain applications.

To address H1, a custom case study has been designed on a blockchain use
case. This case study was short enough to ensure participants had the time to as-
similate it in the survey within the given timeframe (30 minutes for both parts).
Organizers proposed 5 patterns P j

H1
(0 < j < 5) for each expert n, the objec-

tive was to assess if the expert was able to find and understand the patterns
well enough to decide if they were applicable to the case study. This applicabil-
ity of pattern j was rated by each participant n from 0 (non applicable) to 4
(must-have) Rn(P j

H1
). Then, the survey organizers performed the same exercise

but with full knowledge of the patterns, having analyzed the associated papers
beforehand R̃(P j

H1
). Finally, participants’ answers were compared to the orga-

nizers’ own responses and a normalized score for each participant was calculated
SH1
n , the average absolute difference between his score and organizers score as

shown in equation (1).
H2 was addressed differently: after reading a second case study, each par-

ticipant n had to answer questions formulated by the recommender system,
then refer to the generated pattern recommendation to select 5 patterns P j,n

H2
,

0 < j < 5 fitting the case study. Then, each participant’s selected pattern was
graded on the same 0-4 scale by survey organizers R̃(P j,n

H2
). We then computed

7 §PhD student, *Lead Tech, † Software Engineer, ‡Blockchain Engineer



W
O
RK
IN
G
PA
PE
R

A blockchain-based pattern ontology 11

normalized score SH2
n based on the average pattern score for each expert n as

show in equation (2).

SH1
n =

∑#PH1
j=0 4− |Rn(P j

H1
)− R̃(P j

H1
)|

#PH1

(1) SH2
n =

∑#PH2
j=0 R̃(P j,n

H2
)

#PH2

(2)

The finality of this score is the assessment that participants successfully man-
aged to take profit of the tool to build a set of patterns that suits the use case
needs. For each hypothesis, a score of 4 would mean a perfect agreement between
participants and organizers and a score of 0 would mean a perfect disagreement.

Finally, for H3, the validation was conducted through a questionnaire sent
to the panel to gather their structured feedback on the tool after the session. To
design the questionnaire, we adapted 12 questions from the Unified Theory of
Acceptance and Use of Technology (UTAUT) [18], that is widely used for assess-
ing artifact acceptance. Each panel member provided answers on a Likert scale8

from a blockchain software architect perspective. We grouped our 12 questions
following 4 different UTAUT categories. We report the mean value for all the
questions for each category to get feedback on the tool usability and utility. The
following list presents those categories, with question references in parenthesis:

– Performance Expectancy (U6, RA1): the level to which an individual
believes that using the system will improve its job performance. (ie. the user
is able to identify adequate patterns for designing blockchain applications).

– Effort Expectancy (EOU3, EOU5, EOU6, EU4): the degree of ease
associated with the use of the system. (ie. users should understand the tool
easily to find adequate patterns).

– Facilitating Conditions (PBC2, PBC3): The impact of the environment
that makes something easy to do, such as technical or technical infrastruc-
ture. (ie. user has the technical knowledge or resources to use the tool.)

– Self-Efficacy (SE1, SE4, SE6, SE7): the degree of which the user is able
to complete the task by himself (with or without help).

5.2 Results and Discussion

Figure 4 shows the descriptive statistics for the score for each panel participant.
The mean values for all the questions range from 2.75 to 3.75 with an average
of 3.25/4, which indicates that the participants have successfully navigated the
solution space and provided adequate options on the relevance of the proposed
pattern. Strong prior blockchain experience is not necessarily a good predictor
for successfully judging patterns, since the most experienced participant has the
lowest score. The most junior profiles having a score of 3, have used the tool
effectively despite their lack of proficiency in blockchain application design.

Figure 4 scores put forth an even higher ability to navigate the problem space
thanks to the recommender system, with an average score of 3.5/4. Several par-
ticipants (E2, E6) selected only highly relevant patterns from the list, while E1

8 Strongly disagree (0), disagree (1), neutral (2), agree (3), and strongly agree (4)



W
O
RK
IN
G
PA
PE
R

12 N. Six et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

E1 E2 E3 E4 E5 E6 E7 ALL

s
c
o
re

UC 1 Score UC 2 Score

Fig. 4: Panel Usecase Score SHi
n

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

E1 E2 E3 E4 E5 E6 E7 ALL

s
c
o
re

Performance Expectancy
Effort Expectancy

Faciliting Conditions
Self-Efficacy

Fig. 5: Tool acceptance Evaluation

was not able to use the recommender system at all due to his lack of compre-
hension of the system. Again, blockchain experience is not a good predictor for
a high score for H2, which strengthens the idea that blockchain beginners have
a high benefit of using the tool.

