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Abstract
This position paper explores the sustainability of ubiquitous AI through a socio-metabolic lens. We present
a metabolic model, adapted from social metabolism theory, to analyze the relationships between resource
flows, infrastructures, and societal needs driven by AI. The model highlights feedback loops and externalities
that challenge the long-term viability of current AI. We suggest three systemic scenarios—degrowth, collapse,
and controlled landing—and question the plausibility of the latter. The research goal is to determine whether
sustainable AI usage exists and, if so, how it might be implemented through design or regulation. This contribution
invites interdisciplinary dialogue on aligning AI development with planetary limits.
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1. Introduction

The increasing ubiquity of Artificial Intelligence (AI) technologies raises critical questions regarding their
sustainability [1]. In this position paper, we propose using the analytical framework of social metabolism,
defined as “the biophysical flows exchanged between societies and their natural environment, as well as
flows occurring within and among social systems themselves.”[2] to better understand its implications.
This interdisciplinary framework provides a robust foundation for assessing the socio-environmental
impacts of AI.

At the core of this research is the Flow-Infrastructure-Needs (FIN) model, which explores interac-
tions between three critical dimensions: short-lived resource, energy and information flows, durable
infrastructure both physical and intangible, and societal and individual needs. Key systemic phenom-
ena—such as lock-in effects (or legacies), leakage (where adopting one technology increases consumption
of another), and rebound effects (where implementing a supposedly resource-efficient solution results
in increased overall resource use)—have been clearly highlighted by socio-metabolic research.

The application of a socio-metabolic view to AI deployment is motivated by several converging factors.
First, the rapid proliferation of AI across sectors has made its use ubiquitous, creating technological
dependencies and significantly reshaping both industry and everyday life. Second, AI technologies
carry substantial environmental impacts—not only due to high energy consumption and resource
extraction for infrastructure, but also because of their growing requirements for data, which endangers
privacy. Finally, the widespread deployment of AI data centers and AI capable user devices, intensifies
competition for resources[3].

While certain studies acknowledge AI’s potential contributions toward specific sustainability chal-
lenges (e.g., reducing greenhouse gas emissions [4]), systematic analyses addressing the broader impacts
of AI deployment remain uncommon and are predominantly focused on ethical aspects [5].

2. The FIN Model applied to AI

The proposed Flow-Infrastructure-Needs model for AI structures the analysis of ubiquitous AI into
three interacting socio-technical components:
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Figure 1: Integration between the component of the Flow-Infrastructure-Needs (FIN) model applied to AI. It
shows the lock-ins between (Flow and Infrastructure) and (Needs and Infrastructure).

Flows are defined as the material or immaterial resources entering and leaving the system with
short lifetimes, categorized into two major types: material and informational Flows. Material Flows
arise from the construction and maintenance of computing hardware essential for executing AI life-
cycle tasks such as data collection, preparation, feature extraction, training, testing, and inference. In
centralized or shared AI models (e.g., ChatGPT, Amazon Bedrock), most infrastructure construction
Flows are concentrated in data centers. Many material Flows, such as metallic minerals or rare earth
elements, are non-renewable on a human time-scale, leading to gradual resource scarcity and latent
negative externalities. Even renewable Flows like electricity or cooling can become effectively non-
renewable when considering second-order dependencies, as their production infrastructure relies on
partly renewable resources.

Informational Flows are fundamental at all stages of the AI life cycle to manage model and preserve
performance. Although using public data have minimal immediate negative effects, private data usage
for personalized user experience, creates privacy concerns requiring regulatory oversight, such as
GDPR, to manage consent and data usage.

Infrastructures consist of durable physical, informational, and regulatory components. Physical
infrastructures include data centers, energy-production facilities, and a variety of edge devices designed
for capturing data and facilitating interaction with AI systems. Informational infrastructures primarily
encompass datasets used for model training and inference, along with specialized hardware and software
components . These AI-specific technologies typically have limited applicability beyond their intended
context, differing significantly from traditional IT infrastructures [6]. Human resources form another
critical component, involving both end-users who interact with AI tools and specialized professionals
responsible for the design and ongoing maintenance of these systems. User participation—particularly
through Reinforcement Learning from Human Feedback (RLHF)—has become central [7], leading to
increasing returns to scale where AI systems progressively improve in performance with increased user
interaction. Finally, regulatory infrastructures encompass AI-specific laws (such as the EU’s AI Act),
broader privacy frameworks (RGPD, CPRA, PIPL), and environmental regulations that influence the
entire lifecycle of AI solutions. These regulations function either by enforcing mandatory constraints
or providing overarching guiding principles for responsible AI deployment.

Although this infrastructure subsystem may initially appear self-regulated—with regulatory mecha-



nisms moderating resource consumption by physical and informational components—it simultaneously
stimulates the emergence of new societal needs, further driving the expansion and evolution of those
unsustainable infrastructures [8].

Needs represent the individual and collective aspirations satisfied by infrastructure-based services,
based on Max-Neef’s framework [9] of Need Satisfiers. Within this framework, certain AI applications
clearly function as Synergic Satisfiers, simultaneously addressing multiple human needs. Notable ex-
amples include AlphaFold for protein structure prediction and AI systems enabling early pathology
detection, significantly contributing to scientific progress and societal well-being. Conversely, appli-
cations such as deepfake generation or cyber-attacks represent Destroyers, undermining rather than
meeting genuine needs.

Critically important is the category of Pseudo-Satisfiers, which appear to fulfill needs effectively in the
short term but actually compromise long-term satisfaction. Many current AI deployments may act as
pseudo-satisfiers, providing immediate convenience or productivity gains while potentially exacerbating
ecological impacts and undermining broader societal goals.

The FIN model highlights these intricate systemic interactions, emphasizing that AI sustainability
analysis must extend beyond immediate efficiency gains to carefully consider second- and third-order
effects, latent externalities, and feedback loops among Flows, infrastructures, and societal needs.

3. Exploring Alternative Scenarios

Using the FIN model and considering the lock-ins between the component, we identified three possible
scenario:

• Degrowth : Intentional reduction of resource use, infrastructure scale-down, and reduction of
purely hedonistic well-being aspirations.

• Collapse : Uncontrolled depletion of resources, infrastructure breakdown, forced reduction in
societal needs fulfillment.

• Controlled landing : An intentional limitation of Flows and infrastructures to balance negative
externalities against sustainable human well-being.

The viability of the controlled landing scenario remains uncertain, as its realization critically depends
on physical constraints, the system’s initial conditions, and society’s capacity to recognize and accept
usage limitations aligned with planetary boundaries. The main objective of this research line is to
identify the subset of AI applications and their operational context that could provide long-term benefits
for humanity while remaining within planetary limits. Should such a subset exist, the question of
how to steer AI development toward it—whether through collective awareness or, more realistically,
regulatory frameworks—remains open.

4. Conclusion and Future Work

This work lays the groundwork for future research by making the FIN model actionable as an analytical
tool to examine the socio-metabolic dynamics of AI. Further research will aim to refine the FIN model
by applying it to the design of frugal AI solutions, including those based on edge devices that may offer
greater energy efficiency and enhanced privacy. While it remains uncertain whether such approaches
can meet practical and societal expectations, their exploration appears necessary given the sustainability
challenges posed by current AI infrastructures. It will also examine the societal transformations that
underlie increasing dependence on AI, especially the socio-economic and cultural dynamics involved.
Finally, it will address questions of trust and legitimacy in AI adoption, including the role of pseudo-
satisfiers—solutions that appear beneficial in the short term but compromise long-term sustainability.
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