# On the study of AI metabolism (a position paper)







Nicolas HERBAUT

Université Paris 1 Panthéon-Sorbonne Centre de Recherche en Informatique nicolas.herbaut@univ-paris1.fr



### Can Al remain within planetary limits?

### Motivations

- → Al systems are becoming **ubiquitous**, transforming infrastructures and societal functions.
- → Their expansion generates significant resource demands and environmental pressures.
- → Key systemic effects—rebound, leakage, and lock-in—are often overlooked.
- → A socio-metabolic lens reveals conditions for sustainable AI within planetary limits.

### Social Metabolism

- → Social metabolism studies biophysical flows between **societies** and their **environment**.
- → It links **resource** use, **infrastructure** dynamics, and societal **needs**.
- → It captures **indirect effects**, such as feedback loops and externalities.
- → Applying it to Al reveals hidden dependencies and long-term sustainability risks.

# Flows Infra-structures Infra-structures Induce new Indu

### Flows

- → Short-lived **material** and **informational** resources essential to Al life-cycle tasks.
- → They include **non-renewable inputs** and raise issues like **privacy** and **resource scarcity**.



### Infrastructure

- → includes physical, informational, human, and regulatory components enabling Al systems.
- → both moderates resource use and stimulates new needs, reinforcing unsustainable expansion.



### 'T' Needs

- → individual and collective goals fulfilled by Alenabled services, based on Max-Neef's framework.
- → Al can act as a **synergic satisfier**, **pseudo-satisfier**, or destroyer, with long-term effects on well-being and sustainability.



## Future work / goals

This research aims to evaluate whether a **controlled landing scenario**—sustainable AI within planetary limits—is physically and socially achievable. Future work will operationalize the FIN model to guide this assessment.

- → Identify Al applications that provide long-term societal benefits with minimal resource intensity.
- → Apply the FIN model to case studies to map flows, infrastructures, and needs.
- → **Design** frugal AI strategies, including edge-based solutions.
- → Analyze cultural, economic, and regulatory factors enabling or blocking controlled landing.

The ultimate goal is to determine whether sustainable Al is feasible and, if so, under what systemic conditions.

### References

- H. Haberl et al., Contributions of sociometabolic research to sustainability science, Nature Sustainability 2019
- M. A. Max-Neef et al. Human scale development: conception, application and further reflections, 1991.
- C. Wilson et al. Evidence synthesis of indirect impacts of digitalisation on energy and emissions, ICT4S 2024
- J. Sayles et al. Considering the environmental impacts of ai systems, Principles of Al Governance and Model Risk Management, Springer, 2024