Finally, we see in Figure 5 that tool acceptance shows more nuanced results.
Performance Expectancy is weakly positive, due to E1 not being able to fully
use the recommender system, while most junior profiles, E5 and E6 are neutral
about the tool improving their work performance. This may be explained by the
fact that using the tool is not enough for them to be confident in their design
choices, and external expertise is still envisaged for them to produce blockchain
software. The tool, however, is judged easy to use (Effort Expectancy score is
3.25/4) and provides enough resources to work on (Facilitating Conditions =
3.14/4) by most participants. Juniors (E5, E6) tend to lower the average for
those two metrics. The mean score of Self-efficacy (2.68/4) is neutral to positive
indicating that even if the tool can be used autonomously, it learning curve
should be considered for improvements.

The expert panel results show positive mean scores for all metrics, our hy-
pothesis can be considered valid w.r.t. our protocol, despite having room from
improvements, essentially in its perceived added value. The small sample size,
should also prompt further large-scale surveys, including a pre-flight question-
naire to better quantify prior blockchain background for the respondents, and
question its impact on the tool usability.



W
O
RK
IN
G
PA
PE
R

A blockchain-based pattern ontology 13

6 Threats to Validity

Four classical threats to validity framework were used by the authors to analyze
this work (internal, external, construction, and conclusion). Regarding internal
threats to validity, the survey method can be mentioned. Although UTAUT was
used to design part of the method, an ad hoc method has been proposed for the
evaluation of the tool functionalities. Nonetheless, the design of this method has
been carefully made to assess the different hypotheses mentioned in the results
section. Using this method also helped to identify a second internal threat, that
is the difficulty for users to leverage the recommendation section. Indeed, most
of the participants have found the recommendations too coarse to make accurate
decisions. This issue will be addressed in future works, yet this does not invalidate
the usability of the ontology itself as the explore part returned positive results.
The method used to build the ontology can also be a threat to validity. This
study uses NeOn as its primary method for the construction of the ontology, yet
applying another method could have resulted in a different ontology. However,
the possible difference of results is mitigated by the fact that the blockchain-
based software pattern ontology can address all of the competency questions
designed to guide the construction of the ontology.

The main external threat to validity is the generalizability of the ontology.
Even if the main purpose of the ontology was its reusability in a tool, careful
attention has been made to maximize the ontology reusability. Part of this ontol-
ogy is inspired by another ontology from the Design Pattern Intent ontology [9],
to bind design patterns (by extension, software patterns) with design problems.
Patterns are also expressed using a shortened pattern format, similar to the GoF
pattern format or the Alexandrian form. Future works will refine those patterns
to fully comply with one of those two formats. Finally, the ontology has been
designed with extensibility in mind. For example, the blockchain class can easily
be a connection point between this ontology and other blockchain ontologies,
such as [3], a blockchain domain ontology.

Regarding conclusions threat to validity, the scores obtained during the third
part (H3) of the survey can be discussed. We observed a lower score in this part
than the others, pointing out potential usability issues in the tool. Two main
issues were identified from participants’ feedback: too many patterns were rec-
ommended by the tool, and it was impossible to use filters to restrict the number
of displayed patterns. This has caused many participants to be overwhelmed by
the number of proposed patterns, making difficult the selection of adequate pat-
terns. Nevertheless, those issues are more related to the tool interface than the
ontology itself, as the scores obtained for the first two parts were satisfying.

7 Conclusion and Future Work

This paper proposes an ontology to store, classify, and reason about blockchain-
based software patterns. The ontology has been built over previous results ob-
tained by performing a systematic literature review of the state-of-the-art of



W
O
RK
IN
G
PA
PE
R

14 N. Six et al.

blockchain-based patterns. It is composed of proposals that are patterns formal-
ized in the context of an academic paper. 160 proposals have been stored in
the ontology, resulting in 120 different software patterns identified. Also, those
patterns have been classified using a taxonomy reused from the systematic liter-
ature review mentioned above. To best make use of both the categorization and
the ontology, a tool has been built. Using it, practitioners can explore the ontol-
ogy and its collection of patterns, but also use a recommender to get adequate
patterns fulfilling their needs.

A survey was conducted among 7 practitioners in the blockchain software
engineering field to evaluate the tool usability, and by extension, the ontology
soundness. It has yielded positive results. During the first part, participants were
successfully able to rate the applicability of a list of patterns for a specific case
study, both proposed in the context of the survey. In the second part, participants
managed to select 5 patterns from a list of recommended patterns fitting another
case study. However, we identified some improvement opportunities, notably in
the second and third parts. Participants have pointed out that too many patterns
were proposed by the recommender, thus making difficult the selection. Also, the
lack of filters in the recommender hinders participants to refine the selection into
a more desirable set of recommended patterns. However, those problems are more
related to the tool than the ontology itself, as it was highlighted in the usability
part of the survey (part 3).

This paper paves the way for future works in assisting practitioners in the
design of a blockchain application. The different artifacts will be integrated into
the Harmonica project9, a semi-automated framework for the design and im-
plementation of blockchain applications [13]. The integration will notably be
done between the tool presented in this paper and BLADE (BLockchain Auto-
mated Decision Engine), a decision-making tool for the selection of a blockchain
technology [14]. The combination will allow users to select a blockchain, then
adequate patterns that are applicable to the chosen technology. Some extensions
of this work could also be envisioned in the software pattern domain. Indeed, the
blockchain-based pattern ontology could be generalized to all software patterns,
thus allowing its reuse for the collection of software patterns in other domains,
such as Internet-of-Things (IoT) or microservices.

The recommender within the tool proposed in this paper will also be im-
proved through future works, by taking into account user feedback collected
during the survey. The main objective will be to increase the recommendation
precision, notably with the addition of filters and improvement in the recommen-
dation process itself. Finally, existing software patterns in the ontology might
be extended to include a formal description using existing pattern formats.

References

1. Belotti, M., Božić, N., Pujolle, G., Secci, S.: A vademecum on blockchain technolo-
gies: When, which, and how. IEEE Communications Surveys & Tutorials 21(4),

9 https://github.com/harmonica-project

https://github.com/harmonica-project


W
O
RK
IN
G
PA
PE
R

A blockchain-based pattern ontology 15

3796–3838 (2019)
2. Casado-Vara, R., Prieto, J., De la Prieta, F., Corchado, J.M.: How blockchain

improves the supply chain: Case study alimentary supply chain. Procedia computer
science 134, 393–398 (2018)

3. De Kruijff, J., Weigand, H.: Understanding the blockchain using enterprise ontol-
ogy. In: International Conference on Advanced Information Systems Engineering.
pp. 29–43. Springer (2017)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Patterns, D.: Elements of reusable
object-oriented software, vol. 99. Addison-Wesley Reading, Massachusetts (1995)

5. Girardi, R., Lindoso, A.N.: An ontology-based knowledge base for the representa-
tion and reuse of software patterns. ACM SIGSOFT Software Engineering Notes
31(1), 1–6 (2006)

6. Glaser, F.: Pervasive decentralisation of digital infrastructures: a framework for
blockchain enabled system and use case analysis (2017)

7. Hector, U.R., Boris, C.L.: Blondie: Blockchain ontology with dynamic extensibility.
arXiv preprint arXiv:2008.09518 (2020)

8. Henninger, S., Ashokkumar, P.: An ontology-based metamodel for software pat-
terns. CSE Technical reports p. 55 (2006)

9. Kampffmeyer, H., Zschaler, S.: Finding the pattern you need: The design pattern
intent ontology. In: International Conference on Model Driven Engineering Lan-
guages and Systems. pp. 211–225. Springer (2007)

10. Pavlic, L., Hericko, M., Podgorelec, V.: Improving design pattern adoption with
ontology-based design pattern repository. In: ITI 2008-30th International Confer-
ence on Information Technology Interfaces. pp. 649–654. IEEE (2008)

11. Seebacher, S., Maleshkova, M.: A model-driven approach for the description of
blockchain business networks. In: Proceedings of the 51st Hawaii International
Conference on System Sciences (2018)

12. Shen, B., Guo, J., Yang, Y.: Medchain: Efficient healthcare data sharing via
blockchain. Applied sciences 9(6), 1207 (2019)

13. Six, N.: Decision process for blockchain architectures based on requirements.
CAiSE (Doctoral Consortium) pp. 53–61 (2021)

14. Six, N., Herbaut, N., Salinesi, C.: Blade: Un outil daide à la décision automa-
tique pour guider le choix de technologie blockchain. Revue ouverte dingénierie
des systèmes dinformation 2(1) (2021)

15. Six, N., Ribalta, C.N., Herbaut, N., Salinesi, C.: A blockchain-based pattern for
confidential and pseudo-anonymous contract enforcement. In: 2020 IEEE 19th In-
ternational Conference on Trust, Security and Privacy in Computing and Commu-
nications (TrustCom). pp. 1965–1970. IEEE (2020)

16. Suárez-Figueroa, M.C., Gómez-Pérez, A., Fernández-López, M.: The neon method-
ology for ontology engineering. In: Ontology engineering in a networked world, pp.
9–34. Springer (2012)

17. Tešanovic, A.: What is a pattern. Dr. ing. course DT8100 (prev.
78901/45942/DIF8901) Object-oriented Systems (2005)

18. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of infor-
mation technology: Toward a unified view. MIS quarterly pp. 425–478 (2003)

19. Wüst, K., Gervais, A.: Do you need a blockchain? In: 2018 Crypto Valley Confer-
ence on Blockchain Technology (CVCBT). pp. 45–54. IEEE (2018)

20. Xu, X., Pautasso, C., Zhu, L., Lu, Q., Weber, I.: A pattern collection for blockchain-
based applications. In: Proceedings of the 23rd European Conference on Pattern
Languages of Programs. pp. 1–20 (2018)


	A blockchain ontology for the pattern-based design of decentralized software applications

